

TRIBHUVAN UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY **CENTRAL DEPARTMENT OF BOTANY** OFFICE OF THE HEAD OF DEPARTMENT

Ref. No

Kirtipur, Kathamndu, Nepal

LETTER OF APPROVAL

This is to certify that the dissertation work entitled " **Quantitative Analysis of temperate coniferous forest at Chame, Manang, Central Nepal**" submitted by Minghta Maya Gurung has been accepted as a partial fulfillment of Master's Degree in Botany.

EXAMINATION COMMITTEE

Prof. Dr. H.D. Lekhak (Research Supervisor) Central Deparment of Botany Tribhuvan University Kirtipur, Kathmandu

(External Examiner) Dr. S. B. Karmacharya (Professor) Tri-chandra College, Kathmandu **Prof. Dr. P. K. Jha** (Head) Central Department of Botany Tribhuvan University Kirtipur, Kathmandu

(Internal Examiner) B.B. Shrestha (Lecturer) Central Department of Botany Tribhuvan University Kirtipur, Kathmandu

TRIBHUVAN UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY **CENTRAL DEPARTMENT OF BOTANY** OFFICE OF THE HEAD OF DEPARTMENT

Ref. No

Kirtipur, Kathamndu, Nepal

CERTIFICATE

This is to certify that dissertation work entitled "**Quantitative Analysis of Temperate Coniferous forest at Chame, Manang, Central Nepal**" submitted by Miss. Mingta Maya Gurung for the partial fulfillment of M.Sc Degree in Botany, has been carried out under my supervision. The entire work is based on the results of her own work and has not been submitted for any other degree to the best of my knowledge.

Date:

Prof. Dr. H.D. Lekhak

(Research Supervisor) Central Deparment of Botany Tribhuvan University Kirtipur, Kathmandu

ACKNOWLEDGEMENT

Initially, I would like to express my sincere gratitude, honors and appreciation from the deep core of my heart to my supervisor Prof. Dr. Hari Dutta Lekhak for his continuous guidance, precious supervision, invaluable suggestion and regular encouragement during the thesis.

My special gratitude goes to Prof. Dr. P.K.Jha, Head of Central Department of Botany, T.U. for providing necessary laboratory facilities and administrative support.

I am also grateful to Prof. Dr. R.P Chaudhary and Prof. Dr. VNP Gupta for their suggestion, continuous encouragement and guidance during the work.

I am thankful to TU-NUFU (Norwegian Council for Higher Education Program for Development Research and Education)/ Norway for providing full financial grant during the work under the project entitled – Local Effects of Large-Scale Global Changes: A case study in the Himalayas, Nepal.

My sincere thanks go to Dr. Mohan P. Panthi, Mr Sandesh Bhattarai and Mr. Kuber Prasad Bhatt especially for plant identification during field visit.

My special gratitude goes to lecturer Bharat Babu Shrestha for his valuable suggestions and especially for help in statistical analysis. Similarly, my gratitude goes to lecturer Anjana Devkota for her valuable suggestions.

I am really obliged and indebted to my friend Ravi Sharma, Manisha Sharma and Binu Timsina who always supported and encouraged me during the preparation of this thesis and academic time. I am also thankful to Tshitiz and Kapil who helped me during fieldwork.

At last I would like to express my gratitude to my family members especially Som Raj Gurung, whose moral support made me fruitful.

ABSTRACT

A quantitative vegetation study was undertaken in the forest of Chame located between Bagarchhap and Bratang. It is a head quarter of Manang district which lies on northern part of Annapurna Conservation area. The study was carried out in both north and south facing slopes ranging from 2400m asl to 2800m asl. Field sampling was conducted in two seasons, one in July and other in November. Random sampling method was used and altogether 49 quadrates of size (10m X 10m) were laid in four sites. In total 55 species were recorded from all four sites. Number of species was found higher in site II (2500m-2600m) & IV (2700m-2800m). Frequency, density, coverage, Importance Value Index, species diversity and soil parameters were analyzed. Considering the Importance Value Index, Pinus wallichiana was most dominant one followed by Picea smithiana. Species richness was calculated in terms of number of species and diversity index values, which were found highest in site IV. Similarity index was found highest between site I (2400m-2500m) & IV (2700m-2800m). Soil analysis showed moderate acidic in nature.

Statistical analysis showed that there was significant positive relation between total density and total basal area of trees but negative correlation between total densities of shrubs/sapling. Similarly negative relation was obtained between shrub density and herb species richness. However species richness increased with increase in radiation index. On the whole present study revealed that biotic factor plays a leading role in composition and vegetation distribution other than factors such as soil characters, nutrients, climate, temperature, etc.

TABLE OF CONTENTS

			Page No.
1.	INTRODUCTION		1-7
	1.1	Background	1
		1.1.1 Biogeography in the Himalaya	3
	1.2	Forests and Vegetation Pattern in Nepal	4
	1.3	Selection of the Study Area	6
	1.4	Rationale	8
	1.5	Objective	8
	1.6	Limitations	8
2.	LII	TERATURE REVIEW	9-20
3.	STUDY AREA		21-26
	3.1	An overview of Manang District	21
	3.2	Study Area	21
	3.3	Vegetation	22
	3.4	Climate	23
	3.5	Land use Pattern	26
4.	MATERIALS AND METHODS		27-35
	4.1	Reconnaissance	27
	4.2	Primary Data Collection	27
	4.3	Quantitative Analysis	28
		4.3.1 Frequency and Relative Frequency	28
		4.3.2 Density and Relative Density	28
		4.3.3 Basal Area	29
		4.3.4 Important Value Index	30
		4.3.5 Diversity Index	31
		4.3.6 Species Richness and Evenness	31
		4.3.7 Index of Similarity	31
		4.3.8 Radiation Index	31
	4.4	Soil Analysis	32
		4.4.1 Soil Moisture	32
		4.4.2 Soil pH	33

		4.4.3 Organic Matter	33
		4.4.4 Total Nitrogen	33
		4.4.5 Total Phospho	34
		4.4.6 Total Potassium	34
	4.5	Statistical Analysis	35
5.	RESULT		36-44
	5.1	Species Composition	36
	5.2	Quantitative Analysis	36
		5.2.1 Frequency, Density and Basal Area of Trees	36
		5.2.2 Important Value Index	37
	5.3	Shrub and Sapling of Trees	38
		5.3.1 Frequency and Density	38
	5.4	Size Class Distribution	39
	5.5	Species Richness, Evenness and Density	40
	5.6	Soil Analysis	41
		5.6.1 Soil pH	41
		5.6.2 Total Organic Matter	42
		5.6.3 Total Nitrogen	42
		5.6.4 Total Potassium	42
		5.6.5 Total Phosphorus	42
	5.7	Statistical Analysis	42
6.	DISCUSSION		45-49
	6.1	Vegetation Analysis	45
	6.2	Species Richness, Diversity Index and Index of Sin	nilarity 47
	6.3	Soil Analysis	48
7.	COI	NCLUSION AND RECOMMENDATIONS	50-52
	7.1	Conclusion	50
	7.2	Recommendations	51
8.	REF	FERENCES	53-67
9.	APPENDICES		VI-VIII

LIST OF TABLES

Table 1:- Frequency, Density and Basal Areas of tree species.	37
Table 2:- IVI of Tree species.	37
Table 3:- Density, Relative Density, Frequency and Relative frequency of Shrubs and Saplings	38
Table 4:- DBH Classes of Tree species.	39
Table 5:- Species Richness, Diversity & Evenness.	41
Table 6:- Species Richness, Diversity & Evenness.	41
Table 7:- Index of Similarity between Different Sites	41
Table 8:- Summary of Soil Characters.	42
Table 9:- Correlation between Species Richness and Density	43
Table 10:- Descriptive Statistics.	43
Table 11:- Correlation of Species Richness with Radiation Index And Light Intensity.	44

LIST OF FIGURES

	Page No.
Figure 1:- Average Monthly precipitation of Chame.	25
Figure 2:- Monthly Average Maximum and Minimum temperature of Chame	e 25
Figure 3:- Land use pattern in Manang	26
Figure 4:- Tree size Classes.	40
Figure 5:- Relation between species richness and light intensity.	44

ABBREVIATIONS AND ACRONYMS

a.s.1.	Above Sea Level
ACA	Annapurna Conservation Area
ATC	Agricultural Technical Center
BA	Basal Area
Cbh	Circumference at Breast Height
CBS	Central Bureau of Statistics
CDB	Central Department of Botany
dbh	Diameter at Breast Height
DHM	Department of Hydrology and Meteorology
DNPWC	Department of National parks and Wildlife
	Conservation
ICIMOD	International Center for Integrated Mountain
	Development
IVI	Importance Value Index
Κ	Potassium
NTNC	National Trust for Nature Conservation
LRMP	Land Resource Mapping Project
m	Meter
MFSC	Ministry of forests and soil Conservation
Ν	Nitrogen
NE	North East
Р	Phosphorus
OM	Organic Matter
RA	Relative Abundance
RD	Relative Density
RF	Relative Frequency
SPSS	Statistical Package for Social Science
SW	South West
TU	Tribhuvan University
TUCH	Tribhuvan University Central Herbarium