COMPARATIVE STUDY OF GROWH OF *Mycobacterium tuberculosis* ON MODIFIED OGAWA MEDIA, MODIFIED LOWENSTEIN JENSEN MEDIA AND 2% BUFFERED LOWENSTEIN JENSEN (BLJ) MEDIA

А

Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirement for the Award of the Degree of Masters of Science in Microbiology (Environment and Public Health)

> By SAJEEN BAHADUR AMATYA

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2008

RECOMMENDATION

This is to certify that Mr. Sajeen Bahadur Amatya has completed this dissertation work entitled "Comparative study of growth of *Mycobacterium tuberculosis* on Modified Lowenstein-Jensen media, Modified Ogawa media and 2% Buffered Lowenstein-Jensen (BLJ) media" as a partial fulfillment of Master of Science Degree in Microbiology under our supervision. To our knowledge this work has not been submitted for any other degree.

Mr. Binod Lekhak Assistant Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal Dr. Bhabana Shrestha Chief German Nepal Tuberculosis Project-National Reference Laboratory Kalimati, Kathmandu, Nepal

Date:

CERTIFICATE OF APPROVAL

On recommendation of Mr. Binod Lekhak and Dr. Bhabana Shrestha, this dissertation work by Mr. Sajeen Bahadur Amatya entitled "Comparative study of growth of *Mycobacterium tuberculosis* on Modified Lowenstein-Jensen media, Modified Ogawa media and 2% Buffered Lowenstein-Jensen (BLJ) media" has been approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of Master of Science Degree in Microbiology.

Dr. Anjana Singh, Ph. D Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu.

BOARD OF EXAMINERS

Recommended by:

Mr. Binod Lekhak Supervisor

Dr. Bhabana Shrestha Supervisor

Approved by:

Dr. Anjana Singh Head of Department

Examined by:

Dr. Dwij raj Bhatt M.Sc; Ph.D. Microbiology Associate professor Central Department of Microbiology Tribhuvan University

> Dr. Keshab Bhakta Shrestha Director Martyr's Memorial Hospital Kalanki,Kathmandu

ACKNOWLEDGEMENT

I wish to express most sincere gratitude towards my supervisor Assistant Professor Mr. Binod Lekhak, for his constant support, encouragement, valuable suggestions and ready availability of any help during the entire period of my dissertation work.

It is with great respect and deep sense of gratitude, I owe my sincere indebtedness to my supervisor Dr. Bhawana Shrestha, Chief, and Mr. Bhagwan Maharjan, Laboratory Incharge, German Nepal Tuberculosis Project-National Reference Laboratory (GENETUP-NRL), Kalimati, Kathmandu, Nepal for their valuable time, constant support, encouragement, acute observation, constructive advices and accomplished guidance during entire period of this research work which enabled me to complete this endeavor.

I express my heartiest gratitude to Dr. Anjana Singh, Head of Central Department of Microbiology, for her constant support, co-operation, and encouragement. I would like to express my eternal respect to Prof. Dr. Shital Raj Basnayt and Miss Shaila Basnayt for their innate inspiration, support, encouragement and valuable guidance. I would like to express my gratitude to the faculty members and staffs of Central Department of Microbiology who have contributed in all possible ways.

I am especially thankful to Mr. Nem Mitra Shrestha, Mr. Sanu Tandukar, Mrs. Meera Shrestha, Mr. Suraj Maharjan, Mr. Sujit Maharjan, Mr. Chandish Shrestha, and all staffs of GENTUP-NRL for their help and support. I am very much thankful to Prof. Dr. Kunt Feldmann, for his valuable suggestions during his stay in Nepal.

Special thanks go to Mr. Dinesh Dhakal and Mr. Niroj Amatya for their suggestions, and invaluable time during the preparation of this thesis.

Finally, a special thanks to my family members for their understanding, continuous inspiration and encouragement.

Sajeen Bahadur Amatya

ABSTRACT

This prospective hospital based study was conducted from December 2005 to September 2006 at German-Nepal Tuberculosis Project- National Reference Laboratory (GENETUP-NRL), Kalimati, Kathmandu. In the present study, a total of 324 sputum samples from suspected TB patients were collected. In all the samples 220 were smear positive and 104 were smear negative samples as determined microscopically by standard fluorochrome method.

In all the samples 177 were collected from patients suspected of pulmonary tuberculosis. All of the 324 sputum samples were divided into two equal halves and transferred in two calibrated centrifuge tubes. All of the samples were decontaminated by 4% NaOH (Petroff's method) and Nekal-BX methods separately. Each decontaminated sample was cultured on three different culture media; viz Modified Lowenstein-Jensen (MLJ), Modified Ogawa (MOG) and newly proposed 2% Buffered Lowenstein-Jensen (BLJ) media.

In all the smears positive samples 94.091% samples was culture positive in one or all culture media used. In all smear negative samples 9.62% samples were culture positive at least in one culture media. Among smear positive samples decontaminated by 4% NaOH, 91.36%, 81.36% and 92.27% samples were culture positive on MOG, MLJ and BLJ medium, respectively. Similarly, in all smear positive samples decontaminated by Nekal, 92.72% were culture positive in MOG, 87.73% in MLJ and 92.72% in BLJ.

In all the smear negative samples decontaminated by 4% NaOH, 3.85%, 2.88% and 3.85% samples were culture positive on MOG, MLJ and BLJ medium. Similarly, among smear negative samples decontaminated by Nekal, 4.81% were culture positive in MOG, 5.77% in MLJ and 3.85% in BLJ.

The MOG yielded more positive result (92.05%) followed by MLJ (84.32%) (P<0.01) and BLJ (92.50%). Among the decontamination techniques the Nekal method yielded better result (87.27%) than 4% NaOH (81.3%) for the recovery of bacteria on MLJ (P<0.05). No significant difference obtained among samples decontaminated by 4% NaOH (91.36%) and Nekal (92.73%) with respect to recovery of bacteria on MOG (P>0.05).

Similarly, no significant difference obtained among samples decontaminated by 4% NaOH (92.27%) and Nekal (92.73%) for the recovery of bacteria on BLJ (P>0.05). In all the smear negative samples decontaminated by Nekal, highest culture positive result was observed on MLJ (5.77%) followed by BLJ (5.77%).

While no significant difference was observed in the case of Nekal or 4% NaOH decontamination method with respect to recovery of bacteria on MOG and BLJ.

The result indicated that the BLJ medium is suitable for the recovery of bacteria followed by MOG and MLJ. However, the addition of 2% monopotassium phosphate buffer in MLJ yielded significant increase in culture positive result. Similarly, the Nekal method was suitable decontamination method than 4% NaOH, for the better recovery of bacteria on MLJ. Bacteriological examination of sputum is essential for the diagnosis of pulmonary tuberculosis. The detection of acid-fast bacilli (AFB) in smears of sputum sample by Ziehl-Neelsen staining provides fastest evidence of the presence of *Mycobacteria*. However, the definitive diagnosis of Tuberculosis demands sputum positive culture for the *M. tuberculosis* which depends on the suitable decontamination method of the sputum sample and selection of suitable culture media.

Key words: *Mycobacterium tuberculosis*, Decontamination and Homogenization, Petroff's 4% NaOH method, Nekal-BX, Modified Lowenstein-Jensen media (MLJ), Modified Ogawa media (MOG), 2% Buffered Lowenstein-Jensen media (BLJ).

TABLE OF CONTENTS

	Page No.
Title Page	i
Recommendation	ii
Certificate of approval	iii
Board of examiners	iv
Acknowledgement	v
Abstract	vi
Table of contents	viii
Abbreviations	xii
List of tables	xiv
List of figures	XV
List of photographs	xvi
List of appendices	xvii
CHAPTER-I: INTRODUCTION	1
CHAPTER-II: OBJECTIVES	4
2.1 General objective	4
2.2 Specific objectives	4
CHAPTER-III: LITERATURE REVIEW	5
3.1 Epidemiology	5
3.2 Historical Background	7
3.3 Mycobacterium	8
3.3.1 Cell wall structure	9
3.3.2 Acid fast property	11
3.3.3 Slow growth	11

3.3.3 Slow growth	11
3.3.4 Nutritional requirements	12
3.3.5 Classification of mycobacteria	13
3.3.6 Mycobacterium tuberculosis complex (MTC)	14
3.4 Diagnosis	14
3.4.1 Clinical Diagnosis	15
3.4.2 Lab diagnosis	15
3.4.2.1 Specimens	15
3.4.2.2 Microscopy	16
3.4.2.3 Digestion and Decontamination of Specimens	18
3.4.2.4 Cultural techniques	20
3.4.2.4.1 Types of culture media	21
3.4.2.4.1.1 Solid media	22
3.4.2.4.1.1.1 Egg based media	22
3.4.2.4.1.1.1.1 Lowenstein-Jensen Media	22
3.4.2.4.1.1.1.1 Modifications of LJ media	22
3.4.2.4.1.1.1.2 Ogawa media	24
3.4.2.4.1.1.2 Agar based media	25
3.4.2.4.1.2 Liquid media	25
3.4.2.5 Biochemical Properties	26
3.4.3 Other methods of diagnosis	28
3.4.3.1 The immunological methods	28
3.4.3.3 Tuberculostearic Acid (TBSA) Test	28
3.4.3.4 Molecular Methods	28
CHAPTER-IV: MATERIAL AND METHODS	30
4.1 Material	30

4.2 Methodology	30
4.2.1 Study Site	30
4.2.2 Study Population	30
4.2.3 Sample Collection	30
4.2.4 Sample Processing	31
4.2.4.1 Sputum Smear Microscopy	31
4.2.4.2 Culture	31
4.2.4.2.1 Decontamination procedure	31
4.2.4.2.2 Inoculation and incubation	32
4.2.4.3 Identification	32
4.2.4.4 Biochemical tests	33
4.2.5 Interpretation	33
4.2.6 Statistical analysis	33
CHAPTER-V: RESULTS	35
5.1 Laboratory Results of Samples	35
5.1.1 Study Group A	35
5.1.1.1 Comparison of cultural Media	36
5.1.1.1.1 Comparison between MLJ and MOG	36
5.1.1.1.2 Comparison between MLJ and BLJ	37
5.1.1.1.3 Comparison between MOG and BLJ	38
5.1.1.2 Comparative recovery of bacteria in different culture	
media with decontamination by Nekal and 4% NaOH	38
5.1.1.3 Comparison of negative and Contamination rates	40
5.1.1.3.1 Negativity rate	40
5.1.1.3.2 Contamination rate	40
5.1.2 Study Group B	41

5.1.3 Time of appearance of growth on culture positive tubes	
5.2 Identification of culture	
CHADTED VI. DISCUSSION AND CONCLUSION	12
CHAPTER-VI. DISCUSSION AND CONCLUSION	43
6.1 Discussion	43
6.1.1 Study Group A	44
6.1.1.1 Comparison of positive rates among culture media	45
6.1.1.1.1 Comparison between MLJ and MOG	45
6.1.1.1.2 Comparison between MLJ and BLJ	46
6.1.1.1.3 Comparison between MOG and BLJ	46
6.1.1.2 Comparison of positive rates between decontaminating methods	46
6.1.1.2.1 Based on results of MLJ	46
6.1.1.2.2 Based on results of MOG and BLJ	47
6.1.1.3 Comparison of negative and Contamination rates	48
6.1.1.3.1 Negativity rate	48
6.1.1.3.2 Contamination rate	49
6.1.2 Study Group B	50
6.1.2.1 Comparison among smear negative samples	50
6.2 Conclusion	52
CHAPTER-VII- SUMMARY AND RECOMMENDATIONS	53
CHAPTER-VII: SUMMARY AND RECOMMENDATIONS	
7.1 Summary	
7.2 Recommendations	54
CHAPTER-VII: REFERENCES	55-66
APPENDICES I-VIII I-LIV	

ABBREVATIONS

AFB	Acid fast bacilli
AIDS	Acquired Immuno Deficiency Syndrome
ATS-CDC	American Thoracic Society and Center for Disease Control
BCG	Calmette-Guerin Bacilli
BLJ	2% Buffered Lowenstein-Jensen media
CPC	Cetylpyridinium Chloride-Sodium Chloride
DNA	Deoxyriboxy Nucleic Acid
DOTS	Directly Observed Treatment Short-course
ELISA	Enzyme-Linked Immunosorbent Assays
GENETUP-NRL	German Nepal Tuberculosis Project-National Reference Laboratory
HBC	High Burden countries
HIV	Human Immunodeficiency Virus
INH	Isoniazid
IUATLD	International Union against Tuberculosis and Lung Disease
LAMP	Loop Mediated Isothermal Amplification
LJ	Lowenstein-Jensen media
LTBI	Latent tuberculosis infection
kDa	Kilo Dalton
MDG	Millennium Development Goal
MDR	Multidrug resistant
MGIT	Mycobacterial Growth Indicator Tube
MLJ	Modified Lowenstein-Jensen media
MOG	Modified Ogawa media
MOTT	Mycobacterum other than tuberculosis
MTC	Mycobacterium tuberculosis complex
NAA	Nucleic Acid Amplification
NALC-NaOH	N-Aceyl-L-Cysteine-Sodium Hydroxide
NTC	National Tuberculosis Centre
NTP	National Tuberculosis Project

OADC	Oleic acid-albumin-dextrose-catalase
PCHRD	Philipine council for health research and development
PCR	Polymerase chain reaction
PNB	p-Nitrobenzoic
RMP	Rifampicin
PPD	Purified protein derivative
RNA	Riboxy Nucleic Acid
SAARC	South Asian Association of Regional Countries
SDA	Strand displacement amplification
ТВ	Tuberculosis
TMA	Transcription-mediated amplification
UV	Ultra Violet rays
VF	Visual fields
WHO	World health oragnization
ZN	Ziehl-Neelsen stain
Z-TSP	Zephiran-Trisodium Thiosulphate

LIST OF TABLES

Table 1:	Total result of 220 smear positive samples	35
Table 2:	Total result of 104 smear negative samples	41

LIST OF FIGURES

Fig 1:	Schematic diagram of study design	34
Fig 2:	Bar diagram depicting comparison between MLJ and MOG	36
Fig 3:	Bar diagram depicting comparison between MLJ and BLJ	37
Fig 4:	Bar diagram depicting comparison between MOG and BLJ	38
Fig 5:	Bar diagram depicting comparison of decontaminating techniques on MLJ	38
Fig 6:	Bar diagram depicting comparison of decontaminating techniques on MOC	i 39
Fig 7:	Bar diagram depicting comparison of decontaminating techniques on BLJ	40
Fig 8:	Time of appearance of growth on culture positive tubes	42

LIST OF PHOTOGRAPHS

Photograph 1:	Investigator observing acid fast bacilli under fluorescent microscope
Photograph 2:	Investigator working in Safety cabinet
Photograph 3:	AFB stained by Auramine staining
Photograph 4:	AFB stained by Ziehl-Nelsen staining
Photograph 5:	<i>M. tuberculosis</i> growth on culture tubes according to culture media
Photograph 6:	<i>M. tuberculosis</i> growth on culture tubes according to decontaminating reagents
Photograph 7:	Heat labile catalase test
Photograph 8:	Niacin testing Strip
Photograph 9:	Niacin Strip test
Photograph 10:	No growth observed in PNB containing medium
Photograph 11:	Nitrate reduction test

LIST OF APPENDICES

		Page No.
Appendix I:	Materials and chemicals	I-III
Appendix II:	Staining reagents preparation	IV-VI
Appendix III:	Decontaminating agents and culture media preparation	VII-XIII
Appendix IV:	Biochemical tests	XIV-XX
Appendix V:	Grading of results	XXI
Appendix VI:	Statistical analysis of the results	XXII-XXVII
Appendix VII:	Master chart of the culture results	XXVIII-LII
Appendix VIII:	Result of biochemical tests	LIII-LIV