

# TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING PULCHOWK CAMPUS DEPARTMENT OF ELECTRICAL ENGINEERING MASTERS IN POWER SYSTEM ENGINEERING

ROLL No.: 074MSPSE014

# OPTIMAL ALLOCATION OF CAPACITORS AND DGS FOR TECHNO-ECONOMIC BENEFITS IN RADIAL DISTRIBUTION SYSTEM

# THESIS REPORT

BY SARU BASTOLA

Thesis Supervisor Prof. Dr. Nava Raj Karki

February, 2021

### COPYRIGHT

The author has agreed that the library, Department of Electrical Engineering, Pulchowk Campus, Lalitpur, may make this thesis report freely available for inspection. Moreover, the author has agreed that the permission for extensive copying of this thesis for scholarly purpose may be granted by the doctor, who supervised the thesis work recorded herein or, in his absence, by Head of Department or concerning M.Sc. program coordinator or Dean of Institute of Engineering in which this thesis work was done. It is understood that the recognition will be given to the author of this thesis and to the Department of Electrical Engineering, Institute of Engineering, and Pulchowk Campus, Lalitpur in any use of the material of this thesis. Copying, Publication, or other use of the material of this thesis thesis for financial gain without approval of Department of Electrical Engineering, Institute of Electrical Electrica

Request for permission to copy or to make any use of the material of this thesis in whole or part should be addressed to:

<u>Head</u> Department of Electrical Engineering Institute of Engineering Pulchowk Campus, Pulchowk Lalitpur, Nepal

#### ABSTRACT

Power loss minimization and voltage stability improvement are important areas of power systems due to existing transmission line contingency, financial loss of utility and power system blackouts. Optimal allocation (i.e. siting and sizing) of Distributed Generation (DG) and Optimal Capacitor Placement are the best ways to strengthen the efficiency of power system. In the present work, a Evaporation-rate based water cycle algorithm has been taken into account to allocate capacitor banks and DGs along the radial distribution network. The objective function is adopted to minify the system power loss, to improve the system voltage profile and finally to carry out for power loss reduction with economic point of view.

Firstly, capacitor placement is applied to standard IEEE buses. In the next stage, Distributed Generations is incorporated in the standard IEEE buses, thirdly capacitor and DGs with unity pf are incorporated simultaneously in the IEEE bus system and finally capacitor and DGs with controllable pf are incorporated simultaneously in the IEEE bus system. Finally, practical distribution feeder (i.e., New Chabahil Feeder and Daachhi Feeder) of Kathmandu valley will be taken to apply the theoretically proven technique to reduce voltage drop and power loss. The overall accuracy and reliability of the approach has been validated and tested on radial distribution systems with differing topologies and of varying sizes and complexities.

The results shown by the proposed approach have been found to outperform the results of existing heuristic algorithms found in the literature for the given problem. The test was performed for four cases. Case I: placement of capacitors only, Case II: Placement of DG only, case III: Placement of DG (unity pf) and capacitors simultaneously, Case IV: Placement of DG (with controllable pf) and capacitors simultaneously taking into consideration for technical objectives only, Case V: Placement of DG (with controllable pf) and capacitors simultaneously taking into consideration for technical objectives only, Case V: Placement of DG (with controllable pf) and capacitors simultaneously taking into consideration for technical objectives only, Case V: Placement of DG (with controllable pf) and capacitors simultaneously taking into consideration for techno-economic objectives. The power loss found with my thesis work is lower than that of with the methodologies in the reference paper. For IEEE 33 bus system, power loss in case I, case II, case III, case IV, and case V was 34.79%, 62.10, 90.23%, 92.04%, and 63.67 % of the base case respectively. Similarly, for IEEE 69 bus system, power loss in case I, case III, case IV, and case V were 35.34%, 69.14%, 94.36%, 96.24%, and 35.53% of the base case respectively the power loss. Moreover, the results for the practical systems (Daachhi feeder and New Chabahil feeder) are supposed to have considerable upgradation in the Nepalese distribution system in the future for

lower power loss and better voltage profile. For Daachhi Feeder, power loss in case I, case II, case III, case IV, and case V was 50.25%, 48.52%, 96.10%, 96.77%, and 70.95% of the base case respectively. Similarly, for New-Chabahil Feeder, power loss in case I, case II, case III, case IV, and case V were 37.46%, 63.54%, 97.10%, 98.23%, and 54% of the base case respectively the power loss

#### ACKNOWLEDGEMENT

I would like to extend my sincere gratitude to the Department of Electrical Engineering, Pulchowk Campus for providing such a great opportunity to present our thesis project. Most prominently, I would like to thank my supervisor, Prof. Dr. Nava Raj Karki. Without his guidance and supervision this thesis would never have been possible. I am highly thankful to all my friends, seniors and everyone who are directly or indirectly involved in making this thesis succeed. I am grateful to all who provided encouragement to attempt this project.

I would also thank my friends, my Institution and seniors without whose continuous support and advice this project would have been a distant reality. Comments and suggestions from all the teachers and friends were highly encouraged and appreciated. I also like to thank all the faculty member and every person related to the department for their valuable help during the time of the thesis.

Thank You!!

# **TABLE OF CONTENTS**

| ABSTRACT                                |                                 | iii |
|-----------------------------------------|---------------------------------|-----|
| ACKNOWLEDGEMENT                         |                                 | v   |
| <b>CHAPTER 1: INTRODUCTION</b>          |                                 | 1   |
| 1.1 Objectives of the Project           |                                 | 3   |
| 1.2 Scope                               |                                 | 3   |
| 1.3 Outline of thesis                   |                                 | 3   |
| 1.4 Problem Statement                   |                                 | 3   |
| CHAPTER 2: REVIEW OF LITERA             | TURE                            | 5   |
| 2.1 Introduction:                       |                                 | 5   |
| 2.2 Why Distributed Generation?         |                                 | 8   |
| 2.3 Types of Distributed Generation:    |                                 | 9   |
| 2.4 Voltage Stability Index of Radial D | istribution Networks:           | 10  |
| 2.5 Evaporation-Rate Based Water Cyc    | le Algorithm                    | 13  |
| CHAPTER 3: METHODOLOGY                  |                                 | 18  |
| 3.1 Cases Studied:                      |                                 | 21  |
| 3.2 Problem Formulation:                |                                 | 22  |
| 3.3 Basic Stages:                       |                                 | 25  |
| CHAPTER 4: SYSTEM UNDER CO              | NSIDERATION, TOOLS AND SOFTWARE | 27  |
| 4.1 System under Consideration:         |                                 | 27  |
| 4.2 Software and Tools Used:            |                                 | 31  |
| CHAPTER 5: RESULTS AND DISC             | USSION                          |     |
|                                         |                                 | vi  |

| 5.1 For 33 Bus System:       |               |
|------------------------------|---------------|
| 5.2 For 69 Bus System:       |               |
| 5.3 For Daachhi Feeder:      |               |
| 5.4 For New-Chabahil Feeder: |               |
| CHAPTER 6: CONCLUSION AND F  | UTURE WORKS55 |
| 6.1 Conclusion               |               |
| 6.2 Future work              |               |
| REFERENCES                   |               |
| APPENDIX A                   |               |
| Result Windows               |               |
| APPENDIX B                   |               |
| System Data                  |               |

# **List of Figures**

| rigure 1: rigure showing the sending end and receiving end buses                                   |
|----------------------------------------------------------------------------------------------------|
| Figure 2: Flowchart for Evaporation-Rate Based Water Cycle Algorithm- based optimization problem.  |
|                                                                                                    |
| Figure 3: IEEE 33-bus test distribution system                                                     |
| Figure 4: IEEE 69 bus test distribution system                                                     |
| Figure 5: Daachhi feeder of Nepalese Distribution System                                           |
| Figure 6: New Chabahil Feeder of Nepalese Distribution System                                      |
| Figure 7: Options given to user in the computer program                                            |
| Figure 8: Case I- Bus voltage profile before and after capacitor allocations to the system         |
| Figure 9: Case II- Bus voltage profile before and after DG allocation to the system                |
| Figure 10: Case III- Bus voltage profile before and after simultaneous placement of capacitors and |
|                                                                                                    |
| DG (unity pf)35                                                                                    |
| DG (unity pf)                                                                                      |

| Figure 16: Bus voltage profile before and after simultaneous placement of capacitors and DG           |
|-------------------------------------------------------------------------------------------------------|
| (controllable pf)-for only technical objective function                                               |
| Figure 17: Case V- Bus voltage profile before and after simultaneous placement of capacitors and DG   |
| (controllable pf)-for techno-economic objective function                                              |
| Figure 18: Power loss for 69 bus (Case IV)                                                            |
| Figure 19: Voltage profile before and after allocation of capacitors                                  |
| Figure 20: Case II- Bus voltage profile before and after allocation of DGs only                       |
| Figure 21: Case III- Bus voltage profile before and after simultaneous placement of capacitors and DG |
| (unity pf)                                                                                            |
| Figure 22: Case IV- Bus voltage profile before and after simultaneous placement of capacitors and DG  |
| (controllable pf)-for only technical objective function                                               |
| Figure 23: Case V- Bus voltage profile before and after simultaneous placement of capacitors and DG   |
| (controllable pf)-for techno-economic objective function                                              |
| Figure 24: Voltage profile before and after allocation of capacitors                                  |
| Figure 25: Case III- Bus voltage profile before and after simultaneous placement of capacitors and DG |
| (unity pf)                                                                                            |
| Figure 26: Case II-Bus voltage Profile before and after allocation of DGs                             |
| Figure 27: Case V- Bus voltage profile before and after simultaneous placement of capacitors and DG   |
| (controllable pf)-for techno-economic objective function                                              |
| Figure 28: Bus voltage profile before and after simultaneous placement of capacitors and DG           |
| (controllable pf)-for only technical objective function                                               |

# List of Tables

| Table 1:Summary of results of IEEE 33 bus system    3                                        | 7  |
|----------------------------------------------------------------------------------------------|----|
| Table 2: Summary of results for IEEE 69 Bus                                                  | -3 |
| Table 3: Summary of the results of New-Chabahil Feeder and Daachhi Feeder of Kathmandu valle | y  |
| 4                                                                                            | 9  |

## **CHAPTER 1: INTRODUCTION**

The power generation capacities around the world are to be expanded at skyrocketing speed to meet out the increased load demand and thereby to avoid power blackouts which have significant economic impact on developing countries. Moreover, the location of electricity generation is far away from the consumer load. This poses huge challenge in electricity transportation over long distance which ultimately leads to more power loss. Solution of above said problems to some extent is achieved by the installation of shunt capacitors and Distributed Generators (DG) close to the load center in the power system network.

The power flows in the distribution line causes high power loss, imposes voltage drop in the lines and also account for poor power factor at the load ends. Reactive power compensation by Capacitor allocation alone can improve the voltage profile and lower the power loss in the system. Cuckoo Search Algorithm has been used as advanced metaheuristic algorithm so as to optimize the cost of power loss improvement with the capacitor allocation in the system. [1] Utilities are facing various problems regarding the power loss and voltage instability due to unbalanced load, sudden fluctuations in the demand side and lack of proper planning. Capacitor placement in the distribution system helps improve the power factor, bus voltage regulation, power and energy loss, increase system capacity in addition to enhance the power quality. In distribution system to improve the voltage regulation we required to minimize reactive power flow through the system. To overcome these difficulties, we place the capacitor in distribution system.

The placement of capacitors in radial distribution systems is also provide power flow control, improving system stability, power factor correction, voltage profile management and losses minimization. The problem associated with capacitor placement is to determine the location of capacitors where power loss is minimum and cost saving is maximum. A number of methods have been proposed to solve capacitors placement problem. Like as combinatorial optimization techniques of genetic algorithm, simulated annealing, Particle swarm optimization have been applied to find the desirable and almost global optimal solution for capacitors placement problem. In this research, Water Cycle Algorithm is used for the optimization since it is supposed to give more exact and simple results compared to another algorithm [2].

Distributed generation units (also called decentralized generation, dispersed generation, and embedded generation) are small generating plants connected directly to the distribution network or on the customer site of the meter. In these recent years, the penetration of renewable and nonrenewable distributed generation (DG) resources is increasing worldwide encouraged by national and international policies aiming to increase the share of renewable energy sources and highly efficient micro-combined heat and power units in order to reduce greenhouse gas emissions and alleviate global warming. DGs also contribute in the application of competitive energy policies, diversification of energy resources, reduction of on-peak operating cost, deferral of network upgrades, lower losses and lower transmission and distribution costs, and potential increase of service quality to the end-customer. DGs are available in modular units, characterized by ease of finding sites for smaller generators, shorter construction times, and lower capital costs [3].

Nowadays, design of micro-grids in power system based on distributed energy resources has become a very important aspect for management of the energy related issues and economic feasibilities. The distribution system is mostly operated as radial because of its cheap and simplicity in operation. An appropriate planning methodology must be carried out for incorporating shunt capacitors and DG units into the distribution network to get the constructive benefits. The installation of these units at non-appropriate places with improper sizing leads to negative consequences such as increase in power loss, Poor system reliability and voltage instability state of the power system network. [4]

The combination of Capacitor and DG sources can mitigate such problems. In this context, the power loss reduction using Capacitor and DG is an important aspect to be taken into account. But such reactive and real power sources are to be optimally placed in the distribution system since improper allocation may give increased system losses posing problems for proper operation of distribution system. Hence choice of correct optimization technique i.e., Evaporation-Based Water Cycle Algorithm used was important in this regard.

## **1.1 Objectives of the Project**

The main objective of this thesis is to study is to minimize the distribution system power loss and cost and improve voltage profile in IEEE buses and practical feeders of Nepal.

## 1.2 Scope

The basic scopes of this thesis are:

- Study the penetration of DGs and CBs to enhance the technical and economic issues of distribution systems.
- Three technical objectives are satisfied that are: power loss reduction, voltage profile improvement, and stability index enhancement
- Two economic issues are considered as minimizing the costs of generated power and CBs.
- Providing a controllable power factor strategy of DG for flexible operation of distribution systems.

## **1.3 Outline of thesis**

This thesis is organized in six chapters. Chapter 1 deals with the basic concept of distribution system loss reduction techniques. The chapter deals with the discussion related to collaboration of DG and capacitor so as to reduce the system loss. Brief review of literature review on loss reduction techniques is presented in Chapter 2. The overall methodology, basic configuration and features of Evaporation-Rate Based Water Cycle Algorithm is presented in chapter 3. Chapter 4 deals with the system consideration, tools and software used in this thesis works. Chapter 5 presents the results and discussion of the study and conclusion is discussed in chapter 6.

## **1.4 Problem Statement**

Nepalese distribution system is currently having huge amount of technical and non-technical losses. Even though, various researches have been done in the field of loss reduction, Nepalese system is not having any amendments in this field. This is the major problem that needs to be addressed as soon as possible. I hope this project to be done in the certain part of Nepalese distribution system will provide some accurate results and provide us with the idea for the selection of the location and size of the capacitors and Distributed Generation (DGs). Moreover, capacitor sizing and placement problem is an important task for planning studies in distribution networks. This impact on voltage regulation as well. The problem regarding DGs is that they are very costly. Hence it is very important to do some research on the optimal placement of DGs in the system so as to reduce the loss, improve the voltage profile, and so on. Nepal Electricity Authority (NEA) has released its guidelines at April, 2016 for interconnection of photovoltaic to distribution network. On February 2018, Ministry of Energy released standard procedure for connection of alternative energy to existing grid. According to the guideline, energy producers willing to sell energy for solar capacity above 500 watts may apply to NEA for interconnection through net metering.

Because of the guidelines of MOE and NEA to incorporate alternative sources to the system, it can be said that incorporating DG in the distribution system is not the choice for Nepalese System, but it is the compulsion. Hence, it is very necessary to study the impact of DG addition to the system power loss (both active and reactive power) and the power factor. The DGs IPPs mostly targets for the DG which produce the real power but not the reactive power because of cost and loss constraints for them. But it can be analyzed that addition of only active power to the system without reactive power disrupts the power balance. As a result, system power factor turns to be very poor. Hence, capacitor allocation in the DG incorporated system is only the option to improve the system power factor. Following these ICIMOD- Khumaltar (92 kW) and CIAA- Tangal (514 kW) are already installed and ready for integration in the distribution network while NMB Bank- Babarmahal (50kW) is due for PPA with NEA. They are to be connected to the national grid now or later. Hence, sufficient research is to be done for the optimal location of them so as to reduce the cost and the power loss.

## **CHAPTER 2: REVIEW OF LITERATURE**

#### **2.1 Introduction:**

In the paper [1] a cuckoo search optimisation-based approach has been developed to allocate static shunt capacitors along radial distribution networks. The objective function is adopted to minify the system operating cost at different loading conditions and to improve the system voltage profile. In addition to find the optimal location and values of the fixed and switched capacitors in distribution networks with different loading levels using the proposed algorithm. Higher potential buses for capacitor placement are initially identified using power loss index. However, that method has proven less than satisfactory as power loss indices may not always indicate the appropriate placement. At that moment, the proposed approach identifies optimal sizing and placement and takes the final decision for optimum location within the number of buses nominated with minimum number of effective locations and with lesser injected VARs. The overall accuracy and reliability of the approach have been validated and tested on radial distribution systems with differing topologies and of varying sizes and complexities. The results shown by the proposed approach have been found to outperform the results of existing heuristic algorithms.

Integration of distributed generation units (DGs) and capacitor banks (CBs) in distribution systems aim to enhance the system performance. The paper [2] proposes water cycle algorithm (ER-WCA) for optimal placement and sizing of DGs and CBs. The proposed method aims to achieve technical, economic, and environmental benefits. Different objective functions: minimizing power losses, voltage deviation, total electrical energy cost, total emissions produced by generation sources and improving the voltage stability index are considered. Simulations are carried out on three distribution systems, namely IEEE33-bus, 69-bus test systems, and East Delta network, as a real part of Egyptian system. Research article [3] has mentioned that the integration of distributed generation (DG) units in power distribution networks has become increasingly important in recent years. The aim of the optimal DG placement (ODGP) is to provide the best locations and sizes of DGs to optimize electrical distribution network operation and planning taking into account DG capacity constraints. Several models and methods have been suggested for the solution of the ODGP problem.

The planning problem of simultaneous DG and capacitor bank placement in distribution network was investigated from the local DISCO's viewpoint based on minimum total cost over the planning

period considering several economic and technical factors and modeling the customers' load types and the feeder's failure rate in [4]. After optimal DG and capacitor placement, the system energy loss and risk level over the planning period were decreased noticeably, and also voltage profiles of all the system buses at different load levels were improved. It was proven that considering different feeder's failure rate models in the simultaneous DG and capacitor placement planning problem can notably affect the simulation results.

Steady increase in energy demand on distribution system due to natural growth of a service territory or through stimulation of energy market is a big challenge to planning engineers so that the system is adaptable without violating service quality. Load growth on system results into either extra expenditure made towards the addition of new substation or expanding the existing substation capacity. Due to power system deregulation and environmental concerns as well as technological advancements, the Disco (Distribution Company) planners are forced to investigate expansion planning through alternatives such as distributed generation (DG). Incorporation of distributed generation is an important aspect in distribution system in view of loss reduction, reduction in operating costs and improvement in voltage profile. It was estimated that distribution systems cause a loss of about 5–13% of the total power generated. The cost due to energy losses is a major part of the electricity bill. Restructuring in power systems encourage the penetration of more and more DG at distribution level [5].

Power loss minimization and voltage stability improvement are important areas of power systems due to existing transmission line contingency, financial loss of utility and power system blackouts. Optimal allocation (i.e. siting and sizing) of Distributed Generation (DG) is one of the best ways to strengthen the efficiency of power system among capacitor placement and network reconfiguration. Power system operators and researchers put forward their efforts to solve the distribution system problem related to power loss, energy loss, voltage profile, and voltage stability based on optimal DG allocation. In this paper a comprehensive study is carried out for optimum DG placement considering minimization of power/energy losses, enhancement of voltage stability, and improvement of voltage profile. An attempt has been made to summarize the existing approaches and present a detailed discussion which can help the energy planners in deciding which objective and planning factors need more attention for optimum DG allocation for a given location or in a given scenario. [6]

In [7], authors present a novel approach based on cuckoo search (CS) which is applied for optimal distributed generation (DG) allocation to improve voltage profile and reduce power loss of the distribution network. The voltage profile which is the main criterion for power quality improvement is indicated by two indices: voltage deviations from the target value which must be minimized and voltage variations from the initial network without DG which must be maximized. The CS was inspired by the obligate brood parasitism of some cuckoo species by putting their eggs in the nests of other species. Some host birds can engage direct contest with the infringing cuckoos. For example, if a host bird detects the eggs are not their own, it will either throw these alien eggs away. The CS has been compared with other evolutionary algorithms such as genetic algorithm (GA) and particle swarm optimization (PSO) and different cases have been investigated for indicating the applicability of the proposed algorithm. The results indicate the better performance of CS compared with other methods due to the fewer parameters which must be well tuned in this method. In addition, in this method the convergence rate is not sensitive to the parameters used, so the fine adjustment is not needed for any given problems.

In [8], authors proposed the pioneering attempts to minimize power losses in radial distribution networks and facilitates an enhancement in bus voltage profile by determining optimal locations, optimally sized distributed generators and shunt capacitors by hybrid Harmony Search Algorithm approach. The procedure travels to examine the robustness of the proposed hybrid approach on 33 and 119 node test systems and the result outcomes are compared with the other techniques existing in the literature. The simulation results reveal the efficiency of the proposed hybrid algorithm in obtaining optimal solution for simultaneous placement of distributed generators and shunt capacitors in distribution networks.

In paper [9] work has been carried out to find out the optimal siting and sizing of distributed generation in the radial distribution system, considering precise model for DG's and in this work has presented a new approach for optimum simultaneous distributed generation (DG) Units and capacitors placement and sizing on the basis of voltage stability index for improvement in voltage profile. The optimal locations of distributed power sources has been identified by means of voltage stability index of the bus and optimal rating of the DG source are determined by using Genetic Algorithm (GA). The results in [10] shows that in active distribution systems the benefits and undesirable effects obtained by the installation or existence of DG and CB are directly related to the

locations of these devices in the network and their operation modes. Thus, paper presents a methodology for the simultaneous CB and DG allocation, taking into account the presence of stochastic DG. The system's operational state is susceptible to DG operation, causing a large voltage variation. The results presented show that the proposed methodology is very efficient in finding the buses where CB and DG are to be allocated, as well as the control scheme of the switched CB and DG dispatches, considering physical and operational constraints. Paper [11] presents the novelty of the water cycle algorithm for solving the optimization problems in the least possible time and in the most accurate way.

#### 2.2 Why Distributed Generation?

In the last decade, technological innovations and a changing economic and regulatory environment have resulted in a renewed interest for distributed generation. This is confirmed by the IEA (2002), who lists five major factors that contribute to this evolution, i.e. developments in distributed generation technologies, constraints on the construction of new transmission lines, increased customer demand for highly reliable electricity, the electricity market liberalization and concerns about climate change .We feel that these five factors can be further reduced to two major driving forces, i.e. electricity market liberalization and environmental concerns. The developments in distribution technologies have been around for a long time, but were as such not capable of pushing the "economy as scale" out of the system. We doubt that distributed generation is capable of postponing, and certainly not of avoiding, the development of new transmission lines: at the minimum the grid has to be available as backup supply. The third element, being reliability, is at this moment not an issue in the interconnected European high voltage system, although this may change rapidly in the following years.

There is the increased interest by electricity suppliers in distributed generation because they see it as a tool that can help them to fill in niches in a liberalized market. In such a market, customers will look for the electricity service best suited for them. Different customers attach different weights to features of electricity supply, and distributed generation technologies can help electricity suppliers to supply to the electricity customers the type of electricity service they prefer. In short, distributed generation allows players in the electricity sector to respond in a flexible way to changing market conditions. To conclude, importance of DGs can be written as:

- Optimal DG allocation secures distribution system from unwanted events and allows the operator to run the system in islanding mode [6].
- DG helps bypass "congestion" in existing transmission grids. DG could serve as a substitute for investments in transmission and distribution capacity. DG can postpone the need for

new infrastructure. Because of opportunities for integration in buildings, PV development often occurs in the same location as demand.

- Increased penetration of RES and other DG will help security of supply by reducing energy imports and building a diverse energy portfolio.
- Wide-scale use of RES will reduce fossil fuel consumption and greenhouse gas emissions as well as noxious emissions such as oxides of Sulphur and nitrogen (SOx/NOx), therefore benefiting the environment.
- Highly efficient combined heat and power plants, and backup and peak-load systems are providing increasing capacity. In addition, it enables the use of waste heat, improving overall system efficiency.
- On-site production reduces the amount of power that must be transmitted from centralized plant, and avoids resulting transmission losses and distribution losses as well as the transmission and distribution costs.
- DG can provide network support or ancillary services. The connection of distributed generators to networks generally leads to a rise in voltage in the network. In areas where voltage support is difficult, installation of a distributed generator may improve quality of supply [11].

# 2.3 Types of Distributed Generation:

The different types of traditional and nontraditional DGs are classified and described in [12] from the constructional, technological, size, and power time duration pint of view. The DGs may also be grouped into four major types based on terminal characteristics in terms of real and reactive power delivering capability as described in [13].

The four major types are considered for comparative studies which are described as follows:

**Type 1**: This type DG is capable of delivering only active power such as photovoltaic, micro turbines, fuel cells, which are integrated to the main grid with the help of converters/inverters. However, according to current situation and grid codes the photovoltaic can and in sometimes are required to provide reactive power as well.

**Type 2**: DG capable of delivering both active and reactive power. DG units based on synchronous machines (cogeneration, gas turbine, etc.) come under this type.

**Type 3**: DG capable of delivering only reactive power. Synchronous compensators such as gas turbines are the example of this type and operate at zero power factors.

**Type 4**: DG capable of delivering active power but consuming reactive power. Mainly induction generators, which are used in wind farms, come under this category. However, doubly fed induction generator (DFIG) systems may consume or produce reactive power i.e., operates similar to synchronous generator. In this paper, the analysis of T1, T2, T3, and T4 for optimal size and location is done on the basis of terminal characteristic of basic DGs in terms of their power delivering capability.

In this thesis work, type 1 and type 2 DGs are taken into consideration.

### 2.4 Voltage Stability Index of Radial Distribution Networks:

With the increased loading and exploitation of the existing power structure, the probability of occurrence of voltage collapse are significantly greater than before and the identification of the nodes which prone to the voltage fluctuations have attracted more attention for the transmission and as well as the distribution systems. For operating a power system in a safe and secure manner, all insecure operating states must be identified well in advance to facilitate corrective measures to overcome the threat of possible voltage collapse. When a power system approaches the voltage stability limit, the voltage of some buses reduces rapidly for small increments in load and the controls or operators may not be able to prevent the voltage decay. In some cases, the response of controls or operators may aggravate the situation and the ultimate result is voltage collapse. So, engineers need a fast and accurate voltage stability index (VSI) to help them monitoring the system condition.

#### Mathematical model of the stability index

For a distribution line model, the quadratic equation which is mostly used for the calculation of the line sending end voltages in load flow analysis can be written in general form as in reference paper [14]:



Figure 1: Figure showing the sending end and receiving end buses.

From the figure above, the following equation can be written:

 $I(ij) = \frac{V(m1) - V(m2)}{r(jj) + jx(jj)}.$ (1)  $I(ij) = \frac{P(m2) - jQ(m2)}{V^*(m2)}.$ (2)

where

jj = branch number,

m1 = sending end node,

m2 = receiving end node,

I(ij) = current of branch ij,

V(m1) = voltage of node m1,

V(m2) = voltage of node m2,

P(m2) = total real power load fed through node m2,

Q(m2) = total reactive power load fed through node m2.

Equating (1) and (2),

Equating real and imaginary parts of (3), we get

 $V(m1)*V(m2)\cos(\theta_{m1}-\theta_{m2}) - V(m2)^2 = P(m2)*r(jj) + Q(m2)*x(jj)$  .....(4)  $X(jj)*P(m2) - r(jj)*Q(m2) = V(m1)*V(m2)sin(\theta_{m1} - \theta_{m2})$ .....(5) In radial distribution systems, voltage angles are negligible. So  $(\theta_{ml}, \theta_{m2}) \approx 0$ , and (4) and (5) become V(m1)\*V(m2) - V(m2)2 = P(m2)\*r(jj) + Q(m2)\*x(jj) .....(6) x(jj) = r(jj)\*Q(m2) / P(m2) .....(7) From (6) and (7),  $|V(m2)|^4 - b(jj)|V(m2)|^2 + c(jj) = 0$  .....(8) where,  $b(jj) = \{|V(m1)|^2 - 2P(m2)r(jj) - 2Q(m2)x(jj)\}$  .....(9)  $c(jj) = \{|P^2(m2)| + Q^2(m2)\}\{r^2(jj) + x^2(jj)\}$  .....(10) The solution of eq. (2) is unique. That is  $|V(m2)| = 0.707 [b(jj) + {b^2(jj) - 4 c(jj)}^{0.5}]^{0.5}$  .....(11)  $b^{2}(jj) - 4 c(jj) \ge 0$  .....(12) From eqns. (9), (10) and (11) we get  $\{|V(m1)|^2 - 2P(m2)r(jj) - 2Q(m2)x(jj)\}^2 - 4\{P^2(m2) + Q^2(m2)\}\{r^2(jj) + x^2(jj)\} \ge 0$ After simplification we get,  $\{|V(m1)|4\} - 4\{P(m2)x(jj)-Q(m2)r(jj)\}2 - 4\{P(m2)r(jj)+Q(m2)x(jj)\}|V(m1)|\} \ge 0$ .....(13) Let  $VSI(m2) = \{|V(m1)|4\} - 4\{P(m2)x(jj)-Q(m2)r(jj)\}2 - 4\{P(m2)r(jj)+Q(m2)x(jj)\}|V(m1)|\}$ ....(14) Where VSI(m2) = Voltage Stability Index of node m2.

For stable operation of the radial distribution networks,  $VSI(m2) \ge 0$ . The node at which the value of

the stability index is minimum, is more sensitive to the voltage collapse.

#### 2.5 Evaporation-Rate Based Water Cycle Algorithm

The ER-WCA is based on the observation of water cycle process and how rivers and streams flow into downhill towards the sea in nature. It was first introduced by authors [11] for solving engineering optimization problems starting with Water Cycle Algorithm. They showed that the ER-WCA is more able to find a wider range of solutions compared with the GA and PSO. ER-WCA [15] begins with an initial population similar to other metaheuristic algorithms, this initial population called the raindrops (RD). The values of the problem-controlled variables *xi* (PG*i*, QG*i*, QCB total, and placement of DG and CB) can be formed as an array called "RD" for single solution. This array can be defined as follows:

 $RD = [x1, x2, x3, \dots, xN] \dots (15)$ 

RP matrix contains random solutions in iteration #1 as

 $RP = \{x_k^j : j=1: N_{pop} \text{ and } k=1: N_{var}\}....(16)$ 

Then, a number of good streams (i.e. fitness function values close to the current best record) are chosen as rivers, while the other streams flow into the rivers and sea.

 $ff_i = f(x_1^i, x_2^i, x_3^i, \dots, x_{Nvar}^i), i=1,2,3,\dots,N_{pop},\dots,(17)$ 

Where,  $N_{pop}$  and N are population size and the number of design variables, respectively. Each of the decision variable values ( $x_1, x_2, ..., x_N$ ) can be represented as floating point number (real values) or as a predefined set for continuous and discrete problems, respectively. The cost of a stream is obtained by the evaluation of cost function (fitness function).

At the first step,  $N_{pop}$  streams are created. A number of  $N_{sr}$  from the best individuals (minimum values) are selected as a sea and rivers. The stream which has the minimum value among others is considered as the sea. In fact,  $N_{sr}$  is the summation of number of rivers (which is defined by user) and a single sea. The rest of the population (i.e., streams flow into the rivers or may directly flow to the sea) are considered as streams.

Depending on magnitude of flow, each river absorbs water from streams. The amount of water entering a river and/or the sea, hence, varies from stream to stream. In addition, rivers flow to the

sea which is the most downhill location. The designated streams for each rivers and sea are calculated. The best RD is selected to be the sea, number of good RD is chosen to be the rivers and the remainder RD are assumed to be streams that flow to the sea or the rivers. Equation below calculates the streams that flow to a sea or a river depending on the flow intensity as

$$NS_{n} = round \left\{ \left| \frac{ff_{n}}{\sum_{i=1}^{N_{sr}} ff_{i}} \right| * N_{pop} \right\}, n = 1, 2, 3, \dots, N_{sr}.$$
(18)

Where,  $NS_n$  is the number of streams which flow to the specific rivers and sea. As it happens in nature, streams are created from the raindrops and join each other to generate new rivers. Some stream may even flow directly to the sea. All rivers and streams end up in the sea that corresponds to the current best solution.

A stream flows to the river along the path between them using a random distance (x). The same concept is applied for flowing rivers to the sea, so the new position for the streams and rivers can be *given as* 

$$X_{\text{stream}}^{i+1} = X_{\text{stream}}^{i} + \text{rand}^{*}U^{*}(X_{\text{river}}^{i} - X_{\text{stream}}^{i}).....(19)$$

$$X_{\text{river}}^{i+1} = X_{\text{river}}^{i} + \text{rand}^{*}U^{*}(X_{\text{sea}}^{i} - X_{\text{river}}^{i}).....(20)$$

Where, 1 < U < 2 and the best value for *U* may be chosen as 2 and *rand* is an uniformly distributed random number between zero and one. Equations above are for streams which flow into the sea and their corresponding rivers, respectively. If the solution given by a stream is better than its connecting river, the positions of river and stream are exchanged (i.e., the stream becomes a river and the river becomes a stream). A similar exchange can be performed for a river and the sea.

The evaporation process operator also is introduced to avoid premature (immature) convergence to local optima (exploitation phase) .Basically, evaporation causes sea water to evaporate as rivers/streams flow into the sea. This leads to new precipitations. Therefore, we have to check if the river/stream is sufficiently close to the sea to make the evaporation process occur. For that purpose, the following criterion is utilized for evaporation condition.

|Xi sea-Xi river|<dmax, i=1,2,3,.....,Nsr-1......(21)

After each evaporation process, the value of dmax is as di+1 max=dimax-(dimax/max iteration).....(22)

Where, i is an iteration index.

In ER-WCA, some Rivers having low flow because of lesser Streams pouring into them have lower potential to become the Sea, so they evaporate. The evaporation rate (ER) for Rivers is calculated using:

$$ER = \frac{Sum(NS_n)}{N_{sr}-1} * rand, n=2....Nsr....(23)$$

A large value for  $d_{max}$  prevents extra searches and small values encourage the search intensity near the sea. Therefore,  $d_{max}$  controls the search intensity near the sea (i.e., best obtained solution). The value of  $d_{max}$  adaptively decreases.  $d_{max}$  is a small number close to zero. After evaporation, the raining process is applied and new streams are formed in the different locations. Hence, in the new generated sub-population, the best stream will act as a new river and other streams move toward their new river. This condition will also apply for streams that directly flow to the sea.

Similarly, the best newly formed stream is considered as a river flowing to the sea. The rest of new streams are assumed to flow into the rivers or may directly flow into the sea. The following equation is used only for the streams which directly flow to the sea. It encourages the creation of streams which directly flow to the sea in order to improve the exploration near the sea (the optimum solution) in the feasible region for constrained problems.

$$X_{new}^{stream} = Xsea + \sqrt{\mu} * rand(1, Nvar)...(24)$$

where  $\mu$  is a coefficient which shows the range of searching region near the sea, *rand* is the normally distributed random number. The larger  $\mu$  increases the possibility to exit from feasible region. The smaller  $\mu$  leads the algorithm to search in smaller region near the sea. Its suitable value is set to 0.1. Indeed, term  $\sqrt{\mu}$  represents the standard deviation. The generated individuals with variance  $\mu$  are distributed around the best obtained optimum point (sea). Therefore, the evaporation operator is responsible for the exploration phase in the ER-WCA.

It should be noted that higher flow Rivers have lower evaporation rate and lower flow Rivers have higher evaporation rate. Also, there are two evaporations in each cycle in ER-WCA – first of Rivers/Streams when reaching the Sea; second of Rivers having lower flow because of lesser streams pouring into those rivers. In short, ER-WCA has an ability to effectively search for the best solution in the global space.

The development of the ER-WCA optimization process is illustrated by Figure below where circles, stars, and the diamond correspond to streams, rivers, and sea, respectively. The white (empty) shapes denote the new positions taken by streams and rivers.



#### **Parameters of ER-WCA:**

i) Number of Population: The number of population decides how many solutions are generated in one iterations i.e. raindrops in case of ER-WCA. It is better to have as many number of population as possible, but to reduce the computation time, a suitable value should be chosen. In this thesis work, number of population of 100 is chosen.

- ii) Upper Boundary and Lower Boundary: Upper and lower boundary decide the boundary limits for the solution generated by ER-WCA. For example, the lower boundary limit for capacitor placement and DG placement is 1 and the upper boundary limit is the identification number given to the last bus of the system. Similarly, the power factor assigned to DGs has lower boundary of 0 and upper boundary of 1.
- iii) Number of Rivers and Streams: In this thesis work, number of rivers and streams was chosen to be 4. In general, that value of 2 to 10 gave satisfactory results and the solution converged easily.

# **CHAPTER 3: METHODOLOGY**

The developed algorithm is first tested over the IEEE standard bus system so as to validate the results as given in the reference papers. Then, the computer program will be manipulated so as to achieve the accurate results in the distribution system of urban area.

The basic stages that carried out are as follows:

- 1. Objective function and the constraints for the project are evaluated.
- Code was developed for the optimal allocation of capacitors only based on Evaporation-Rate Based water cycle algorithm for IEEE 33, IEEE 69 bus system based on only technical objective function.
- Code was developed for the optimal allocation of DGs only based on Evaporation-Rate Based water cycle algorithm for IEEE 33 and IEEE 69 bus system based on only technical objective function.
- 4. Code was developed for the simultaneous optimal allocation of capacitors and DGs (with unity pf) based on Evaporation-Rate Based water cycle algorithm for IEEE 33 and IEEE 69 bus system based on only technical objective function.
- 5. Code was developed for the simultaneous optimal allocation of capacitors and DGs (with controllable pf) based on Evaporation-Rate Based water cycle algorithm for IEEE 33 and IEEE 69 bus system based on only technical objective function.
- 6. Code was developed for the simultaneous optimal allocation of capacitors and DGs (with controllable pf) based on Evaporation-Rate Based water cycle algorithm for IEEE 33 and IEEE 69 bus system based on techno-economic objective function.
- 7. The results were analyzed so as to use the code in the practical system (i.e. New Chabahil feeder and Daachhi Feeder) of Nepal.

The following procedures are to be followed so as to develop the metaheuristic algorithm (ER-WCA).

Step 1: Loading distribution system data and defining the power limits of DGs and CBs in the system.

**Step 2:** Identifying the ER-WCA parameters.

- Step 3: Randomly initialize the set of RD (solution).
- Step 4: Checking the system constrains for each solution.
- Step 5: Determining the fitness function of each RD.
- **Step 6:** Determining the best solution in the rain drops.
- **Step 7:** Generating the new set of solutions.
- Step 8: Repeating steps from 4–7 until stopping criteria or maximum iteration is satisfied.



Figure 2: Flowchart for Evaporation-Rate Based Water Cycle Algorithm- based optimization problem.

20

### 3.1 Cases Studied:

For the proper analysis, four operational cases were studied using ER-WCA. It helps to understand the adequacy of the proposed algorithm over other algorithms.

*Case 1:* Power loss minimization (f1) by optimal placement of Capacitors only. OF = minimize (f1)

The Streams contain 2n number of Raindrops, n being the number of Capacitors to be inserted into the network. First n Raindrops store the bus location of Capacitors, and the second n Raindrops store the kVar size of those Capacitors.

Case 2: Power loss minimization (f1) by allocating DGs that operate at unity PF.

OF = minimize (f1)

The Streams contain 2n number of Raindrops, n being the number of DGs to be inserted into the network. First n Raindrops store the bus location of DGs, and the second n Raindrops store the MW size of those DGs.

*Case 3:* Power loss minimization (f1) by allocating the combination of CBs, and DGs operating at unity pf.

OF = minimize (f1)

The Streams contain 2m+2n number of Raindrops, *m* being the number of Capacitors, and *n* being the number of DGs to be inserted into the network. First *m* Raindrops store the bus location of Capacitors, next *m* Raindrops store the kVar size of Capacitors, next *n* Raindrops store bus location of DGs, and

the next *n* Raindrops store the MW size of those DGs.

*Case 4:* Power loss minimization (f1), voltage profile improvement (f2), and minimum VSI enhancement (f3) by allocating the combination of CBs, and DGs with adjustable power factor.

OF = minimize (w1\*f1 + w2\*f2 + w3\*f3) where, w1, w2, and w3 are weighing factors of f1, f2, and f3 respectively.

In this analysis, w1, w2, and w3 are taken as 0.5, 0.25, and 0.25 respectively. The Streams contain 2m+3n number of Raindrops, *m* being the number of Capacitors, and *n* being the number of DGs to be inserted into the network. First *m* Raindrops store the bus location of Capacitors, next *m* Raindrops store the kVar size of Capacitors, next *n* Raindrops store bus location of DGs, the next *n* Raindrops store the MW size of DGs, and the last *n* Raindrops store the operating power factor of those DGs. In this research work, maximum of three Capacitor banks, and three DGs were incorporated in the distribution network.

*Case 5:* Power loss minimization (f1), and cost minimization (f4) by allocating the combination of CBs, and DGs with adjustable power factor.

OF = minimize (w1\*f1 + w2\*f2) where, w1, w2 are weighing factors of f1, and f4 respectively.

In this analysis, w1, and w4 are taken as 0.75, and 0.25 respectively. The Streams contain 2m+3n number of Raindrops, *m* being the number of Capacitors, and *n* being the number of DGs to be inserted into the network. First *m* Raindrops store the bus location of Capacitors, next *m* Raindrops store the kVar size of Capacitors, next *n* Raindrops store bus location of DGs, the next *n* Raindrops store the MW size of DGs, and the last *n* Raindrops store the operating power factor of those DGs. In this research work, maximum of three Capacitor banks, and three DGs were incorporated in the distribution network.

### **3.2 Problem Formulation:**

The objective functions (OFs), equality and inequality constraints are introduced for optimal placement and sizing of DGs and CBs in distribution systems as follows:

#### A. Objective Function

#### 1) Technical Objective Function

The proposed method aims to achieve three types of technical OFs:

a) Power Loss OF: The first one aims to minimize the distribution power losses (f1) that can be expressed as:

 $f_1(x) = \min \sum_{i=1}^{nL} R_i^* |I_i|^{-2}$ .....(25)

**b)** Voltage Profile OF: The second technical OF aims to improve the voltage profile and preserve better voltage profile.

$$f_2(x) = \min \sum_{i=0}^{N} \left( \frac{v_i \cdot v_i^{\text{spec}}}{v_i^{\max} \cdot v_i^{\min}} \right)^2$$
.....(26)

c) Voltage Stability Index (VSI): The third OF (f3) for voltage stability index (VSI) is:

$$\begin{split} f_3(x) = &\min\left(\frac{1}{VSI(m2)}\right).....(27) \end{split}$$
 Where, VSI(m2) = {|V(m1)|4 } - 4{ P(m2) x(jj)-Q(m2)r(jj)}2 - 4{P(m2)r(jj)+Q(m2)x(jj)}| V(m1)|}

#### 2) Economic Objective Function

The economical OF (f4) aims to minimize the power generation costs that can be calculated given as:

$$\begin{split} &f_4(x) = \min(C_{DG_i} + C_{sub} + C_{CB})......(28) \\ &\text{At first, for DG,} \\ &C_{DG_i} = \sum_{i=1}^{N_{DG}} (a + b^* P_{DG_i}).....(29) \\ &a = \frac{capital \cot\left(\frac{s}{kW}\right)^* capacity(kW)^* G_r}{lifetime(year)^* 8760^* LF}....(30) \\ &\text{Where, } G_r = annual rate of benefit \\ &LF = DG \text{ loading factor} \\ &P_{DG_i} = Energy \text{ generated by DG.} \\ &\eta = \frac{G_r}{lifetime(year)^* 8760^* LF} = 1.3 \text{ (constant) taken from the reference paper [16]} \\ &\dots \\ &(31) \end{split}$$

b=O &M cost  $\left(\frac{\$}{kWh}\right)$  +fuel cost $\left(\frac{\$}{kwh}\right)$  .....(32)  $C_{sub} = \sum_{i=1}^{N_{DG}} (P_{sub} * Pr_{sub})$ .....(33) Where,  $P_{sub}$  =active power production at substation  $Pr_{sub}$  = cost of power generated at substation (taken 0.44 \$/kWh from reference [17]) C=cost of electrical energy generation by each source Similarly, for capacitor,  $\sum_{k=0}^{NC} (a+C, *O_k)$ 

 $C_{CB} = \frac{\sum_{i=1}^{NC} (e_i + C_{ci} * Q_{ci})}{\text{life time} * 8760}.$ (34) Where,  $\frac{1}{\text{lifetime} * 8760}$  acts as depreciation rate over its lifetime period.  $e_i = \text{fixed VAR source installation cost at bus i taken equal to 1000 from paper [18]}$   $C_{ci} = \text{corresponding purchase cost taken equal to 30,000 $/MVar from paper [18]}$   $Q_{ci} = \text{reactive power of existing VAR sources installed at bus i}$  $N_C = \text{reactive compensator bus}$ 

#### B. Constraints:

Equality Constraints: The constraints for power balance requirements:

| $\sum_{i=1}^{NG} PG_i - P_L = P_d.$ | (35) |
|-------------------------------------|------|
| $\sum_{i=1}^{NG} QG_i - Q_L = Q_d$  | (36) |

**Inequality Constraints:** Maximum admissible generated power from DGs/CBs should not exceed to permissible limitations of the distribution systems.

1) Generation Operating limits

 $PG_{i}^{min} \leq PG_{i} \leq PG_{i}^{max}....(37)$ 

 $QG_{i}^{\min} \leq QG_{i} \leq QG_{i}^{\max}.....(38)$ 

2) Installed Capacitor limits

| $Q_{CB}^{\text{total}} < Q_{d}$ | (39) |
|---------------------------------|------|
| $\times_{CB}$ $\times_{d}$      | (J)  |

3) Bus Voltage Limits

4) DG power factor limit

 $0.8 \le PF \le 1.....(41)$ 

### 3.3 Basic Stages:

**Stage 1:** At first, the objective function and the constraints for the problem was set. In this case, objective function had been set in accordance to our requirement. This thesis focused on loss minimization, voltage profile improvement and voltage stability of the system. Objective functions were set according to the cases as mentioned previously.

**Stage 2:** In this stage, objective function was tested with the base case. Base case is the condition without the addition of capacitor and DGs. Power loss, minimum voltage for the initial case was determined.

**Stage 3:** In this stage, capacitors were incorporated to the test system (i.e. IEEE 33 bus system and IEEE 69 bus system). Three capacitors were placed in the different buses of those system. Power loss, minimum voltage for the initial case was determined and checked across the reference paper results.

**Stage 4:** In this stage, DGs were incorporated to the test system (i.e. IEEE 33 bus system and IEEE 69 bus system). Three DGs were placed in the different buses of those system. Power loss, minimum voltage for the initial case was determined and checked across the reference paper results.

**Stage 5:** In this stage, capacitors and DGs (with unity pf) were incorporated to the test system (i.e. IEEE 33 bus system and IEEE 69 bus system). Three DGs and three capacitors were placed in the different buses of those system. Power loss, minimum voltage for the initial case was determined and checked across the reference paper results.

**Stage 6:** In this stage, capacitors and DGs (with controllable pf) were incorporated to the test system (i.e. IEEE 33 bus system and IEEE 69 bus system). Three DGs and three capacitors were placed in the different buses of those system. Power loss, minimum voltage for the initial case was determined and checked across the reference paper results.

**Stage 7:** In this stage, capacitors and DGs (with unity pf) were incorporated to the test system (i.e. IEEE 33 bus system and IEEE 69 bus system). Three DGs and three capacitors were placed in the different buses of those system. Power loss minimization and cost minimization are incorporated objective function. Hence techno-economic objective function has been tested in this stage.

**Stage 8** (**Data collection and GIS plotting**): Data was collected for the practical system of Nepal. Daachhi and New Chabahil feeder under Baneshwor Distribution Centre were found worth testing for capacitor and DG placement since these feeders are longer than other feeders and seem to have more losses in comparison to others under that Distribution Centre. Data was collected with the help of employees in that distribution Centre. Transformer location and size were plotted in the GIS mapping and length of the line was achieved from Q-GIS software.

**Stage 8:** All the process from Stage 1- Stage 7 were repeated for these two practical feeders until the fruitful results were achieved.
# CHAPTER 4: SYSTEM UNDER CONSIDERATION, TOOLS AND SOFTWARE

# 4.1 System under Consideration:

The proposed ER-WCA was applied to four distribution systems. First, the tests were carried out on IEEE 33-bus distribution system, and IEEE 69-bus distribution system. Then, the discussed approach was applied to improve the performance of Daachhi feeder, and New-Chabahil feeder of Kathmandu, Nepal. The total active power loss for the four distribution systems in the beginning without any reinforcement was: 202.67 kW, 225 kW, 193.913 kW, and 197.026 kW.

## **IEEE 33- bus distribution system:**



Figure 3: IEEE 33-bus test distribution system

# **IEEE 69- bus distribution system:**





Practical Nepalese System: Daachhi Feeder



Figure 5: Daachhi feeder of Nepalese Distribution System.

# Practical Nepalese System: New Chabahil Feeder



Figure 6: New Chabahil Feeder of Nepalese Distribution System

## 4.2 Software and Tools Used:

MATLAB was used for coding purpose so as to develop the program for calculating the power loss. MATLAB is an abbreviation of 'matrix laboratory'. It is a multi-paradigm programming language and numerical computing environment which was developed by MathWorks. It allows plotting of functions and data, matrix manipulations, implementation of algorithm, creation of user interfaces, etc. MATPOWER tool associated with MATLAB software is used for the load flow analysis. MATPOWER is a package of M-files for solving power flow, continuation power flow and optimal power flow problems using MATLAB. It is intended as a simulation tool for researchers and educators that is easy to use and modify. MATPOWER is designed to give the best performance possible while keeping the code simple to understand and modify. As MATPOWER has its inbuilt database system for IEEE test system, it gives very accurate results. Moreover, for the practical system also the results are more accurate as MATPOWER considers numerical values with their higher significant values. Hence, load flow has been easier and more accurate using MATPOWER tool.

Q-GIS was used for plotting the map for two different feeders of Nepal. QGIS functions as geographic information system (GIS) software, allowing users to analyze and edit spatial information, in addition to composing and exporting graphical maps. Gary Sherman began development of Quantum GIS in early 2002, and it became an incubator project of the Open-Source Geospatial Foundation in 2007. Version 1.0 was released in January 2009. In 2013, along with release of version 2.0 the name was officially changed from *Quantum GIS* to *QGIS* to avoid confusion as both names had been used in parallel. All the required data was found using this software after locating the distribution transformers along with their capacity associated with those feeders.

# **CHAPTER 5: RESULTS AND DISCUSSION**

To make the program as interactive as possible, it has been set to consult the user for the number of capacitors and DG to be placed, maximum capacity of DG and capacitor, minimum source power factor that should be maintained, feeder to be taken, number of iterations, base voltages and the cases to be checked. This can be presented as follows:

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* START OF THE PROGRAM \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \_\_\_\_\_ Consider the following options: \_\_\_\_\_ [1] ENTER 1 for PLACEMENT AND SIZING OF CAPACITOR BANKS. [2] ENTER 2 for PLACEMENT and SIZING OF DGs. [3] ENTER 3 for OPTIMAL PLACEMENT AND SIZING COMBINATION OF CBs/DGs [4] ENTER 4 for MULTIOBJECTIVE OPTIMAL PLACEMENT AND SIZING OF CBs/DGs. (DGs are operated with controllable PF,) three Technical Objectives are considered.) [5] ENTER 5 for MULTIOBJECTIVE OPTIMAL PLACEMENT AND SIZING OF CBs/DGs. (DGs are operated with controllable PF, Technical and Economic Objectives are optimized.) Enter the value: 1 \_\_\_\_\_ \_\_\_\_\_ How many Iterations? (Minimum of 200 recommended): 300 Consider the following options: \_\_\_\_\_ \_\_\_\_\_ (a) Enter 1 for IEEE 33 Bus system

How many Iterations? (Minimum of 200 recommended): 300 Consider the following options: \_\_\_\_\_ (a) Enter 1 for IEEE 33 Bus system (b) Enter 2 for IEEE 69 Bus system (c) Enter any other number for importing an MS-Excel file with Customized Bus system Enter your choice: 1 \_\_\_\_\_ How many Capacitor Banks? (Default is 3.): 3 Maximum capacity of Capacitor Bank in kVAR ? (Default is 1000.): 1500 Minimum Bus Voltage at any Bus (in per unit) ? (Default is 0.90 pu.): No input was given. Default value 0.90 per unit was taken. Minimum Source Power Factor ? (Default is 0.20 pu.): No input was given. Default value 0.20 was taken. Created initial population and formed sea, rivers, and streams Sea Formed Rivers Formed

Rivers Formed Streams Formed Designated streams to rivers and sea

Figure 7: Options given to user in the computer program

# 5.1 For 33 Bus System:

Summary of the results obtained for the 33-bus system is illustrated as follows:



Figure 8: Case I- Bus voltage profile before and after capacitor allocations to the system



Figure 9: Case II- Bus voltage profile before and after DG allocation to the system



Figure 10: Case III- Bus voltage profile before and after simultaneous placement of capacitors and DG (unity pf)



Figure 11: Case IV- Bus voltage profile before and after simultaneous placement of capacitors and DG (controllable pf)-for only technical objective function



Figure 12:Case V- Bus voltage profile before and after simultaneous placement of capacitors and DG (controllable pf)-for techno-economic objective function

## Table 1: Summary of results of IEEE 33 bus system

| IEEE 33 BUS SYSTEM                                                                                      | ACHIEVED<br>RESULTS                   | REFERENCE PAPERS RESULTS                                                                                   |                                                        |
|---------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Case I (only capacitors)                                                                                | ER-WCA                                | BFOA                                                                                                       | PSO                                                    |
| Minimum voltage                                                                                         | 0.938 (32)                            | 0.9361                                                                                                     | 0.92 (18)                                              |
| Active Power loss (KW)                                                                                  | 132.173                               | 144.04                                                                                                     | 132.48                                                 |
| Reactive Power loss (KVar)                                                                              | 88.331                                |                                                                                                            |                                                        |
| Loss reduction (%)                                                                                      | 34.79                                 | 31.72                                                                                                      | 34.63                                                  |
| Placement                                                                                               | 0.378 (13),0.544<br>(24), 1.036 (30)  | 0.3496 (18), 0.8206 (30),<br>0.2773 (33)                                                                   | 0.9 (2), 0.45 (7),<br>0.45(31), 0.3 (15), 0.45<br>(29) |
| Case II (only DGs)                                                                                      | ER- WCA                               | BFOA                                                                                                       | FWA                                                    |
| Minimum voltage                                                                                         | 0.971 (29)                            | 0.9645                                                                                                     | 0.968                                                  |
| Active Power loss (KW)                                                                                  | 76.807                                | 98.3                                                                                                       | 88.68                                                  |
| Reactive Power loss (KVar)                                                                              | 53.014                                |                                                                                                            |                                                        |
| Loss reduction (%)                                                                                      | 62.10                                 | 53.41                                                                                                      | 56.25                                                  |
| Placement                                                                                               | 0.604 (14), 1.228<br>(6), 0.686 (31)  | 0.6335 (17), 0.0908 (18),<br>0.9470 (33)                                                                   | 0.589 (14), 0.189 (18),<br>1.014(32)                   |
| Case III (Capacitors and<br>DGs with unity pf<br>simultaneously)                                        | ER- WCA                               | BFOA                                                                                                       | GA                                                     |
| Minimum voltage                                                                                         | 0.985 (13)                            | 0.9783                                                                                                     | 0.971                                                  |
| Active Power loss (KW)                                                                                  | 19.799                                | 41.41                                                                                                      | 71.25                                                  |
| Reactive Power loss (KVar)                                                                              | 15.499                                |                                                                                                            |                                                        |
| Loss reduction (%)                                                                                      | 90.23                                 | 80.37                                                                                                      | 64.85                                                  |
| Placement capacitor                                                                                     | 0.194 (32), 0.393<br>(13), 0.869 (30) | 0.1632 (18), 0.5410 (30),<br>0.3384 (33)                                                                   | 0.3 (15), 0.3 (18), 0.3<br>(29), 0.6 (30), 0.3(31)     |
| Placement DG                                                                                            | 0.728 (14), 1.486<br>(3), 1.01 (30)   | 0.5424 (17), 0.1604 (18),<br>0.8955 (33)                                                                   | 0.25 (16), 0.25 (22), 0.5<br>(30)                      |
| IEEE 33 BUS SYSTEM                                                                                      | ACHIEVED<br>RESULTS                   | IEEE 33 BUS SYSTEM                                                                                         | ACHIEVED<br>RESULTS                                    |
| Case IV (Capacitors and<br>DGs with controllable pf<br>simultaneously) for only<br>technical objectives | ER-WCA                                | Case V (Capacitors and<br>DGs with controllable<br>pf simultaneously) for<br>techno-economic<br>objectives | ER-WCA                                                 |
| Minimum voltage                                                                                         | 0.990 (13)                            | Minimum voltage                                                                                            | 0.957 (33)                                             |
| Active Power loss (KW)                                                                                  | 16.126                                | Active Power loss (KW)                                                                                     | 73.64                                                  |
| Reactive Power loss                                                                                     | 13.169                                | Reactive Power loss                                                                                        | 57.933                                                 |
| Loss reduction (%)                                                                                      | 92.04                                 | Loss reduction (%)                                                                                         | 63.67                                                  |
| Placement capacitor<br>(MVAR)                                                                           | 0.194 (32), 0.333<br>(25), 0.708 (30) | Placement capacitor<br>(MVAR)                                                                              | 0.333 (14), 0.827 (30),<br>0.161 (33)                  |
| Placement DG (MW)                                                                                       | 0.796 (14), 1.712<br>(3), 0.999 (30)  | Placement DG (MW)                                                                                          | 0.524 (2), 1.31 (3), 2.229<br>(4)                      |
| power factor of DGs                                                                                     | 0.905, 0.961, 0.995                   | power factor of DGs                                                                                        | 0.906, 0.915, 0.989                                    |

#### **Discussion on Results for 33 bus system:**

- i) Case I: This is the case for only capacitor placement. The real power loss, reactive power loss, loss reduction percentage and minimum voltage that was obtained are 132.173kW, 88.331 KVar, 34.79%, and 0.938 p.u. whereas in the reference papers results using Bacterial Foraging Optimization Algorithm (BFOA) [19] they were 144.04 kW, 31.72%, and 0.9361 p.u respectively and using Particle Swarm Optimization Algorithm (PSO) [20] they were 132.48 kW, 34.63%, and 0.92 p.u respectively. The result obtained shows the optimal value for CB location are at bus 13 with CB capacity of 378 KVar, bus 24 with capacitor capacity of 544KVar, and bus 30 with capacitor capacity as 1036 KVar. Whereas, result that is in the reference papers are given as in the table 1. From these results, it can be analyzed that power losses, power factor and minimum voltage are nearly as that of reference paper. Hence, results are satisfactory with respect to the reference paper.
- ii) Case II: This is the case for only DG placement. The real power loss, reactive power loss, loss reduction percentage and minimum voltage that was obtained are 76.807 kW, 53.014 KVar, 62.10 %, and 0.971 p.u. whereas in the reference paper [19] using BFOA they were 98.3kW, 53.41%, and 0.9645 p.u respectively and using Fireworks Algorithm (FWA) [21], they were 88.68 kW, 56.25%, and 0.968 p.u respectively. The result obtained shows the optimal value for DG location are at bus 14 with DG capacity of 604kW, bus 6 with DG capacity of 1228 kW, bus 31 with DG capacity as 686 kW. It gives total of 2518kW. Whereas, result that is in the reference paper for DG placement are shown in the table. From these results, it can be analyzed that power losses has decreased and minimum voltage have increased than that of reference paper. Hence, results have improved from the program that has been used for the thesis.
- iii) Case III: This is the case for capacitor and DG (unity pf) placement. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 19.799 kW, 15.499 KVar, 90.23%, and 0.985 p.u. whereas in the reference paper using BFOA [19]they were 41.41 kW, 80.37 %, and 0.9783 p.u respectively and using Genetic Algorithm (GA) [22], results were 71.25 kW, 64.85%, and 0.971 p.u respectively. The result obtained shows the optimal value for capacitor location are at bus 32 with capacity 194 KVar, bus 13 with capacity 393 KVar, bus 30 with capacity 869 KVar and DG location are at bus 14 with DG capacity of 728kW, bus 3 with DG capacity of 1486 kW, bus 30 with DG capacity as 1010 kW.

Whereas, result that is in the reference paper are given as in the table. Results can be analyzed as the power losses got decreased significantly with the program used.

- iv) Case IV: This is the case for capacitor and DG (controllable pf) placement taking into consideration only technical objectives. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 16.126 kW, 13.169 KVar, 92.04%, 0.990 p.u. respectively. The result obtained shows the optimal value for capacitor location are at bus 32 with capacity 194 KVar, bus 25 with capacity 333 KVar, bus 30 with capacity 708 KVar and DG location are at bus 14 with DG capacity of 796 kW (0.905 pf), bus 3 with DG capacity of 1712 kW (0.961 pf), bus 30 with DG capacity as 999 kW (0.995 pf).
- v) Case V: This is the case for capacitor and DG (controllable pf) placement taking into consideration techno-economic objectives. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 73.64 kW, 57.933 KVar, 63.67%, 0.957 p.u. respectively. The result obtained shows the optimal value for capacitor location are at bus 14 with capacity 333 KVar, bus 30 with capacity 827 KVar, bus 33 with capacity 161 KVar and DG location are at bus 2 with DG capacity of 524 kW (0.906 pf), bus 3 with DG capacity of 1310 kW (0.915 pf), bus 4 with DG capacity as 2229 kW (0.989 pf).

# 5.2 For 69 Bus System:

Summary of the results obtained for the 69-bus system is illustrated as follows:



Figure 13: Case I- Bus voltage profile before and after allocation of capacitors to the system



Figure 14: Case II- Bus voltage profile before and after allocation of DGs only



Figure 15: Case III- Bus voltage profile before and after simultaneous placement of capacitors and DG (unity pf)



Figure 16: Bus voltage profile before and after simultaneous placement of capacitors and DG (controllable pf)-for only technical objective function



Figure 17: Case V- Bus voltage profile before and after simultaneous placement of capacitors and DG (controllable pf)-for techno-economic objective function

| IEEE 69 BUS SYSTEM                                                                                      | ACHIEVED<br>RESULTS                   | REFERENCE PAPERS RESULTS                                                                                      |                                         |
|---------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Case I (only capacitors)                                                                                | ER-WCA                                | GSA                                                                                                           | PSO                                     |
| Minimum voltage                                                                                         | 0.932 (62)                            | 0.952                                                                                                         | 0.934                                   |
| Active Power loss (KW)                                                                                  | 145.49                                | 145.9                                                                                                         | 152.48                                  |
| Reactive Power loss (Kvar)                                                                              | 67.798                                |                                                                                                               |                                         |
| Loss reduction %                                                                                        | 35.34                                 | 35.16                                                                                                         | 32.23                                   |
| Placement capacitor (MVAr)                                                                              | 0.425 (53), 0.312 (18),<br>1.205 (61) | 0.15 (26), 0.15 (13),<br>1.050 (15)                                                                           | 1.015 (59),<br>0.241(61), 0.365<br>(65) |
| Case II (only DGs)                                                                                      | ER-WCA                                | CVSI                                                                                                          | GA                                      |
| Minimum voltage                                                                                         | 0.979 (64)                            | 0.968 (27)                                                                                                    | 0.969                                   |
| Active Power loss (KW)                                                                                  | 69.428                                | 83.18                                                                                                         | 88.5                                    |
| Reactive Power loss (Kvar)                                                                              | 34.962                                |                                                                                                               |                                         |
| Loss reduction %                                                                                        | 69.14                                 | 63.03                                                                                                         | 60.67                                   |
| Placement DG (MW)                                                                                       | 1.719 (61), 0.526 (11),<br>0.380 (18) | 1.895 (61)                                                                                                    | 1.9471                                  |
| Case III (Capacitors and<br>DGs with unity pf<br>simultaneously)                                        | ER-WCA                                | DICA                                                                                                          |                                         |
| Minimum voltage                                                                                         | 0.985 (66)                            | 0.979                                                                                                         |                                         |
| Active Power loss (KW)                                                                                  | 12.681                                | 17.2                                                                                                          |                                         |
| Reactive Power loss (Kvar)                                                                              | 10.012                                |                                                                                                               |                                         |
| Loss reduction (%)                                                                                      | 94.36                                 | 92.36                                                                                                         |                                         |
| Placement capacitor (MVAr)                                                                              | 0.023 (34), 1.5 (36),<br>1.298 (61)   | 0.35 (11), 0.25 (20)                                                                                          |                                         |
| Placement DG (MW)                                                                                       | 0.380 (64), 1.309 (61),<br>0.795 (12) | 2.25                                                                                                          |                                         |
| IEEE 33 BUS SYSTEM                                                                                      | ACHIEVED<br>RESULTS                   | IEEE 33 BUS<br>SYSTEM                                                                                         | ACHIEVED<br>RESULTS                     |
| Case IV (Capacitors and<br>DGs with controllable pf<br>simultaneously) for only<br>technical objectives | ER-WCA                                | Case V (Capacitors<br>and DGs with<br>controllable pf<br>simultaneously) for<br>techno-economic<br>objectives | ER-WCA                                  |
| Minimum voltage                                                                                         | 0.987 (61)                            | Minimum voltage                                                                                               | 0.931 (64)                              |
| Active Power loss (KW)                                                                                  | 8.455                                 | Active Power loss<br>(KW)                                                                                     | 145.066                                 |
| Reactive Power loss (Kvar)                                                                              | 6.501                                 | Reactive Power loss<br>(Kvar)                                                                                 | 67.249                                  |
| Loss reduction (%)                                                                                      | 96.24                                 | Loss reduction (%)                                                                                            | 35.53                                   |
| Placement capacitor (MVar)                                                                              | 0.568 (49), 0.267 (18)                | Placement capacitor<br>(MVAR)                                                                                 | 1.237 (61), 0.337<br>(66), 0.266 (18)   |
| Placement DG (MW)                                                                                       | 0.864 (66), 1.244 (2),<br>2.073 (61)  | Placement DG (MW)                                                                                             | 2.281 (2), 2.066<br>(3), 2.281 (4)      |
| Power factor of DGs                                                                                     | 0.932, 1, 0.815                       | Power factor of DGs                                                                                           | 1, 0.945, 0.959                         |

## Table 2: <u>Summary of results for IEEE 69 Bus</u>

#### **Discussion on Results for 69 bus system:**

- i) Case I: This is the case for only capacitor placement. The real power loss, reactive power loss, loss reduction percentage and minimum voltage that was obtained are 145.49kW, 67.798 KVar, 35.34 %, and 0.932 p.u. whereas in the reference papers results using Gravitational Search Algorithm (GSA) [23] they were 145.9 kW, 35.61%, and 0.952 p.u respectively and using Particle Swarm Optimization Algorithm (PSO) [24] they were 152.48 kW, 32.23%, and 0.934 p.u respectively. The result obtained shows the optimal value for CB location are at bus 53 with CB capacity of 425 KVar, bus 18 with capacitor capacity of 312 KVar, and bus 61 with capacitor capacity as 1205 KVar. Whereas, result that is in the reference papers are given as in the table 2. From these results, it can be analyzed that power losses, power factor and minimum voltage are nearly as that of reference paper. Hence, results are satisfactory with respect to the reference paper.
- ii) Case II: This is the case for only DG placement. The real power loss, reactive power loss, loss reduction percentage and minimum voltage that was obtained are 69.428 kW, 34.962 KVar, 69.14 %, and 0.979 p.u. whereas in the reference paper using Combined Voltage Stability Index (CVSI) [25] they were 83.18 kW, 63 %, and 0.968 p.u respectively and using GA [26], they were 88.5 kW, 60.67 %, and 0.969 p.u respectively. The result obtained shows the optimal value for DG location are at bus 61 with DG capacity of 1719 kW, bus 11 with DG capacity of 526 kW, bus 18 with DG capacity as 380 kW. Whereas, result that is in the reference paper for DG placement are shown in the table 2. From these results, it can be analyzed that power losses have decreased and minimum voltage have increased than that of reference paper. Hence, results have improved from the program that has been used for the thesis.
- iii) Case III: This is the case for capacitor and DG (unity pf) placement. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 12.681 kW, 10.012 KVar, 94.36 %, and 0.985 p.u. whereas in the reference paper using Discrete Imperialistic Competition Algorithm (DICA) [27] they were 17.2 kW, 92.36 %, and 0.979 p.u respectively. The result obtained shows the optimal value for capacitor location are at bus 34 with capacity 23 KVar, bus 36 with capacity 1500 KVar, bus 61 with capacity 1298 KVar and DG location are at bus 64 with DG capacity of 380 kW, bus 61 with DG capacity of 1309 kW, bus 12 with DG capacity as 795 kW. Whereas, result that is in the reference paper are given as

in the table 2. Results can be analyzed as the power losses got decreased significantly with the program used.

- iv) Case IV: This is the case for capacitor and DG (controllable pf) placement taking into consideration only technical objective function. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 8.455 kW, 6.501 KVar, 96.24%, 0.987 p.u. The allocation of capacitors is at bus 49, and bus 18 with capacity 568 KVar, and 267 KVar respectively and DG allocations at bus 66, bus 2, bus 61 with capacity 864 KW, 1244 KW and 2073 KW respectively. Hence, the results that were achieved have lower power loss, higher power factor and minimum voltage. The location of DGs and capacitor are given on the table.
- v) Case V: This is the case for capacitor and DG (controllable pf) placement taking into consideration techno-economic objectives. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 145.066 kW, 67.249 KVar, 35.53 %, 0.931 p.u. respectively. The result obtained shows the optimal value for capacitor location are at bus 61 with capacity 1237 KVar, bus 66 with capacity 337 KVar, bus 18 with capacity 266 KVar and DG location are at bus 2 with DG capacity of 2281 kW (1 pf), bus 3 with DG capacity of 2066 kW (0.945 pf), bus 4 with DG capacity as 2281 kW (0.959 pf).

# 5.3 For Daachhi Feeder:

Summary of the results obtained for the Daachhi Feeder is illustrated as follows:



Figure 19: Voltage profile before and after allocation of capacitors



Figure 20: Case II- Bus voltage profile before and after allocation of DGs only



Figure 21: Case III- Bus voltage profile before and after simultaneous placement of capacitors and DG (unity pf)



Figure 22: Case IV- Bus voltage profile before and after simultaneous placement of capacitors and DG (controllable pf)-for only technical objective function



Figure 23: Case V- Bus voltage profile before and after simultaneous placement of capacitors and DG (controllable pf)-for techno-economic objective function

| Cases                                                                                                           | Results for New -                     | Results for Daachhi                 |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|
| Cose L (only consistent)                                                                                        | ED WCA                                | Feeder<br>ED WCA                    |
| Case I (only capacitors)                                                                                        | <b>EK-WCA</b>                         | ER-WCA                              |
| Active Dewer loss (KW)                                                                                          | 121 282                               | 0.971 (39)                          |
| Active Power loss (KW)                                                                                          | 37.46%                                | 98.028<br>50.25%                    |
| Placement conscitor (MVAr)                                                                                      | 1.277 (30), 1.195 (12), 1.5           | 1.161 (46), 1.038 (16), 1.5         |
| Flacement capacitor (WVAI)                                                                                      | (42)                                  | (26)                                |
| Case II (only DGs)                                                                                              | ER-WCA                                | ER-WCA                              |
| Minimum voltage                                                                                                 | 0.978 (52)                            | 0.980 (53)                          |
| Active Power loss (KW)                                                                                          | 70.706                                | 101.434                             |
| loss reduction %                                                                                                | 63.54%                                | 48.52%                              |
| Placement DG (MW)                                                                                               | 0.925 (33), 0.948 (27),               | 1.643 (43), 0.985 (16),             |
|                                                                                                                 | 2.868 (21)                            | 0.537 (36)                          |
| Case III (Capacitors and DGs<br>with unity pf simultaneously)                                                   | ER-WCA                                | ER-WCA                              |
| Minimum voltage                                                                                                 | 0.998 (7)                             | 0.994 (48)                          |
| Active Power loss (KW)                                                                                          | 5.628                                 | 7.676                               |
| Loss reduction (%)                                                                                              | 97.10%                                | 96.10%                              |
| Placement capacitor (MVAr)                                                                                      | 1.026 (40), 1.5 (42), 0.792<br>(33)   | 0.982 (46), 1.5 (33), 1.05<br>(16)  |
| Placement DG (MW)                                                                                               | 1.512 (44), 1.7 (17), 1.75<br>(30)    | 1.074 (46), 1.54 (26), 1.01<br>(16) |
| Case IV (Capacitors and DGs<br>with controllable pf<br>simultaneously) for only<br>technical objective function | ER-WCA                                | ER-WCA                              |
| Minimum voltage                                                                                                 | 0.998 (50)                            | 0.996 (22)                          |
| Active Power loss (KW)                                                                                          | 3 439                                 | 6 357                               |
| Loss reduction (%)                                                                                              | 08 23%                                | 96 77%                              |
| Placement capacitor (MVAR)                                                                                      | 0.452 (27), 0.461 (19),               | 0.577 (41), 0.419 (8),              |
|                                                                                                                 | 0.559 (47)                            | 0.896 (22)                          |
| Placement DG (MW)                                                                                               | 1.411 (12) ,1.699 (30),               | 1.757 (45) ,1.269 (16),             |
|                                                                                                                 | 2.531 (22)                            | 0.828 (36)                          |
| Power factor                                                                                                    | 0.878, 0.864, 0.945                   | 0.87, 0.84, 0.85                    |
| case V (Capacitors and DGs<br>with controllable pf<br>simultaneously) for techno-<br>economic objectives        | ER-WCA                                | ER-WCA                              |
| Minimum voltage                                                                                                 | 0.976 (50)                            | 0.979 (43)                          |
| Active Power loss (KW)                                                                                          | 91.154                                | 57.244                              |
| Reactive Power Loss (KVar)                                                                                      | 91.685                                | 30.933                              |
| Loss reduction (%)                                                                                              | 54%                                   | 70.95%                              |
| Placement capacitor (MVAR)                                                                                      | 0.578 (47), 1.499 (42),<br>1.272 (30) | 1.007 (16), 1.101 (46), 1.5<br>(26) |
| Placement DG (MW)                                                                                               | 0.554 (2), 3.322 (4), 1.994<br>(3)    | 0.388 (3) ,1.406 (2), 2.331 (4)     |
|                                                                                                                 | 1 0 000 0 07                          | 0.9.1.0.000                         |

Table 3: <u>Summary of the results of New-Chabahil Feeder and Daachhi Feeder of Kathmandu valley</u>

#### **Discussion on Results for Daachhi Feeder:**

- i) Case I: This is the case for only capacitor placement. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 98.028 kW, 52.971 KVar, 50.25%, and 0.971 p.u. The capacitor placement and sizes are given as in the table. From these results, it can be analyzed that power loss reduction, and minimum voltage are improved than that of base case tremendously.
- ii) Case II: This is the case for only DG placement. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 101.434 kW, 54.812 KVar, 48.52%, and 0.980 p.u. The DG placement and sizes are given as in the table. The power loss, and minimum voltages are improved than that of base case tremendously.
- iii) Case III: This is the case for capacitor and DG (unity pf) placement. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 7.676 kW, 4.148 KVar, 96.10%, and 0.994 p.u. Hence, the results that were achieved have lower power loss, higher power factor and minimum voltage than that of base case. The location of DGs and capacitor are given on the table 3.
- iv) Case IV: This is the case for capacitor and DG (controllable pf) placement taking into consideration only technical objectives. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 6.357 kW, 3.435KVar, 96.77 %, and 0.996 p.u. Hence, the results that were achieved have lower power loss, higher power factor and minimum voltage than that of the base case. The location of DGs and capacitor are given on the table 3.
- v) Case V: This is the case for capacitor and DG (controllable pf) placement taking into consideration techno-economic objectives. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 57.244 kW, 30.933 KVar, 70.95 %, and 0.979 p.u. Hence, the results that were achieved have lower power loss, higher power factor and minimum voltage than that of the base case. The location of DGs and capacitor are given on the table 3.

# 5.4 For New-Chabahil Feeder:

Summary of the results obtained for the New-Chabahil Feeder is illustrated as follows:



Figure 24: Voltage profile before and after allocation of capacitors



Figure 26: Case II-Bus voltage Profile before and after allocation of DGs



Figure 25: Case III- Bus voltage profile before and after simultaneous placement of capacitors and DG (unity pf)



Figure 28: Bus voltage profile before and after simultaneous placement of capacitors and DG (controllable pf)-for only technical objective function



Figure 27: Case V- Bus voltage profile before and after simultaneous placement of capacitors and DG (controllable pf)-for techno-economic objective function

#### **Discussion on Results for New Chabahil Feeder:**

- i) Case I: This is the case for only capacitor placement. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 121.282 kW, 121.99 KVar, 37.46%, 0.971 p.u. The capacitor placement and sizes are given as in the table. From these results, it can be analyzed that power losses and minimum voltage are improved than that of base case tremendously. The location of DGs and capacitor are given on the table 3.
- ii) Case II: The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 70.706 kW, 54.812 KVar, 63.54%, 0.978 p.u. The DG placement and sizes are given as in the table. The power loss, and minimum voltages are improved than that of base case tremendously. The location of DGs and capacitor are given on the table 3.
- iii) Case III: This is the case for capacitor and DG (unity pf) placement. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 5.628 kW, 5.661 KVar, 97.10 %, 0.998 p.u. Hence, the results that were achieved have lower power loss, and minimum voltage than that of base case. The location of DGs and capacitor are given on the table 3.
- iv) Case IV: This is the case for capacitor and DG (controllable pf) placement taking into consideration only technical objectives. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 3.439 kW, 3.459 KVar, 98.23 %, 0.998 p.u. Hence, the results that were achieved have lower power loss, and minimum voltage than that of the base case. The location of DGs and capacitor are given on the table 3.
- v) Case V: This is the case for capacitor and DG (controllable pf) placement taking into consideration for techno-economic objectives. The real power loss, reactive power loss, loss reduction percentage, and minimum voltage that was obtained are 91.154 kW, 91.685 KVar, 54 %, 0.976 p.u. Hence, the results that were achieved have lower power loss, and minimum voltage than that of the base case. The location of DGs and capacitor are given on the table 3.

# **CHAPTER 6: CONCLUSION AND FUTURE WORKS**

## **6.1** Conclusion

In this thesis work, optimal allocation of capacitors and DGs was implemented using Evaporation Rate based Water Cycle Algorithm (ER-WCA). To meet the objectives, a computer program was developed in MATLAB software using MATPOWER toolbox. This research analyzed the results of the five cases namely allocating capacitors only (Case I), allocating DGs only (Case II), allocating capacitors and DGs (unity pf) simultaneously (Case III), allocating capacitors and DGs (controllable pf) for technical objectives only (Case IV), and allocating capacitors and DGs (controllable pf) for techno-economic benefits (Case V). The power loss minimization, voltage profile improvement, voltage stability enhancement and cost reduction have been achieved with the help of the allocations. The results obtained in this thesis work using ER-WCA were better than the results found in the reference papers.

For IEEE 33 bus system, power loss in case I, case II, case III, case IV, and case V was 34.79%, 62.10, 90.23%, 92.04%, and 63.67 % of the base case respectively. Similarly, for IEEE 69 bus system, power loss in case I, case II, case III, case IV, and case V were 35.34%, 69.14%, 94.36%, 96.24%, and 35.53% of the base case respectively.

The method discussed in this thesis work was applied to two practical systems of Kathmandu valley (Daachhi feeder and New Chabahil feeder) which needed upgradation for reducing power loss and improving voltage profile. For Daachhi Feeder, power loss in case I, case II, case III, case IV, and case V was 50.25%, 48.52%, 96.10%, 96.77%, and 70.95% of the base case respectively. Similarly, for New-Chabahil Feeder, power loss in case I, case II, case IV, and case V were 37.46%, 63.54%, 97.10%, 98.23%, and 54% of the base case respectively the power loss.

In conclusion, the active and reactive power losses were reduced and voltage drop was minimized for different standard IEEE bus systems and two practical distribution systems of Nepal. Thus, this thesis work has addressed the technical and economic criteria for capacitor and DG placement. Hence, objectives of this thesis work have been effectuated.

# 6.2 Future works

This research can be further extended to meet the limitations that are realized while carrying out this thesis. This thesis only presents the idea for the possible best allocation of capacitors considering the system always run at the full load. But, the load in the system is not always constant. Hence, for such variable load, other type of compensator like static VAR compensator can be placed in the future research.

The optimization of optimal allocation of DGs and capacitors can be done using other optimization techniques and may make the comparison with the result of the above ER-WCA technique based on other features like time elapsed for the best outputs.

Since this thesis considered only Type 1 and Type 2 DGs, in further works other DGs like Type 3 and Type 4 DGs can be considered.

# **REFERENCES**

- A. El-Fergany and A. Abdelaziz, "Capacitor allocations in radial distribution network using cuckoo search algorithm," *IET Generation, Transmission and Distribution*, vol. 8 no.2, pp. 223-232, 2014.
- [2] A. El-Ela, E. Sehiemy and A. Abbas, "Optimal Placement and sizing of Distributed Generation and Capacitor Banks in the Distribution Systems Using Water Cycle Algorithm," *IEEE systems Journal*, vol. 12 no. 4, pp. 3629-3696, 2018.
- [3] P. Georgilakis and N. Hatziargyriou, "Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research," *IEEE transactions on power Systems*, vol. 28, no. 3, pp. 3420-3428, Aug 2013.
- [4] M. Rahmani-Andebili, "Simultaneous Placement of DG and Capacitor in distribution Network," *Electric Power System Research*, vol. 131, pp. 1-10, 2016.
- [5] K. Mistry and R. Roy, "Enhancement of loading capacity of distribution system through distributed generator placement considering techno-economic benefits with load growth," *International Journal of Electrical Power and Energy Systems*, vol. 54, pp. 505-515, 2014.
- [6] U. Sultana, A. Khairuddin, M. Aman, A. Mokhtar and N. Zareen, "A review of optimium Dg placement based on minimization of power losses and voltage stability enhancement of distribution system.," *Renewable and sustainable Energy Reviews*, vol. 63, pp. 363-378, 2016.
- [7] Z. Moravei and A. Akhlaghi, "A novel approach based on cuckoo Search for DG allocation in distribution network," *International journal of electrical Power and Energy Systems*, vol. 44, no. 1, pp. 672-679, 2013.

- [8] K. Muthukumar and S. Jayalalitha, "Optimal placement and sizing of Distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique," *International journal of Electrical Power and Energy Systems*, vol. 78, pp. 299-319, 2016.
- [9] P. T. Ananthapadmanabha, S. D.n and B., "Optimal Allocation of Combined DG and Capacitor Units for Voltage Stability Enhancement," *Procedia Technology*, vol. 21, pp. 216-223, 2015.
- [10] B. Pereira, G. R. Martins, J. Contreras and J. R. S. Mantovani, "Optimal Distributed Generation and Reactive Power Allocation in Electrical Distribution Systems," *IEEE Transactions on Sustainable Energy*, vol. 7, no. 3, pp. 975-984, 2016.
- [11] A. Bayod-Rujula, "Future development of electricity systems with distributed generation," *Energy*, vol. 34, no. 3, pp. 377-383, 2019.
- [12] E. Khattam W and S. M. M. A, "Distributed Generation Technologies, Definitions and Benefits.," *Electric Power System Research*, vol. 71, no. 2, pp. 119-128, 2004.
- [13] H. D. Q, M. N and B. R.C, "Analytical expression for DG allocation in primary distribution network," *IEEE Transaction in Energy Conversion*, vol. 25, no. 3, pp. 814-820, 2010.
- [14] G. Murthy, S. Sivanagaraju, S. Satyanarayana and B. Rao, "Volatge Stability Enhancement of Distribution System Using Network Reconfiburation Of Presence of DG," *Distributed Generation and Alternative Energy Journal*, vol. 30, no. 4, pp. 37-54, 2015.
- [15] A. Sadollah, H. Eskandar, A. Bahreinineja and J. H. Kim, "Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems," *Applied Soft Computing*, vol. 30, pp. 58-71, 2015.

- [16] H. Doagou-mojarrad, G. Gharehpetian, H. Rastegar and J. Olamaei, "Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm," *Energy*, pp. 1-10, 2013.
- [17] M. kefayat, A. Lashkar Ara and S. Nabavi niaki, "A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy sources," *Energy conversion and management*, vol. 92, pp. 149-161, 2015.
- [18] a. mohammed shaheed, R. A. EL-Sehiemy and S. M. Farrag, "Adequate Planning of Shunt Power Capacitors Involving Transformer Capacity Release Benefit," *IEEE system Journal*, pp. 1932-8184, 2015.
- [19] A. Mohamed Imran and M. Kowsalya, "Optimal Distributed Generation and Capacitor Placement in Power distribution networks for power loss minimization," 2014.
- [20] A. Askarzadeh, "Capacitor Placement in distribution systems for power loss reduction and voltage improvement : a new methodology," *IET Generation, Transmission, and Distribution*, vol. 10, no. 14, pp. 3631-3638, 2016.
- [21] A. Mohammed Imran , M. Kowsalya and D. Kothari, "A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks," *Electrical Power and Energy Systems*, vol. 63, pp. 461-472, 2014.
- [22] A. Saonerkar and B. Bagde, "Optimized DG Placement in radial distribution system with reconfiguration and capacitor placement using Genetic Algorithm," *Ramanathapuram*, 2014.
- [23] Y. Mohamed Shuaib, M. Surya Kalavathi and C. Christober Asir Rajan, "Optimal capacitor placement in radial distribution system using Gravitational Search Algorithm," *Electrical Power and Energy Systems*, vol. 64, pp. 384-397, 2015.

- [24] K. Prakash and M. Sydulu, "Particle Swarm Optimization based capacitor placement on radial distribution system," 2007.
- [25] A. Gantayet and S. Mohanty, "An analytical approach for optimal placement and sizing of distributed generation based on a combined voltage stability index," 2015.
- [26] K. Nara, A. Shiose, M. Kitagawa and T. Ishihara, "Implementation of genetic algorithm for distribution system loss minimum reconfiguration," *IEEE transactions on power system*, vol. 7, pp. 1044-1051, 1992.
- [27] A. Mahari, "Optimal DG and Capacitor allocation in distribution systems using DICA," *Journal of Engineering Science and Technology*, vol. 9, no. 5, pp. 641-656, 2014.

# **APPENDIX A**

## **Result Windows**

#### 1. RESULT WINDOWS FOR IEEE 33-BUS SYSTEM

a) Case II: Placement and sizing of Capacitors

\*\*\*\*\*\*\*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \_\_\_\_\_ \_\_\_\_\_ CALCULATIONS COMPLETED \_\_\_\_\_ \_\_\_\_\_ \_\_\_\_\_ YOU CHOSE PLACEMENT AND SIZING OF CAPACITOR BANKS. Location of Capacitors is at Buses: 30 13 24 Size of Capacitors is: 1036.6656 378.68528 544.2116 kVar each. Bus Voltages are: Bus No. || Voltage (pu) ----l l 2 0.998 3 0.987 4 0.997 5 0.931 6 0.994 7 0.984 8 0.976 9 0.993 10 0.98 11 0.964 12 0.992 13 0.977 14 0.962 15 0.963 16 0.958

```
17
                                          0.962
                     18
                                          0.954
                     19
                                          0.957
                     20
                                          0.95
                     21
                                          0.954
                                          0.949
                     22
                     23
                                          0.952
                     24
                                          0.948
                     25
                                          0.948
                     26
                                          0.945
                                          0.947
                     27
                     28
                                          0.943
                     29
                                          0.947
                     30
                                          0.942
                     31
                                          0.94
                     32
                                          0.938
                     33
                                          0.938
Minimum bus voltage is 0.938 pu at 32 bus.
Power Losses are:
_____
Active Power Loss = 132.173 kW.
Reactive Power Loss = 88.331 kVar.
Power Factor = 0.99
OBJECTIVE FUNCTION for the best solution = 132.173.
The best solution was found in Iteration No. 153.
For Base case:
_____
Minimum bus voltage was 0.913 pu at 18 bus.
Active power loss was 202.677 kW.
Reactive power loss was 135.141 kVar.
Power Factor was 0.849
```
#### b) Case II: Placement and sizing of DGs

----- CALCULATIONS COMPLETED -----\_\_\_\_\_ \_\_\_\_\_ YOU CHOSE PLACEMENT and SIZING OF DGs. The size of DGs is: 0.60391 1.2287 0.68635 MW each. The locations of DGs is at Buses: 14 6 31 Bus Voltages are: Bus No. || Voltage (pu) \_\_\_\_\_ 1 1 0.999 2 0.993 з 4 0.998 5 0.991 0.994 6 0.989 7 8 0.99 9 0.994 10 0.983 11 0.986 12 0.993 13 0.979 14 0.983 15 0.985 16 0.982 0.984 17 18 0.98 0.978 19 20 0.978 21 0.973 0.978 22 0.972 23 24 0.978 25 0.973 0.978 26 27 0.972 28 0.978 29 0.971 0.977 30 31 0.975 32 0.973 33 0.973 Minimum bus voltage is 0.971 pu at 29 bus. Power Losses are: \_\_\_\_\_ Active Power Loss = 76.807 kW. Reactive Power Loss = 53.014 kVar. Power Factor = 0.48 OBJECTIVE FUNCTION for the best solution = 76.807. The best solution was found in Iteration No. 186.

c) Case III: Simultaneous placement of capacitors and DGs (unity pf)

|                            | CALCULATIONS                               | COMPLETED                  |                     |                |
|----------------------------|--------------------------------------------|----------------------------|---------------------|----------------|
| *****                      | ****                                       | ****                       |                     | ******         |
| YOU CHOSE O                | **************************************     | SIZING COMBINA             | ATION OF CBs/DG     | :*******<br>35 |
| ~~~~~~~                    | ~~~~~~                                     | ~~~~~~                     | /~~~~~~~            |                |
| Location of<br>Size of cap | capacitors is at Bu<br>acitors is: 194.124 | ses: 32 13 30<br>2 393.299 | )<br>) 869.1957     | 7 kVar each.   |
| The size of<br>The locatio | DGs is: 0.72868<br>ns of DGs is at Buse    | 1.486 1<br>s: 14 3 30      | 1.0107 MW each<br>) | 1              |
| Bug Voltage                | e ara.                                     |                            |                     |                |
| Sub folouge                | Bus No.                                    | Volt                       | age (pu)            |                |
|                            | 1                                          |                            | l                   |                |
|                            | 2                                          |                            | 0.999               |                |
|                            | 4                                          |                            | 0.995               |                |
|                            | 5                                          |                            | 0.997               |                |
|                            | 6                                          |                            | 0.995               |                |
|                            | 7                                          |                            | 0.995               |                |
|                            | 8                                          |                            | 0.996               |                |
|                            | 9                                          |                            | 0.995               |                |
|                            | 10                                         |                            | 0.998               |                |
|                            | 12                                         |                            | 0.994               |                |
|                            | 13                                         |                            | 0.985               |                |
|                            | 14                                         |                            | 0.993               |                |
|                            | 15                                         |                            | 0.994               |                |
|                            | 16                                         |                            | 0.993               |                |
|                            | 1                                          | 7                          | 0.995               |                |
|                            | 1                                          | 8<br>9                     | 0.993               |                |
|                            | 2                                          | 0                          | 0.995               |                |
|                            | 2                                          | 1                          | 0.999               |                |
|                            | 2                                          | 2                          | 0.995               |                |
|                            | 2                                          | 4                          | 0.995               |                |
|                            | 2                                          | 5                          | 0.998               |                |
|                            | 2                                          | 6                          | 0.999               |                |
|                            | 2                                          | 8                          | 0.998               |                |
|                            | 2                                          | 9                          | 0.998               |                |
|                            | 3                                          | 0                          | 0.998               |                |
|                            | 3                                          | 2                          | 0.997               |                |
|                            | 3                                          | 3                          | 0.995               |                |
| Min<br>Pow                 | imum bus voltage is 0.<br>er Losses are:   | 985 pu at 13 bus.          |                     |                |
| <br>Act                    | ive Power Loss = 19 79                     | 9 kW.                      |                     |                |
| Rea<br>Pow                 | ctive Power Loss = 15.<br>er Factor = 0.51 | 499 kVar.                  |                     |                |
| овј                        | ECTIVE FUNCTION for th                     | e best solution =          | : 19.799.           |                |
| The                        | best solution was fou                      | nd in Iteration N          | Io. 252.            |                |

## d) Case IV: Simultaneous placement of capacitors and DGs (Controllable pf) -only

# technical objective function

|            | CALCUL                                   | ATIONS COMPLE               | TED            |                         |           |
|------------|------------------------------------------|-----------------------------|----------------|-------------------------|-----------|
|            |                                          |                             |                |                         |           |
|            |                                          |                             |                |                         |           |
| ********   |                                          |                             |                |                         |           |
| YOU CH     | SE MULTIOBIECTIV                         | הזם זהאדדסס<br>גום זהאד     | CEMENT AND ST  | TING OF CBe/1           |           |
| 100 010    | (DGs are ope                             | rated with co               | ntrollable PF  | .)                      |           |
|            | three Technic                            | al Objectives               | are consider   | ed.)                    |           |
| ~~~~~~~    |                                          |                             | ~~~~~~~~~~~~   | ~~~~~~~~~~~             |           |
|            |                                          |                             |                |                         |           |
| Location   | of capacitors is                         | at Buses: 32                | 25 30          |                         |           |
| Size of d  | capacitors is: 1                         | 94.4903                     | 333.864        | 701.7887 k <sup>v</sup> | /ar each. |
|            | - 6 88- 4 0 866                          |                             |                | NG7                     |           |
| The size   | OI DGS 18: 0.796                         | 29 1.712                    | 4 1.0003       | MW each                 | opeh      |
| The locat  | tions of DGs is a                        | 5 15: 0.9030<br>t Buses: 14 | 3 30           | 0.99510                 | each      |
| 1.1.2 2000 |                                          | 5 Subcol 11                 | 0 00           |                         |           |
| Bus Volta  | ages are:                                |                             |                |                         |           |
|            | В                                        | us No.                      | Voltage (      | pu)                     |           |
|            |                                          |                             |                |                         |           |
|            |                                          | 1                           |                | 1                       |           |
|            |                                          | 2                           |                | 1                       |           |
|            |                                          | 3                           | 0.00           | 1                       |           |
|            |                                          | 4<br>E                      | 0.99           | 9                       |           |
|            |                                          | 6                           | 0.99           | 5                       |           |
|            |                                          | 7                           | 0.99           | 7                       |           |
|            |                                          | B                           | 0.99           | 7                       |           |
|            |                                          | 9                           | 0.99           | 5                       |           |
|            | 1                                        | o                           | 0.99           | 2                       |           |
|            | 1                                        | 1                           | 0.99           | 5                       |           |
|            | 1                                        | 2                           | 0.99           | 4                       |           |
|            | 1                                        | 3                           | 0.9            | 9                       |           |
|            |                                          |                             |                |                         | -         |
|            |                                          | 14                          |                | 0.994                   |           |
|            |                                          | 16                          |                | 0.993                   |           |
|            |                                          | 17                          |                | 0.995                   |           |
|            |                                          | 18                          |                | 0.993                   |           |
|            |                                          | 19                          |                | 0.997                   |           |
|            |                                          | 20                          |                | 0.994                   |           |
|            |                                          | 21                          |                | 0.999                   |           |
|            |                                          | 23                          |                | 1                       |           |
|            |                                          | 24                          |                | 0.995                   |           |
|            |                                          | 25                          |                | 0.998                   |           |
|            |                                          | 26                          |                | 0.999                   |           |
|            |                                          | 28                          |                | 1                       |           |
|            |                                          | 29                          |                | 0.997                   |           |
|            |                                          | 30                          |                | 0.999                   |           |
|            |                                          | 31                          |                | 0.998                   |           |
|            |                                          | 32                          |                | 0.996                   |           |
|            |                                          |                             |                | 0.995                   |           |
|            | Minimum bus voltag                       | e is 0.990 pu               | at 13 bus.     |                         |           |
|            | Power Losses are:                        | -                           |                |                         |           |
|            |                                          |                             |                |                         |           |
|            | Active Power Loss                        | = 16.126  kW.               | ~              |                         |           |
|            | Reactive Power Los<br>Power Factor = 0.9 | а — тэттөа жүз<br>О         | ii.            |                         |           |
|            |                                          | -                           |                |                         |           |
|            | OBJECTIVE FUNCTION                       | for the best                | solution = 8.0 | 86.                     |           |
|            | L                                        |                             |                |                         |           |

e) Case V: Simultaneous placement of capacitors and DGs (Controllable pf) –

# techno-Economic objective function

| * * * * * * * * * * * * * * * * * * *    | **********                        | * * * * * * * * * * *       | *******     | *******   | * * * * * |
|------------------------------------------|-----------------------------------|-----------------------------|-------------|-----------|-----------|
| C                                        | ALCULATIONS C                     | OMPLETED                    |             |           |           |
|                                          |                                   |                             |             |           |           |
|                                          |                                   |                             |             |           |           |
| * * * * * * * * * * * * * * * * * * * *  | * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * | ********    | *******   | * * * * * |
| YOU CHOSE MULTIOBJ                       | ECTIVE OPTIMA                     | L PLACEMENT                 | AND SIZIN   | G OF CBs/ | DGs.      |
| (DGs ar                                  | e operated wi                     | th controll                 | able PF,    |           |           |
| Technical a                              | nd Economic Ol                    | ojectives a                 | re optimiz  | ed.)      |           |
| cation of capacito<br>ze of capacitors i | rs is at Buse:<br>s: 333.991      | 5: 14 30<br>827.361         | 33<br>2 161 | .7665 kV  | ar each   |
| e size of DGs is:                        | 0.52419                           | 1.31                        | 2.229 M     | W each    |           |
| e optimal pf for t                       | he DGs is: 0                      | .90622                      | 0.91594     | 0.98916   | each      |
| e locations of DGs<br>s Voltages are:    | is at Buses:                      | 2 3                         | 4           |           |           |
| - 10104900 4101                          | Bus No.                           | Vo                          | ltage (pu)  |           |           |
|                                          | 1                                 |                             | 1           | -         |           |
|                                          | 2                                 |                             | 1           |           |           |
|                                          | 4                                 |                             | 1           |           |           |
|                                          | 5                                 |                             | 1           |           |           |
|                                          | 6                                 |                             | 0.996       |           |           |
|                                          | 7                                 |                             | 0.997       |           |           |
|                                          | 9                                 |                             | 0.995       |           |           |
|                                          | 10                                |                             | 0.99        |           |           |
|                                          | 11                                |                             | 0.983       |           |           |
|                                          | 12                                |                             | 0.995       |           |           |
|                                          | 13                                |                             | 0.987       |           |           |
|                                          | 15                                |                             | 0 982       |           |           |
|                                          | 15                                |                             |             | 0.982     |           |
|                                          | 16                                |                             |             | 0.977     |           |
|                                          | 18                                |                             |             | 0.98      |           |
|                                          | 19                                |                             |             | 0.975     |           |
|                                          | 20                                |                             |             | 0.968     |           |
|                                          | 21                                |                             |             | 0.972     |           |
|                                          | 22                                |                             |             | 0.968     |           |
|                                          | 23                                |                             |             | 0.97      |           |
|                                          | 24                                |                             |             | 0.967     |           |
|                                          | 26                                |                             |             | 0.963     |           |
|                                          | 27                                |                             |             | 0.967     |           |
|                                          | 28                                |                             |             | 0.963     |           |
|                                          | 29                                |                             |             | 0.967     |           |
|                                          | 30                                |                             |             | 0.961     |           |
|                                          | 32                                |                             |             | 0.958     |           |
|                                          | 33                                |                             |             | 0.957     |           |
| Minimum bus vol                          | tage is 0.957                     | 7 pu at 33                  | bus.        |           |           |
| Power Losses ar                          | e:                                | FT 70 00                    |             |           |           |
| Active Power Lo                          | <br>ss = 73.640 }                 | cW.                         |             |           |           |
| Reactive Power                           | Loss = 57.933                     | 8 kVar.                     |             |           |           |
| Power Factor =                           | 0.92                              |                             |             |           |           |

## 2. RESULT WINDOWS FOR IEEE 69-BUS SYSTEM

## a) Case I: Placement and sizing of capacitor banks:

|                                                                            |                   |              |                      | -     |                  |                   |
|----------------------------------------------------------------------------|-------------------|--------------|----------------------|-------|------------------|-------------------|
|                                                                            |                   |              |                      |       | 19               | 0.985             |
| CALC                                                                       | CULATIONS COMPLET | TED          |                      |       | 20               | 1                 |
|                                                                            |                   |              |                      |       | 21               | 1                 |
|                                                                            |                   |              |                      |       | 22               | 0.994             |
| * * * * * * * * * * * * * * * * * * * *                                    | *****             | *****        | *****                |       | 23               | 0 994             |
| *****                                                                      | ************      | *******      | *********            |       | 24               | 0.901             |
| YOU CHOSE PLACEMENT AND                                                    | SIZING OF CAPA    | CITOR BANKS. |                      |       | 29               | 0.999             |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                    |                   |              | ~~~~~~~~~~           |       | 25               | 0.999             |
|                                                                            |                   |              |                      |       | 26               | 0.985             |
| Location of Capacitors                                                     | is at Buses: 53   | 18 61        |                      |       | 27               | 0.98              |
| -                                                                          |                   |              |                      |       | 28               | 0.999             |
| Size of Capacitors is:                                                     | 425.45467         | 312.31705    | 1205.7686 kVar each. |       | 29               | 0.999             |
| Bus Voltages are:                                                          | 120110107         |              | Loop food had cable  |       | 30               | 0.985             |
| Sub fortages are.                                                          | Bug No LL         | Voltage (pu) |                      |       | 31               | 0.982             |
|                                                                            | Bus No. 11        | voitage (pu) |                      |       | 32               | 0.979             |
|                                                                            | 1                 |              | -                    |       | 33               | 0.999             |
|                                                                            | 1                 | 1            |                      |       | 34               | 0.999             |
|                                                                            | 2                 | 1            |                      |       | 35               | 0.98              |
|                                                                            | 3                 | 1            |                      |       | 36               | 0.976             |
|                                                                            | 4                 | 1            |                      |       | 27               | 0.999             |
|                                                                            | 5                 | 1            |                      |       | 37               | 0.999             |
|                                                                            | 6                 | 1            |                      |       | 30               | 0.977             |
|                                                                            | 7                 | 0.999        |                      |       | 39               | 0.979             |
|                                                                            | 8                 | 1            |                      |       | 40               | 0.974             |
|                                                                            | 9                 | 1            |                      |       | 41               | 0.998             |
|                                                                            | 10                | 1            |                      |       | 42               | 0.973             |
|                                                                            | 11                | 0.993        |                      |       | 43               | 0.979             |
|                                                                            | 12                | 1            |                      |       | 44               | 0.976             |
|                                                                            | 13                | 1            |                      |       | 45               | 0.972             |
|                                                                            | 14                | n 999        |                      |       | 46               | 0.998             |
|                                                                            | 15                | 0.995        |                      |       | 47               | 0.956             |
|                                                                            | 10                | 0.900        |                      |       | 49               | 0.976             |
|                                                                            | 10                | 1            |                      |       | 10               | 0.970             |
|                                                                            | 17                | 1            |                      |       | 19               | 0.969             |
|                                                                            | 18                | 0.995        |                      |       | 50               | 0.947             |
|                                                                            | 51                | 0.969        |                      |       |                  |                   |
|                                                                            | 52                | 0.944        |                      |       |                  |                   |
|                                                                            | 53                | 0.968        |                      |       |                  |                   |
|                                                                            | 53                | 0.908        |                      |       |                  |                   |
|                                                                            | 51                | 0.51         |                      |       |                  |                   |
|                                                                            | 55                | 0.900        |                      |       |                  |                   |
|                                                                            | 50                | 0.935        |                      |       |                  |                   |
|                                                                            | 57                | 0.968        |                      |       |                  |                   |
|                                                                            | 58                | 0.934        | OBJECTIVE FIN        |       | for the heat of  | lution = 145 460  |
|                                                                            | 59                | 0.968        | SSGECTIVE FUN        | OTTON | TOT CHE DESC SU  | 140100 - 143.490. |
|                                                                            | 60                | 0.934        |                      |       |                  |                   |
|                                                                            | 61                | 0.967        | The best colo        | +     | was found in To- | wation No. 200    |
|                                                                            | 62                | 0.932        | ine pest Solu        | CTOU  | waa iounu in 100 | ELACION MO. 299.  |
|                                                                            | 63                | 0.967        | Per Dese com         |       |                  |                   |
|                                                                            | 64                | 0.932        | ror Base Case        |       |                  |                   |
|                                                                            | 65                | 0.967        |                      |       |                  |                   |
|                                                                            | 66                | 0.967        | Minimum bus v        | ortag | e was 0.909 pu a | at 65 DUS.        |
|                                                                            | 67                | 0.967        | Active power         | 1055  | was 225.001 kW.  | •                 |
|                                                                            | 68                | 0.967        | Reactive powe        | r los | s was 102.165 kV | /ar.              |
|                                                                            | 69                | 0.907        | Power Factor         | was O | .821             |                   |
| Minimum bus voltage is<br>Power Losses are:<br><br>Active Power Loss = 143 | 0.932 pu at 62 3  | bus.         |                      |       |                  |                   |
| Reactive Power Loss = (                                                    | 67.798 kVar.      |              |                      |       |                  |                   |
| Power Factor = 0.98                                                        |                   |              |                      |       |                  |                   |

b) Case II: Placement and sizing of DGs:

|                | <ul> <li>CALCULATIONS COM</li> </ul>          | IPLETED           |           | 18  |
|----------------|-----------------------------------------------|-------------------|-----------|-----|
| · <u>·····</u> |                                               |                   |           | 19  |
|                |                                               |                   |           | 20  |
| ******         | *****                                         | ********          | ******    | 21  |
| ********       | *****                                         | *****             | *****     | 22  |
| YOU CHOSE PLA  | CEMENT and SIZING OF I                        | Gs.               |           | 23  |
| ~~~~~~~~~~     | ~~~~~~~~~~~~~~~~~                             |                   |           | 24  |
|                |                                               |                   |           | 25  |
|                |                                               |                   |           | 26  |
| The gize of I  | Ge ie 1 719 0 526                             | 0 39021           | MM each   | 27  |
| INC SIZE OF I  | 0.020                                         | 0.00021           | na caon.  | 29  |
|                |                                               |                   |           | 20  |
|                |                                               | (1) 11 10         |           | 2.2 |
| Ine locations  | OI DGS 1S at Buses:                           | 61 11 18          |           | 30  |
| Bus voltages   | are:                                          | 101 (1111) (1111) | Sec. 1    | 31  |
|                | Bus No.                                       | Voltage           | (pu)      | 32  |
|                |                                               |                   |           | 33  |
|                | 1                                             |                   | 1         | 34  |
|                | 2                                             |                   | 1         | 35  |
|                | 3                                             |                   | 1         | 36  |
|                | 4                                             |                   | 1         | 37  |
|                | 5                                             |                   | 1         | 38  |
|                | 6                                             |                   | 1         | 39  |
|                | 7                                             |                   | 1         | 40  |
|                | 8                                             |                   | 1         | 41  |
|                | 9                                             |                   | 1         | 42  |
|                | 10                                            |                   | 1         | 43  |
|                | 11                                            | 0.9               | 997       | 44  |
|                | 12                                            |                   | 1         | 45  |
|                | 13                                            |                   | 1         | 46  |
|                | 14                                            | 0.3               | 200       | 47  |
|                | 11                                            | 0.5               | 394       | 10  |
|                | 15                                            | 0.5               | , ,       | 10  |
|                | 10                                            |                   | 1         | 49  |
|                | 17                                            |                   | 1         | 50  |
|                |                                               | 51                | 0.991     | 1   |
|                |                                               | 52                | 0.984     |     |
|                |                                               | 53                | 0.991     |     |
|                |                                               | 54                | 0.983     |     |
|                |                                               | 55                | 0.991     |     |
|                |                                               | 56                | 0.982     |     |
|                |                                               | 57                | 0.991     |     |
|                |                                               | 55                | 0.982     |     |
|                |                                               | 55<br>60          | 0.99      |     |
|                |                                               | 60                | 0.901     |     |
|                |                                               | 62                | 0.98      |     |
|                |                                               | 63                | 0.99      |     |
|                |                                               | 64                | 0.979     |     |
|                |                                               | 65                | 0.99      |     |
|                |                                               | 66                | 0.99      |     |
|                |                                               | 67                | 0.99      |     |
|                |                                               | 68                | 0.989     |     |
|                |                                               | 69                | 0.989     |     |
|                | Minimum bus voltage is O<br>Power Losses are: | .979 pu at 64 bus |           |     |
|                |                                               |                   |           |     |
|                | Active Power Loss = 69.4                      | 28 kW.            |           |     |
|                | Reactive Power Loss = 34                      | .962 kVar.        |           |     |
|                | Fower Factor = 0.42                           |                   |           |     |
|                | OBJECTIVE FUNCTION for t                      | he best solution  | = 69.428. |     |

0.995 0.994 1 1 0.994 0.994 0.999 0.999 0.994 0.993 0.999 0.999 0.994 0.993 0.993 0.999 0.999 0.992 0.992 0.999 0.991 0.993 0.992 0.998 0.99 0.993 0.992 0.991 0.998 0.986 0.992 0.991 0.984

| C7                                      | ALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IS COMPLETE                 | D                       |                 |            | 17 | 1     |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-----------------|------------|----|-------|
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |                 |            | 18 | 0.995 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |                 |            | 19 | 0.997 |
| * * * * * * * * * * * * * * * * * * * * | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ********                    | **********              | *********       | ****       | 20 | 1     |
| * * * * * * * * * * * * * * * * * * * * | *********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ********                    | **********              | *********       | ****       | 21 | -     |
| YOU CHOSE OPTIMAL PLA                   | ACEMENT AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ID STATNG (                 | OMBINATION C            | )F CBs/DGs      |            | 22 | 0.994 |
|                                         | Image: Stress of the stres of the stress of the stress of the stress |                             |                         |                 |            |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |                 |            | 24 | 0.557 |
| Location of capacito                    | re ie at F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mees. 34                    | 36 61                   |                 |            | 25 | -<br> |
| Size of capacitors is                   | s: 23.399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 699                         | 1500                    | 1298.2018       | kVar each. | 25 | 0.993 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |                 |            | 20 | 0.997 |
| The size of DGs is: (                   | 0.38021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3097                      | 0.7946                  | MW each         |            | 27 | 0.996 |
| The locations of DGs                    | is at Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | es: 64                      | 61 12                   |                 |            | 20 | 0.999 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |                 |            | 29 | 0.999 |
| Bus Voltages are:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |                 |            | 30 | 0.997 |
|                                         | Bus No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             | Voltage (p              | ou)             |            | 31 | 0.997 |
| -                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |                 |            | 32 | 0.996 |
|                                         | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 1                       | L               |            | 33 | 0.999 |
|                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 1                       | -               |            | 34 | 0.999 |
|                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 1                       | L               |            | 35 | 0.997 |
|                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 1                       | L               |            | 36 | 0.997 |
|                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 1                       | L               |            | 37 | 0.999 |
|                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | L                       | L               |            | 38 | 0.997 |
|                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 1                       | L               |            | 39 | 0.996 |
|                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 1                       | L               |            | 40 | 0.994 |
|                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 1                       | L               |            | 41 | 0.999 |
|                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | L                       | L               |            | 42 | 0.997 |
|                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 0.999                   | )               |            | 43 | 0.996 |
|                                         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 1                       | L               |            | 44 | 0.996 |
|                                         | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 1                       | L               |            | 45 | 0.991 |
|                                         | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 0.999                   | )               |            | 46 | 0.999 |
|                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 0.997                   | 7               |            | 47 | 0.998 |
|                                         | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 1                       | _               |            | 48 | 0.996 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 49                      |                 | 0.988      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 50                      |                 | 0.998      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 51                      |                 | 0.988      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 52                      |                 | 0.998      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 54                      |                 | 0.999      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 55                      |                 | 0.987      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 56                      |                 | 1          |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 57                      |                 | 0.986      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 58                      |                 | L 0.996    |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 60                      |                 | 0.555      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 61                      |                 | 0.986      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 62                      |                 | 1          |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 63                      |                 | 0.986      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 64                      |                 | 0.999      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 65                      |                 | 0.986      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 67                      |                 | 0.985      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 63                      |                 | 0.985      |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 69                      |                 | 0.985      |    |       |
|                                         | M<br>P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | inimum bus v<br>ower Losses | voltage is 0.98<br>are: | 5 pu at 66 bus. |            |    |       |
|                                         | -<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ctive Power                 | Loss = 12.681           | kW.             |            |    |       |
|                                         | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eactive Powe                | er Loss = 10.01         | 2 kVar.         |            |    |       |
|                                         | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ower Factor                 | = 1.00                  |                 |            |    |       |
|                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.TFCTTVF FT                | ICTION for the          | heet colution - | = 12 681   |    |       |
|                                         | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SECTIVE FOR                 | JULION TOT CHE          | 2000 Doiucion - | 12.001.    |    |       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                         |                 |            |    | 69    |

c) Case III: Simultaneous placement of capacitors and DGs (unity pf)

d) Case IV: Simultaneous placement of capacitors and DGs (Controllable pf) -only

# technical objective function

| CALCULATIONS                            | COMPLETED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14   | 0.999 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15   | 0.999 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16   | 1     |
| *****                                   | **************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17   | 1     |
| * * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18   | 0.998 |
| YOU CHOSE MULTIOBJECTIVE OPTI           | MAL PLACEMENT AND SIZING OF CBs/DGs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19   | 0.999 |
| (DGs are operated                       | with controllable PF,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20   | 1     |
| three Technical Obj                     | ectives are considered.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21   | 1     |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22   | 0.998 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23   | 0.999 |
| Location of capacitors is at Bu         | ses: 49 2 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24   | 0.999 |
| Size of capacitors is: 568.627          | 3 0 267.4907 kVar eac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 25 | 0.999 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26   | 0.999 |
| The size of DGs is: 0.86376             | 1.244 2.0731 MW each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27   | 0.999 |
| The optimal pf for the DGs is:          | 0.93232 1 0.81498 each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28   | 0.999 |
| The locations of DGs is at Buse         | s: 66 2 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29   | 0.999 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30   | 0.999 |
| Bus Voltages are:                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31   | 0.999 |
| Bus No.                                 | Voltage (pu)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32   | 0.999 |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33   | 0.999 |
| 1                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34   | 0.999 |
| 2                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35   | 0.999 |
| 3                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36   | 0.996 |
| 4                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37   | 0.999 |
| 5                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38   | 0.999 |
| 6                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39   | 1     |
| ,                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40   | 0.994 |
| °                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41   | 0.998 |
| 10                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42   | 0.999 |
| 10                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43   | 1     |
| 12                                      | 0.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44   | 0.996 |
| 15                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |
| 13                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45   | 0.992 |
| 13                                      | 1 0.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45   | 0.992 |
| 13                                      | 1<br>40 0.998<br>47 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45   | 0.992 |
| 13                                      | 1<br>46 0.998<br>47 0.999<br>48 0.996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45   | 0.992 |
| 13                                      | 1<br>46 0.998<br>47 0.999<br>48 0.996<br>49 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45   | 0.992 |
| 13                                      | 1<br>47 0.998<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45   | 0.992 |
| 13                                      | 1<br>**6 0.995<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>50 0.999<br>51 0.989<br>50 0.989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45   | 0.992 |
| 13                                      | 1<br>47 0.999<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>51 0.989<br>52 0.999<br>52 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45   | 0.992 |
| 13                                      | 1<br>46 0.998<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>51 0.989<br>52 0.999<br>53 0.989<br>54 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45   | 0.992 |
| 13                                      | 1<br>46 0.998<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>51 0.989<br>52 0.999<br>53 0.989<br>54 1<br>55 0.989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45   | 0.992 |
| 13                                      | 1<br>46 0.998<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>51 0.989<br>52 0.999<br>53 0.989<br>54 1<br>55 0.989<br>56 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45   | 0.992 |
| 13                                      | 1<br>46 0.998<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>51 0.989<br>52 0.999<br>53 0.989<br>54 1<br>55 0.989<br>56 1<br>57 0.988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45   | 0.992 |
| 13                                      | 1<br>46 0.998<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>51 0.989<br>52 0.999<br>53 0.989<br>54 1<br>55 0.989<br>54 1<br>55 0.989<br>56 1<br>57 0.988<br>58 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45   | 0.992 |
| 13                                      | 1<br>46 0.998<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>51 0.989<br>52 0.999<br>53 0.989<br>54 1<br>55 0.989<br>56 1<br>57 0.988<br>58 1<br>59 0.988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45   | 0.992 |
| 13                                      | 1 46 0.998 47 0.999 48 0.996 49 0.99 50 0.999 51 0.989 52 0.999 53 0.989 54 1 55 0.989 56 1 57 0.988 58 1 59 0.988 60 0.999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45   | 0.992 |
| 13                                      | 1 46 0.998 47 0.999 48 0.999 48 0.999 50 0.99 50 0.999 51 0.989 52 0.989 53 0.989 54 1 55 0.989 56 1 57 0.988 58 1 59 0.988 60 0.999 61 0.987 62 0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45   | 0.992 |
| 13                                      | 1 48 0.998 47 0.999 48 0.996 49 0.99 50 0.999 51 0.989 52 0.989 53 0.989 54 1 55 0.989 56 1 57 0.988 58 1 59 0.988 60 0.999 61 0.987 62 0.998 63 0.989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45   | 0.992 |
| 13                                      | 1 48 0.998 47 0.999 48 0.996 49 0.99 50 0.999 51 0.989 52 0.989 53 0.989 54 1 55 0.989 56 1 57 0.988 58 1 59 0.988 60 0.999 61 0.987 62 0.998 63 0.987 64 0.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45   | 0.992 |
| 13                                      | 48         0.993           47         0.999           48         0.996           49         0.999           50         0.999           51         0.989           52         0.999           53         0.989           54         1           55         0.988           56         1           57         0.988           58         1           59         0.988           60         0.999           61         0.987           62         0.998           63         0.987           64         0.997           65         0.987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45   | 0.992 |
| 13                                      | 48         0.995           47         0.996           48         0.996           49         0.99           50         0.999           51         0.989           52         0.999           53         0.989           54         1           55         0.988           56         1           57         0.988           58         1           59         0.988           60         0.999           61         0.987           62         0.998           63         0.987           64         0.997           65         0.987           66         0.987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45   | 0.992 |
|                                         | 48         0.995           47         0.996           48         0.996           49         0.99           50         0.999           51         0.989           52         0.999           53         0.989           54         1           55         0.988           56         1           57         0.988           58         1           59         0.988           60         0.999           61         0.987           62         0.988           63         0.987           64         0.997           65         0.987           66         0.987           66         0.987           67         0.987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45   | 0.992 |
|                                         | $\begin{array}{c c c c c c c } 1 \\ \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45   | 0.992 |
|                                         | $\begin{array}{c c} 1 \\ \hline 48 & 0.995 \\ 47 & 0.999 \\ 48 & 0.996 \\ 49 & 0.99 \\ 50 & 0.999 \\ 51 & 0.989 \\ 52 & 0.999 \\ 53 & 0.989 \\ 54 & 1 \\ 55 & 0.989 \\ 54 & 1 \\ 55 & 0.988 \\ 58 & 1 \\ 57 & 0.988 \\ 58 & 1 \\ 59 & 0.988 \\ 60 & 0.999 \\ 61 & 0.987 \\ 62 & 0.998 \\ 63 & 0.987 \\ 64 & 0.997 \\ 65 & 0.987 \\ 66 & 0.987 \\ 66 & 0.987 \\ 67 & 0.987 \\ 68 & 0.987 \\ 69 & 0.987 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45   | 0.992 |
|                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45   | 0.992 |
|                                         | 1           48         0.993           47         0.999           48         0.996           49         0.99           50         0.999           51         0.989           52         0.999           53         0.989           54         1           55         0.988           58         1           59         0.988           60         0.997           61         0.987           62         0.987           63         0.987           64         0.997           65         0.987           68         0.987           69         0.987           69         0.987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45   | 0.992 |
| 13                                      | 1           48         0.993           47         0.999           48         0.996           49         0.99           50         0.999           51         0.989           52         0.999           53         0.989           54         1           55         0.988           56         1           57         0.988           58         1           59         0.988           60         0.997           61         0.987           62         0.987           63         0.987           64         0.997           65         0.987           68         0.987           69         0.987           69         0.987           69         0.987           69         0.987           69         0.987           69         0.987           69         0.987           69         0.987           69         0.987           69         0.987           69         0.987           69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45   | 0.992 |
| LI3                                     | 1 48 0.998 47 0.999 48 0.999 48 0.999 50 0.999 50 0.989 52 0.989 53 0.989 54 1 55 0.989 56 1 57 0.988 58 1 59 0.988 60 0.999 61 0.988 60 0.999 61 0.987 62 0.988 63 0.987 64 0.997 65 0.987 64 0.987 65 0.987 66 0.987 66 0.987 69 0.987 voltage is 0.987 pu at 61 bus. s are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45   | 0.992 |
| Minimum bus<br>Power Losse<br>          | 1<br>48 0.995<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>51 0.989<br>52 0.989<br>53 0.989<br>54 1<br>55 0.989<br>56 1<br>57 0.988<br>58 1<br>59 0.988<br>60 0.999<br>61 0.987<br>62 0.998<br>63 0.987<br>64 0.997<br>65 0.987<br>66 0.987<br>66 0.987<br>66 0.987<br>66 0.987<br>67 0.987<br>68 0.987<br>69 0.987<br>70 0.987<br>69 0.987<br>70 0.987<br>69 0.987<br>70 0.9 | 45   | 0.992 |
| LI3                                     | 1<br>48 0.995<br>47 0.999<br>48 0.996<br>49 0.99<br>50 0.999<br>51 0.989<br>52 0.989<br>53 0.989<br>54 1<br>55 0.989<br>56 1<br>57 0.988<br>58 1<br>59 0.988<br>60 0.999<br>61 0.987<br>62 0.999<br>61 0.987<br>63 0.987<br>64 0.997<br>65 0.987<br>66 0.987<br>66 0.987<br>66 0.987<br>67 0.987<br>68 0.987<br>69 0.987<br>voltage is 0.987 pu at 61 bus.<br>s are:<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45   | 0.992 |
| LI3                                     | 1           46         0.995           47         0.996           48         0.996           49         0.999           50         0.989           52         0.989           53         0.989           54         1           55         0.989           56         1           57         0.988           58         1           59         0.988           60         0.999           61         0.987           62         0.998           63         0.987           64         0.997           65         0.987           66         0.987           68         0.987           69         0.987           69         0.987           rest         0.987 pu at 61 bus.           s are:            r         Loss = 6.501 kVar.           r = 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45   | 0.992 |
| LI3<br>Minimum bus<br>Power Losse<br>   | 1           48         0.993           47         0.999           48         0.996           49         0.999           50         0.999           51         0.989           52         0.999           53         0.989           54         1           55         0.989           56         1           57         0.988           58         1           59         0.988           60         0.999           61         0.987           62         0.998           63         0.987           64         0.987           65         0.987           66         0.987           68         0.987           69         0.987           69         0.987           69         0.987           69         0.987           61         0.987           62         0.987           63         0.987           69         0.987           69         0.987           69         0.987           69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45   | 0.992 |

## e) Case V: Simultaneous placement of capacitors and DGs (Controllable pf) -techno-

# Economic objective function

| ******                                                            | 14 | 0.999 |
|-------------------------------------------------------------------|----|-------|
| *****                                                             | 15 | 0.986 |
|                                                                   | 16 | 1     |
|                                                                   | 17 | - 1   |
| CALCULATIONS COMPLETED                                            | 18 | 0 995 |
|                                                                   | 19 | 0 985 |
|                                                                   | 20 | 1     |
| ******                                                            | 21 | - 1   |
|                                                                   | 22 | 0 004 |
| YOU CHOSE MULTIOBJECTIVE OPTIMAL PLACEMENT AND SIZING OF CBS/DGS. | 22 | 0.994 |
| (Des are operated with controllable PF,                           | 23 | 0.904 |
| Technical and Economic Objectives are optimized.)                 | 24 | 0.999 |
| Traction of approitant is at Russes (1, (6, 10)                   | 25 | 0.999 |
| Location of capacitors is at Buses: 61 66 18                      | 20 | 0.985 |
| SIZE OI CAPACILOIS IS: 1237.0914 337.93001 200.02235 kVar each.   | 27 | 0.98  |
| The size of DCs is, 0,0010 0,0605 0,0010 MW such                  | 28 | 0.999 |
| THE SIZE OF DGS IS: 2.2013 2.0095 2.2013 MW each                  | 29 | 0.999 |
| The entired of feather DCs is: $1 - 0.04526 = 0.05005$ even       | 30 | 0.984 |
| THE OPEIMAI PI LOT CHE DES IS: I 0.94520 0.95985 EACH             | 31 | 0.982 |
| The locations of DGs is at Buses: 2 2 4                           | 32 | 0.979 |
| Bus Voltages are:                                                 | 33 | 0.999 |
| Bus No    Voltage (pu)                                            | 34 | 0.999 |
|                                                                   | 35 | 0.979 |
| 1 1                                                               | 36 | 0.976 |
| 2 1                                                               | 37 | 0.999 |
| 3 1                                                               | 38 | 0.976 |
| 4 1                                                               | 39 | 0.979 |
| 5 1                                                               | 40 | 0.974 |
| 6 1                                                               | 41 | 0.998 |
| 7 1                                                               | 42 | 0.973 |
| 8 1                                                               | 43 | 0.979 |
| 9 1                                                               | 44 | 0.976 |
| 10 1                                                              | 45 | 0.972 |
| 11 0.993                                                          | 46 | 0.998 |
| 12 1                                                              | 4/ | 0.956 |
| 13 1                                                              | 48 | 0.976 |
| 49 0.969                                                          |    |       |
| 50 0.947                                                          |    |       |
| 52 0.944                                                          |    |       |
| 53 0.968                                                          |    |       |
| 54 0.94                                                           |    |       |
| 55 0.968                                                          |    |       |
| 50 0.935                                                          |    |       |
| 58 0.934                                                          |    |       |
| 59 0.968                                                          |    |       |
| 60 0.934                                                          |    |       |
| 62 0.932                                                          |    |       |
| 63 0.967                                                          |    |       |
| 64 0.931                                                          |    |       |
| 65 0.967                                                          |    |       |
| 66 0.967<br>67 0.967                                              |    |       |
| 68 0.967                                                          |    |       |
| 69 0.967                                                          |    |       |
| Minimum hus valtage is 0.001 mu at 64 hus                         |    |       |
| Power Losses are:                                                 |    |       |
| Active Power Loss = 145.066 kW.                                   |    |       |
| Reactive Power Loss = 67.249 kVar.                                |    |       |
| Power Factor = 0.99                                               |    |       |

## 3. RESULT WINDOWS FOR DAACHHI FEEDER

# a) Case I: Placement and sizing of capacitor banks:

| CI                    | ALCULATIONS CON | IPLETED            |                 | 20 | 0.976 |
|-----------------------|-----------------|--------------------|-----------------|----|-------|
|                       |                 |                    |                 | 21 | 0.974 |
|                       |                 |                    |                 | 22 | 0.979 |
| *******               | ******          | ***********        | ****            | 23 | 0.978 |
| *****                 | ****            | *************      | ****            | 24 | 0.977 |
| YOU CHOSE PLACEMENT A | AND SIZING OF ( | CAPACITOR BANKS.   |                 | 25 | 0.976 |
| ~~~~~~~               |                 |                    | ~~~~~~~         | 26 | 0.976 |
|                       |                 |                    |                 | 27 | 0.974 |
| Location of Capacitor | s is at Buses   | 46 16 26           |                 | 28 | 0.973 |
|                       |                 |                    |                 | 29 | 0.977 |
| Size of Capacitors is | 3: 1161.2052    | 1038.2371          | 1500 kVar each. | 30 | 0.973 |
| Bus Voltages are:     |                 |                    |                 | 31 | 0.975 |
| -                     | Bus No.         | Voltage (pu)       |                 | 32 | 0.973 |
| -                     |                 |                    |                 | 33 | 0.973 |
|                       | 1               | 1                  |                 | 34 | 0.976 |
|                       | 2               | 0.999              |                 | 35 | 0.972 |
|                       | 3               | 0.999              |                 | 36 | 0.975 |
|                       | 4               | 0.988              |                 | 37 | 0.973 |
|                       | 5               | 0.983              |                 | 38 | 0.973 |
|                       | 6               | 0.986              |                 | 39 | 0.972 |
|                       | 7               | 0.978              |                 | 40 | 0.975 |
|                       | 8               | 0.982              |                 | 41 | 0.974 |
|                       | 9               | 0.978              |                 | 42 | 0.973 |
|                       | 10              | 0.98               |                 | 43 | 0.972 |
|                       | 11              | 0.975              |                 | 44 | 0.974 |
|                       | 12              | 0.98               |                 | 45 | 0.971 |
|                       | 13              | 0.978              |                 | 46 | 0.974 |
|                       | 14              | 0.975              |                 | 47 | 0.974 |
|                       | 15              | 0.975              |                 | 48 | 0.971 |
|                       | 16              | 0.975              |                 | 49 | 0.974 |
|                       | 17              | 0.979              |                 | 50 | 0.974 |
|                       | 18              | 0.978              |                 | 51 | 0.972 |
|                       | 19              | 0.978              |                 | 52 | 0.974 |
|                       |                 | 53                 | 0.972           |    |       |
|                       |                 |                    |                 |    |       |
| Minimum bug r         | oltage ig O     | 971 pu at 45 bue   |                 |    |       |
| Dessen Lesses         |                 |                    |                 |    |       |
| Power Losses          | are:            |                    |                 |    |       |
|                       |                 |                    |                 |    |       |
| Active Power          | Loss = 98.0     | 28 kW.             |                 |    |       |
| Reactive Powe         | r Loss = 52     | .971 kVar.         |                 |    |       |
| Power Factor          | = 1.00          |                    |                 |    |       |
|                       |                 |                    |                 |    |       |
| OBJECTIVE FUN         | ICTION for t    | he hest solution = | 98 028          |    |       |
| OBOLOTIVE TOP         | CIICA ICI C     | ne pepe solucion   | 50.020.         |    |       |
|                       |                 |                    |                 |    |       |
|                       |                 |                    |                 |    |       |
| The best solu         | tion was fo     | und in Iteration N | o. 65.          |    |       |
|                       |                 |                    |                 |    |       |
| For Base case         | :               |                    |                 |    |       |
|                       |                 |                    |                 |    |       |
| Minimum bus v         | voltage was     | 0.957 pu at 53 bus |                 |    |       |
| Active power          | loss was 19     | 7.026 kW.          |                 |    |       |
| Reactive news         | r lose was      | 106 467 kVar       |                 |    |       |
| Reactive powe         | 1055 Was        | 100.10/ KVdI.      |                 |    |       |
| Power Factor          | was 0.708       |                    |                 |    |       |
|                       |                 |                    |                 |    |       |

#### b) Case II: Placement and sizing of DGs:

|               | CALCULATIONS C      | OMPLETED                                |          |
|---------------|---------------------|-----------------------------------------|----------|
|               |                     |                                         |          |
|               |                     |                                         |          |
| *****         | *****               | *******                                 | *****    |
| ******        | *****               | * * * * * * * * * * * * * * * * * * * * | ****     |
| OU CHOSE PLAC | EMENT and SIZING OF | DGs.                                    |          |
| ~~~~~~~~~~~   | ~~~~~~~~~~~~~~~~~~  | ~~~~~~~~~~~~~~~~~~~~~~~                 | ~~~~~~   |
|               |                     |                                         |          |
|               |                     |                                         |          |
| he size of DG | s is: 1.6431 0      | .9851 0.53795 MW ead                    | ch.      |
|               |                     |                                         |          |
| be locations  | of DCe is at Buses. | 43 16 36                                |          |
| us Voltages a | re:                 | 10 10 50                                |          |
| ab torongeb o | Bus No.             | <pre>Voltage (pu)</pre>                 |          |
|               |                     |                                         |          |
|               | 1                   | l                                       |          |
|               | 2                   | 0.999                                   |          |
|               | 3                   | 0.999                                   |          |
|               | 4                   | 0.991                                   |          |
|               | 5                   | 0.989                                   |          |
|               | 6                   | 0.99                                    |          |
|               | 7                   | 0.985                                   |          |
|               | 8                   | 0.987                                   |          |
|               | 9                   | 0.985                                   |          |
|               | 10                  | 0.956                                   |          |
|               | 12                  | 0.986                                   |          |
|               | 13                  | 0.985                                   |          |
|               | 14                  | 0.984                                   |          |
|               | 15                  | 0.983                                   |          |
|               | 16                  | 0.984                                   |          |
|               | 17                  | 0.985                                   |          |
|               |                     |                                         |          |
|               |                     | 50                                      | 0.982    |
|               |                     | 51                                      | 0.981    |
|               |                     | 52                                      | 0.982    |
|               |                     | 53                                      | 0.98     |
|               | Minimum bus woltage | is 0.980 pu at 53 bus                   |          |
|               | Power Losses are:   | 15 0.500 pa ao oo bab.                  |          |
|               |                     |                                         |          |
|               | Active Power Loss = | · 101.434 kW.                           |          |
|               | Reactive Power Loss | ; = 54.812 kVar.                        |          |
|               | Power Factor = 0.20 | 1                                       |          |
|               |                     |                                         |          |
|               | OBJECTIVE FUNCTION  | for the best solution = .               | 101.434. |
|               |                     |                                         |          |
|               |                     | - found in Transfer .                   |          |
|               | ine pest solution w | as found in Iteration No                | . 232.   |
|               | For Base case.      |                                         |          |
|               |                     |                                         |          |
|               | Minimum bus voltage | was 0.957 pu at 53 bus.                 |          |
|               |                     |                                         |          |

Active power loss was 197.026 kW. Reactive power loss was 106.467 kVar.

Power Factor was 0.708

0.985 0.985 0.984 0.983 0.985 0.985 0.984 0.984 0.984 0.983 0.983 0.983 0.984 0 0.984 0.983 0.983 0.983 0.984 0.984 0.983 0.983 0.984 9 0.984 0 0.983 0.983 0.983 0.983 0.983 0.983 0.982 0.983 0.982

73

| c) | Case III: | Simultaneous | placement | of cap | oacitors | and D | Gs | (unity | y pf | ) |
|----|-----------|--------------|-----------|--------|----------|-------|----|--------|------|---|
| ,  |           |              | -         | -      |          |       |    |        |      | - |
|    |           |              |           |        |          |       |    |        |      |   |

|              | CALCULATIONS COMP                                | LETED                                   |              | 16 | 0 668 |
|--------------|--------------------------------------------------|-----------------------------------------|--------------|----|-------|
|              |                                                  |                                         |              | 10 | 0.990 |
|              |                                                  |                                         |              | 17 | 0.998 |
| *********    |                                                  |                                         |              | 18 | 0.999 |
|              |                                                  |                                         |              | 19 | 0.999 |
|              |                                                  |                                         |              | 20 | 0.999 |
| YOU CHOSE O. | PTIMAL PLACEMENT AND SIZI                        | NG COMBINATION OF CBS/DGS               |              | 21 | 0.999 |
| ~~~~~~~~~    | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~        | 22 | 0.997 |
|              |                                                  |                                         |              | 23 | 0.999 |
| Location of  | capacitors is at Buses:                          | 46 33 16                                |              | 24 | 0.998 |
| Size of cap  | acitors is: 982.68679                            | 1500 1055.426                           | 4 kVar each. | 25 | 0.999 |
|              |                                                  |                                         |              | 26 | 0.999 |
| The size of  | DGs is: 1.0746 1.54                              | 77 1.0051 MW each                       |              | 20 | 0 999 |
| The location | ns of DGs is at Buses:                           | 46 26 16                                |              | 20 | 0.555 |
|              |                                                  |                                         |              | 20 | 0.000 |
| Bug Voltage  | e are.                                           |                                         |              | 29 | 0.998 |
| bus vortage. | Bue Ne                                           | U. Welters (ma)                         |              | 30 | 0.997 |
|              | BUS NO.                                          | Voicage (pu)                            |              | 31 | 0.999 |
|              |                                                  |                                         |              | 32 | 1     |
|              | 1                                                | 1                                       |              | 33 | 1     |
|              | 2                                                | 1                                       |              | 34 | 0.998 |
|              | 3                                                | 1                                       |              | 35 | 0.996 |
|              | 4                                                | 0.999                                   |              | 36 | 0.999 |
|              | 5                                                | 0.998                                   |              | 37 | 1     |
|              | 6                                                | 0.999                                   |              | 38 | ÷.    |
|              | 7                                                | 0.998                                   |              | 30 |       |
|              | ,                                                | 0.998                                   |              | 39 | 0.995 |
|              | °                                                | 0.998                                   |              | 40 | 0.999 |
|              | 9                                                | 0.998                                   |              | 41 | 1     |
|              | 10                                               | 0.998                                   |              | 42 | 1     |
|              | 11                                               | 0.998                                   |              | 43 | 0.995 |
|              | 12                                               | 0.998                                   |              | 44 | 1     |
|              | 13                                               | 0.999                                   |              | 45 | 0.995 |
|              | 14                                               | 0.998                                   |              | 46 | 1     |
|              | 15                                               | 0.998                                   |              | 47 | 0.999 |
|              |                                                  |                                         |              |    |       |
|              |                                                  | 48                                      | 0.994        |    |       |
|              |                                                  | 49                                      | 1            |    |       |
|              |                                                  | 50                                      | 0.999        |    |       |
|              |                                                  | 51                                      | 0.998        |    |       |
|              |                                                  | 52                                      | 0.000        |    |       |
|              |                                                  | 52                                      | 0.555        |    |       |
|              |                                                  | 53                                      | 0.998        |    |       |
|              | Minimum bus voltage is<br>Power Losses are:      | s 0.994 pu at 48 bus.                   |              |    |       |
|              |                                                  |                                         |              |    |       |
|              | Active Power Loss = 7.                           | .676 kW.                                |              |    |       |
|              | Reactive Power Loss =                            | 4.148 kVar.                             |              |    |       |
|              | Power Factor = 0.53                              |                                         |              |    |       |
|              | OBJECTIVE FUNCTION for                           | r the best solution = $7$ .             | 676.         |    |       |
|              | The best solution was                            | found in Iteration No.                  | 173.         |    |       |
|              | For Base case:                                   |                                         |              |    |       |
|              | Active power loss was<br>Reactive power loss was |                                         |              |    |       |
|              | Power Factor was 0.708                           | 3                                       |              |    |       |

d) Case IV: Simultaneous placement of capacitors and DGs (Controllable pf) -only

technical objective function:

|                                         | CALCULATIONS COME                       | LETED                                   |                  | 14 | 0.998 |
|-----------------------------------------|-----------------------------------------|-----------------------------------------|------------------|----|-------|
|                                         |                                         |                                         |                  | 15 | 0.998 |
|                                         |                                         |                                         |                  | 16 | 0.998 |
| *****                                   | * * * * * * * * * * * * * * * * * * * * | *****                                   | ****             | 17 | 0.997 |
| ****                                    | * * * * * * * * * * * * * * * * * * * * | * * * * * * * * * * * * * * * * * * * * | *****            | 18 | 0.997 |
| YOU CHOSE MUL                           | TIOBJECTIVE OPTIMAL E                   | LACEMENT AND STAINS                     | OF CBs/DGs       | 19 | 0.997 |
| (D                                      | Gs are operated with                    | controllable PF )                       | 01 055,205.      | 20 | 0.998 |
| thr                                     | ee Technical Objectiv                   | es are considered )                     |                  | 21 | 0.999 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                                         | ~~~~~            | 22 | 0.996 |
|                                         |                                         |                                         |                  | 23 | 0.997 |
| Location of can                         | acitors is at Buses.                    | 41 8 22                                 |                  | 24 | 0.996 |
| Size of capacit                         | ors is: 577.1019                        | 419.6478 896                            | .3094 kVar each. | 25 | 0.998 |
| DINC OF CAPACID                         | 010 10. 077.1019                        | 110.01/0 0/0                            | .oopi kvai caom. | 26 | 0.998 |
| The size of DGs                         | is: 1.7579 1.26                         | 92 0.82898 MW                           | each             | 27 | 0.999 |
| The optimal of                          | for the DGs is: 0.87                    | 986 0.84019                             | 0.85296 each     | 28 | 1     |
| The locations o                         | f DGs is at Buses:                      | 45 16 36                                | 0.00270 -000     | 29 | 0.996 |
| 1                                       | 1 DOD 10 GO DADED.                      |                                         |                  | 30 | 0.999 |
| Bus Voltages ar                         | e:                                      |                                         |                  | 31 | 0.999 |
| Sub (Olouges al                         | Bus No.                                 | LL Voltage (pu)                         |                  | 32 | 1     |
|                                         |                                         |                                         |                  | 33 | 1     |
|                                         | 1                                       | 1                                       |                  | 34 | 0.996 |
|                                         | 2                                       | 1                                       |                  | 35 | 1     |
|                                         | 3                                       | 1                                       |                  | 36 | 0.999 |
|                                         | 4                                       | 0.998                                   |                  | 37 | 1     |
|                                         | 5                                       | 0.998                                   |                  | 38 | 1     |
|                                         | 6                                       | 0.998                                   |                  | 39 | 1     |
|                                         | 7                                       | 0.998                                   |                  | 40 | 0.999 |
|                                         | 8                                       | 0.998                                   |                  | 41 | 1     |
|                                         | 9                                       | 0.998                                   |                  | 42 | 1     |
|                                         | 10                                      | 0.997                                   |                  | 43 | 0.999 |
|                                         | 11                                      | 0.998                                   |                  | 44 | 1     |
|                                         | 12                                      | 0.997                                   |                  | 45 | 0.999 |
|                                         | 13                                      | 0.998                                   |                  | 46 | 1     |
|                                         |                                         | 48                                      | 0.000            |    |       |
|                                         |                                         | 47                                      | 0.999            |    |       |
|                                         |                                         | 48                                      | 0.999            |    |       |
|                                         |                                         | 49                                      | 1                |    |       |
|                                         |                                         | 50                                      | 0.999            |    |       |
|                                         |                                         | 51                                      | 0.998            |    |       |
|                                         |                                         | 52                                      | 0.999            |    |       |
|                                         |                                         | 53                                      | 0.998            |    |       |
|                                         |                                         |                                         |                  |    |       |
|                                         | Minimum bus voltage                     | is 0.996 pu at 22                       | 2 bus.           |    |       |
|                                         | Power Losses are:                       |                                         |                  |    |       |
|                                         |                                         |                                         |                  |    |       |
|                                         | Active Power Loss =                     | 6.357 kW.                               |                  |    |       |
|                                         | Reactive Power Loss                     | = 3.435 kVar.                           |                  |    |       |
|                                         | Power Factor = 0.98                     |                                         |                  |    |       |
|                                         | 10//12 10/002 01/0                      |                                         |                  |    |       |
|                                         | OBJECTIVE FUNCTION                      | for the best solut                      | ion = 3.188.     |    |       |
|                                         |                                         |                                         |                  |    |       |
|                                         |                                         |                                         |                  |    |       |
|                                         | The best solution w                     | as found in Iterat                      | ion No. 300.     |    |       |
|                                         | For Base case:                          |                                         |                  |    |       |
|                                         |                                         |                                         |                  |    |       |
|                                         | Minimum bus voltage                     | was 0.957 pu at 8                       | o3 bus.          |    |       |
|                                         | Active power loss w                     | as 197.026 kW.                          |                  |    |       |
|                                         | Reactive power loss                     | was 106.467 kVar                        |                  |    |       |
|                                         | Power Factor was 0.                     | 708                                     |                  |    |       |
|                                         |                                         |                                         |                  |    |       |

0.998 0.998 0.997 0.997 0.997 0.998 0.999 0.996 0.997 0.996 0.998 0.998 0.999 1 0.996 0.999 0.999 1 1 0.996 1 0.999 l l l 0.999 l 1 0.999 1 0.999 1

## e) Case V: Simultaneous placement of capacitors and DGs (Controllable pf) -techno-

#### Economic objective function:

| ***********************     | *************                                                   | * * * *    | 14 |
|-----------------------------|-----------------------------------------------------------------|------------|----|
|                             |                                                                 |            | 15 |
| CALCULA                     | TIONS COMPLETED                                                 |            | 16 |
|                             |                                                                 |            | 17 |
|                             |                                                                 |            | 18 |
| ******                      | ***************                                                 | ****       | 19 |
| *********                   | ******************************                                  | * * * *    | 20 |
| YOU CHOSE MULTIOBJECTIVE    | OPTIMAL PLACEMENT AND SIZING OF CBs/D                           | Gs.        | 21 |
| (DGs are opera              | ated with controllable PF,                                      |            | 22 |
| Technical and Ecor          | nomic Objectives are optimized.)                                |            | 23 |
|                             |                                                                 |            | 24 |
| Location of capacitors is a | at Buses: 16 46 26                                              |            | 25 |
| Size of capacitors is: 100  | 07.9304 1101.3668 1500                                          | kVar each. | 26 |
|                             |                                                                 |            | 27 |
| The size of DGs is: 0.3885  | 1.4065 2.331 MW each                                            |            | 28 |
|                             |                                                                 |            | 29 |
| The optimal pf for the DGs  | is: 0.80015 1 0.99625                                           | each       | 30 |
|                             |                                                                 |            | 31 |
| The locations of DGs is at  | Buses: 3 2 4                                                    |            | 32 |
| Bus Voltages are:           |                                                                 |            | 33 |
| Bus                         | No.    Voltage (pu)                                             |            | 34 |
|                             |                                                                 |            | 35 |
| 1                           | 1                                                               |            | 36 |
| 2                           | 1                                                               |            | 37 |
| 3                           | 1                                                               |            | 38 |
| 4                           | 0.995                                                           |            | 39 |
| 5                           | 0.991                                                           |            | 40 |
| 6                           | 0.994                                                           |            | 41 |
| 7                           | 0.986                                                           |            | 42 |
| 8                           | 0.989                                                           |            | 43 |
| 9                           | 0.986                                                           |            | 44 |
| 10                          | 0.988                                                           |            | 45 |
| 11                          | 0.983                                                           |            | 46 |
| 12                          | 0.988                                                           |            | 47 |
| 13                          | 0.986                                                           |            | 48 |
| Г                           | 49                                                              | 0.981      |    |
|                             | 50                                                              | 0.981      |    |
|                             | 51                                                              | 0.98       |    |
|                             | 53                                                              | 0.98       |    |
|                             |                                                                 |            |    |
| I                           | Minimum bus voltage is 0.979 pu at 43 bus.<br>Power Losses are: |            |    |
|                             |                                                                 |            |    |
|                             | Active Power Loss = 57.244 kW.                                  |            |    |
|                             | Reactive Power Loss = 30.933 kVar.<br>Power Factor = 0.89       |            |    |
|                             | DBJECTIVE FUNCTION for the best solution = 1189                 | 94067.844. |    |
|                             | The best solution was found in Iteration No. 12                 | 4.         |    |
|                             | For Base case:                                                  |            |    |
| 1                           | Minimum bus voltage was 0.957 pu at 53 bus.                     |            |    |
|                             | Active power loss was 197.026 kW.                               |            |    |
| :                           | Reactive power loss was 106.467 kVar.                           |            |    |
|                             | Power Factor was 0.708                                          |            |    |

0.983 0.983 0.983 0.987 0.986 0.986 0.984 0.981 0.987 0.986 0.985 0.983 0.983 0.981 0.981 0.984 0.981 0.983 0.981 0.981 0.984 0.98 0.983 0.981 0.981 0.98 0.982 0.982 0.981 0.979 0.982 0.979 0.982 0.981 0.979

#### 4. RESULT WINDOWS FOR NEW-CHABAHIL FEEDER

#### a) Case I: Placement and sizing of capacitor banks:

| CALCULATIONS COMPLETED                        |                                         | 20 | 0.979 |
|-----------------------------------------------|-----------------------------------------|----|-------|
|                                               |                                         | 21 | 0.977 |
|                                               |                                         | 22 | 0.977 |
| * * * * * * * * * * * * * * * * * * * *       | *****                                   | 23 | 0.977 |
| * * * * * * * * * * * * * * * * * * * *       | * * * * * * * * * * * * * * * * * * * * | 24 | 0.976 |
| YOU CHOSE PLACEMENT AND SIZING OF CAPACITOR H | BANKS.                                  | 25 | 0.977 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       |                                         | 26 | 0.977 |
|                                               |                                         | 27 | 0.976 |
| Location of Capacitors is at Buses: 30 12 4   | 12                                      | 28 | 0.976 |
|                                               |                                         | 29 | 0.976 |
| Size of Capacitors is: 1277.5048 1195.5       | 072 1500 kVar each.                     | 30 | 0.977 |
| Bus Voltages are:                             |                                         | 31 | 0.976 |
| Bus No.    Vol                                | .tage (pu)                              | 32 | 0.975 |
|                                               |                                         | 33 | 0.976 |
| 1                                             | 1                                       | 34 | 0.974 |
| 2                                             | 0.996                                   | 35 | 0.974 |
| 3                                             | 0.996                                   | 36 | 0.975 |
| 4                                             | 0.994                                   | 37 | 0.974 |
| 5                                             | 0.994                                   | 38 | 0.974 |
| 6                                             | 0.994                                   | 39 | 0.975 |
| 7                                             | 0.988                                   | 40 | 0.975 |
| 8                                             | 0.988                                   | 41 | 0.974 |
| 9                                             | 0.988                                   | 42 | 0.975 |
| 10                                            | 0.986                                   | 43 | 0.974 |
| 11                                            | 0.986                                   | 44 | 0.974 |
| 12                                            | 0.984                                   | 45 | 0.975 |
| 13                                            | 0.984                                   | 46 | 0.975 |
| 14                                            | 0.983                                   | 47 | 0.974 |
| 15                                            | 0.984                                   | 48 | 0.973 |
| 16                                            | 0.983                                   | 49 | 0.974 |
| 17                                            | 0.981                                   | 50 | 0.971 |
| 18                                            | 0.981                                   | 51 | 0.971 |
| 19                                            | 0.98                                    | 52 | 0.971 |
|                                               |                                         |    |       |

0.971

Minimum bus voltage is 0.971 pu at 50 bus. Power Losses are: ------Active Power Loss = 121.282 kW. Reactive Power Loss = 121.990 kVar. Power Factor = 1.00 OBJECTIVE FUNCTION for the best solution = 121.282. The best solution was found in Iteration No. 83. For Base case:

53

Minimum bus voltage was 0.950 pu at 37 bus. Active power loss was 193.913 kW. Reactive power loss was 195.043 kVar. Power Factor was 0.797 **b**) <u>Case II: Placement and sizing of DGs</u>:

| CA1                    | LCULATIONS COMP: | LETED                   | 18 |
|------------------------|------------------|-------------------------|----|
|                        |                  |                         | 19 |
|                        |                  |                         | 20 |
| ***********            | *****            | ************            | 21 |
| ******                 | **********       | *********               | 22 |
| YOU CHOSE PLACEMENT an | nd SIZING OF DG: | s.                      | 23 |
| ~~~~~                  |                  | ~~~~~~~                 | 24 |
|                        |                  |                         | 25 |
|                        |                  |                         | 26 |
| The size of DGs is: 0  | .92508 0.94      | 829 2.8687 MW each.     | 27 |
|                        |                  |                         | 29 |
|                        |                  |                         | 20 |
| The locations of DGs : | is at Buses:     | 33 27 21                | 29 |
| Bus Voltages are:      |                  |                         | 21 |
| _                      | Bus No.          | <pre>Voltage (pu)</pre> | 31 |
|                        |                  |                         | 32 |
|                        | 1                | 1                       | 33 |
|                        | 2                | 0 997                   | 34 |
|                        | 3                | 0.996                   | 35 |
|                        | 4                | 0.995                   | 36 |
|                        | 5                | 0.995                   | 37 |
|                        | 5                | 0.995                   | 38 |
|                        | 6                | 0.995                   | 39 |
|                        | ,                | 0.99                    | 40 |
|                        | 0                | 0.99                    | 41 |
|                        | 9                | 0.989                   | 42 |
|                        | 10               | 0.989                   | 43 |
|                        | 11               | 0.988                   | 44 |
|                        | 12               | 0.987                   | 45 |
|                        | 13               | 0.987                   | 46 |
|                        | 14               | 0.986                   | 47 |
|                        | 15               | 0.987                   | 48 |
|                        | 16               | 0.986                   | 49 |
|                        | 17               | 0.985                   | 50 |
|                        | F 1              | 0.020                   |    |
|                        | 51               | 0.979                   |    |
|                        | 52               | 0.978                   |    |
|                        | 53               | 0.978                   |    |
|                        |                  |                         |    |
| Minimum bus volta      | je is 0.978 pu   | u at 52 bus.            |    |
| Power Losses are:      |                  |                         |    |
|                        |                  |                         |    |
| Active Bover Loss      | = 70 706 kW      |                         |    |
| Rootve rower 1088      |                  |                         |    |
| Reactive Power Los     | 3S = /1.118  k   | var.                    |    |
| Power Factor = 0.2     | 20               |                         |    |
|                        |                  |                         |    |
| OBJECTIVE FUNCTION     | I for the best   | t solution = 70.706.    |    |
|                        |                  |                         |    |
|                        |                  |                         |    |
| The best solution      | was found in     | Iteration No. 300.      |    |
|                        |                  |                         |    |
| For Base case:         |                  |                         |    |
|                        |                  |                         |    |
| Minimum bus volta      | Te was 0.950 7   | nu at 37 hus            |    |
| Active 3-              | - was 0.550 p    | pa ao or suo.           |    |
| Active power 1055      | was 193.913 }    | κ                       |    |
| Reactive power los     | 3s was 195.043   | 3 kVar.                 |    |
| Power Factor was (     | ).797            |                         |    |
|                        |                  |                         |    |

0.985 0.985

0.984

0.983

0.983

0.983 0.982 0.982 0.983

0.982 0.982 0.982

0.983

0.982 0.981 0.981 0.981 0.981 0.981 0.98 0.981 0.981 0,98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.979

|                       | CALCULATIONS COMPLETED                             | - 17      | 0.999 |
|-----------------------|----------------------------------------------------|-----------|-------|
|                       |                                                    | _ 18      | 0.998 |
|                       |                                                    | 19        | 0.998 |
| ********              |                                                    | . 20      | 0.998 |
| *******               | *********                                          | * 21      | 0.999 |
| YOU CHOSE OF          | PTIMAL PLACEMENT AND SIZING COMBINATION OF CBs/DGs | 22        | 0.999 |
| ~~~~~                 |                                                    | 23        | 0.998 |
|                       |                                                    | 24        | 0.999 |
| Location of           | capacitors is at Buses: 40 42 33                   | 25        | 0.999 |
| Size of capa          | acitors is: 1026.644 1500 792.03612 kVa            | r each 26 | 0.998 |
| 74                    |                                                    | 27        | 0.999 |
| The size of           | DGs is: 1.5126 1.7003 1.7495 MW each               | 28        | 0.999 |
| The locatior          | ns of DGs is at Buses: 44 17 30                    | 29        | 0.999 |
| And the second second |                                                    | 30        | 0.998 |
| Bus Voltages          | are:                                               | 31        | 0.999 |
|                       | Bus No.    Voltage (pu)                            | 32        | 0.999 |
|                       |                                                    | 32        | 0.999 |
|                       | 1 1                                                | 34        | 0.999 |
|                       | 2 0.999                                            | 31        | 0.555 |
|                       | 3 0.999                                            | 35        | ±     |
|                       | 4 0.999                                            | 30        | 0.998 |
|                       | 5 0.999                                            | 37        | 1     |
|                       | 6 0.999                                            | 38        | 0.999 |
|                       | 7 0.998                                            | 39        | 0.998 |
|                       | 8 0.998                                            | 40        | 0.998 |
|                       | 9 0.998                                            | 41        | 1     |
|                       | 10 0.998                                           | 42        | 0.998 |
|                       | 11 0.998                                           | 43        | 1     |
|                       | 12 0.998                                           | 44        | 1     |
|                       | 13 0.998                                           | 45        | 0.998 |
|                       | 14 0.998                                           | 46        | 0.998 |
|                       | 15 0.998                                           | 47        | 1     |
|                       | 16 0.998                                           | 48        | 0.999 |
|                       | 49 0.999                                           |           |       |
|                       | 50 0.999                                           |           |       |
|                       | 50 0.550                                           |           |       |
|                       | 51 0.550                                           |           |       |
|                       | 52 0.550                                           |           |       |
|                       | 55 0.550                                           |           |       |
|                       | Minimum hue woltage is 0 908 nu at 7 hue           |           |       |
|                       | Power Losses are:                                  |           |       |
|                       | rower hosses ale.                                  |           |       |
|                       | Active Dever Less - 5 620 kW                       |           |       |
|                       | Accive Power Loss - 5.620 kW.                      |           |       |
|                       | Reactive rower Loss - 5.001 Avar.                  |           |       |
|                       | POWER FACTOR = 0.57                                |           |       |
|                       | OPTECTIVE FUNCTION for the heat colution = 5 620   |           |       |
|                       | OBJECTIVE FUNCTION for the best solution - 5.628.  |           |       |
|                       |                                                    |           |       |
|                       | The best colution was found in Iteration No. 200   |           |       |
|                       | The pest solution was found in iteration No. 299.  |           |       |
|                       | For Base case                                      |           |       |
|                       |                                                    |           |       |
|                       | Minimum hug waltage wag 0 650 mm at 27 hug         |           |       |
|                       | Prinimum bus voitage was 0.950 pu at 37 bus.       |           |       |
|                       | Active power loss was 195,913 KW.                  |           |       |
|                       | Reactive power loss Was 195.043 KVar.              |           |       |
|                       | Power Factor Was 0.797                             |           |       |

# c) Case III: Simultaneous placement of capacitors and DGs (unity pf)

# d) Case IV: Simultaneous placement of capacitors and DGs (Controllable pf) -only

# technical objective function:

| CALC                                    | CULATIONS COMPLETED                            |                           |                       | 16 | 1     |
|-----------------------------------------|------------------------------------------------|---------------------------|-----------------------|----|-------|
|                                         |                                                |                           |                       | 17 | 1     |
|                                         |                                                |                           |                       | 18 | 1     |
| * * * * * * * * * * * * * * * * * * * * | *****                                          | *****                     | ****                  | 19 | 1     |
| *****                                   | ******                                         | *****                     | *****                 | 20 | 1     |
| YOU CHOSE MULTIOBJECT                   | TVE OPTIMAL PLACEM                             | ENT AND STRING OF         | CBs/DGs               | 21 | - 1   |
| (DGs are c                              | operated with control                          | ollable PF.)              |                       | 22 | 1     |
| three Tech                              | vical Objectives are                           | considered )              |                       | 22 | 1     |
| chiec reen                              | iicai objectives ait                           | constacted.)              |                       | 23 | 1     |
|                                         |                                                |                           |                       | 24 | 1     |
|                                         | in at Duran 07 1                               |                           |                       | 25 | 1     |
| Location of capacitors                  | 1s at Buses: 2/ 1                              | 9 47                      | Second and the second | 26 | 0.999 |
| Size of capacitors is:                  | 452.8213 461                                   | .5512 559.855             | % KVar each.          | 27 | 1     |
|                                         | wange in the second                            |                           |                       | 28 | 1     |
| The size of DGs is: 1.4                 | 1112 1.6995                                    | 2.5331 MW each            | 1                     | 29 | 0.999 |
| The optimal pf for the                  | DGs is: 0.87886                                | 0.86414 0.9               | 94511 each            | 30 | 0.999 |
| The locations of DGs is                 | at Buses: 12 3                                 | 1 22                      |                       | 31 | 1     |
|                                         |                                                |                           |                       | 32 | 1     |
| Bus Voltages are:                       |                                                |                           |                       | 33 | 0.999 |
|                                         | Bus No.                                        | Voltage (pu)              |                       | 34 | 1     |
|                                         |                                                |                           |                       | 35 | 1     |
|                                         | 1                                              | 1                         |                       | 36 | 0.999 |
|                                         | 2                                              | 0.999                     |                       | 37 | 1     |
|                                         | -                                              | 0 999                     |                       | 38 | 0 999 |
|                                         | 4                                              | 0 999                     |                       | 39 | 0.999 |
|                                         | 5                                              | 0.999                     |                       | 40 | 0.999 |
|                                         | 5                                              | 0.999                     |                       | 40 | 0.999 |
|                                         | 0                                              | 0.999                     |                       | 41 | 0 000 |
|                                         | 7                                              | 0.999                     |                       | 42 | 0.999 |
|                                         | 8                                              | 0.999                     |                       | 43 | 1     |
|                                         | 9                                              | 0.999                     |                       | 44 | 1     |
|                                         | 10                                             | 1                         |                       | 45 | 0.999 |
|                                         | 11                                             | 1                         |                       | 46 | 0.999 |
|                                         | 12                                             | 1                         |                       | 47 | 1     |
|                                         | 13                                             | 1                         |                       | 48 | 0.999 |
|                                         | 14                                             | 1                         |                       | 49 | 1     |
|                                         | 15                                             | 1                         |                       | 50 | 0.998 |
|                                         |                                                |                           | 100 - 212100          |    |       |
|                                         |                                                | 51                        | 0.998                 |    |       |
|                                         |                                                | 52                        | 0.998                 |    |       |
|                                         |                                                | 53                        | 0.998                 |    |       |
|                                         | Minimum bus voltage i<br>Power Losses are:     | s 0.998 pu at 50 bus      | 3.                    |    |       |
|                                         |                                                |                           |                       |    |       |
|                                         | Active Power Loss = 3<br>Reactive Power Loss = | .439 kW.<br>= 3.459 kVar. |                       |    |       |
|                                         | rower ractor = 0.80                            |                           |                       |    |       |
|                                         | OBJECTIVE FUNCTION fo                          | or the best solution      | = 1.725.              |    |       |
|                                         | The best solution was                          | found in Iteration        | No. 300.              |    |       |
|                                         | For Base case:                                 |                           |                       |    |       |
|                                         | Minimum bus voltage w                          | as 0.950 pu at 37 bu      | 15.                   |    |       |
|                                         | Active power loss was                          | : 193.913 kW.             |                       |    |       |
|                                         | Reactive power loss w                          | as 195.043 kVar.          |                       |    |       |
|                                         | Power Factor was 0.79                          | 7                         |                       |    |       |
|                                         |                                                |                           |                       |    |       |

# e) Case V: Simultaneous placement of capacitors and DGs (Controllable pf)-techno-

# Economic objective function:

| ********                      | *************                                                                               | 14    | 0.988 |
|-------------------------------|---------------------------------------------------------------------------------------------|-------|-------|
| *******                       | ************                                                                                | 15    | 0.988 |
|                               | 16                                                                                          | 0.987 |       |
| CALCULATIC                    | 17                                                                                          | 0.986 |       |
|                               |                                                                                             | 18    | 0.985 |
|                               |                                                                                             | 19    | 0.985 |
| *****                         | *****                                                                                       | 20    | 0.984 |
| YOU CHOSE MULTIOBJECTIVE OF   | TIMAL PLACEMENT AND STAING OF CBS/DGS                                                       | 21    | 0 982 |
| (DGs are operate              | ed with controllable PF.                                                                    | 22    | 0.982 |
| Technical and Econom          | nic Objectives are optimized.)                                                              | 22    | 0.002 |
|                               |                                                                                             | 23    | 0.982 |
| Location of capacitors is at  | Buses: 47 42 30                                                                             | 24    | 0.981 |
| Size of capacitors is: 578.0  | 08877 1499.9999 1272.5425 kVar each.                                                        | 25    | 0.982 |
|                               |                                                                                             | 26    | 0.982 |
| The size of DGs is: 0.5536    | 3.3216 1.9938 MW each                                                                       | 27    | 0.981 |
|                               |                                                                                             | 28    | 0.981 |
| The optimal pf for the DGs is | s: 1 0.98882 0.97005 each                                                                   | 29    | 0.982 |
|                               |                                                                                             | 30    | 0.982 |
| The locations of DGs is at Bu | 1ses: 2 4 3                                                                                 | 31    | 0.981 |
| Bus Voltages are:             |                                                                                             | 32    | 0.98  |
| BUS F                         | No.    Vortage (pu)                                                                         | 33    | 0.981 |
| 1                             | 1                                                                                           | 34    | 0 979 |
| 2                             | 1                                                                                           | 25    | 0.979 |
| 3                             | 1                                                                                           | 35    | 0.98  |
| 4                             | 1                                                                                           | 30    | 0.981 |
| 5                             | 0.999                                                                                       | 37    | 0.979 |
| 6                             | 0.999                                                                                       | 38    | 0.979 |
| 7                             | 0.993                                                                                       | 39    | 0.981 |
| 8                             | 0.992                                                                                       | 40    | 0.981 |
| 9                             | 0.992                                                                                       | 41    | 0.979 |
| 10                            | 0.991                                                                                       | 42    | 0.981 |
| 11                            | 0.99                                                                                        | 43    | 0.979 |
| 12                            | 0.988                                                                                       | 44    | 0.979 |
| 13                            | 0.900                                                                                       | 45    | 0.981 |
|                               | 50 0.976                                                                                    | 46    | 0.981 |
|                               | 51 0.976                                                                                    | 47    | 0 979 |
|                               | 53 0.976                                                                                    | 48    | 0.978 |
|                               | Minimum bus voltage is 0.976 pu at 50 bus.<br>Power Losses are:                             | 49    | 0.979 |
|                               | Active Power Loss = 91.154 kW.<br>Reactive Power Loss = 91.685 kVar.<br>Power Factor = 0.86 |       |       |
|                               | OBJECTIVE FUNCTION for the best solution = 11894093.261.                                    |       |       |
|                               | The best solution was found in Iteration No. 195.                                           |       |       |
|                               | For Base case:                                                                              |       |       |
|                               | Minimum bus voltage was 0.950 pu at 37 bus.                                                 |       |       |
|                               | Reactive power loss was 193.913 KW.<br>Reactive power loss was 195.043 kVar.                |       |       |
|                               | Power Factor was 0.797                                                                      |       |       |
|                               |                                                                                             |       |       |

# **APPENDIX B**

# System Data

| IEEE test system:    |               |               |      |     |        |        |  |  |
|----------------------|---------------|---------------|------|-----|--------|--------|--|--|
| IEEE 33 Bus System   |               |               |      |     |        |        |  |  |
| Bus data Branch Data |               |               |      |     |        |        |  |  |
| Bus                  | Pload         | Qload         | From | То  | R      | X      |  |  |
| No.                  | ( <b>MW</b> ) | ( <b>MW</b> ) | Bus  | Bus | (Ohms) | (Ohms) |  |  |
| 1                    | 0             | 0             | 1    | 2   | 0.0922 | 0.047  |  |  |
| 2                    | 100           | 60            | 2    | 3   | 0.493  | 0.2511 |  |  |
| 3                    | 90            | 40            | 3    | 4   | 0.366  | 0.1864 |  |  |
| 4                    | 120           | 80            | 4    | 5   | 0.3811 | 0.1941 |  |  |
| 5                    | 60<br>60      | <u> </u>      | 5    | 0   | 0.819  | 0.707  |  |  |
| 7                    | 200           | 100           | 7    | 8   | 0.1072 | 0.2351 |  |  |
| 8                    | 200           | 100           | 8    | 9   | 1.03   | 0.2331 |  |  |
| 9                    | 60            | 20            | 9    | 10  | 1.044  | 0.74   |  |  |
| 10                   | 60            | 20            | 10   | 11  | 0.1966 | 0.065  |  |  |
| 11                   | 45            | 30            | 11   | 12  | 0.3744 | 0.1238 |  |  |
| 12                   | 60            | 35            | 12   | 13  | 1.468  | 1.155  |  |  |
| 13                   | 60            | 35            | 13   | 14  | 0.5416 | 0.7129 |  |  |
| 14                   | 120           | 80            | 14   | 15  | 0.591  | 0.526  |  |  |
| 15                   | 60            | 10            | 15   | 16  | 0.7463 | 0.545  |  |  |
| 16                   | 60            | 20            | 16   | 17  | 1.289  | 1.721  |  |  |
| 17                   | 60            | 20            | 17   | 18  | 0.732  | 0.574  |  |  |
| 18                   | 90            | 40            | 2    | 19  | 0.164  | 0.1565 |  |  |
| 19                   | 90            | 40            | 19   | 20  | 1.5042 | 1.3554 |  |  |
| 20                   | 90            | 40            | 20   | 21  | 0.4095 | 0.4784 |  |  |
| 21                   | 90            | 40            | 21   | 22  | 0.7089 | 0.9373 |  |  |
| 22                   | 90            | 40            | 3    | 23  | 0.4512 | 0.3083 |  |  |
| 23                   | 90            | 50            | 23   | 24  | 0.898  | 0.7091 |  |  |
| 24                   | 420           | 200           | 24   | 25  | 0.896  | 0.7011 |  |  |
| 25                   | 420           | 200           | 6    | 26  | 0.203  | 0.1034 |  |  |
| 26                   | 60            | 25            | 26   | 27  | 0.2842 | 0.1447 |  |  |
| 27                   | 60            | 25            | 27   | 28  | 1.059  | 0.9337 |  |  |
| 28                   | 60            | 20            | 28   | 29  | 0.8042 | 0.7006 |  |  |
| 29                   | 120           | 70            | 29   | 30  | 0.5075 | 0.2585 |  |  |
| 30                   | 200           | 600           | 30   | 31  | 0.9744 | 0.963  |  |  |
| 31                   | 150           | 70            | 31   | 32  | 0.3105 | 0.3619 |  |  |
| 32                   | 210           | 100           | 32   | 33  | 0.341  | 0.5302 |  |  |
| 33                   | 60            | 40            |      |     |        |        |  |  |

82

|           | IEEE 69-Bus System |               |             |           |           |           |  |  |
|-----------|--------------------|---------------|-------------|-----------|-----------|-----------|--|--|
|           | Bus Data           |               |             | Br        | anch Data |           |  |  |
| Bus<br>No | Pload<br>(MW)      | Qload<br>(MW) | From<br>Bus | To<br>Bus | R (Ohms)  | X (Ohms)  |  |  |
| 1         | 0                  | 0             | 1           | 2         | 0.0000312 | 7 487E-05 |  |  |
| 2         | 0                  | 0             | 2           | 3         | 0.0000312 | 7.487E-05 |  |  |
| 3         | 0                  | 0             | 3           | 4         | 9.359E-05 | 0.0002246 |  |  |
| 4         | 0                  | 0             | 4           | 5         | 0.0015661 | 0.0018343 |  |  |
| 5         | 0                  | 0             | 5           | 6         | 0.0228357 | 0.01163   |  |  |
| 6         | 0.0026             | 0.0022        | 6           | 7         | 0.0237778 | 0.0121104 |  |  |
| 7         | 0.0404             | 0.03          | 7           | 8         | 0.0057526 | 0.0029325 |  |  |
| 8         | 0.75               | 0.054         | 8           | 9         | 0.003076  | 0.0015661 |  |  |
| 9         | 0.03               | 0.022         | 9           | 10        | 0.5109948 | 0.0168897 |  |  |
| 10        | 0.028              | 0.019         | 10          | 11        | 0.1167988 | 0.0038621 |  |  |
| 11        | 0.145              | 0.104         | 11          | 12        | 0.4438605 | 0.0146685 |  |  |
| 12        | 0.145              | 0.104         | 12          | 13        | 0.0642643 | 0.0212135 |  |  |
| 13        | 0.008              | 0.0055        | 13          | 14        | 0.0651378 | 0.0215254 |  |  |
| 14        | 0.008              | 0.0055        | 14          | 15        | 0.0660113 | 0.0218124 |  |  |
| 15        | 0                  | 0             | 15          | 16        | 0.0122664 | 0.0040555 |  |  |
| 16        | 0.0455             | 0.03          | 16          | 17        | 0.0233598 | 0.0077242 |  |  |
| 17        | 0.06               | 0.035         | 17          | 18        | 0.0002932 | 9.983E-05 |  |  |
| 18        | 0.06               | 0.035         | 18          | 19        | 0.0204398 | 0.0067571 |  |  |
| 19        | 0                  | 0             | 19          | 20        | 0.0131399 | 0.0043425 |  |  |
| 20        | 0.001              | 0.0006        | 20          | 21        | 0.0213133 | 0.0070441 |  |  |
| 21        | 0.114              | 0.081         | 21          | 22        | 0.0008735 | 0.000287  |  |  |
| 22        | 0.0053             | 0.0035        | 22          | 23        | 0.0099267 | 0.0032819 |  |  |
| 23        | 0                  | 0             | 23          | 24        | 0.0216065 | 0.0071439 |  |  |
| 24        | 0.028              | 0.02          | 24          | 25        | 0.0467195 | 0.0154422 |  |  |
| 25        | 0                  | 0             | 25          | 26        | 0.0192731 | 0.0063703 |  |  |
| 26        | 0.014              | 0.01          | 26          | 27        | 0.0108064 | 0.0035689 |  |  |
| 27        | 0.014              | 0.01          | 3           | 28        | 0.0002745 | 0.0006738 |  |  |
| 28        | 0.026              | 0.0186        | 28          | 29        | 0.0039931 | 0.0097644 |  |  |
| 29        | 0.026              | 0.0186        | 29          | 30        | 0.0248198 | 0.0082046 |  |  |
| 30        | 0                  | 0             | 30          | 31        | 0.00438   | 0.0014475 |  |  |
| 31        | 0                  | 0             | 31          | 32        | 0.0218998 | 0.0072375 |  |  |
| 32        | 0                  | 0             | 32          | 33        | 0.0523473 | 0.001757  |  |  |
| 33        | 0.014              | 0.001         | 33          | 34        | 0.1065664 | 0.0352268 |  |  |
| 34        | 0.0195             | 0.014         | 34          | 35        | 0.9196659 | 0.0304039 |  |  |
| 35        | 0.006              | 0.004         | 3           | 36        | 0.0002745 | 0.0006738 |  |  |
| 36        | 0.026              | 0.0186        | 36          | 37        | 0.0039931 | 0.0097644 |  |  |

| 37 | 0.026  | 0.0186 | 37 | 38 | 0.0065699 | 0.0076743 |
|----|--------|--------|----|----|-----------|-----------|
| 38 | 0      | 0      | 38 | 39 | 0.0018967 | 0.0022149 |
| 39 | 0.024  | 0.017  | 39 | 40 | 0.0001123 | 0.000131  |
| 40 | 0.024  | 0.017  | 40 | 41 | 0.0454405 | 0.0530898 |
| 41 | 0.0012 | 0.001  | 41 | 42 | 0.0193417 | 0.0226048 |
| 42 | 0      | 0      | 42 | 43 | 0.0025581 | 0.0029824 |
| 43 | 0.006  | 0.0043 | 43 | 44 | 0.000574  | 0.0007238 |
| 44 | 0      | 0      | 44 | 45 | 0.0067946 | 0.0085665 |
| 45 | 0.0392 | 0.0263 | 45 | 46 | 5.615E-05 | 7.487E-05 |
| 46 | 0.392  | 0.0263 | 4  | 47 | 0.0002121 | 0.0005241 |
| 47 | 0      | 0      | 47 | 48 | 0.0053096 | 0.0129964 |
| 48 | 0.079  | 0.0564 | 48 | 49 | 0.0180814 | 0.0442425 |
| 49 | 0.3847 | 0.2745 | 49 | 50 | 0.0051287 | 0.0125471 |
| 50 | 0.3847 | 0.2745 | 8  | 51 | 0.00579   | 0.0029512 |
| 51 | 0.0405 | 0.0283 | 51 | 52 | 0.0207081 | 0.0069505 |
| 52 | 0.0036 | 0.0027 | 9  | 53 | 0.0108563 | 0.005528  |
| 53 | 0.0043 | 0.0035 | 53 | 54 | 0.0126657 | 0.0064514 |
| 54 | 0.0264 | 0.019  | 54 | 55 | 0.017732  | 0.0090282 |
| 55 | 0.024  | 0.0172 | 55 | 56 | 0.017551  | 0.0089409 |
| 56 | 0      | 0      | 56 | 57 | 0.0992041 | 0.0332989 |
| 57 | 0      | 0      | 57 | 58 | 0.048897  | 0.0164092 |
| 58 | 0      | 0      | 58 | 59 | 0.0189798 | 0.0062767 |
| 59 | 0.1    | 0.072  | 59 | 60 | 0.0240898 | 0.0073124 |
| 60 | 0      | 0      | 60 | 61 | 0.0316642 | 0.0161285 |
| 61 | 1.244  | 0.888  | 61 | 62 | 0.006077  | 0.0030947 |
| 62 | 0.032  | 0.023  | 62 | 63 | 0.0090469 | 0.0046046 |
| 63 | 0      | 0      | 63 | 64 | 0.0443299 | 0.0225799 |
| 64 | 0.227  | 0.162  | 64 | 65 | 0.0649506 | 0.0330805 |
| 65 | 0.059  | 0.042  | 11 | 66 | 0.0125534 | 0.0038122 |
| 66 | 0.018  | 0.013  | 66 | 67 | 0.0002932 | 8.735E-05 |
| 67 | 0.018  | 0.013  | 12 | 68 | 0.046133  | 0.0512487 |
| 68 | 0.028  | 0.02   | 68 | 69 | 0.0002932 | 9.983E-05 |
| 69 | 0.028  | 0.02   |    |    |           |           |

| Daachhi Feeder       |               |               |      |     |           |          |  |  |
|----------------------|---------------|---------------|------|-----|-----------|----------|--|--|
| Bus Data Branch Data |               |               |      |     |           |          |  |  |
| Bus                  | Pload         | Qload         | From | То  |           |          |  |  |
| No.                  | ( <b>MW</b> ) | ( <b>MW</b> ) | Bus  | Bus | R (Ohms)  | X (Ohms) |  |  |
| 1                    | 0             | 0             | 1    | 2   | 0.0236024 | 0.012754 |  |  |
| 2                    | 0             | 0             | 2    | 3   | 0.0214567 | 0.011594 |  |  |
| 3                    | 0.07          | 0.07141428    | 2    | 4   | 0.3433071 | 0.185512 |  |  |
| 4                    | 0             | 0             | 4    | 5   | 0.4298491 | 0.232276 |  |  |
| 5                    | 0.035         | 0.03570714    | 5    | 6   | 0.557874  | 0.301457 |  |  |
| 6                    | 0.07          | 0.07141428    | 6    | 7   | 0.0286089 | 0.015459 |  |  |
| 7                    | 0.035         | 0.03570714    | 7    | 8   | 0.3154134 | 0.170439 |  |  |
| 8                    | 0             | 0             | 8    | 9   | 0.0693766 | 0.037489 |  |  |
| 9                    | 0.07          | 0.07141428    | 8    | 10  | 0.1695079 | 0.091596 |  |  |
| 10                   | 0.07          | 0.07141428    | 8    | 11  | 0.012874  | 0.006957 |  |  |
| 11                   | 0.14          | 0.14282857    | 11   | 12  | 0.3404462 | 0.183966 |  |  |
| 12                   | 0             | 0             | 12   | 13  | 0.0121588 | 0.00657  |  |  |
| 13                   | 0.07          | 0.07141428    | 12   | 14  | 0.0829659 | 0.044832 |  |  |
| 14                   | 0             | 0             | 14   | 15  | 0.0135892 | 0.007343 |  |  |
| 15                   | 0.07          | 0.07141428    | 14   | 16  | 0.0650853 | 0.03517  |  |  |
| 16                   | 0.14          | 0.14282857    | 16   | 17  | 0.0336155 | 0.018165 |  |  |
| 17                   | 0.07          | 0.07141428    | 16   | 18  | 0.019311  | 0.010435 |  |  |
| 18                   | 0.14          | 0.14282857    | 18   | 19  | 0.032185  | 0.017392 |  |  |
| 19                   | 0.21          | 0.21424285    | 4    | 20  | 0.0572178 | 0.030919 |  |  |
| 20                   | 0.07          | 0.07141428    | 20   | 21  | 0.2074147 | 0.11208  |  |  |
| 21                   | 0.07          | 0.07141428    | 21   | 22  | 0.0715223 | 0.038648 |  |  |
| 22                   | 0.21          | 0.21424285    | 22   | 23  | 0.0600787 | 0.032465 |  |  |
| 23                   | 0.14          | 0.14282857    | 23   | 24  | 0.2646325 | 0.142999 |  |  |
| 24                   | 0.07          | 0.07141428    | 24   | 25  | 0.278937  | 0.150728 |  |  |
| 25                   | 0.112         | 0.11426285    | 22   | 26  | 0.1351772 | 0.073045 |  |  |
| 26                   | 0             | 0             | 26   | 27  | 0.0851115 | 0.045991 |  |  |
| 27                   | 0.105         | 0.10712143    | 26   | 28  | 0.0550722 | 0.029759 |  |  |
| 28                   | 0             | 0             | 28   | 29  | 0.0121588 | 0.00657  |  |  |
| 29                   | 0.07          | 0.07141428    | 28   | 30  | 0.4741929 | 0.256238 |  |  |
| 30                   | 0.07          | 0.07141428    | 30   | 31  | 0.3204199 | 0.173144 |  |  |
| 31                   | 0.035         | 0.03570714    | 31   | 32  | 0.1301706 | 0.07034  |  |  |
| 32                   | 0.07          | 0.07141428    | 26   | 33  | 0.1308858 | 0.070726 |  |  |
| 33                   | 0             | 0             | 33   | 34  | 0.032185  | 0.017392 |  |  |
| 34                   | 0.21          | 0.21424285    | 34   | 35  | 0.4277034 | 0.231117 |  |  |
| 35                   | 0.07          | 0.07141428    | 35   | 36  | 0.2446063 | 0.132177 |  |  |

## **Practical Distribution feeders:**

| 36 | 0.14   | 0.14282857 | 36 | 37 | 0.0522113 | 0.028213 |
|----|--------|------------|----|----|-----------|----------|
| 37 | 0.07   | 0.07141428 | 37 | 38 | 0.2996785 | 0.161936 |
| 38 | 0.035  | 0.03570714 | 38 | 39 | 0.1680774 | 0.090823 |
| 39 | 0.035  | 0.03570714 | 39 | 40 | 0.291811  | 0.157685 |
| 40 | 0.07   | 0.07141428 | 33 | 41 | 0.0371916 | 0.020097 |
| 41 | 0.035  | 0.03570714 | 41 | 42 | 0.0450591 | 0.024348 |
| 42 | 0.07   | 0.07141428 | 42 | 43 | 0.0615092 | 0.033238 |
| 43 | 0      | 0          | 43 | 44 | 0.0464895 | 0.025121 |
| 44 | 0.2205 | 0.224955   | 43 | 45 | 0.1594948 | 0.086186 |
| 45 | 0.14   | 0.14282857 | 45 | 46 | 0.0214567 | 0.011594 |
| 46 | 0      | 0          | 46 | 47 | 0.067231  | 0.036329 |
| 47 | 0      | 0          | 47 | 48 | 0.0565026 | 0.030532 |
| 48 | 0.14   | 0.14282857 | 47 | 49 | 0.1909646 | 0.103191 |
| 49 | 0.14   | 0.14282857 | 49 | 50 | 0.038622  | 0.02087  |
| 50 | 0.0175 | 0.01785357 | 46 | 51 | 0.1594948 | 0.086186 |
| 51 | 0.07   | 0.07141428 | 51 | 52 | 0.5936352 | 0.320781 |
| 52 | 0.14   | 0.14282857 | 52 | 53 | 0.105853  | 0.057199 |
| 53 | 0.07   | 0.07141428 |    |    |           |          |

| New-Chabahil Feeder |               |               |             |     |          |          |  |  |  |  |  |
|---------------------|---------------|---------------|-------------|-----|----------|----------|--|--|--|--|--|
|                     | Bus Data      |               | Branch Data |     |          |          |  |  |  |  |  |
| Bus                 | Pload         | Qload         | From        | То  |          | X        |  |  |  |  |  |
| No.                 | ( <b>MW</b> ) | ( <b>MW</b> ) | Bus         | Bus | R (Ohms) | (Ohms)   |  |  |  |  |  |
| 1                   | 0             | 0             | 1           | 2   | 0.079576 | 0.08004  |  |  |  |  |  |
| 2                   | 0.128         | 0.096         | 2           | 3   | 0.008232 | 0.00828  |  |  |  |  |  |
| 3                   | 0.08          | 0.06          | 3           | 4   | 0.03087  | 0.03105  |  |  |  |  |  |
| 4                   | 0.16          | 0.12          | 4           | 5   | 0.008575 | 0.008625 |  |  |  |  |  |
| 5                   | 0             | 0             | 5           | 6   | 0.018179 | 0.018285 |  |  |  |  |  |
| 6                   | 0.08          | 0.06          | 5           | 7   | 0.132398 | 0.13317  |  |  |  |  |  |
| 7                   | 0.16          | 0.12          | 7           | 8   | 0.012691 | 0.012765 |  |  |  |  |  |
| 8                   | 0             | 0             | 8           | 9   | 0.08232  | 0.0828   |  |  |  |  |  |
| 9                   | 0.16          | 0.12          | 8           | 10  | 0.035329 | 0.035535 |  |  |  |  |  |
| 10                  | 0.08          | 0.06          | 10          | 11  | 0.025039 | 0.025185 |  |  |  |  |  |
| 11                  | 0.08          | 0.06          | 11          | 12  | 0.041503 | 0.041745 |  |  |  |  |  |
| 12                  | 0             | 0             | 12          | 13  | 0.016807 | 0.016905 |  |  |  |  |  |
| 13                  | 0.16          | 0.12          | 13          | 14  | 0.025039 | 0.025185 |  |  |  |  |  |
| 14                  | 0.16          | 0.12          | 12          | 15  | 0.015435 | 0.015525 |  |  |  |  |  |
| 15                  | 0             | 0             | 15          | 16  | 0.060368 | 0.06072  |  |  |  |  |  |
| 16                  | 0.08          | 0.06          | 15          | 17  | 0.057624 | 0.05796  |  |  |  |  |  |
| 17                  | 0             | 0             | 17          | 18  | 0.043561 | 0.043815 |  |  |  |  |  |
| 18                  | 0.16          | 0.12          | 17          | 19  | 0.020923 | 0.021045 |  |  |  |  |  |
| 19                  | 0.24          | 0.18          | 19          | 20  | 0.040474 | 0.04071  |  |  |  |  |  |
| 20                  | 0.24          | 0.18          | 20          | 21  | 0.062426 | 0.06279  |  |  |  |  |  |
| 21                  | 0             | 0             | 21          | 22  | 0.014749 | 0.014835 |  |  |  |  |  |
| 22                  | 0             | 0             | 22          | 23  | 0.045962 | 0.04623  |  |  |  |  |  |
| 23                  | 0             | 0             | 23          | 24  | 0.032585 | 0.032775 |  |  |  |  |  |
| 24                  | 0.04          | 0.03          | 24          | 25  | 0.127596 | 0.12834  |  |  |  |  |  |
| 25                  | 0.04          | 0.03          | 23          | 26  | 0.037387 | 0.037605 |  |  |  |  |  |
| 26                  | 0.24          | 0.18          | 26          | 27  | 0.074088 | 0.07452  |  |  |  |  |  |
| 27                  | 0             | 0             | 27          | 28  | 0.019894 | 0.02001  |  |  |  |  |  |
| 28                  | 0.16          | 0.12          | 28          | 29  | 0.069972 | 0.07038  |  |  |  |  |  |
| 29                  | 0.16          | 0.12          | 29          | 30  | 0.014749 | 0.014835 |  |  |  |  |  |
| 30                  | 0             | 0             | 30          | 31  | 0.022981 | 0.023115 |  |  |  |  |  |
| 31                  | 0             | 0             | 31          | 32  | 0.019894 | 0.02001  |  |  |  |  |  |
| 32                  | 0.16          | 0.12          | 31          | 33  | 0.100842 | 0.10143  |  |  |  |  |  |
| 33                  | 0.2           | 0.15          | 33          | 34  | 0.178703 | 0.179745 |  |  |  |  |  |
| 34                  | 0.2           | 0.15          | 34          | 35  | 0.009947 | 0.010005 |  |  |  |  |  |

| 35 | 0.08  | 0.06  | 35 | 36 | 0.068257 | 0.068655 |
|----|-------|-------|----|----|----------|----------|
| 36 | 0.08  | 0.06  | 34 | 37 | 0.14063  | 0.14145  |
| 37 | 0.08  | 0.06  | 30 | 38 | 0.056595 | 0.056925 |
| 38 | 0.16  | 0.12  | 38 | 39 | 0.083349 | 0.083835 |
| 39 | 0.08  | 0.06  | 27 | 40 | 0.027783 | 0.027945 |
| 40 | 0.16  | 0.12  | 40 | 41 | 0.082663 | 0.083145 |
| 41 | 0.08  | 0.06  | 22 | 42 | 0.018522 | 0.01863  |
| 42 | 0.16  | 0.12  | 42 | 43 | 0.040817 | 0.041055 |
| 43 | 0.16  | 0.12  | 43 | 44 | 0.037387 | 0.037605 |
| 44 | 0.2   | 0.15  | 44 | 45 | 0.053165 | 0.053475 |
| 45 | 0     | 0     | 45 | 46 | 0.04116  | 0.0414   |
| 46 | 0.08  | 0.06  | 45 | 47 | 0.046305 | 0.046575 |
| 47 | 0.288 | 0.216 | 47 | 48 | 0.010633 | 0.010695 |
| 48 | 0.08  | 0.06  | 48 | 49 | 0.021952 | 0.02208  |
| 49 | 0.08  | 0.06  | 48 | 50 | 0.047677 | 0.047955 |
| 50 | 0.08  | 0.06  | 21 | 51 | 0.043561 | 0.043815 |
| 51 | 0.2   | 0.15  | 51 | 52 | 0.021952 | 0.02208  |
| 52 | 0.16  | 0.12  | 52 | 53 | 0.059339 | 0.059685 |
| 53 | 0.16  | 0.12  |    |    |          |          |