EFFECT OF DISTILLERY INDUSTRIAL EFFULENT ON AGRICULTURAL CROPS AND ENVIRONMENTAL JUSTICE: A CASE STUDY OF KHAJURA VDC, BANKE

ACKNOWLEDGEMENT

I would like to extend my sincere gratitude to my Supervisor and Head of the Central Department of Botany Prof. Dr. Promod Kumar Jha for his regular guidance and precious suggestions through out this research work and for providing laboratory facilities.

I express my heartfelt thanks to Prof. Dr. Ram Prasad Chaudhary and Prof. Dr. Hari Datta Lekhak, Central Department of Botany for their kind suggestions. I am also thankful to Mr. Bharat Babu Shrestha and Mrs.Anjana Devkota, lecturers of Central Department of Botany for their helpful suggestions during this work

My profound thanks impart to Nepal Bureau of Standard and Metrology (NBSM) Balaju, Nepal Agricultural Research Council (NARC) and Regional Soil Experiment Laboratory, Khajura for providing laboratory and chemical facilities. My special thanks goes to Mr. Shailesh Kumar Jha, Chemical Lab Officer of Nepal Bureau of Standard and Measures for providing regular help during the lab works. I am very much thankful to the Manager and the Chemist of Karnali Distillery for their help.

I am also thankful to Forum for Justice, Buddhanagar, Kathmandu for providing partial financial assistance.

My deep appreciation goes to Mr. Bhakta Bahadur Raskoti for his valuable suggestions and incredible co-operation during this work.

I express my thanks to my friends Nabin, Shiva Raj, Krishna, Mishri Lal and brother Sanjeev Gurung for their keen support during this research work.

Finally, I hold my due credit to my parents and family members who always encourage and provide moral support to me in every step of my life.

Rita Ale

ABSTRACT

Effluent discharged from the Karnali distillery Pvt. Ltd was analyzed to measure its effect on agricultural crops and environmental justice. Various physico chemical parameters like pH, temperature, Dissolved Oxygen (DO), BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), TSS (Total Suspended Particles), Nitrogen (N), (Phosphorus (P), Potassium (K) and some heavy metals such as iron (Fe), Manganese (Mn), Cadmium (Cd), lead (Pb), Zinc (Zn), and Copper (Cu) were analyzed and found most of the physicochemical parameters were above the toxic level set by Nepal bureau standard. The analysis of physico chemical parameters of the soil irrigated with effluent polluted water showed appreciable increase in the soil nutrients (Organic Matter, Nitrogen, Phosphorus, Potassium) along with the increase of toxic heavy metals such as Fe, Cd, Mn and Pb in the soil which has affected annual crop productivity by around 40 percent. Similarly the effect of the effluent on seed germination, seedling growth, fresh weight and dry weight of seedlings of two test crops (Oryza sativa and Triticum aestivum) were also analyzed with statistical test and found the effect was different according to the test species and concentration of treatment. Higher concentrations (10%, 25%) were found completely inhibitory where as lower concentrations (1%, 5%) were found stimulatory and reached up to the level of control. The present study showed that the distillery effluent was highly loaded with organic pollutants along with harmful heavy metals which showed significant effect on soil quality and the crop productivity and was also responsible for the environmental injustice of the local people in terms of crop production, compensation and environmental hazards.

CONTENTS

			Page
1.	INTF	RODUCTION	1-8
	1.1	Background	1
	1.2	Environmental Justice	4
	1.3	Environmental Justice in Nepal	5
	1.4	Statement of Problem	6
	1.5	Justification	7
	1.6	Objectives	8
	1.7	Limitation of the Study	8
2.	LITE	ERATURE REVIEW	9-26
	2.1	Industrial Effluent Pollution	9
	2.2	Effect of Effluent on Plant Growth and Development	15
	2.3	Effect of Effluent on Soil	22
	2.4	Environmental Justice	24
3.	METHODOLOGY		27-39
	3.1	Description of the Study Area	27
	3.2	Test Seeds	29
	3.3	Industrial Effluent and Soil	29
	3.4	Sampling of the Industrial Effluent and Soil	29
	3.5	Physico-Chemical Analysis of the effluent and Soil	30
	3.6	Method of Effluent Test	30
	3.7	Method of Soil Analysis	35
	3.8	Germination Experiment	37
	3.9	Statistical Analysis	39
	3.10	Interview with Local People	39
4.	RESULTS		40-56
	4.1	Physico-Chemical Parameters of Effluent	40
	4.2	Effect of the Karnali Distillery Effluent on Soil	
		Characters	42
	4.3	Effect of Effluent on Seed Germination	43

	4.4	Evaluation of Relative Degree of Enhancement or	
		Inhibition by Effluent on Seed Germination	45
	4.5	Effect of Effluent on Seedling Growth	46
	4.6	Relative Degree of Enhancement or Inhibition by	
		Effluent on Seedling Growth	48
	4.7	Effect of Effluent on Seedling Weight	49
	4.8	Evaluation of Relative Degree of Enhancement or	
		Inhibition on Fresh Weight of seedling	51
	4.9	Effect of Effluent on Dry Weight of Seeding	52
	4.10	Evaluation of Relative Degree of Enhancement or	
		Inhibition in Dry	54
	4.11	Interview with Local People	55
5.	DISCUSSION		57-69
	5.1	Environmental Justice	67
6.	CON	CLUSION AND RECOMMENDATIONS	70-72
	REFERENCES		
	APPI	ENDIXES	91-96

LIST OF TABLES

		Page
Table 1	Pysico-Chemical Characteristics of Effluent from Karnali	
	Distillery Pvt. Ltd. and its Associated Stream Water	40
Table 2	Chemical Characteristics of Soil from Effluent Irrigated	
	and Non-Irrigated Area	42
Table 3	Texture class of soil samples of two different sites	43
Table 4	Crop productivity in the study area as given by different	
	respondents	56

LIST OF FIGURES

		Page
Fig. 1	Effect of effluent on seed germination of Oryza sativa.	
	Variance ratio at 5% level Fcal=14.64 and 39.59	
	(Ftab=3.01 and 3.24) for hours of sowing and treatment	
	concentration at d.f. (4, 16 and 5, 16)	44
Fig. 2	Effect of effluent of seed germination of Triticum	
	aestivum. Variance ratio at 5% level Fcal=14.87 and	
	205.89(Ftab=3.26 and 3.49) for hours of sowing and	
	treatment concentration at d.f. (4, 12) and (3, 12)	
	respectively.	45
Fig. 3	Relative Degree of Inhibition on Seed Germination of	
	Oryza sativa by Effluent	46
Fig. 4	Relative Degree of Inhibition on Seed Germination of	
	Triticum aestivum by Effluent	46
Fig 5	Effect of effluent on seedling growth of Oryza sativa.	
	Variance ratio at 5% level, Fcal=9.51, 6.96(F tab=3.84,	
	4.46) and Fcal 7.24, 5.10(Ftab= 3.84,4.46) for days of	
	sowing and treatment concentration at d.f.(4,8),(2,8) for	
	shoot and roots respectively.	47
Fig. 6	Effect of effluent on seedling growth of Triticum	
	aestivum variance ratio at 5% level, Fcal=23.23,	
	19.61(Ftab=4.76,5.14) and Fcal=4.83, 6.06	
	(Ftab=4.76,5.14) for days of sowing and treatment	
	concentration at d.f.(3,6) (2,6) for shoots and roots	
	respectively.	47
Fig. 7	Relative Degree of Enhancement/Inhibition on Shoot	
	Growth by Effluent	48
Fig. 8	Relative Degree of Enhancement/Inhibition on Root	
	Growth by Effluent	49

Fig.9	Effect of seedling on fresh weight of Triticum aestivum	
	seedling, variance ratio at 5% level, Fcal= 7.74	
	(Ftab=5.99) at d.f. (1,6) for seedling weight regarding to	
	effluent concentration.	50
Fig 10	Effect of effluent on fresh weight of Oryza sativa	
	seedling, variance ratio at 5% level,	
	Fcal=12.03(Ftab=5.32) for seedling weight regarding to	
	effluent concentration at d.f. (1, 8)	50
Fig. 11	Fig 11.Relative Degree of Enhancement/Inhibition on	
	Fresh Weight of Shoot by Effluent	51
Fig12	Relative Degree of Inhibition on Fresh Weight of Root by	
	Effluent	52
Fig.13	Affect of effluent on dry weight of Triticum aestivum	
	seedling, variance ratio at 5% level, Fcal= 7.88	
	(Ftab=5.99) at d.f.(1,6) for seedling weight regarding to	
	effluent concentration.	53
Fig.14	Effect of effluent on dry weight of Oryza sativa seedling.	
	Variance ratio at 5% level, Fcal=4.34(Ftab=5.32) at d.f.	
	(1,3) for seedling weight regarding to effluent	
	concentration.	53
Fig. 15	Relative Degree of Enhancement/Inhibition on Dry	
	Weight of Shoot by Effluent	54
Fig.16	Relative Degree of Enhancement/Inhibition on Dry	
	Weight of Root by Effluent	55

Acronyms and Abbreviations

APHA	American Public Health Association
BID	Balaju Industrial District
BOD	Biological Oxygen Demand
CaCl ₂	Calcium Chloride
CBS	Central Bureau of Statistics
CEDA	Center for Economic Development and Administration
CF	Carpet Factory
Co ₂	Carbon dioxide
COD	Chemical Oxygen Demand
Cu SO ₄	Copper Sulphate
d.f.	degree of freedom
DHM	Department of Hydrology and Meteorology
DO	Dissolve Oxygen
E.J.	Environmental Justice
EIA	Environmental Impact Assessment
EISP	Environmental Impact Study Project
EPR	Environmental Protection Rule
FAS	Ferrous Ammonium Sulphate
Fe Cl ₂	Iron Chloride
H2SO4	Sulphuric Acid
HCl	Hydrochloric acid
HNO ₃	Nitric Acid
ICIMOD	International Center for Integrated Mountain Development
IUCN	International Union for Nature Conservation
K2 SO4	Potassium Sulphate
$K_2Cr_2O_7$	Potassium dichromate
Mg SO ₄	Magnesium Sulphate
MOPE	Ministry of Population and Environment
MPHPP	Ministry of Housing and Physical Planning
Na ₂ SO ₄	Sodium Sulphate
NaOH	Sodium Hydroxide
NPC	National Planning Commission
NS	Nepal Standard
OM	Organic Matter
PRA	Participatory Rapid Appraisal
RONAST	Royal Nepal Academy of Science and Technology
TSS	Total Suspended Solid
U.S. EPA	Unites State Environmental Protection Act
UNIDO	United Nations Industrial Development Organization
VDC	Village Development Committee
WHO	World Health Organization