

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

Thesis No: 075/MSCCD/012

"Embodied - Carbon Emission from Building In Overall Life Cycle

- A case study of Kathmandu"

by

Mandip Bhandari

A THESIS

SUBMITTED TO THE DEPARTMENT OF APPLIED SCIENCE AND CHEMICAL ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREEOF MASTER OF SCIENCE IN

CLIMATE CHANGE AND DEVELOPMENT PROGRAMME

DEPARTMENT OF APPLIED SCIENCE AND CHEMICAL ENGINEERING LALITPUR, NEPAL

Sep, 2021

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING, PULCHOWK CAMPUS

DEPARTMENT OF APPLIED SCIENCE AND CHEMICAL ENGINEERING

The undersigned certify that we have read, approved and recommended to the Institute of Engineering for acceptance, a thesis entitled " **Embodied-Carbon Emission from Building In Overall Life Cycle - A case study of Kathmandu**" submitted by **Mandip Bhandari (075/MSCCD/012)** in partial fulfillment of the requirement for the degree of M.Sc. in Climate Change and Development Programme.

Supervisor:

Program Coordinator:

.....

Prof. Dr. Kamal Bahadur Thapa

Department of Civil Engineering IOE, Pulchowk Campus, Nepal Prof. Dr. Khem Narayan Poudyal Program Coordinator Climate change and Development Department of Applied Sciences and Chemical Engineering IOE, Pulchowk Campus

Committee Chairperson:

••••••

Prof. Dr. Ram Kumar Sharma

Head of Department

Department of Applied Sciences and

Chemical Engineering

IOE, Pulchowk Campus

.....

External Examiner:

Prof. Dr. Gokarna Bahadur Motra

Department of Civil Engineering IOE, Pulchowk Campus, Nepal

Date: Sept, 2021

COPYRIGHT

The author has agreed that the library, Department of Civil Engineering, Central Campus, Pulchowk, Institute of Engineering may make this thesis freely available for inspection. Moreover, the author has agreed that permission for extensive copying of this thesis for scholarly purpose may be granted by the professor(s) who supervised the work recorded herein or, in their absence, by the Head of the Department concerning M.Sc. Program Coordinator or Dean of the Institute wherein the thesis report was done. It is understood that the recognition will be given to the author of this report and to the Department of Applied Science and Chemical Engineering, Pulchowk Campus, Institute of Engineering in any use of the material of this thesis report. Copying or publication or the other use of this thesis for financial gain without approval of the Department of Applied Science and Chemical Engineering, Central Campus, Pulchowk, Institute of Engineering and author's written permission is prohibited.

Request for permission to copy or to make any other use of the material in this thesis in whole or in part should be addressed to:

Head

Department of Applied Science and Chemical Engineering Pulchowk Campus, Institute of Engineering Lalitpur, Kathmandu Nepal

ACKNOWLEDGEMENT

I would like to express my gratitude to thesis supervisor Professor Dr. Kamal Bahadur Thapa for this continuous guidance and motivation during the research period of thesis. My sincere gratitude goes towards the Department of Applied Science and Chemical Engineering, Institute of Engineering for providing the opportunity to carry out thesis work as a partial fulfillment of Master of Science in Climate Change and Development. I am also grateful to Prof. Dr. Khem Narayan Poudyal, Program Coordinator of "Climate Change and Development" for his guidance, encouragement and continuous support throughout the project.

I want to thank all my friends of 2075 Batch, MSc. In Climate Change and Development, Institute of Engineering, Pulchowk Campus, for their valuable suggestions and motivation during the thesis preparation.

I would like to acknowledge the help from Mr. Hari Bhattari project manager of Synergy Builders, Mr. Subash Bhattari project manager of Bright Future Construction Pvt.Ltd., Mr. Basanta Pun director of Mahakaya Construction Pvt. Ltd and Mr. Shambhu Lal Shrestha director of Pashupatinath Construction Pvt. Ltd for helping me to collect the data from the study area. Lastly, I would like to extend my appreciation to all my family for their constant support to bring this research together.

Mandip Bhandari PUL075MSCCD012

ABSTRACT

Most of the studies haven often focused on the mitigating measures of operation carbon with little focus on the embodied carbon emission. To achieve the embodied carbon emission from the buildings of Kathmandu district, a process-based approach was adopted to estimate the embodied carbon from the building sector of Kathmandu district in overall life cycle.

The overall result of the study shows the total embodied carbon emission from the building sector in the overall life cycle was 1444.86 Mt. While using the alternative materials AAC block, hollow cement concrete block and AAC block with aluminium openings in the same building reduces the total emission by 4.7%, 3.37% and 1.93% respectively. The research have focused on the construction phase including only the civil raw materials rather than the sanitary and electrical fixtures. So, detail analysis considering the electrical and sanitary fixtures and other phases like operation and maintenance and demolition should be considered in future study.

Keywords: embodied carbon, carbon emission, process decomposition

TABLE OF CONTENTS

COPYRIGHTii				
ACKNOWLEDGEMENT iii				
ABSTRACTiv				
TABLE OF CONTENTSv				
LIST OF TABLES viii				
LIST OF FIGURESx				
ABBREVIATIONSxi				
Chapter 1: INTRODUCTION1				
1.1. Background of the study1				
1.2. Need for research2				
1.3. Problem Statement2				
1.4. Research objective4				
1.5. Research Questions				
1.6. Scope of the Study5				
1.7. Limitation of Study5				
1.8. Area of Study				
Chapter 2: LITERATURE REVIEW7				
2.1. Embodied Carbon and Embodied Energy7				
2.1.1. Embodied Carbon7				
2.1.2. Carbon dioxide-equivalence (CO ₂ e)7				
2.1.3. Embodied Energy Coefficient				
2.1.4. Life Cycle Energy9				
2.1.5. Building Life Cycle10				
2.2. Sources of GHG Emissions				
2.3. Review of GHG Emissions Calculation Method13				

2.3.1. Review of embodied carbon emission14
Chapter 3: RESEARCH METHODOLOGY
3.1. Research Design16
3.2. Site Visit and Collection of data17
3.2.1. Data Collection
3.2.2. Data Compilation and Analysis
3.2.2.1. Building Materials Estimation
3.2.2.2. Allocation of coefficient of Embodied Energy and Embodied Carbon 18
3.2.3. A method for estimating embodied carbon dioxide based on process analysis 19
3.2.3.1 Embodied Carbon dioxide emitted during the manufacture of building materials
3.2.3.2. Process carbon emission from the chemical reaction
3.2.3.3. Embodied carbon dioxide from building construction and demolition
activities
3.2.3.4. Embodied carbon dioxide from material transportation
3.2.3.5. Embodied carbon dioxide from building maintenance
3.2.3.6. Embodied carbon dioxide from construction and demolition waste disposal
3.2.4. Selection alternative materials and allocation EE and EC
Chapter 4: CASE STUDY
4.1. Building and Vicinity
4.2. Background of the Study Area47
4.3. Building Materials used and Construction Technology
4.3.1. Building Materials
Chapter 5: DATA ANALYSIS, RESULTS AND DISCUSSION
5.1. Materials used and EE, EC and CO2 e Estimation

5.2. EE	, EC and CO ₂ e Calculation	52
5.3. Alt	ernative Material Analysis	55
5.3.1.	Analysis from alternate materials	55
5.3.2.	Interpretation of the Findings; Using Alternative Materials	63
5.3.3. earthqu	Interpretation of EC and EE of different reconstruction mode ake resistance houses	
5.3.4.	Summary of the findings	66
5.3.5.	Discussion and Data Validation	66
Chapter 6: C	CONCLUSION AND RECOMMENDATION	68
6.1. Co	nclusion	68
6.2. Re	commendation	69
Chapter 7: R	EFERENCES	70
ANNEX		77
8.1. Qu	estionnaire	77
8.2. Dra	awings	79
8.2.1.	Hostel Building, National Judicial Academy, Manamaiju, Kathmand	lu 79
8.2.2.	NJA Office Building, Manamaiju, Kathmandu	81
8.2.3.	NJA Faculty Building, Manamaiju, Kathmandu	84
8.2.4.	Brick Masonry Model	85
8.2.5.	Steel Structure Model	86
8.2.6.	Timber Structure Model	87

LIST OF TABLES

Table 1Embodied coefficient of Different Materials 8
Table 2 Table Embodied Energy and Embodied Carbon of different materials
Table 3 . Assumptions of embodied carbon estimation in different stages21
Table 4 Carbon Emission Factors of Building Materials
Table 5 ECe of different Construction Materials
Table 6 EC of different Construction Materials 27
Table 7 EE of different Construction Materials
Table 8 EC from chemical reaction
Table 9 Energy consumptions and emission factor for building construction and
demolition
Table 10 Cec in different Buildings
Table 11 Carbon emission factor for different vehicles
Table 12 Cet in different Buildings 36
Table 13 Maintenance frequency for some building components 38
Table 14 EC & EE from building maintenance 39
Table 15 Percentage changes of the carbon dioxide emissions from the recycled
construction Type of Materials Percentage Changes in Carbon
Table 16 Cew in different Buildings
Table 17 EE and eCO2 coefficients of different alternative materials45
Table 18 Summary of land use land cover change in the period of 1989–2016 (areas are
presented47
Table 19 Construction material wise total EE and EC
Table 20 Total EC after replacing brick work by AAC blocks
Table 21 Total EE after brickwork replaced by AAC Block
Table 22 Total EC after replacing brickwork by hollow cement block
Table 23 Total EE after replacing brickwork by hollow cement block 59
Table 24 Total EC after replacing brick work by stabilized soil blocks60
Table 25 Total EE after replacing brick work by stabilized soil blocks
Table 26 Comparison with alternative materials in wall and opening
Table 27 Comparison of EE and EC of different reconstruction model houses65
Table 28 Weight of Materials 88

Table 29 EC calculation from site activities	90
Table 30 Building Notation Details	97

LIST OF FIGURES

Figure 1 Map of Nepal (source: Survey Department, Government of Nepal,2020)6
Figure 2 Different phases of building life cycle (adopted from Ali Akbarnezhad and
Jianzhuang Xiao, 2017)10
Figure 3 Flow chart of Research Design16
Figure 4 Research scope of embodied carbon dioxide in the building sector19
Figure 5 Google image of Kathmandu (july 2021)46
Figure 6 Land use land cover maps of Kathmandu Valley (Asif Ishtiaque et. al., 2017)
Figure 7 shares of construction material
Figure 8 Building Materials proportion according to weight51
Figure 9 EC contribution of construction material by weight53
Figure 10 Material wise share of EC and carbon equivalent emission54
Figure 11 Material wise share of EE54
Figure 12Comparision of current building materials and AAC alternative materials.63
Figure 13 Comparison of current building material with concrete block alternative
material64
Figure 14 Comparison of current building materials and AAC , Aluminium alternative
material64
Figure 15 Comparison of current building materials and Stabilized earth block
alternative material

ABBREVIATIONS

AAC	Autoclave Aerated Concrete Blocks		
BoQ	Bill of Quantity		
DC	Demolition Carbon		
EC	Embodied Carbon		
EE	Embodied Energy		
GGGI	Global Green Growth Institute		
GHG	Green House Gas		
GJ	Giga Joule		
HVAC	Heating Ventilation and Air Conditioning		
IEC	Initial Embodied Carbon		
IPCC	Intergovernmental Panel on Climate Change		
LCA	Life-Cycle Assessment		
LCI	Life-Cycle Inventory		
MJ	Mega Joule		
ODS	Ozone-depleting substances		
RCC	Reinforced Cement Concrete		
REC	Recurring Embodied Carbon		
UN	United Nation		
UNEP	United Nation Environment Programme		
UNFCC	United Nations Framework Convention on Climate Change		

Chapter 1: INTRODUCTION

1.1.Background of the study

In recent decade the common concern of the world is emission of greenhouse gases, global warming and climate change. Due to strong economic growth and urbanization, it accounts for a large part of world energy consumption and pollution emissions. (Cabeza, et al., 2013).By 2020, the building sector is estimated to account for more than 31% of worldwide CO2 emissions, rising to 52% by 2050. (Mitigation, 2011). About 20–30% of the global carbon footprint is the product from the building sectors having extensive worldwide environmental impact (Company, 2009). Building construction utilizes 24 percent of the raw materials mined from the lithosphere globally (Zabalza, I.B, Valero, & Aranda , 2011)and produces substantial amounts of pollution as a result of the energy needed during the quarrying, processing, and transportation of construction materials for building purposes (Morel et al 2001).

Construction industry is one of the greatest consumers of resources and raw materials in present era. The construction of buildings has a very important impact on different environmental aspects. Building construction uses 40% of the world's stone, sand, and gravel, 25% of its timber, and 16% of its water, according to the Globe Watch Institute (Arena AP, de Rosa C, 2003). Building materials take a lot of energy to manufacture and transport, and they release a lot of greenhouse gases (GHG) during the planning and construction phase of a building.

Buildings are major contributors to climate change which shares more than one third of global GHG emissions (UNEP, 2009). The construction of new buildings requires huge amount of raw materials, which have an associated embodied energy for manufacturing, transport, construction and demolition wastes disposal. According to Ding (2014), Lehne and Preston (2018), Mokhlesian and Holmen (2012), and Ramesh et al. (2010), the construction of new structures generates roughly 40-50 percent of greenhouse gas emissions.

In the beginning of a building life cycle, construction phase GHG emissions lasts within a very short timeframe which makes them more harmful considering the short and midterm climate change mitigation targets in comparison to the use phase emissions (Säynäjoki et al., 2012).

1.2.Need for research

Building sector accounts major consumption of energy which leads to the carbon emission and that carbon emission is measured through embodied carbon. In the past, embodied carbon emissions were disregarded, but according to the Intergovernmental Panel on Climate Change, achieving a significant decrease in all carbon emissions is vital to keeping global temperature rise to 1.5°C. (IPCC). It is even more critical to combat the climate disaster, as new building construction is predicted to quadruple by 2060, resulting in a rise in carbon emissions. In context of Nepal, after devastating Gorkha Earthquake in 2015, many houses were devastated, many were damaged and few remained intact. After that many houses are under reconstruction and many of them are completed. This study tries to understand and find out the total embodied carbon and embodied energy from the buildings.

1.3.Problem Statement

The construction sector emitted a record 10 gigatonnes (Gt) of worldwide energyrelated carbon dioxide (CO2) in 2019, according to the United Nations Environment Programme on December 16, 2020. After the devastating earthquake on 2015, the reconstruction of building were taken into action without the proper planning and are converting to concrete building. With the increase in number of building construction the potential of greenhouse gases emission also increases, yet the study of carbon emission from building construction materials remains unexplored.

The fact that carbon dioxide emissions, including those from the use of electricity in buildings, increased at a rate of 2.5 percent per year for commercial buildings and 1.7 percent per year for residential buildings between 1971 and 2004, resulting in gigatonnes (Gt) of carbon dioxide emissions in 2019 is particularly frightening(Levine et al, 2007).

Pre-construction, construction, operation, and recycling after demolition are the four phases of a building's life cycle. According to various estimations, the operative phase of a building consumes roughly 80% of the energy, with the remainder going to other

phases such as air quality and HVAC. The complex interaction phenomena between construction materials, embodied energy, and global warming are created by the entire process throughout the building life cycle. Materials such as steel and aluminium used in building, are created by a production process of raw materials mining, raw material process, melting, manufacture to final products and transportation to construction site. Each and every steps consumes energy, which is also expressed in terms of carbon emission. The combination of all carbon emissions from all building materials, products and construction are known as the building's embodied carbon. Embodied carbon accounts for about 20% of the carbon emissions from the building sector. Energy demand in buildings could increase by 50% by 2060 due to rapid population growth as well as rapid growth in purchasing power in emerging economics and developing countries. Embodied carbon accounts for 11% of global greenhouse gas emissions and 28% of emissions from the building sector (Smart, 2019). On the other hand, the building sector offers largest cost-effective GHG mitigation potential, with net cost saving and economic gains which is possible through the implementation of existing technologies, policies and building design because carbon management is very much important.

In Nepal, per capita total CO₂ emission is only 0.1 metric tonnes which is quite negligible and consumption of ozone-depleting substances (ODS) is only 0.88 ODS tonnes. Reduction in CO₂, ODS and greenhouse gases from agricultural, transportation, industrial and commercial sectors is the proposed target for 2030. If we do not achieve a 45-45% reduction in total global emission by 2030, we will fail the chance to meet the 1.5-2 °C warming threshold and climate change will become irreversible. The key to solving climate change and meeting the Paris Climate Agreement targets is to eliminate the embodied carbon of building structures (CLF, 2020).

1.4.Research objective

The general objective of the study is to estimate the amount of carbon emission from building construction to cope against impact of climate change.

The specific objectives of the study are as follows:

- To assess factor affecting the carbon emission during for manufacturing, transport, construction and end-of-life disposal of building construction materials.
- To identify the contribution of emitted carbon from building construction material to climate change.

1.5.Research Questions

This study attempts to address the following research questions:

- How much carbon emits from building in its overall lifecycle?
- What is the percentage share of different building materials being used in terms of embodied carbon and embodied energy?
- What would be the mitigating /adapting measures to control carbon emission from building construction?

The Research is guided by following breakdown of the study into several areas. To answer the above questions, the following assessment has been done.

- Building Type and Constructions material trends in the Kathmandu District.
- Analysis of embodied carbon and embodied energy contents in the construction materials.
- Study of alternative construction materials like Hollow concrete blocks, AAC blocks etc.
- Comparative analysis between the conventional material and alternative materials.
- Suggest the amount of carbon emission reduced through alternative materials.

1.6. Scope of the Study.

The study estimates the total embodied carbon and embodied energy from different construction products and elements produced during the overall life cycle of the building. Different residential building, commercial building and office buildings constructed using modern materials, were used in the study. The buildings studied in this research are constructed within the Kathmandu District.

1.7. Limitation of Study.

The limitations of the study can be summarized by the following categories;

- When building material specifications have not been defined, data availability is limited during the early stages of design.
- Data quality varies across many various sources and trades, making it difficult to assess for the whole study.
- The environmental impact of the construction could not be accurately represented by assumptions in material manufacturing and demolition.

1.8. Area of Study.

Study area is Kathmandu District in Bagmati Province, Nepal. Study area is one of the largest city with a population of around 1 million. Study area covers the area of 49.45 km².kathmandu stands at an elevation of approximately 1400m above sea level. Kathmandu is surrounded by Bhaktapur district in east, Lalitpur and Makawanpur in south, Dhadhing and Nuwakot on west and Sindhupalchowk district in north. The research area is mixed residential and commercial urban area with low rise to high rise commercial buildings.

Figure 1 Map of Nepal (source: Survey Department, Government of Nepal,2020)

Chapter 2: LITERATURE REVIEW

This chapter provides a review of technical expressions related to climate change and embodied carbon, alternative construction materials and different tools to find the embodied energy and carbon emission from the overall life span of the building. Among four phases of building life span, each and every phases requires certain amount of the energy for their operation. The research begins with the study of available literatures and references having different ideas of building system, methods for calculation of EE and EC and eCO₂.

2.1. Embodied Carbon and Embodied Energy

Any environmental issues and the study of climate change starts with energy and carbon emission. Building construction requires the large volume of the construction materials and huge amount of the energy for the construction. Energy is always related to the gaseous emission in different forms. Different terminologies related to this study have been studied and brief definitions are mentioned below;

2.1.1. Embodied Carbon

Embodied carbon is the carbon trail of a construction material of the building or infrastructure project before it becomes operational. Embodied carbon is the sum impacts of all the greenhouse gas emission attributed to the materials throughout their life cycle which includes the mining, manufacturing, construction, maintenance and disposal. CO_2 emission associated with overall construction material and building processes throughout the whole service lifecycle of the building is the embodied carbon.

2.1.2. Carbon dioxide-equivalence (CO₂e)

The relative role of various greenhouse gases in the enhancement of the natural greenhouse effect, either in equivalent units of concentration of carbon dioxide or in units of emission of carbon dioxide. Carbon dioxide-equivalent (CO_2e) is a principal unit of measurement to cumulative or make comparisons across greenhouse gases (Maunder, 1992). CO₂e states the tons of a greenhouse gas in the equivalent effect of tons of CO₂ on climate change (Ramseur, 2010).

2.1.3. Embodied Energy Coefficient

Embodied energy coefficient is also known as the embodied energy factor or embodied energy intensity which indicates the total energy required (in Mega Joule, MJ) to manufacture the unit weight (1 kg) of building material. The embodied energy and embodied carbon coefficient of several typical building construction materials are presented in the table below, according to the 'Inventory of Carbon and Energy (ICE)' in the United Kingdom.

Materials		Embodied energy coefficient	Embodied carbon coefficient	Embodied carbon coefficient
		MJ/kg	kg CO e/kg	kgCO2/kg
Aluminium	General	155	9.16	8.24
Alummum	Virgin	218	12.79	11.46
	Recycled	29	1.81	1.69
Aggregate		0.083	0.0052	0.0048
Bricks	General	3	0.24	0.23
	PPC (15-20%Flyash)	5.28 to 4.5	0.89 to .076	0.75
Cement	11C (13-20/01/1yash)	4.89	0.825	0.75
	OPC	5.5	0.95	0.93
Concrete	1:2:4 M15	0.7	0.1	0.093
Glass	Primary	15	0.91	0.86
Glass	Toughened	23.5	1.35	1.27
Iron		25	2.03	1.91
non	GI Sheet	22.6	1.54	1.45
	General	1.26	0.079	0.073
	Granite	11	0.7	0.64
Stone	Lime stone	1.5	0.09	0.087
Stone	Marble	2	0.13	0.116
	Marble Tile	3.33	0.21	0.192
	Sandstone	1	0.06	0.058
Paints	General water base	70	2.91	2.41
Timber		10	0.41	0.46
Tin		258	14.7	13.7
(Hammond & Jones,2011)				

Table 1Embodied coefficient of Different Materials

2.1.4. Life Cycle Energy

The overall energy consumed by the building over its entire service life is known as life cycle energy. In case of building construction, life cycle energy is divided into two component- operational and embodied energy.

a. Operational Energy

Operational Energy is the energy used during the operation phase of the building for space and water heating, space cooling, lightning, running the equipment and appliances, etc. Energy involved from contracting to demolition but it does not include maintenance or renovations is operational energy.

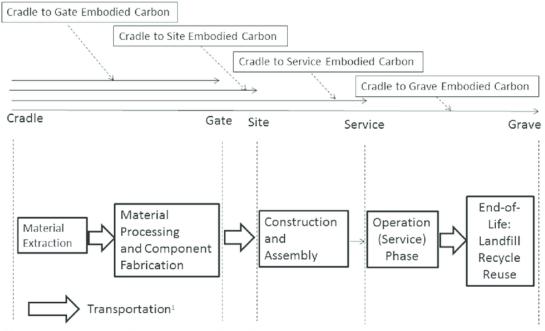
b. Embodied Energy

Building construction requires variety of construction materials, which consumes the energy throughout its life cycle stages of manufacturing/mining, transporting, maintenance and demolition of building such an energy is known as embodied energy. Embodied energy is measured in MJ or GJ. Based on the stage of uses embodied energy is categorized into three type which are listed below;

i. Initial Embodied Energy

It is the energy consumed in the extraction/mining, processing and manufacturing, transporting and assembling the building materials to construct the building. Mainly two types of the energy are used namely non-renewable and renewable energy. Non-renewable energy is the indirect energy used for the extraction, processing and manufacturing of the raw materials whereas renewable energy are the direct energy used for the transportation of raw materials to the site.

ii. Recurring Embodied Energy


It is the energy consumed during the maintenance and renovation of the building during its entire service life cycle.

iii. Demolition Embodied Energy

It is the energy consumed in the demolition and disposal of the building waste materials with the help of machinery, equipment and the manpower.

2.1.5. Building Life Cycle

The entire life cycle of the building consists of six life cycle stages namely, raw material extraction/mining stage, manufacturing and processing stage, transporting stage, construction stage, operation and maintenance stage, demolition stage.

¹ The processes involved in different stages of a building's life cycle also usually involve a great deal of transport.

Figure 2 Different phases of building life cycle (adopted from Ali Akbarnezhad and Jianzhuang Xiao, 2017)

a. Raw Material Extraction

It is the first and foremost stage involve in the building construction phase. Different types of raw materials like iron ore, limestone, granite, marble, timber, petroleum, which are naturally embedded in the nature. The raw materials are processed using different techniques to change in useful forms which can be used as the building construction materials. Steels, cement, aluminium are the processed form of the raw materials becoming the common construction materials. The continuous extraction of these resources leads to the depletion of natural resources which also involves the large quantity of energy and water as well as evolves the emission and pollutants. Extraction of raw material relay on the fossil fuels for the mining of ores, resulting the contribution of greenhouse gases emission.

b. Manufacturing and Processing

The process of converting the natural resources into the basic construction material is known as the manufacturing phase according to Crawford, 2011. The conversion of the natural resources to the basic construction material is the most complex method utilizing the huge amount of energy mainly fossil fuel-based energy. Among total building life cycle energy consumption, embodied energy accounts for 15-60% of total consumption.

In South Africa alone, an average of 39.7 Mt of raw materials are consumed per year emitting 4.92 x 10^9kg CO2 to produce cement and aggregate for concrete production (Muigai et. Al, 2013). Construction materials and products account for almost half of all materials mined from the earth's crust (koroneos et. al, 2007). Sawing of the timber into appropriate shape and size, turning basic steel in roll form into corrugated roof sheeting products are some of the examples of raw material manufacturing and processing stage.

c. Building Construction

The process of assembling, gathering and fitting parts or materials together to form something or to build a structure. Construction is the stage of structure development which follows design. It is one of the longest and complex phase which require large quantity of construction materials. Large amount of energy are consumed by the transportation and the different operation on-site and off-site activities. About 69% of total construction energy is shared by the transportation only. Electricity is form of energy to power electrical tools, machinery operation on on-site construction. Fossil fuel is another form of energy used by the different types of the vehicles used for the transportation of raw materials to the construction site. Large consumption of water for the concrete curing, dust suppression and for cleaning purposes takes place in the construction phase.

d. Operation and maintenance Operation and use

The operation stage of buildings is the longest having the life span of over 50 years. HVAC, power lighting systems, electricity and telecommunication networks are the basic needs for the operation of the building. Operation of these needs require large amount of thee energy which is supplied by the fossil-fuel-based sources. Crude oil, gas, hydro, nuclear, petroleum products are some primary source of energy used for the operation of building. Construction, operation and deconstruction stages of the building uses approximately 15% of world's fresh water resources; 40 % of the world's energy producing 23-40% of the world's greenhouse gas emissions (DEAT, 2009).

Maintenance and repair

Generally, maintenance and repair works are carried out several times during the overall service life of the building. Regular maintenance and repair helps to increase the life span of the building. During the maintenance and repair of the different component of building large amount of waste materials are produced and large amount of energy are required for the installation of new components having crucial impact on the environment.

e. Demolition

It is the final stage of building life cycle. The process of dismantling the structure, separating the components for the purpose of removing the whole from the existing is known as the demolition. Building have the finite lives so, it is necessary to demolish the building for the safety purpose. Large quantities of the solid waste were produced during the demolition of the building which the matter of concern for the proper disposal without hampering the environment. Releasing of the GHG emission through the burning of fossil fuel used for demolition machinery, transportation of waste to landfill site causes the environmental impacts. Disposed materials may decompose and percolate into the ground degrade the surrounding environment. When timber decompose they may release CO_2 (carbon dioxide) and CH4 (methane) into the soil and the atmosphere.

f. Recycling and reuse

Windows and doors are the raw material which can be reused directly after the demolition. The reuse of the materials helps to decrease some of the impacts of using new materials having potential impacts. Re-processing of the materials needs fuel for transportation, energy and other resources to make up the new products having potential environmental impacts involved in the re-processing.

2.2. Sources of GHG Emissions

Searched By searching using terms "GHG or greenhouse gas or CO_2 or carbon dioxide" within title and "building or construction" within title, found 67 papers at Science Direct – Online Journals by Elsevier Science (1996b) and 73 articles at Science Citation Index Expanded (1970). However, only 20 papers were found that dealt with calculating GHG or CO_2 emissions from buildings. The construction stage of buildings was the subject of 13 research. The production of building materials, transportation for building materials, transportation for construction equipment, energy consumption of construction equipment, transportation for workers, and disposal of construction waste are the main sources of GHG emissions in building construction, according to these 13 studies.

2.3. Review of GHG Emissions Calculation Method

Process-based and economic input-output analysis are the most common methodologies for calculating environmental consequences (GHG emissions are also considered).

Process-based method is a simple models in which different activities associated with a product or a service is analyze using process flow diagrams (Guggemos AA, Horvath A, 2005). All materials and energy utilized in the process for each activity are identified throughout the process. As a result, environmental impacts and emissions can be calculated by accounting for material production and energy usage. (Gustavsson and Sathre, 2006) looked at the energy consumption of wood and concrete construction materials and calculated CO2 emissions from various sources of energy; Energy consumption was determined by applying embodied energy intensities for manufacturing, transporting, and installing various types of building components (Chen et al., 2001); (Gonza lez and Navarro,2006)and (Dimoudi and Tompa,2008)calculated CO2 emissions related to building material manufacturing using CO2 emission factors for various building materials.

The economic input–output analysis-based method evaluates both the direct and indirect environmental impacts of a product or service along the supply chain. The input-output approach has been adopted by researchers in the United States and Japan, owing to the fact that the Input/Output Table of the United States and Japan comprises over 400 sectors, which is detailed enough to examine the environmental consequences of the construction industry. Using this technique, (Suzuki et al., 1995), (Suzuki and Oka, 1998) and (Seo and Hwang, 2001) calculated CO2 emissions from residential buildings; computed GHG emissions from power plant construction and operation, residential building construction and operation, and water treatment system construction and operation, respectively.

2.3.1. Review of embodied carbon emission

The total lifecycle energy consumption of a building is made up of embodied energy and operating energy (Dixit et al., 2010). Embodied energy is the energy used throughout the entire process, from the extraction of raw materials to the processing, transportation, completion, and maintenance of building components, as well as the demolition of the structure once it has served its purpose. Operating energy accounts for 80% to 90% of energy consumption, followed by embodied energy accounting for 10% to 20%. However the construction and operating stage are the main source of energy consumption so, many earlier researchers concentrated on energy conservation (Ramesh et al., 2010).

The construction sector not only responsible for a direct effect on carbon emissions, but also responsible for indirect driving effect on the carbon emissions of the whole industrial system. The direct effect of the construction sector refers to the carbon emissions focused by its on-site actions. The indirect effect, which is the carbon emissions embodied in the products delivered to the building sector by other sectors, accounts for more than 90% of the construction sector's total CO₂ emissions (Chuai et al., 2015). Input-output models are extensively used to calculate the economic system's direct and indirect economic impacts by accounting for the interconnectedness of inputs and outputs across entire industrial sectors in detail. This reflects the indirect effects on the environment caused by upstream industry, and is appropriate for pollutant calculations (Palm et al., 2019). The MRIO model has been frequently used to investigate human-caused environmental issues such as water footprint (Ewing et al., 2012), CO₂ emissions, and so on (Wang et al., 2018), and embodied energy consumption (Liu et al., 2019) even can distinguish between the relationships that exist between distinct sectors as well as the relationships that exist between different areas (Guo et al., 2012). According to (Hui Yan et al., 2009), embodied GHG emissions of building materials account for 82–87 percent of overall GHG emissions, transportation of construction materials accounts for 6–8%, and energy consumption of construction equipment accounts for 6–9%. Because concrete and reinforced steel account for 94–95 percent of all embodied GHG emissions in construction materials, employing recycled building materials, especially reinforced steel and aluminum, would dramatically reduce GHG emissions.

Chapter 3: RESEARCH METHODOLOGY

The methodology is approach that examines the procedures used in the field study in a methodical, theoretical manner. It includes ideas like an example, a theoretical model, segments, and quantitative and qualitative methodologies.

This research is an exploratory research. The embodied carbon emission is calculation is done using the data from different buildings. The embodied carbon emission from the buildings having brick wall is obtained for the overall life span of buildings, which is then replaced by the AAC block works and hollow concrete blocks, and the amount of the embodied carbon emission is compared.

3.1. Research Design

Each and every research begins with the research topic selection and setting of end destination. It basically responds to the design of the research in many alternative ways to reach the end goal. The success of any research depends upon the research framework and data calculation. In this research, data computation was a major challenge and extraction of detail data was done through engineering analysis norms and survey. Various literatures were referred and field works was performed. The research design is briefly mentioned in the chart below,

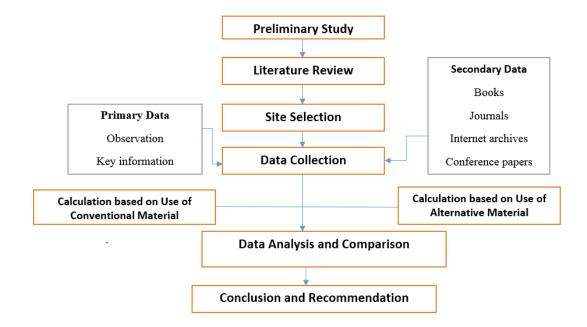


Figure 3 Flow chart of Research Design

3.2. Site Visit and Collection of data

A total of thirty one different building sites with varying story and plinth area were selected for the study. The plinth area varies from 850 sq. ft to over 7000 sq. ft and single to multi story. The building drawings were collected from the respective contractors. All the selected buildings included burnt clay bricks used in the design. For the purpose of the study, the same buildings were used for the estimation of the quantity of AAC blocks and hollow concrete blocks.

3.2.1. Data Collection

Primary data was collected from the field visit of the construction site and interview between the contractors and secondary data was collected from various online sources, offices and organization. Both ways of data collection method are taken into action in this research.

a. Primary Data Collection

The primary data for the study is collected from the contractors and owners of the buildings that were selected. At the first step, questionnaire was prepared to assess necessary information. Set of questionnaire used in this method have been attached in the annex 1.

- Primary data like household information, construction data, photographs, drawings, BoQs, building information like construction materials used were collected.
- Materials estimation is done by researcher himself.

b. Secondary Data Collection

The secondary data were collected from various sources like national and international journals, publications, articles and books. The embodied carbon coefficients and embodied energy coefficients were taken from the database of the Inventory of Carbon and Energy (ICE), UK, 2008.Following data were collected for the secondary sources,

- Embodied energy and embodied carbon coefficient
- EE and eCO₂ estimation tools

3.2.2. Data Compilation and Analysis

After collection of the primary and secondary data, they were analyzed entering in computer-aided software (MS-Excel). Calculation of embodied energy (EE) and embodied carbon (EC) and embodied carbon dioxide equivalent (ECO₂e) was estimate. For this purpose detail estimation of materials was needed.

3.2.2.1. Building Materials Estimation

After gathering all the information regarding the building, material estimation of the building was done with the help of material estimator and civil engineers. To carried out this process different municipal drawings, BoQ of each buildings were thoroughly analyzed which took nearly 2 weeks to complete detail material estimation of 31 buildings.

3.2.2.2. Allocation of coefficient of Embodied Energy and Embodied Carbon

From the ICE database, coefficient of different building construction materials have been extracted and used for further calculation. There are 11 different building construction materials used in the building that were selected for the study. Materials like sanitary fixtures and electrical fixtures etc. are not used due to the complexity of data.

SN	Building Material	Embodied Energy(EE) MJ/Kg	Embodied Carbon (EC) CO ₂ /Kg	Embodied CO2e CO2e
1	Stone	1.26	0.073	0.079
2	Bricks	3	0.23	0.24
3	Cement			
i	OPC	5.5	0.93	0.95
ii	PPC	4.89	0.75	0.825
4	Sand	0.081	0.0048	0.0051
5	Aggregates	0.083	0.0048	0.0051
6	Rebar	25	1.91	2.03
7	Marble	2	0.116	0.13
8	Tiles	6.5	0.45	0.48
9	Timber	10	0.46	0.41
10	Glass	15	0.86	0.91
11	Aluminium	155	8.24	9.16

Table 2 Table Embodied Energy and Embodied Carbon of different materials

11	Granite	11	0.64	0.7
12	Paints	70	2.41	2.91

3.2.3. A method for estimating embodied carbon dioxide based on process analysis

In this study, the carbon emission from building construction material was calculated based on process data Process-based assessment is a bottom-up approach that represents carbon emissions for specific building construction processes (Zhang and Wang, 2016). Embodied carbon dioxide is the entire amount of carbon dioxide released by building materials during manufacturing, transportation, construction, maintenance, and demolition. There are three types of embodied carbon dioxide in buildings: initial embodied carbon (IEC), recurring embodied carbon (REC), and demolition carbon (DC) (Li et al., 2014). The IEC is emitted during the construction of a building, whereas the REC is emitted over the life cycle of a building. And DC is the carbon emitted from buildings demolition and disposal. Fig. 1 illustrates the scope of annual embodied carbon dioxide estimation in the building sector in this study.

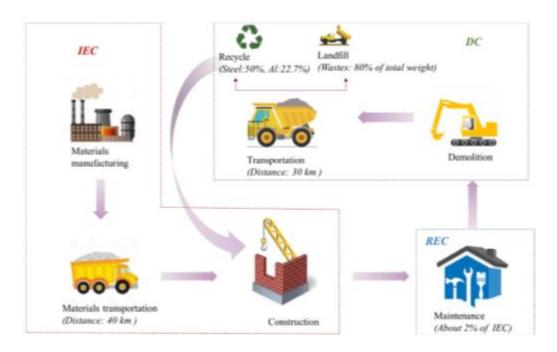


Figure 4 Research scope of embodied carbon dioxide in the building sector

The yearly embodied carbon dioxide emissions (Cemb) in the building industry can be computed using Eq. 1-5, as shown previously. $C_{emb} = C_{new} + C_{maintenance} + C_{demolition}$ (1)

$$C_{new} = C_{em} + C_{ep} + C_{et} + C_{ec}$$
⁽²⁾

$$C_{\text{maintenance}} = C_{\text{er}} \tag{3}$$

$$C_{demolition} = C_{ed} + C_{ew} \tag{4}$$

Therefore, the total annual ECDBS can be illustrated as followings:

$$C_{emb} = C_{em} + C_{ep} + C_{et} + C_{ec} + C_{er} + C_{ed} + C_{ew}$$
(5)

Where:

building

Cnew stands for the embodied carbon dioxide of new structures.

Cmaintenance stands for the embodied carbon dioxide of building maintenance

Cdemolition stands for the embodied carbon dioxide from buildings demolition

Cem stands for the carbon emissions from the production of building materials.

Cep stands for carbon emissions from chemical reactions in the process of material production.

Cet stands for the carbon emissions from transporting construction materials from production facilities to construction sites

Cec stands for the carbon emissions from energy usage on construction sites

Cer stands for the carbon emissions from the replacement of building components

Ced stands for the carbon emissions from building demolition

Cew stands for the construction and demolition waste disposal carbon emissions.

Several assumptions (Table 3) were made for embodied carbon estimation in this study. Because of some data unavailability, some data were derived from the analysis results of existing cases in literature.

Emission			
Sources	Assumptions and Limitations	References	Country of study
Cem	Classification of two main structure and three main function of buildings were proposed	Jing et al. (2019)	China
Сер	65% of the clinker cement average ratio was adopted in the construction sector.	Wei et al. (2016),	
	Clinker carbon emission factor of Nepal's cement is 498.5 kg per ton in construction sector.	IPCC(1996)	Nepal
Cec	The carbon emissions on construction sites of new construction and demolition of buildings were merged together to calculate total emission.	Zhu et al. (2019)	China
Cet	The main construction materials were considered in the transportation process. The average transport distance of		
	main building materials is set according to the contractor log sheet.		
Cer	The carbon emissions of building component replacement are annually estimated to account for	(Dixit, 461 2019)	USA

Table 3 . Assumptions of embodied carbon estimation in different stages

	1.55% of the initial embodied		
	carbon of buildings.		
	the amount of building waste is assumed to be 85% of the total weight of the building materials		
Cew	in this study.	Li et al., (2014);	China
	Steel and aluminum are recyclable, and the recycle rate of		
	steel and aluminum in the final disposal were assumed to be 60%	Zhang and Wang	
	and 20%, respectively.	(2015);	China
	Averagedistanceoftransportationofbuilding		
	materials to landfill was assumed		
	to be 25 km and recycling site was assumed to be 10km.		

3.2.3.1 Embodied Carbon dioxide emitted during the manufacture of building materials

Construction materials provide the most embodied carbon, and the most carbonintensive activities are mostly mining, processing, and producing construction resources(Pomponi and Moncaster, 2018). Process-based method and a statistical method are adopted in this study for determining the construction material manufacturing. Some of the statistical indicators employed in this study were building height, building function, building structure, and consumption of the primary construction materials. Steel, cement, wood, brick, glass, aluminum, paints, and other construction materials were employed in the study because they required more energy and released more carbon than other materials (Cabeza 284 et al., 2013b).

Based on the carbon emission factors of construction materials, the embodied carbon emissions of construction materials of each building were calculated, as shown Eq. 6:

$$C_i = \sum_{j=1}^6 Mj * fj \tag{6}$$

Ci stands for the carbon emissions of ith building structure type (i = 1, 2, 3, 4...)

Mj stands for the consumption of jth construction materials (j=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

fj stands for the carbon emission factor unit weight of jth construction material

The carbon emission factors of the main building materials were collected and are listed in Table 4.

Materials		Embodied energy coefficient	Embodied carbon coefficient	Embodied carbon coefficient
		MJ/kg	kg CO e/kg	kgCO2/kg
Aluminium	General	155	9.16	8.24
	Virgin	218	12.79	11.46
	Recycled	29	1.81	1.69
Aggregate		0.083	0.0052	0.0048
Bricks	General	3	0.24	0.23
Cement	PPC (15-20%Flyash)	5.28 to 4.5	0.89 to .076	0.75
		4.89	0.825	0.75
	OPC	5.5	0.95	0.93
Concrete	1:2:4 M15	0.7	0.1	0.093
Glass	Primary	15	0.91	0.86
	Toughened	23.5	1.35	1.27
Iron		25	2.03	1.91
Iron	GI Sheet	22.6	1.54	1.45
	General	1.26	0.079	0.073
	Granite	11	0.7	0.64
Stone	Lime stone	1.5	0.09	0.087
Stolle	Marble	2	0.13	0.116
	Marble Tile	3.33	0.21	0.192
	Sandstone	1	0.06	0.058
Paints	General water base	70	2.91	2.41
Timber		10	0.41	0.46
Tin		258	14.7	13.7
	(Hsmm	ond & Jones,20)11)	

Table 4 Carbon Emission Factors of Building Materials

By multiplying the associated emission factor and the total weight of construction materials used on construction sites, the embodied carbon and embodied energy from building construction materials was calculated. For the estimation of EE and EC, ten different conventional construction materials were used.

				Embod	ied carbo	on kg CO e	(ton)				Cmm=ton
Building	Cement	Aggregate	Rebar	Brick	Tile	Sal wood	Aluminium	Paints	Glass	Granite	Coe
R1	98.95	1.04	36.99	57.95	5.19	3.03	0.00	1.32	0.63	3.93	209.03
R2	93.80	1.02	34.43	83.70	3.34	1.56	7.05	1.02	0.86	2.52	229.29
R3	45.80	0.52	20.40	28.58	1.45	3.26	4.20	0.60	0.51	0.29	105.59
R4	46.67	0.53	19.95	28.61	1.26	3.15	2.47	0.37	0.30	0.62	103.94
R5	45.71	0.52	23.36	32.40	1.76	0.59	3.73	0.53	0.46	0.11	109.18
R6	45.13	0.52	23.36	32.40	1.76	0.92	3.73	0.53	0.46	0.11	108.92
R7	69.70	0.87	65.08	34.35	1.95	0.73	6.60	1.95	0.81	2.87	184.90
R8	77.77	0.91	32.43	56.71	2.78	17.25	0.00	0.83	2.10	2.83	193.60
R9	76.00	0.96	33.46	15.43	1.60	0.56	9.88	0.46	1.03	1.98	141.37
R10	91.71	1.17	43.03	72.12	0.74	4.01	9.88	0.80	0.78	3.10	227.35
R11	33.86	0.37	15.12	33.82	0.28	0.00	3.13	0.26	0.22	0.00	87.07
R12	100.61	1.17	42.24	55.94	3.10	0.98	6.33	1.14	0.78	2.65	214.93
C1	453.57	3.96	201.11	79.54	11.20	2.02	54.43	2.86	6.66	8.87	824.22
C2	390.28	3.42	297.74	51.31	4.06	0.93	25.55	1.59	3.13	7.69	785.71
C3	419.75	3.77	350.93	82.58	4.11	1.43	5.16	1.89	0.63	11.34	881.60
C4	3913.92	33.56	2464.92	620.69	57.57	21.12	81.94	30.91	10.02	188.11	7422.76
C5	4058.70	36.01	854.80	475.09	51.37	21.12	81.94	16.11	10.02	188.11	5793.27
C6	128.20	0.58	69.47	157.77	4.48	0.00	17.62	0.72	0.49	1.54	380.88
C7	507.40	6.43	536.50	272.24	13.19	0.00	60.48	3.30	0.33	1.54	1401.40
C8	455.17	5.10	319.23	61.62	6.18	3.06	26.79	1.35	5.98	7.71	892.19

Table 5 ECe of different Construction Materials

				Embodi	ed carbor	n kg CO e (t	con)				Cmm=ton
Building	Cement	Aggregate	Rebar	Brick	Tile	Sal wood	Aluminium	Paints	Glass	Granite	Coe
01	378.30	4.67	164.59	204.82	13.29	0.00	57.33	3.31	2.25	14.33	842.89
O2	1665.44	14.01	578.72	303.53	29.83	5.10	33.78	8.30	4.13	24.86	2667.71
03	755.78	6.34	296.39	276.01	24.08	4.99	26.99	4.61	3.30	23.81	1422.30
O4	718.68	5.96	337.01	188.72	14.24	2.29	36.30	5.65	4.44	19.71	1333.00
05	447.05	6.18	322.74	34.99	8.66	0.00	66.43	2.79	6.58	5.42	900.84
06	1255.99	10.42	550.33	387.23	4.77	5.59	0.00	4.48	5.98	4.92	2229.71
07	256.46	2.66	164.64	191.11	9.58	1.12	19.98	1.69	2.66	6.70	656.59
08	757.55	6.11	470.60	282.73	4.14	8.33	0.22	2.61	1.19	5.68	1539.16
O9	105.82	0.86	31.56	157.00	0.00	0.00	12.32	0.90	0.85	0.00	309.31
O10	861.74	10.94	648.34	236.32	1.15	4.52	22.46	9.65	2.26	1.57	1798.95
011	1277.77	13.06	997.58	203.12	19.53	2.26	63.24	5.51	2.94	37.26	2622.27
Total	19633.30	183.66	10047.06	4798.43	306.63	119.92	749.95	118.05	82.77	580.17	36619.92
no	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00
mean	633.33	5.92	324.10	154.79	9.89	3.87	24.19	3.81	2.67	18.72	1181.29

Building				Em	bodied o	arbon kg CO	02				Cem=ton CO2
	Cement	Aggregate	Rebar	Brick	Tile	Sal wood	Aluminium	Paints	Glass	Granite	
R1	94.40	0.96	34.80	55.54	4.74	3.40	0.00	1.09	0.60	3.60	199.13
R2	89.51	0.94	32.39	80.21	3.05	1.75	6.34	0.84	0.81	2.31	218.15
R3	43.79	0.48	19.19	27.38	1.32	3.65	3.78	0.49	0.49	0.26	100.84
R4	44.60	0.49	18.77	27.42	1.16	3.53	2.22	0.31	0.29	0.57	99.35
R5	43.64	0.48	21.98	31.05	1.61	0.66	3.35	0.44	0.43	0.10	103.75
R6	43.11	0.48	21.98	31.05	1.61	1.03	3.35	0.44	0.43	0.10	103.59
R7	66.85	0.80	61.23	32.91	1.78	0.82	5.94	1.62	0.76	2.62	175.34
R8	74.25	0.84	30.51	54.35	2.54	19.36	0.00	0.69	1.98	2.59	187.10
R9	73.15	0.88	31.49	14.78	1.47	0.63	8.89	0.38	0.98	1.81	134.46
R10	88.35	1.08	40.49	69.11	0.68	4.50	8.89	0.66	0.73	2.84	217.33
R11	32.29	0.34	14.23	32.41	0.26	0.00	2.81	0.22	0.21	0.00	82.76
R12	96.11	1.08	39.74	53.61	2.83	1.10	5.70	0.94	0.73	2.42	204.27
C1	438.50	3.66	189.22	76.23	10.24	2.26	48.96	2.37	6.29	8.11	785.84
C2	378.49	3.16	280.14	49.17	3.71	1.04	22.99	1.32	2.95	7.03	750.00
C3	406.62	3.48	330.18	79.14	3.75	1.60	4.64	1.57	0.60	10.37	841.97
C4	3791.21	30.98	2319.21	594.82	52.63	23.70	73.71	25.60	9.47	171.98	7093.32
C5	3933.84	33.24	804.27	455.29	46.97	23.70	73.71	13.34	9.47	171.98	5565.81
C6	119.40	0.54	65.36	151.20	4.10	0.00	15.85	0.60	0.46	1.41	358.92
C7	476.49	5.94	504.78	260.90	12.06	0.00	54.40	2.73	0.31	1.41	1319.02
C8	439.86	4.71	300.36	59.05	5.65	3.44	24.10	1.12	5.65	7.05	850.98

Table 6 EC of different Construction Materials

Building		Embodied carbon kg CO2										
	Cement	Aggregate	Rebar	Brick	Tile	Sal wood	Aluminium	Paints	Glass	Granite		
01	363.84	4.31	154.87	196.29	12.15	0.00	51.57	2.74	2.12	13.10	800.98	
O2	1609.72	12.94	544.51	290.88	27.27	5.72	30.39	6.87	3.91	22.73	2554.94	
03	729.50	5.85	278.87	264.51	22.02	5.60	24.27	3.82	3.12	21.77	1359.33	
O4	693.92	5.50	317.09	180.86	13.02	2.57	32.66	4.68	4.20	18.02	1272.51	
O5	433.61	5.70	303.66	33.53	7.92	0.00	59.76	2.31	6.21	4.96	857.68	
06	1212.85	9.62	517.80	371.09	4.36	6.27	0.00	3.71	5.65	4.50	2135.85	
O7	246.61	2.45	154.91	183.15	8.76	1.25	17.98	1.40	2.51	6.13	625.14	
O8	732.01	5.64	442.78	270.95	3.79	9.34	0.20	2.16	1.12	5.19	1473.19	
09	100.61	0.80	29.69	150.46	0.00	0.00	11.08	0.75	0.80	0.00	294.18	
O10	832.88	10.10	610.02	226.48	1.05	5.07	20.20	7.99	2.13	1.44	1717.36	
011	1238.67	12.05	938.61	194.65	17.86	2.54	56.89	4.57	2.78	34.07	2502.68	
Total	18968.68	169.53	9453.14	4598.49	280.35	134.54	674.62	97.77	78.22	530.44	34985.79	
no	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	31.00	
mean	611.89	5.47	304.94	148.34	9.04	4.34	21.76	3.15	2.52	17.11	1128.57	

Building					EE (N	IJ)					Total EE
Notation	Cement	Aggregate	Rebar	Brick	Tile	Sal wood	Aluminium	Paints	Glass	Granite	
R1	577725.8	16603.9	455486.0	724432.3	82242.3	73876.0	0.0	31692.4	10410.8	61827.3	2034296.7
R2	547615.3	16201.8	424002.5	1046189.4	52907.8	38050.5	119220.9	24523.0	14208.8	39659.5	2322579.3
R3	267210.4	8303.3	251199.5	357191.7	22945.0	79422.2	71022.8	14325.7	8464.5	4518.5	1084603.5
R4	272366.1	8502.4	245724.8	357600.9	20041.6	76769.0	41817.0	8872.8	4983.8	9800.4	1046478.5
R5	266856.9	8343.4	287717.0	405061.9	27913.8	14450.4	63055.9	12671.1	7515.0	1727.2	1095312.7
R6	263395.1	8343.4	287717.0	405061.9	27913.8	22414.0	63055.9	12671.1	7515.0	1727.2	1099814.4
R7	406228.0	13910.8	801469.5	429319.4	30879.4	17881.4	111688.2	46944.6	13311.0	45027.3	1916659.5
R8	453946.9	14513.2	399364.3	708915.7	44020.5	420785.8	0.0	19933.1	34562.3	44450.0	2140491.7
R9	442436.5	15248.6	412125.0	192843.6	25447.6	13698.0	167209.0	11095.9	17021.4	31129.1	1328254.7
R10	533771.2	18745.3	529953.0	901438.1	11757.9	97836.8	167209.0	19290.0	12804.8	48729.9	2341535.8
R11	197759.0	5827.2	186250.0	422693.7	4507.0	0.0	52899.0	6361.0	3705.8	0.0	880002.6
R12	587180.6	18709.1	520141.8	699282.2	49113.5	23810.3	107195.0	27428.4	12775.5	41649.2	2087285.4
C1	2636835.5	63225.4	2476744.0	994302.1	177601.0	49185.8	921012.0	68791.0	109766.3	139342.8	7636805.8
C2	2266599.3	54605.2	3666720.5	641350.6	64363.3	22625.3	432423.5	38353.7	51536.3	120877.6	7359455.3
C3	2438625.5	60244.6	4321746.3	1032309.4	65118.2	34854.1	87296.5	45582.9	10404.0	178238.9	8274420.3
C4	22739088.3	535688.5	30356177.3	7758571.6	912861.8	515219.4	1386473.8	743586.4	165240.0	2955938.6	68068845.5
C5	23575504.2	574731.8	10527120.7	5938588.2	814563.5	515219.4	1386473.8	387494.7	165240.0	2955939.9	46840876.0
C6	754266.0	9327.5	855538.5	1972145.5	71043.4	0.0	298231.6	17368.2	8066.3	24186.0	4010173.0
C7	2977462.8	102638.8	6607091.0	3403044.9	209146.2	0.0	1023355.1	79362.8	5404.5	24186.0	14431692.1
C8	2646485.5	81442.1	3931462.5	770199.8	97999.6	74683.0	453360.3	32424.6	98550.0	121101.9	8307709.3

Table 7 EE of different Construction Materials

Building					EE (M	[J)					
Notation	Cement	Aggregate	Rebar	Brick	Tile	Sal wood	Aluminium	Paints	Glass	Granite	Total EE
01	2202995.4	74587.6	2027029.5	2560306.8	210727.4	0.0	970021.9	79545.9	37035.0	225174.8	8387424.2
O2	9682808.0	223679.2	7127075.8	3794096.4	473015.8	124411.4	571618.4	199630.3	68125.5	390659.9	22655120.5
03	4395983.9	101126.4	3650147.2	3450133.8	381876.8	121801.6	456626.4	110916.1	54420.8	374112.8	13097145.7
O4	4179742.5	95123.9	4150383.5	2359043.6	225755.7	55834.4	614322.7	135810.2	73215.0	309699.4	12198930.9
05	2596108.5	98625.6	3974650.0	437347.5	137336.6	0.0	1124142.7	67225.0	108380.6	85228.2	8629044.6
O6	7304491.2	166380.9	6777425.0	4840335.4	75611.4	136384.0	0.0	107792.2	98550.0	77296.0	19584266.0
O7	1493529.7	42385.1	2027598.0	2388910.0	151871.3	27262.6	338141.1	40642.8	43845.7	105295.0	6659481.4
08	4404718.2	97585.0	5795521.8	3534151.5	65686.7	203138.0	3756.9	62862.8	19572.8	89210.1	14276203.7
09	618564.3	13759.3	388629.0	1962486.9	0.0	0.0	208424.2	21703.0	13972.5	0.0	3227539.3
O10	5010141.6	174676.7	7984500.0	2954036.6	18253.3	110144.5	380015.4	232146.1	37208.3	24720.4	16925842.9
011	7421692.9	208383.9	12285500.0	2538975.3	309733.9	55120.0	1070061.7	132605.3	48496.5	585517.4	24656087.0
Total	114162135.0	2931469.8	123732210.6	59980366.5	4862256.1	2924877.6	12690130.2	2839652.7	1364308.2	9116971.6	334604378.3
no	31	31	31	31	31	31	31	31	31	31	31
mean	3682649.5	94563.5	3991361.6	1934850.5	156847.0	94350.9	409359.0	91601.7	44009.9	294095.9	10793689.6

The total embodied carbon was found to be 1128.56 Mt and the embodied energy to be 10793689.5 MJ, as shown in table 1. It appears that having a large quantity on a weighted average contributes nothing to carbon emissions.

3.2.3.2. Process carbon emission from the chemical reaction

Carbon dioxide emissions resulting from chemical reactions in industrial manufacture processes are termed as the process carbon emission (Chau et al., 2015). In this study, cement production is considered as the main source of the carbon emissions of chemical reactions. As a result of calcination reaction, limestone decomposed into calcium oxide which evolves the carbon dioxide during the process of cement production. The carbon dioxide emissions from the calcination reaction in the cement manufacturing can be estimated using Eq. 7, established by Pommer and Pade (2006):

$$C_{ep} = \beta * M_{cement} * f_{clinker}$$
(7)

Where:

Cep stands for carbon emissions of chemical reactions in the industrial production process

 β stands for the carbon dioxide per kilogram of clinker produced

Mcement stands for the quantity of cement used for building construction

fclinker stands for the proportion of clinker contained in the cement

In this study, clinker carbon emission factor of Nepal's cement is 498.5 kg per ton in construction sector (IPCC, 1996). The adopted average clinker ratio in the Nepal's cement industry is 65%.

Buildi ng	Mceme	β=498. 5 kg	fclinker=	Cep=β*Mc ement*fclin ker(kg	Cep(ton	EF(MJ	
Туре	nt (ton)	CO2/t	65%	CO2)	CO2)	/kg)	EF(MJ)
R1	109.78	498.50	0.65	35572.59	35.57	1.75	192121.06
R2	104.02	498.50	0.65	33706.36	33.71	1.75	182041.93
R3	50.59	498.50	0.65	16393.01	16.39	1.75	88535.65
R4	51.62	498.50	0.65	16726.84	16.73	1.75	90338.61
R5	50.66	498.50	0.65	16416.44	16.42	1.75	88662.18
R6	49.96	498.50	0.65	16187.04	16.19	1.75	87423.28
R7	76.51	498.50	0.65	24792.74	24.79	1.75	133901.08
R8	86.15	498.50	0.65	27914.92	27.91	1.75	150763.38
R9	82.84	498.50	0.65	26840.70	26.84	1.75	144961.73
R10	99.80	498.50	0.65	32337.03	32.34	1.75	174646.43
R11	37.62	498.50	0.65	12189.63	12.19	1.75	65833.99
R12	111.34	498.50	0.65	36078.23	36.08	1.75	194851.97
C1	490.06	498.50	0.65	158791.14	158.79	1.75	857602.03
C2	418.99	498.50	0.65	135764.64	135.76	1.75	733240.10
C3	451.65	498.50	0.65	146345.67	146.35	1.75	790386.31
C4	4211.96	498.50	0.65	1364781.65	1364.78	1.75	7370937.07
C5	4362.31	498.50	0.65	1413498.13	1413.50	1.75	7634045.93
C6	148.88	498.50	0.65	48241.94	48.24	1.75	260545.91
C7	580.27	498.50	0.65	188023.12	188.02	1.75	1015478.61
C8	492.20	498.50	0.65	159486.44	159.49	1.75	861357.19
01	413.06	498.50	0.65	133841.22	133.84	1.75	722852.03
02	1800.27	498.50	0.65	583333.74	583.33	1.75	3150479.29
03	819.21	498.50	0.65	265444.21	265.44	1.75	1433615.82
O4	778.48	498.50	0.65	252245.97	252.25	1.75	1362334.54
05	479.76	498.50	0.65	155454.65	155.45	1.75	839582.24
06	1360.23	498.50	0.65	440750.02	440.75	1.75	2380410.55
O7	280.12	498.50	0.65	90764.92	90.76	1.75	490204.81
08	819.31	498.50	0.65	265475.84	265.48	1.75	1433786.66
09	118.22	498.50	0.65	38306.70	38.31	1.75	206887.52
O10	931.55	498.50	0.65	301846.89	301.85	1.75	1630220.06
011	1372.88	498.50	0.65	444847.54	444.85	1.75	2402540.53
			T ()		(002.40		37170588.4
			Total	6882399.95	6882.40		4
			N	31.00	31.00		31.00
			Avg	222012.90	222.01		1199051.24

Table 8 EC from chemical reaction

As illustrated in table 8, there exists a strong contribution of calcination reaction during cement production on releasing the carbon dioxide. It was found that 222.01 tonnes of carbon dioxide was evolved during the production of 685.171 tonnes of cement.

3.2.3.3. Embodied carbon dioxide from building construction and demolition activities

As for the carbon emissions from building construction and demolition, the main sources are the machines and the equipment on sites (for example, trucks, loaders, cranes, etc.), offices and living at the construction site (lighting, cooking, heating, cooling, etc.) (Zhu et al., 2019). Because data from construction companies for both construction and demolition of buildings was merged, the embodied carbon in this study from both construction and demolition was estimated. On construction sites, eight different types of energy are used. The embodied carbon can be calculated according to Eq. 8:

 $\operatorname{Cec} = \sum_{k=1}^{8} \operatorname{Ek} * fek \tag{8}$

Where:

Cec stands for the carbon emissions of energy consumption on construction sites

Ek stands for the ith energy consumption;

fek stands for the carbon emission factor of kth energy

k stands for the energy type consumed on construction sites (k = 1, 2, ..., 8)

The energy consumption of buildings and carbon factors are shown in Table 8

Table 9 Energy	consumptions	and	emission	factor	for	building	construction	and
demolition								

Energy	Unit	Carbon Factor (Ton/Ton, MWh, or M3)	source	Energy factor
Liquefied petroleum			Smith et al,	
gas	ton	3.085	2000;	1.51
			Smith et al,	
Kerosene	ton	2.985	2000;	1.205
Diesel oil	ton	3.18		38.6mj/l

Electricity	MWh	0.6808		3.6mj/kwh
firewood	ton	1.46242	aStockwell et al., 2016	0.5Mj/kg

Construction sites used a variety of construction equipment and vehicles, all of which required energy to operate, resulting in carbon emissions. The energy required for the seated activities is calculated in this way (lighting, cooking, heating and cooling). The common energy utilized in building work that cause carbon emissions are electricity, diesel, firewood, petrol, and so on.

Building Type	EE	Cec(ton CO2)
R1	9490.13	1.99
R2	13500.32	2.73
R3	14010.06	2.76
R4	17326.99	3.47
R5	16001.10	3.13
R6	13651.22	2.78
R7	14454.59	5.42
R8	24155.73	7.80
R9	15389.08	3.18
R10	24603.54	9.07
R11	26996.63	9.63
R12	17287.74	3.28
C1	95515.17	14.80
C2	100435.07	17.59
C3	84590.17	17.86
C4	139895.27	25.74
C5	206687.31	33.82
C6	86940.78	19.57
C7	78842.31	14.45
C8	100344.12	33.79
01	77498.27	16.09
O2	65980.00	19.85
03	89613.14	21.89
O4	48630.50	12.15
05	70582.46	13.69
06	80725.40	17.41
07	69721.09	13.34
08	44849.51	9.02
09	42789.04	8.84

O10	49449.18	11.21
011	43715.68	9.29
Total	1783671.60	385.65
Ν	31.00	31.00
Avg	57537.79	12.44

3.2.3.4. Embodied carbon dioxide from material transportation

Various construction materials must be transported from their manufacturing facilities to the construction site, which necessitates a significant amount of energy. This carbon dioxide emission from material transportation may be calculated using the transportation method and distance, as well as the weight on the vehicle, vehicle type, and vehicle energy consumption. Construction materials are transported from the manufacturing site to the construction site using diesel-powered medium or heavy-goods transport vehicles. In this study, embodied carbon dioxide is estimated by using Eq. 9;

$$C_{\rm et} = \sum_{i=1}^{6} Mi * Di * Ti \tag{9}$$

Where:

Cet stands for the total carbon emissions from transportation of construction materials

Mi stands for the consumption of the ith main construction materials (i = 1, 2, 3, 4, 5, 6)

Di stands for the average distance of the ith construction materials

Ti stands for carbon emission factor of unit weight and unit transportation distance with some transportation mode of the ith construction material

According to expert interviews and literature, the type of diesel-based vehicle for aggregate, sand, and steel is a heavy goods vehicle, but the type of diesel-based vehicle for wood, bricks, aluminum, and glass is a medium goods vehicle. The transportation of various construction materials from their manufacturing sites to the construction site necessitates a significant amount of energy. The transportation method and distance, as well as the weight on the vehicle, vehicle type, and vehicle energy consumption, can all be used to determine the carbon dioxide emissions from material transportation. Construction supplies are transported from the manufacturing site to the construction

site using diesel-powered medium or heavy-goods transport vehicles. Table 12, shows the total amount of EE and EC emitted during material transport to the building site.

Type of Vehicle	Gross Vehicle Weight(ton)	Carbon Emission Factor(kgCO2/t-km)
Medium goods vehicle	8-10 ton	0.25
Heavy goods vehicle	10-18 ton	0.18
	18-30 ton	0.16

Table 11 Carbon emission factor for different vehicles

Data source: HKEMSD (2013), Gan et al. (2017b), Zhang and Wang (2017), Wang et al. (2016).

Building		
Туре	EE due to transport	Cet(ton CO2)
R1	350.400	0.832
R2	392.400	0.971
R3	392.400	0.461
R4	392.400	0.450
R5	392.400	0.472
R6	392.400	0.462
R7	442.800	0.380
R8	183.600	0.215
R9	153.600	0.075
R10	146.400	0.307
R11	147.600	0.110
R12	160.800	0.232
C1	1059.120	1.859
C2	1058.400	1.490
C3	1049.520	1.660
C4	1268.640	14.815
C5	1034.880	14.612
C6	1032.240	0.562
C7	1022.640	2.841
C8	1233.600	2.132
01	1070.400	1.927
O2	1077.600	6.377

O3	1382.400	3.716
O4	405.600	2.834
O5	325.200	1.145
06	321.600	2.263
07	216.000	0.550
08	252.000	1.250
09	115.200	0.229
O10	1082.400	4.113
011	1070.400	5.833
Total	19625.040	75.177
Ν	31.000	31.000
Avg	633.066	2.425

3.2.3.5. Embodied carbon dioxide from building maintenance

Throughout the service life of a building, many components are repaired, maintained, and replaced, resulting in recurring embodied carbon, which is often overlooked due to data inaccessibility and its minimal contribution to life-cycle carbon emissions (Zhang and Wang, 2017). However, other researchers (Wang et al., 2016) claim that recurring embodied carbon emissions, which account for around one-third of a building's initial embodied emissions, could be significant. The carbon emissions of building mechanisms maintenance (C_{er}) is generally related to the building service life which is difficult to obtain the annual statistical data. Therefore, some proportion of initial embodied carbon from the buildings was taken as the embodied carbon dioxide from building maintenance. The annual repeating embodied carbon (Dixit, 2019). In this study the annual recurring embodied carbon was taken as 1.55 percentage of initial embodied carbon from the building. For the embodied energy, 5 percent of initial embodied energy of the building was taken into action.

	Lifetim	Maintenanc
Building Components	e (year)	e times
Main structure	50	0
Thermal insulation layer	50	0
Water supply and ventilation pipe	50	0
Decoration board	30	1
Ceramic tile	30	1
Roofing	25	1
Plastic-steel window	30	1
Drain pipe	30	1
Painting	10	4

Table 13 Maintenance frequency for some building components

Data sources: Zhang and Wang (2017), Wang (2011).

Throughout the life of a building, it will need to be repaired and replaced on a regular basis. Due to a lack of data and its modest contribution to life cycle carbon emissions, the carbon emissions from various types of maintenance are frequently overlooked.. The carbon emissions from building component maintenance are calculated as a percentage of the total embodied carbon in buildings, which ranges from 0.3 to 2.8 percent of total emissions. As a result, the recurrent embodied carbon in this study was considered to equal around 1.55 percent of the structures' initial embodied carbon, resulting in a total of 21.16Mt.

Build ing Type	Cmm=t on CO2	Cep(ton CO2)	Cec(ton CO2)	Cet(ton CO2)	Cinitial	Cer(ton CO2)=1. 55%of Cinitial	EEinitial	EE demolition+ 5%of initialEE
R1	199.13	35.57	1.99	0.83	237.52	3.68	2236258.29	11181.29
R2	218.15	33.71	2.73	0.97	255.56	3.96	2518513.96	12592.57
R3	100.84	16.39	2.76	0.46	120.46	1.87	1187541.66	5937.71
R4	99.35	16.73	3.47	0.45	120.00	1.86	1154536.50	5772.68
R5	103.75	16.42	3.13	0.47	123.76	1.92	1200368.37	6001.84
R6	103.59	16.19	2.78	0.46	123.02	1.91	1201281.33	6006.41
R7	175.34	24.79	5.42	0.38	205.93	3.19	2065457.98	10327.29
R8	187.10	27.91	7.80	0.22	223.03	3.46	2315594.42	11577.97
R9	134.46	26.84	3.18	0.08	164.56	2.55	1488759.10	7443.80
R10	217.33	32.34	9.07	0.31	259.05	4.02	2540932.20	12704.66
R11	82.76	12.19	9.63	0.11	104.70	1.62	972980.77	4864.90
R12	204.27	36.08	3.28	0.23	243.86	3.78	2299585.93	11497.93
C1	785.84	158.79	14.80	1.86	961.29	14.90	8590982.07	42954.91
C2	750.00	135.76	17.59	1.49	904.85	14.03	8194188.85	40970.94
C3	841.97	146.35	17.86	1.66	1007.83	15.62	9150446.30	45752.23
C4	7093.32	1364.78	25.74	14.81	8498.66	131.73	75580946.46	377904.73
C5	5565.81	1413.50	33.82	14.61	7027.74	108.93	54682644.12	273413.22
C6	358.92	48.24	19.57	0.56	427.30	6.62	4358691.93	21793.46
C7	1319.02	188.02	14.45	2.84	1524.34	23.63	15527035.64	77635.18
C8	850.98	159.49	33.79	2.13	1046.39	16.22	9270644.19	46353.22
01	800.98	133.84	16.09	1.93	952.84	14.77	9188844.94	45944.22
O2	2554.94	583.33	19.85	6.38	3164.50	49.05	25872657.35	129363.29
03	1359.33	265.44	21.89	3.72	1650.39	25.58	14621757.02	73108.79
O4	1272.51	252.25	12.15	2.83	1539.74	23.87	13610301.50	68051.51
O5	857.68	155.45	13.69	1.15	1027.96	15.93	9539534.55	47697.67
O6	2135.85	440.75	17.41	2.26	2596.27	40.24	22045723.58	110228.62
O7	625.14	90.76	13.34	0.55	729.80	11.31	7219623.32	36098.12
O8	1473.19	265.48	9.02	1.25	1748.95	27.11	15755091.90	78775.46
O9	294.18	38.31	8.84	0.23	341.55	5.29	3477331.02	17386.66
O10	1717.36	301.85	11.21	4.11	2034.53	31.54	18606594.52	93032.97
011	2502.68	444.85	9.29	5.83	2962.65	45.92	27103413.58	135517.07
Total	34985.79	6882.40	385.65	75.18	42329.01	656.10	373578263.34	1867891.32
Ν	31	31	31	31	31	31	31	31
Avg	1128.57	222.01	12.44	2.43	1365.45	21.16	12050911.72	60254.56

Table 14 EC & EE from building maintenance

3.2.3.6. Embodied carbon dioxide from construction and demolition waste disposal

Building waste can account for 80–90 percent of the weight of building materials during the construction phase, according to (Jie et al., 2011; Zhang and Wang, 2015).

Assuming that the materials were transported via vehicle based, the carbon dioxide emissions generated in the waste disposal process can be calculated as in Eq. 10:

$$C_{ew} = (Q_w * D_w + Q_{rw} * D_w + Q_r * D_r) * EF_t + \varepsilon * Q_r * EF_r$$
(10)

Where:

Cew stands for the embodied carbon of waste disposal

Qw stands for the quantity of waste transported to landfills

Qrw stands for the quantity of recyclable materials to landfills

Qr stands for the quantity of recyclable materials to recycling sites

Dw stands for the distance from the construction site to the landfill

Dr stands for the distance from the construction site to the recycling sites

EFt stands for the emission factor due to waste transportation

 ε stands for the percentage change in carbon dioxide emissions over the virgin materials

EFr stands for the emission factor of recyclable materials

The weight of waste materials is estimated to be 85 percent of the total weight of building materials in this study. Other wastes are disposed in disposal sites and landfills, and aluminium and steel reinforcing are considered recycled resources. The distance traveled to transfer recyclable material for the recycling process was 10 kilometers, while the distance to the disposal location was 25 kilometers. Construction and demolition waste disposal is predicted to have produced 59.211 Mt carbon.

Table 15 Percentage changes of the carbon dioxide emissions from the recycled construction Type of Materials Percentage Changes in Carbon

	Percentage Changes in Carbon Emissions
Type of Materials	over the Virgin Materials
Recycled steel	-40%
Recycled aluminum	-80%

Data source: Chau et al. (2012), Purnell (2012).

Table 16 Cew in different Buildings

Building Type	Wt of material	Qw	Qr	Qrw	Eft	Efr	8	Cew(kg CO2)	Cew(ton CO2)
R1	1106869.5	940839.11	18219.44			1.91	-0.8	19118.663	10.110
KI	1100809.5	940839.11	0	1088650.1	0.25	1.69	-0.4	19118.003	19.119
R2	1141230.7	970046.10	16960.1			1.91	-0.8		
K2	1141250.7	970040.10	769.167	1123501.44	0.25	1.69	-0.4	18822.073	18.822
R3	522067.3	443757.21	10047.98			1.91	-0.8		
KS	322007.5	443737.21	458.2116	511561.11	0.25	1.69	-0.4	10956.079	10.956
R4	515721.59	438363.35	9828.99			1.91	-0.8		
K4	515721.59	438303.33	269.787	505622.81	0.25	1.69	-0.4	10519.04	10.519
R5	526965 19	45(225.41	11508.68			1.91	-0.8		
КЭ	536865.18	456335.41	406.812	524949.693	0.25	1.69	-0.4	12334.905	12.335
R6	520025.95	450530.47	11508.68			1.91	-0.8		
KO	530035.85	430330.47	406.812	518120.355	0.25	1.69	-0.4	12326.131	12.326
R7	762671.53	648270.80	32058.78			1.91	-0.8		
κ/	/020/1.55	048270.80	720.5688	729892.185	0.25	1.69	-0.4	32945.405	32.945
R8	965648.12	820800.90	15974.57			1.91	-0.8		
Ко	903048.12	820800.90	0	949673.546	0.25	1.69	-0.4	16756.778	16.757
R9	684920.38	582182.32	16485			1.91	-0.8		
K9	084920.38	382182.32	1078.768	667356.61	0.25	1.69	-0.4	18129.581	18.130
R10	1091590.1	927851.61	21198.12			1.91	-0.8		
K 10	1091390.1	927831.01	1078.768	1069313.24	0.25	1.69	-0.4	23229.918	23.230
R11	120020 05	272012 25	7450			1.91	-0.8		
KII	438838.06	373012.35	341.2836	431046.773	0.25	1.69	-0.4	8191.568	8.192
D12	1102962	029292 59	20805.67			1.91	-0.8		
R12	1103863	938283.58	691.5804	1082365.78	1.25	1.69	-0.4	243286.34	243.286

Building Type	Wt of material	Qw	Qr	Qrw	Eft	Efr	3	Cew(kg CO2)	Cew(ton CO2)
C1	3246388.2	2759429.95	99069.76			1.91	-0.8		
CI	5240500.2	2139429.93	5942.013	3141376.4	0.18	1.69	-0.4	31505.684	31.506
C2	2619826.6	2226852.64	146668.8			1.91	-0.8		
	2019820.0	2220832.04	2789.829	2470367.98	0.18	1.69	-0.4	42653.583	42.654
C3	3021706.3	2568450.32	172869.9			1.91	-0.8		
0.5	5021700.5	2508450.52	563.2032	2848273.21	0.18	1.69	-0.4	49014.004	49.014
C4	26126827	22207802.60	1214247			1.91	-0.8		
	20120027	22207802.00	8944.992	24903634.5	0.18	1.69	-0.4	349425.53	349.426
C5	25813049	21941091.63	421084.8			1.91	-0.8		
CJ	25815049	21941091.05	8944.992	25383019.2	0.18	1.69	-0.4	133753.75	133.754
C6	1298350.9	1103598.24	34221.54			1.91	-0.8		
	1298350.9	1105598.24	1924.075	1262205.26	0.18	1.69	-0.4	10930.681	10.931
C7	5673644	4822597.41	264283.6			1.91	-0.8		
	5075044	4022397.41	6602.291	5402758.08	0.18	1.69	-0.4	78129.698	78.130
C8	3665814.8	3115942.54	157258.5			1.91	-0.8		
0	5005814.8	5115742.54	2924.905	3505631.35	0.18	1.69	-0.4	46213.033	46.213

Building Type	Wt of material	Qw	Or	Orw	Eft	Efr	3	Cew(kg CO2)	Cew(ton CO2)
			81081.18	QI w		1.91	с -0.8		
O1	3864393.8	3284734.75	6258.206	3777054.44	0.18	1.69	-0.4	27127.618	27.128
			285083	3777031.11	0.10	1.91	-0.8	27127.010	27.120
O2	11511350	9784647.12	3687.86	11222578.7	0.18	1.69	-0.4	85947.068	85.947
	c022552.1		146005.9			1.91	-0.8		
O3	6032573.1	5127687.13	2945.977	5883621.23	0.18	1.69	-0.4	44572.748	44.573
0.4	5 (20222 1	1 (1 10 22 00	166015.3			1.91	-0.8		
O4	5429333.1	4614933.09	3963.372	5259354.34	0.18	1.69	-0.4	50105.641	50.106
05	2792905 7	221/224.97	158986			1.91	-0.8		
O5	3783805.7	3216234.86	7252.533	3617567.18	0.18	1.69	-0.4	48689.906	48.690
O6	9569344.7	8133942.99	271097			1.91	-0.8		
00	9309344.7	8155942.99	0	9298247.69	0.18	1.69	-0.4	79341.588	79.342
07	2826343.2	2402201 70	81103.92			1.91	-0.8		
07	2820343.2	2402391.70	2181.556	2743057.7	0.18	1.69	-0.4	24691.498	24.691
08	5965849.6	5070972.15	231820.9			1.91	-0.8		
08	5905849.0	5070972.15	24.2382	5734004.49	0.18	1.69	-0.4	66539.164	66.539
09	1498932.7	1274092.78	15545.16			1.91	-0.8		
07	1490932.7	1274092.78	1344.672	1482042.86	0.18	1.69	-0.4	5716.5973	5.717
O10	7599333.8	6459433.77	319380	_		1.91	-0.8		
010	1577555.6	0+37+33.17	2451.712	7277502.14	0.18	1.69	-0.4	92385.171	92.385
011	9410874.2	7999243.08	491420	_		1.91	-0.8		
011	9410074.2	1777245.00	6903.624	8912550.59	0.18	1.69	-0.4	142195	142.195
	Total 1835554.4							1835.554	
	N 31								31
		Avg	5					59211.433	59.211

3.2.4. Selection alternative materials and allocation EE and EC

Different alternative materials for walls, opening were selected. Due to complexity of calculation, only 2 units were selected for alternative material estimation. It is because; materials for wall and window contribute major proportion of EE and EC.

Alternative Materials for wall											
Material 1:Au	Material 1:Autoclave Aerated Concrete Blocks										
Literature	EE:MJ/kg	eCO2/kg	Co2/kg	Source	Remarks						
Source 1 :	0.72	0.05		(Shukla,2014)	Ref: 3.0EE, 0.24 eCO2						
Source 2 :	3.5	0.24-0.375	0.076-0.102	(Jones & hammond, 2008)	and 0.076CO2						
Material 2:Co	ncrete Blocks										
Source 1 :	0.59	0.063	0.059	(ICE,2011)	same						
Material 3: St	abilized Soil B	locks (8% Ceme	nt)								
Source 1 :	0.83	0.084	0.082		same						
Alternative M	aterials for Ope	nings (window)									
Material 1:Tir	nber										
Source 1 :	8.5	0.125		(Jones,2008)	Ref: 10 EE,						
					0.46 eCO2 and 0.45						
Source 2 :	10	0.46	0.45	(ICE,2011)	CO2						

Chapter 4: CASE STUDY

The study was carried on residential, commercial and office buildings of the Kathmandu district. The research area is located in the Bagmati province. The research area is a mixed residential and commercial urban area with low rises houses and commercial buildings. Study area covers the area of 49.45 km².kathmandu stands at an elevation of approximately 1400m above sea level. Kathmandu is surrounded by Bhaktapur district in east, Lalitpur and Makawanpur in south, Dhadhing and Nuwakot on west and Sindhupalchowk district in north. The total population of the district is 1,740,977 in 2011.

4.1. Building and Vicinity

The study area comprises majority of residential buildings followed by commercial and institutional buildings. There were considerable of schools, colleges, shopping malls. The rate of lands transaction was increasing day by day for the building purpose.



Figure 5 Google image of Kathmandu (july 2021)

4.2. Background of the Study Area

The reason for the selection of the site is the increasing built-up urban areas which increased from 5.1% of area in 1989 to about 26.06 % in 2016 as shown in the figure below (GGGI, 2016). This indicates that the built-up area is bound to increase further thus increasing the carbon emission.

Table 18 Summary of land use land cover change in the period of 1989–2016 (areas are presented

	1989		1999		2009		2016	
LULC Class	Area	%	Area	%	Area	%	Area	%
Built-up area	2153.79	5.1	4712.88	11.15	10,216.20	24.16	11,020.62	26.06
Agriculture	34,057.40	81	31,069.20	73.48	27,007.37	63.87	23,387.06	55.3
Forest	4138.56	9.8	4172.76	9.89	3627.99	8.58	6227.37	14.73
BG	1854.54	4.4	2252.7	5.34	1355.13	3.21	1576.73	3.73
River	80	0.2	76.8	0.18	74.5	0.18	73	0.17
Total	42,284.30	100	42,284.30	100	42,284.30	100	42,284.30	100

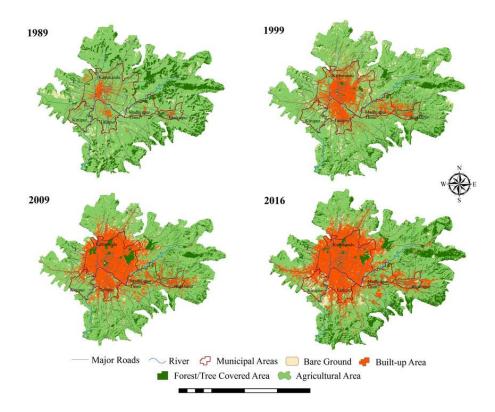


Figure 6 Land use land cover maps of Kathmandu Valley (Asif Ishtiaque et. al., 2017)

The 2011 national census (CBS 2012) reported the following for Kathmandu district:

- Out of 435544 households in Kathmandu, about 39 % lived in their own buildings while about 59% lived in rented houses.
- Of the 435544 households in Kathmandu 18.5% lived in the building with mud bonded bricks/stone, 38% lived in building with cement bonded bricks/stone, 40% lived in building with reinforced concrete (RCC) foundation, 0.5% lived in building with wooden pillar.
- 77% households are having RCC roof and 16% houses with galvanized iron roofing.
- Many houses made with mud bonded bricks/stones, reinforced concrete (RCC) foundation buildings were damaged due to 2015 earthquake in the rural part of the Kathmandu district.

4.3. Building Materials used and Construction Technology

4.3.1. Building Materials

Brick is the most common building construction material having high EE and EC evolving potential. Brick is followed by sand and aggregate for RCC and timbers for the openings of building. Majority of the bricks used for the construction purpose in Kathmandu are originated in Bhaktapur district and few houses used bricks from Terai. The percentage share of 5 major construction materials brick, aggregate, cement, rebar and timber is 13.5%, 23.8%, 14.3%, 3.33% and 0.2% respectively in RCC construction.

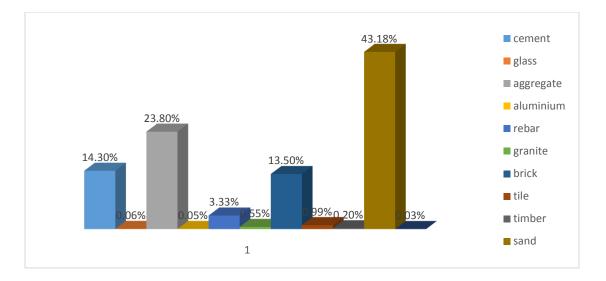


Figure 7 shares of construction material

Most of the houses in the study area used timber as primary opening material which is 12.9% of the selected buildings whereas 87.1% of the buildings used aluminium in their opening. Detail of the construction material used in the buildings have been showed in preceding chapter.

Chapter 5: DATA ANALYSIS, RESULTS AND DISCUSSION

This chapter deals with overall findings and analysis in response to research questions. Data collected from the field are thoroughly studied, entered in excel and examined for errors.

5.1. Materials used and EE, EC and CO2 e Estimation

In this, data collected from the site are first stored in MS-excel based worksheet. The quantity included in the BOQ of distinct buildings is used to do detailed material estimation, which is followed by mass analysis and then the Embodied Energy, Embodied Carbon, and Embodied Carbon dioxide equivalent analysis. Embodied Energy, Embodied Carbon and Embodied Carbon dioxide equivalent of each construction materials is found out. After that, Embodied Energy, Embodied Carbon and Embodied Carbon dioxide equivalent due to chemical reaction from cement production is found out. Then, the Embodied Energy, Embodied Carbon and Embodied Carbon dioxide equivalent due to transportation of construction materials to the site is found out. Followed by the calculation of embodied energy, embodied carbon and embodied carbon dioxide equivalent due to waste production and labor activities (site activities) is done. Lastly, embodied energy, embodied carbon and embodied carbon dioxide equivalent due to building maintenance and building demolition is calculated. The total embodied energy, embodied carbon and/or carbon dioxide equivalent is obtained by adding the embodied energy, embodied carbon and/or embodied carbon dioxide equivalent due to mass, chemical reaction, material transportation, waste and labor activities (site activities), building maintenance and building demolition activities. The findings are then analysed and the result are discussed.

Step 1: Material Analysis

All surveyed buildings were grouped and given a code as R, R2, R3 ...Rn for residential building, C1, C2, C3 ...Cn for the commercial building and O1, O2, O3 ...On for the office buildings. The building construction materials that were used in the construction, such as foundation, wall, openings, flooring, ceiling and roofing were identified. In this study, sanitary and electrical works have been intentionally discarded due to the

complexity of the work. The key construction material used in foundation was aggregate, sand, OPC cement, rebars.

All the selected buildings had a bricks wall. The material constituted of bricks and mortar of PPC cement as well as plasterwork was done with PPC cement. All the concreting works were of OPC cement. All the ceilings have plaster work and all floors have PPC cement punning. Openings such as doors and windows had either wooden frame and glass shutter or aluminium and glass.

Step 2: Mass Analysis

The weight of all the construction materials was calculated in kg. The calculation of weight of construction material was done by using the BoQ of the buildings as well as the buildings drawings collected from different contractors. The mass analysis of the building shows that aggregate, brick, cement and sand were the extensively used material. Reinforcement, tile and granite were also the major constituents of building materials. Detail mass analysis of the construction materials have been attached in annex 8.

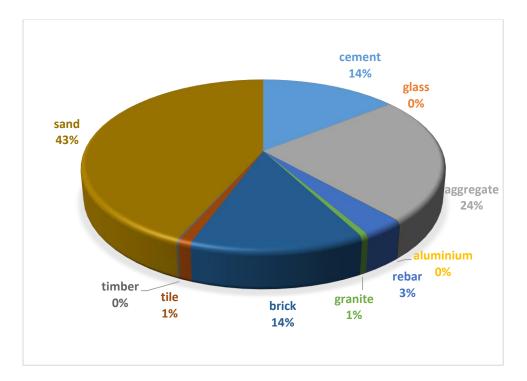


Figure 8 Building Materials proportion according to weight

Step 3: EE, EC and ECO₂e Analysis

After multiplying the mass of the construction material obtained in the previous stage by the respective coefficients, the mass was changed into EE, EC, and ECO2e. EE (expressed in MJ) was obtained by multiplying the mass with the EE coefficient (expressed in MJ/kg of material). EC (expressed in kgCO₂) was obtained by multiplying the mass with the EC coefficient (expressed in kgCO₂/kg of material) and ECO₂e (expressed in kgCO₂e) was obtained by multiplying the mass with the EC coefficient (expressed in kgCO₂e) was obtained by multiplying the mass with the EC coefficient (expressed in kgCO₂e) was obtained by multiplying the mass with the EC coefficient (expressed in kgCO₂e /kg of material). The figures were taken from the Inventory of Carbon and Energy V3.0 because there was no appropriate database in Nepal for embodied energy, embodied carbon, and embodied carbon dioxide equivalent Coefficient.

5.2.EE, EC and CO₂ e Calculation

Estimation of EE, EC and CO₂ e of 31 building were calculated by using the values obtained from material estimation. The detail estimation is attached in annex 6. It was found that cement accounts for highest proportion of EC and CO₂ e contribution which is 611.89 tonCO₂ and 633.33 tonCO₂ e. Glass and paints accounts for the lowest proportion of EC and CO₂ e contribution which is 2.52 tonCO₂ and 2.67 tonCO₂ e and 3.15 tonCO₂ and 3.81 tonCO₂ e respectively.

Building Material	Avg Embodied carbon	Avg Embodied carbon	Avg Embodied Energy	
	ton CO e	tonCO ₂	MJ	
Cement	633.33	611.89	3682649.515	
Aggregate	5.92	5.47	94563.54149	
Reinforcement	324.10	304.94	3991361.632	
Brick	154.79	148.34	1934850.533	
Tile	9.89	9.04	156846.9706	
Sal Wood	3.87	4.34	94350.88946	
Aluminium	24.19	21.76	409359.0395	
Paints	3.81	3.15	91601.69973	
Glass	2.67	2.52	44009.94118	
Granite	18.72	17.11	294095.859	

Table 19 Construction material wise total EE and EC

From the detail analysis, it was found that, cement contribute highest share of EC in term of weight (54.21%). Followed by reinforcement which is 27% of total emission. After that, brick contribute third highest share of EC in term of weight (13.1%). Though other construction materials contributes the negligible share which is less than 1%.

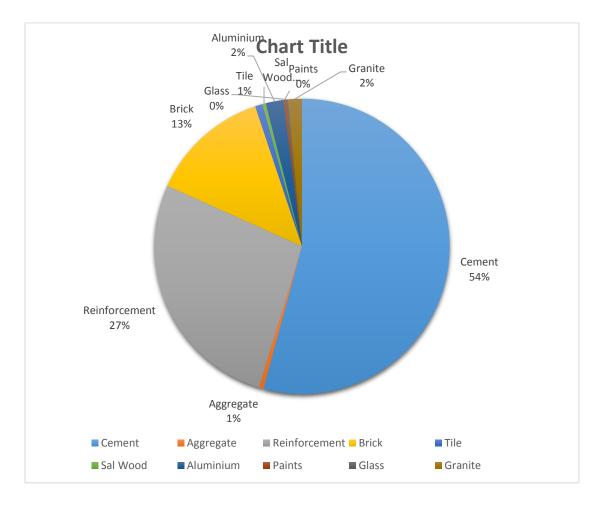


Figure 9 EC contribution of construction material by weight

If we consider EE of the construction materials reinforcement comes at the first rank and cement comes at the second place contributing 36.9% and 34.12% respectively. Aluminium accounts for 3.79% of total EE and 1.92% of total EC emission, the weight of material used in building is 0.05% of the total weight of the building. Thus, the shares of Ee and EC emission of aluminium are the highest in building as compared with other construction materials. On the other hand, having high account in weight aggregate has the lowest shares on the EE and EC emission.

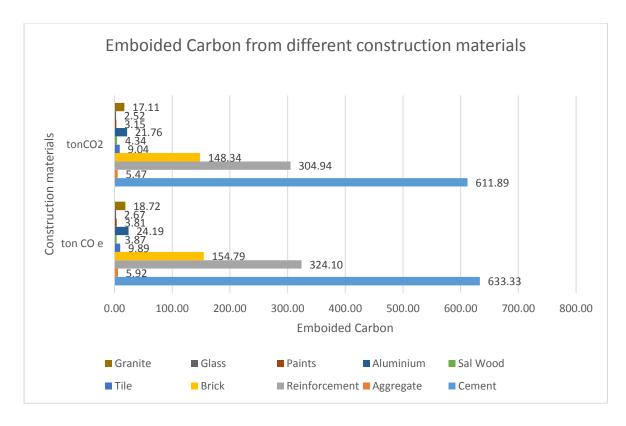


Figure 10 Material wise share of EC and carbon equivalent emission

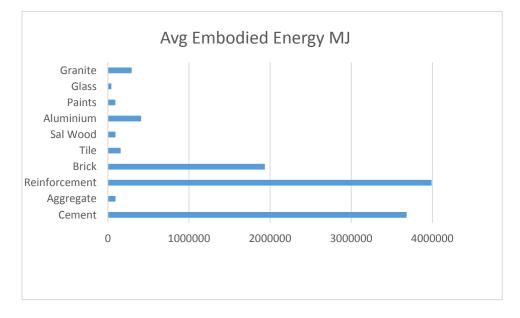


Figure 11 Material wise share of EE

5.3. Alternative Material Analysis

Different types of alternative construction material are available in the market. Among them, some of the construction materials were selected like AAC blocks in place of the bricks and same as hollow concrete blocks in place of the bricks. At first, total 31 buildings brick work was replaced by the AAC block and further analysis was carried out. After that, Bricks works was replaced by hollow concrete blocks and same process was repeated.

5.3.1. Analysis from alternate materials

Total 31 buildings were selected and firstly brickwork was replaced by AAC block and secondly replaced by hollow concrete block then detail analysis was done. The detail calculation of the buildings is presented in the tables below;

Building Type	Cmm=kg CO2	Cep(ton CO2)	Cec(ton CO2)	Cet(ton CO2)	Cer(ton CO2)	Cew(ton CO2)	Cemb
R1	180.09	35.57	1.99	0.75	3.39	19.08	240.86
R2	197.39	33.71	2.73	0.94	3.64	18.78	257.18
R3	92.79	16.39	2.76	0.45	1.74	10.94	125.08
R4	89.40	16.73	3.47	0.43	1.71	10.50	122.24
R5	94.55	16.42	3.13	0.45	1.78	12.32	128.63
R6	94.38	16.19	2.78	0.45	1.76	12.31	127.87
R7	161.56	24.79	5.42	0.35	2.98	32.92	228.01
R8	169.73	27.91	7.80	0.20	3.19	16.72	225.55
R9	123.22	26.84	3.18	0.05	2.38	18.11	173.79
R10	204.41	32.34	9.07	0.28	3.81	23.20	273.12
R11	70.05	12.19	9.63	0.08	1.43	8.17	101.54
R12	186.78	36.08	3.28	0.20	3.51	243.10	472.94
C1	748.51	158.79	14.80	1.83	14.32	31.47	969.72
C2	716.46	135.76	17.59	1.46	13.50	42.62	927.40
C3	799.61	146.35	17.86	1.62	14.96	48.97	1029.38
C4	6750.95	1364.78	25.74	14.60	126.42	349.11	8631.59
C5	5332.68	1413.50	33.82	14.43	105.31	133.54	7033.28
C6	341.33	48.24	19.57	0.55	6.35	10.91	426.96
C7	1285.25	188.02	14.45	2.77	23.10	78.03	1591.62
C8	806.09	159.49	33.79	2.11	15.52	46.17	1063.17
01	745.82	133.84	16.09	1.86	13.91	27.08	938.60
02	2364.60	583.33	19.85	6.16	46.10	85.77	3105.80
03	1265.65	265.44	21.89	3.51	24.13	44.49	1625.11
O4	1203.74	252.25	12.15	2.77	22.80	50.04	1543.75

Table 20 Tota	l EC after	r replacing	brick work	by AAC blocks

05	834.84	155.45	13.69	1.13	15.58	48.67	1069.35
06	1864.61	440.75	17.41	1.93	36.03	79.09	2439.82
07	567.35	90.76	13.34	0.49	10.42	24.64	707.00
08	1307.84	265.48	9.02	1.10	24.54	66.39	1674.36
09	255.70	38.31	8.84	0.20	4.70	5.68	313.42
O10	1621.10	301.85	11.21	4.05	30.04	92.30	2060.54
011	2409.82	444.85	9.29	5.77	44.48	142.11	3056.32
Total	28855.38	6135.71	365.15	63.12	549.00	1833.21	42684.02
Ν	31	31	31	31	31	31	31
Avg	930.82	197.93	11.78	2.04	17.71	59.14	1376.90

Building	EE due to Cmm	EE due to	EE due to Cec	EE due	EE due	EE due to Cew	Total EE
Type R1	1944742.07	Cep 192121.055	9490.128	to Cet 374.4	to Cer 10733.64	107873.06	2265334.4
R1 R2	2224909.3	192121.033	13500.32	416.4	12104.34	121648.61	2554620.9
R2 R3	1046752.17	88535.65	14010.06	416.4	5748.571	57773.143	1213236
R3 R4	999675.738	90338.605	17326.99	416.4	5538.789	55664.826	1168961.3
R4 R5	1052037.47	88662.175	16001.1	416.4	5785.586	58145.136	1221047.9
R6	1056539.2	87423.28	13651.22	416.4	5790.15	58191.013	1222011.3
R7	1851824.84	133901.075	14454.59	466.8	10003.24	100532.53	2111183.1
R8	2058794.18	150763.375	24155.73	207.6	11169.6	112254.52	2357345
R9	1275396.28	144961.734	15389.08	177.6	7179.624	72155.216	1515259.5
R9 R10	2280752.05	174646.43	24603.54	177.0	12400.86	124628.66	2617201.9
R10 R11	820205.672	65833.985	26996.63	170.4	4566.039	45888.696	
R11 R12	2005016.96	194851.965	17287.74	171.0	11086.71	111421.41	963662.62
C1	7461244.41	857602.025	95515.17	1083.12	42077.22	422876.1	2339849.6 8880398
C1 C2	7201701.56	733240.095	100435.1	1083.12	40182.3	403832.07	8480473.5
C2 C3	8075192.49	790386.31	84590.17	1073.52	40182.3	403832.07	
C3	66458527.2	7370937.07		1292.64		3717025.3	9445798.6
C4 C5			139895.3		369853.3		78057531
	45744391.7	7634045.93	206687.3	1058.88	267930.9	2692705.7	56546821
C6 C7	3927443.99	260545.906	86940.78	1056.24	21379.93	214868.34	4512235.2
	13933891	1015478.61	78842.31	1046.64	75146.29	755220.24	15859625
C8	8096597.62	861357.193	100344.1	1257.6	45297.78	455242.72	9560097
01	8127942.81	722852.025	77498.27	1094.4	44646.94	448701.72	9422736.2
02	21759880	3150479.29	65980	1101.6	124887.2	1255116.4	26357444
03	12656488.7	1433615.82	89613.14	1406.4	70905.62	712601.49	14964631
04	11875505.1	1362334.54	48630.5	429.6	66434.5	667666.71	14021001
05	8521627.5	839582.239	70582.46	349.2	47160.71	473965.11	9953267.2
06	18308506.7	2380410.55	80725.4	345.6	103849.9	1043691.9	21917530
07	6387681.77	490204.812	69721.09	240	34739.24	349129.35	7331716.3
08	13498459.5	1433786.66	44849.51	276	74886.86	752612.93	15804871
09	3046560.86	206887.52	42789.04	139.2	16481.88	165642.93	3478501.4
010	16473080.8	1630220.06	49449.18	1106.4	90769.28	912231.29	19156857
011	24219351.8	2402540.53	43715.68	1094.4	133333.5	1340001.8	28140038
Total	324390721	37170588.4	1783672	20369.04	1816827	18259109	383441286
N	31	31	31	31	31	31	31
Avg	10464216.8	1199051.24	57537.79	657.0658	58607.31	589003.51	12369074

Table 21 Total EE after brickwork replaced by AAC Block

Building Type	Cmm=kg CO2	Cep(ton CO2)	Cec(ton CO2)	Cet(ton CO2)	Cer(ton CO2)	Cew(ton CO2)	Cemb
R1	185.74	35.57	1.99	0.78	3.47	19.23	246.79
R2	203.55	33.71	2.73	0.97	3.73	18.95	263.64
R3	95.18	16.39	2.76	0.46	1.78	11.00	127.58
R4	92.35	16.73	3.47	0.45	1.75	10.58	125.33
R5	97.28	16.42	3.13	0.45	1.82	12.39	131.48
R6	97.12	16.19	2.78	0.46	1.81	12.38	130.73
R7	165.65	24.79	5.42	0.37	3.04	33.03	232.30
R8	174.89	27.91	7.80	0.23	3.27	16.86	230.96
R9	126.56	26.84	3.18	0.07	2.43	18.20	177.28
R10	208.25	32.34	9.07	0.30	3.87	23.31	277.14
R11	73.82	12.19	9.63	0.10	1.48	8.27	105.50
R12	191.97	36.08	3.28	0.23	3.59	243.83	478.97
C1	759.59	158.79	14.80	1.87	14.49	31.61	981.16
C2	726.42	135.76	17.59	1.50	13.66	42.75	937.68
C3	812.18	146.35	17.86	1.68	15.16	49.13	1042.36
C4	6852.59	1364.78	25.74	15.02	128.00	350.37	8736.51
C5	5401.89	1413.50	33.82	14.72	106.39	134.40	7104.72
C6	346.55	48.24	19.57	0.57	6.43	10.98	432.35
C7	1249.00	188.02	14.45	2.90	22.54	78.42	1555.33
C8	819.42	159.49	33.79	2.16	15.73	46.34	1076.93
01	762.19	133.84	16.09	1.93	14.17	27.28	955.51
O2	2421.10	583.33	19.85	6.39	46.98	86.47	3164.13
03	1293.46	265.44	21.89	3.51	24.56	44.83	1653.70
O4	1224.16	252.25	12.15	2.86	23.12	50.30	1564.82
05	841.62	155.45	13.69	1.15	15.68	48.75	1076.35
06	1945.13	440.75	17.41	2.27	37.29	80.09	2522.94
07	584.51	90.76	13.34	0.56	10.68	24.85	724.71
08	1356.93	265.48	9.02	1.30	25.31	67.00	1725.03
09	267.12	38.31	8.84	0.25	4.88	5.82	325.22
O10	1649.67	301.85	11.21	4.17	30.49	92.65	2090.04
011	2437.39	444.85	9.29	5.89	44.91	142.45	3084.78
Total	29376.23	6135.71	365.15	65.53	557.11	1842.53	43281.97
Ν	31	31	31	31	31	31	31
Avg	947.62	197.93	11.78	2.11	17.97	59.44	1396.19

Table 22 Total EC after replacing brickwork by hollow cement block

Building	EE due to	EE due to	EE due	EE due	EE due	EE due to	
Туре	Cmm	Сер	to Cec	to Cet	to Cer	Cew	Total EE
R1	1824181.67	192121.055	9490.128	374.4	10130.84	101814.9	2138113
R2	2093423.8	182041.93	13500.32	416.4	11446.91	115041.47	2415870.8
R3	995795.817	88535.65	14010.06	416.4	5493.79	55212.586	1159464.3
R4	936668.838	90338.605	17326.99	416.4	5223.754	52498.729	1102473.3
R5	993779.419	88662.175	16001.1	416.4	5494.295	55217.669	1159571.1
R6	998281.153	87423.28	13651.22	416.4	5498.86	55263.545	1160534.5
R7	1764542.99	133901.075	14454.59	466.8	9566.827	96146.614	2019078.9
R8	1948811.18	150763.375	24155.73	207.6	10619.69	106727.88	2241285.4
R9	1204237.16	144961.734	15389.08	177.6	6823.828	68579.47	1440168.9
R10	2198923.6	174646.43	24603.54	170.4	11991.72	120516.78	2530852.5
R11	739705.802	65833.985	26996.63	171.6	4163.54	41843.578	878715.13
R12	1894265.36	194851.965	17287.74	184.8	10532.95	105856.14	2222979
C1	7224899.91	857602.025	95515.17	1083.12	40895.5	410999.79	8630995.5
C2	6989330.06	733240.095	100435.1	1082.4	39120.44	393160.4	8256368.5
C3	7806987.69	790386.31	84590.17	1073.52	43415.19	436322.64	9162775.5
C4	64290681.8	7370937.07	139895.3	1292.64	359014	3608091	75769912
C5	44268280.8	7634045.93	206687.3	1058.88	260550.4	2618531.2	54989154
C6	3816072.38	260545.906	86940.78	1056.24	20823.08	209271.92	4394710.3
C7	13263740.3	1015478.61	78842.31	1046.64	71795.54	721545.17	15152449
C8	7812394.5	861357.193	100344.1	1257.6	43876.77	440961.51	9260191.7
01	7778623.26	722852.025	77498.27	1094.4	42900.34	431148.41	9054116.7
O2	20554687.7	3150479.29	65980	1101.6	118861.2	1194555.5	25085665
O3	12063266.8	1433615.82	89613.14	1406.4	67939.51	682792.08	14338634
O4	11440102.4	1362334.54	48630.5	429.6	64257.49	645787.73	13561542
05	8377020.19	839582.239	70582.46	349.2	46437.67	466698.59	9800670.4
06	16591051.7	2380410.55	80725.4	345.6	95262.67	957389.79	20105186
O7	6021779.18	490204.812	69721.09	240	32909.73	330742.74	6945597.5
08	12451443.3	1433786.66	44849.51	276	69651.78	700000.36	14700008
09	2802923.81	206887.52	42789.04	139.2	15263.7	153400.16	3221403.4
010	15863562.7	1630220.06	49449.18	1106.4	87721.69	881603	18513663
011	23631409.4	2402540.53	43715.68	1094.4	130393.8	1310457.7	27519611
Total	310640875	37170588.4	1783672	20369.04	1748078	17568179	368931760
Ν	31	31	31	31	31	31	31
Avg	10020673.4	1199051.24	57537.79	657.0658	56389.6	566715.45	11901025

Table 23 Total EE after replacing brickwork by hollow cement block

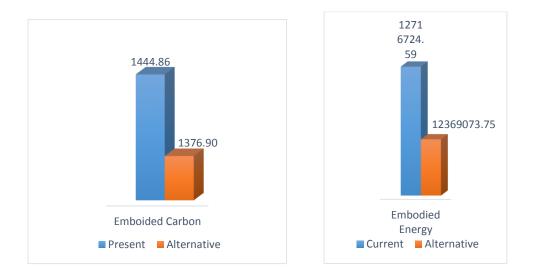
Building Type	Cmm=kg CO2	Cep(ton CO2)	Cec(ton CO2)	Cet(ton CO2)	Cer(ton CO2)	Cew(ton CO2)	Cemb
R1	193.14	35.57	1.99	0.79	3.59	19.28	254.36
R2	211.62	33.71	2.73	0.98	3.86	19.00	271.90
R3	98.31	16.39	2.76	0.47	1.83	11.02	130.78
R4	96.22	16.73	3.47	0.46	1.81	10.60	129.29
R5	100.86	16.42	3.13	0.45	1.87	12.41	135.13
R6	100.69	16.19	2.78	0.47	1.86	12.40	134.39
R7	171.00	24.79	5.42	0.38	3.12	33.06	237.78
R8	181.64	27.91	7.80	0.23	3.37	16.90	237.86
R9	130.93	26.84	3.18	0.08	2.50	18.22	181.75
R10	213.27	32.34	9.07	0.31	3.95	23.34	282.27
R11	78.76	12.19	9.63	0.11	1.56	8.30	110.55
R12	198.77	36.08	3.28	0.24	3.69	244.04	486.10
C1	774.10	158.79	14.80	1.89	14.72	31.65	995.94
C2	739.45	135.76	17.59	1.51	13.86	42.78	950.96
C3	828.64	146.35	17.86	1.69	15.42	49.18	1059.13
C4	6985.62	1364.78	25.74	15.15	130.06	350.75	8872.10
C5	5492.47	1413.50	33.82	14.80	107.80	134.65	7197.04
C6	353.39	48.24	19.57	0.58	6.54	11.00	439.32
C7	1288.31	188.02	14.45	2.94	23.15	78.54	1595.41
C8	836.86	159.49	33.79	2.18	16.00	46.39	1094.70
01	783.63	133.84	16.09	1.95	14.50	27.34	977.35
02	2495.06	583.33	19.85	6.46	48.12	86.68	3239.51
03	1329.86	265.44	21.89	3.51	25.12	44.93	1690.77
04	1250.87	252.25	12.15	2.88	23.53	50.37	1592.06
05	850.49	155.45	13.69	1.16	15.82	48.78	1085.40
06	2050.52	440.75	17.41	2.37	38.92	80.39	2630.35
07	606.96	90.76	13.34	0.59	11.03	24.91	747.60
08	1421.18	265.48	9.02	1.36	26.30	67.18	1790.52
09	282.07	38.31	8.84	0.27	5.11	5.87	340.45
010	1687.08	301.85	11.21	4.21	31.07	92.76	2128.17
011	2473.47	444.85	9.29	5.92	45.47	142.55	3121.55
Total	30144.68	6135.71	365.15	66.24	569.03	1845.27	44140.48
Ν	31	31	31	31	31	31	31
Avg	972.41	197.93	11.78	2.14	18.36	59.52	1423.89

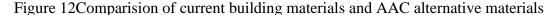
Table 24 Total EC after replacing brick work by stabilized soil blocks

Buildi	EE due to						
ng Turna	Cmm	EE due to	EE due	EE due	EE due	EE due to	
Туре		Cep	to Cec	to Cet	to Cer	Cew	Total EE
R1	1900486.52	192121.055	9490.128	374.4	10512.36	105649.22	2218633.7
R2	2176643.34	182041.93	13500.32	416.4	11863.01	119223.25	2503688.3
R3	1028047.01	88535.65	14010.06	416.4	5655.046	56833.208	1193497.4
R4	976547.041	90338.605	17326.99	416.4	5423.145	54502.609	1144554.8
R5	1030651.99	88662.175	16001.1	416.4	5678.658	57070.516	1198480.8
R6	1035153.72	87423.28	13651.22	416.4	5683.223	57116.392	1199444.2
R7	1819785.24	133901.075	14454.59	466.8	9843.039	98922.537	2077373.3
R8	2018421.4	150763.375	24155.73	207.6	10967.74	110225.79	2314741.6
R9	1249275.05	144961.734	15389.08	177.6	7049.017	70842.624	1487695.1
R10	2250714.3	174646.43	24603.54	170.4	12250.67	123119.27	2585504.6
R11	790655.622	65833.985	26996.63	171.6	4418.289	44403.806	932479.93
	1964362.05	194851.965	17287.74	184.8	10883.43	109378.5	2296948.5
C1	7374486.6	857602.025	95515.17	1083.12	41643.43	418516.52	8788846.9
C2	7123743.82	733240.095	100435.1	1082.4	39792.51	399914.69	8398208.6
C3	7976739.35	790386.31	84590.17	1073.52	44263.95	444852.66	9341906
C4	65662750.3	7370937.07	139895.3	1292.64	365874.4	3677037.5	77217787
C5	45202538	7634045.93	206687.3	1058.88	265221.7	2665477.6	55975029
C6	3886561.48	260545.906	86940.78	1056.24	21175.52	212814	4469093.9
C7	13687890.8	1015478.61	78842.31	1046.64	73916.29	742858.73	15600033
C8	7992271.78	861357.193	100344.1	1257.6	44776.15	450000.34	9450007.2
01	7999713.91	722852.025	77498.27	1094.4	44005.79	442258.22	9287422.6
02	21317475.6	3150479.29	65980	1101.6	122675.2	1232885.6	25890597
03	12438727.6	1433615.82	89613.14	1406.4	69816.82	701658.99	14734839
04	11715676.6	1362334.54	48630.5	429.6	65635.36	659635.33	13852342
05	8468544.76	839582.239	70582.46	349.2	46895.29	471297.7	9897251.7
06	17678059.9	2380410.55	80725.4	345.6	100697.7	1012012	21252251
07	6253365.53	490204.812	69721.09	240	34067.66	342379.95	7189979
08	13114118.7	1433786.66	44849.51	276	72965.15	733299.8	15399296
09	2957126.09	206887.52	42789.04	139.2	16034.71	161148.83	3384125.4
010	16249337.7	1630220.06	49449.18	1106.4	89650.57	900988.2	18920752
011	24003528.7	2402540.53	43715.68	1094.4	132254.4	1329156.7	27912290
				20369.0			37811510
Total	319343401	37170588.4	1783672	4	1791590	18005481	1
N	31	31	31	31	31	31	31
				657.065			
Avg	10301400	1199051.24	57537.79	8	57793.23	580821.97	12197261

Table 25 Total EE after replacing brick work by stabilized soil blocks

Total EE	12716724.59	As Built	Total EE	12716724.59	As Built
Total EC	1444.86	As built	Total EC	1444.86	As Duin
New EE	12369073.75	Using AAC	New EE	11901024.52	Using concrete
New EC	1376.90	Using AAC	New EC	1396.19	block
Reduced EE	347650.84	2.73%	Reduced EE	815700.07	6.85%
Reduced EC	67.96	4.70%	Reduced EC	48.67	3.37%


Table 26 Comparison with alternative materials in wall and opening


Total EE	12716724.59	As Built	Total EE	12716724.59	As Built
Total EC	1444.86	As Dull	Total EC	1444.86	As Dullt
New EE	13157044.06	Using aac	New EE	12197261.32	Using
		block and			stabilized
New EC	1417.01	aluminium	New EC	1423.89	soil blocks
Reduced EE	-440319.46	-3.35%	Reduced EE	519463.27	1.45%
Reduced EC	27.85	1.93%	Reduced EC	20.97	4.08%

5.3.2. Interpretation of the Findings; Using Alternative Materials

From the 3 different cases, some interesting results have derived. In this section, the result has been presented and conclusion has been made on the basis of the findings. Case 1 is the case in which the brickworks in wall is replaced by the AAC block in all 31 buildings. Case 2 is the case in which the brickworks in wall is replaced by the hollow cement concrete block in all 31 buildings. Similarly, case 3 is the case in which the brickworks in wall is replaced by the hollow cement concrete block in all 31 buildings. Similarly, case 3 is the case in which the brickworks in wall is replaced by the AAC block and the openings was replaced by aluminium in all 31 buildings. The result found due to alternative materials replacement has been elaborated below;

Case 1 ; In this case, AAC blocks was used as alternative material in the wall replacing traditional bricks to check EE and EC performance. The result summarized in the chart below shows that EE is reduced by 2.73% and EC is decreased by 4.7% when brick is replaced by AAC block.

Case 2; In this case, hollow cement concrete blocks was used as alternative material in the wall replacing traditional bricks to check EE and EC performance. The result summarized in the chart below shows that EE is reduced by 6.85% and EC is decreased by 3.37% when brick is replaced by Cement concrete block.

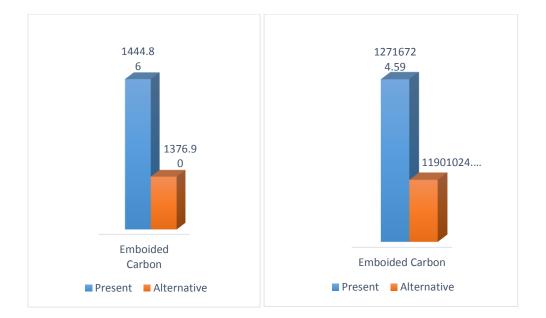


Figure 13 Comparison of current building material with concrete block alternative material

Case 3 ; In this case, AAC blocks and aluminium were used as alternative materials in the wall replaced traditional bricks and whereas, aluminium being widely used as opening materials was replaced for timber as openings in the wall to check EE and EC performance. The result summarized in the chart below shows that EE is increased by 3.35% and EC is decreased by 1.93% when brick is replaced by ACC block replaced bricks and aluminium replaced timber.

Figure 14 Comparison of current building materials and AAC, Aluminium alternative material

Case 4 ; In this case, stabilized soil blocks was used as alternative material in the wall replacing traditional bricks to check EE and EC performance. The result summarized in the chart below shows that EE is reduced by 1.45% and EC is decreased by 4.08% when brick is replaced by stabilized soil block.

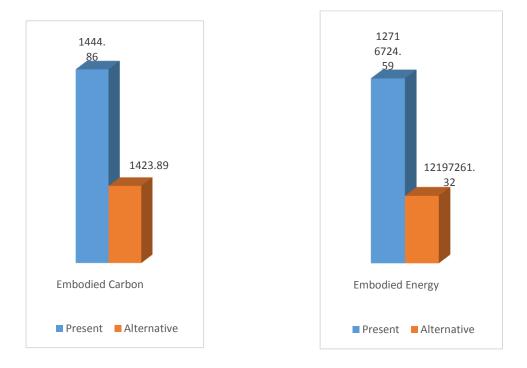


Figure 15 Comparison of current building materials and Stabilized earth block alternative material

5.3.3. Interpretation of EC and EE of different reconstruction model of earthquake resistance houses

Three different design model of the houses namely: brick masonry structure, steel structure and timber structure were taken from the design catalogue for reconstruction of earthquake resistance houses, approved by Nepal Government, Ministry of Urban Development for the estimation of the EE and EC. For the calculation portion all three model are chosen of two storey. The drawing and the quantity estimation was included in the ANNEX portion. The following tables shows the summary of EE and EC from three different models.

Table 27 Comparison of EE and EC of different reconstruction model houses

Building Type	Total EC (ton CO2)	Total EE (MJ)
Steel Structure	307.140	5742322.953
Brick Masonry	19.673	249386.126
Timber Structure	297.505	5726061.473

5.3.4. Summary of the findings

Reinforcement accounts highest share of EE (36.9%) followed by cement (34.12%), brick (17.92%) aluminium (3.79%), Granite (2.75%), tile (1.45%) contribution. In case of EC, cement has highest share of eCO_2 (53.61%) followed by reinforcement (27.44%), brick (13.1%) contribution.

Aluminium accounts for 3.79% of total EE and 1.92% of total EC emission, the weight of material used in building is 0.05% of the total weight of the building. Thus, the shares of Ee and EC emission of aluminium is the highest in building as compared with other construction materials. On the other hand, having high account in weight aggregate has the lowest shares on the EE and EC emission.

When a wall materials of the building is replaced by AAC block, total carbon emission and total embodied energy of the building is reduced by 4.7% and 2.73% respectively.

Similarly, when a wall materials of the building is replaced by hollow cement concrete block, total carbon emission and total embodied energy of the building is reduced by 3.37% and 6.85% respectively.

Similarly, when a wall materials of the building is replaced by stabilized earth block, total carbon emission and total embodied energy of the building is reduced by 4.08 % and 1.45 % respectively.

When wall materials of building is replaced by AAC block and opening is replaced by aluminium frames, the embodied carbon of the building is decreased by 1.93% and the embodied energy increased by 3.35%.

5.3.5. Discussion and Data Validation

We gained some insight into embodied carbon emissions, embodied energy from various building construction materials, and the impact of alternative construction materials on reducing embodied carbon in the building industry across its whole life cycle as a result of this research. According to our research, the building's total embodied carbon emissions during its entire life cycle are 1444.86 Mt. Buildings produce 1421.70 Mt CO2- 1599.6216 Mt CO2, according to a study published by

Weina Zhu et al. in 2020. This finding is relevant to the research and comes within the scope of Weina Zhu et al.

Buildings produce 2084 tonnes CO2-e, according to a 2014 study by Wahidul K. Biswas. Buildings produce 2992.207 tonnes CO2 according to a study conducted by Lei Luo et al. in 2020. This discovery is directly related to the study and fits within the scope of Wahidul K. Biswas and Lei Luo et al.

According to this study, using alternative building construction materials such as AAC blocks and hollow cement concrete blocks in walls can cut carbon emissions by 4.7 percent and 3.37 percent, respectively, while reducing embodied energy by 2.73 percent and 6.85 percent. According to a 2017 study by Akbarnezhad & Xiao, using wood in building construction alone reduces carbon dioxide emissions by 20 percent, accounting for 1.5 percent of New Zealand's total carbon dioxide emissions.

Chapter 6: CONCLUSION AND RECOMMENDATION

6.1. Conclusion

Various questions about the subject have been systematically answered as a result of this research. We intended to use a process-based method to determine the various types of building construction materials used in the Kathmandu construction sector, their respective shares of embodied energy and embodied carbon, and sustainable methods for reducing embodied energy and embodied carbon by using alternative construction materials in building construction. Following conclusion were made based on the study;

- The primary construction materials utilized in building construction include cement, sand, aggregate, brick, steel reinforcement, and timber. RCC roof construction accounts for 77 percent of all residences in Kathmandu (CBS 2012).
- Shares of the construction material by weight in building construction; Cement: 14%, Sand: 43%, aggregate 24%, brick: 14%, steel reinforcement: 3%, granite: 1%, tile: 1% and timber, aluminium, glass shares less than 1%.
- The data shows that the building sector in Kathmandu emits 1444.86 tonnes of embodied carbon and 12716724.59 MJ of embodied energy.
- According to the detailed study, there are a variety of alternative building materials that can lower carbon and energy footprints. The study looked at alternate materials such as AAC blocks, stabilized earth block and hollow cement concrete blocks for the wall, as well as aluminum for the apertures. According to the study, the use of aluminum in openings emits more carbon than the use of wood, hence aluminum cannot be considered an alternative material.
- When a building's wall materials are replaced with AAC blocks, embodied carbon is reduced by 4.7 percent and energy is reduced by 2.73 percent. Similarly, replacing brick wall with hollow cement concrete blocks resulted in a 3.37 percent reduction in carbon and a 6.85 percent reduction in energy. Similarly, replacing wall with stabilized earth blocks resulted in a 4.08 percent reduction in carbon and a 1.45 percent reduction in energy.
- When the building's wall materials are replaced with AAC blocks and the openings are replaced with aluminum frames, the building's embodied carbon is reduced by 1.93 percent while the embodied energy is increased by 3.35 percent.

• Structures that combine timber with other material have less severe environmental impacts than those using metal, brick or concrete. The life-cycle GHG emissions from structures made of a mix of concrete and brick appeared to be higher than those made of simply concrete.

6.2. Recommendation

The study has following recommendation are as follows:

- Only civil construction materials such as cement, sand, aggregate, wood, steel reinforcement, brick, tiles, granite, glass, paints, aluminum, and other similar materials are considered, while electrical fixtures and sanitary and plumbing fixtures are not. The inclusion of electrical, sanitary, and plumbing components in the analysis broadens the scope of the investigation.
- This study only looked at RCC structures, however it might be expanded to include brick masonry buildings, steel structure buildings, and so on.
- The analysis only takes into consideration the building, maintenance, and demolition phases, but this work might be expanded by including the operational phase.

Chapter 7: REFERENCES

Akbarnezhad, A., & Xiao, J. (2017). Estimation and Minimization of Embodied Carbon of buildings: A Review. Buildings/MDPI,2-24.

Ali Akbarnezhad and Jianzhuang Xiao, 2017.Estimation and Minimization of Embodied Carbon of Buildings: A Review. Buildings.

Arena AP, de Rosa C. Life cycle assessment of energy and environmental implications of the implementation of conservation technologies in school buildings in Mendoza–Argentina. Building and Environment 2003;38:359–68.

Arıoğlu Akan, M.Ö., Dhavale, D.G., Sarkis, J., 2017. Greenhouse gas emissions in the construction industry: An analysis and evaluation of a concrete supply chain. Journal of Cleaner Production 167, 1195-1207.

Asif Ishtiaque, Milan Shrestha, Netra B. Chhetri, 2017.Rapid Urban Growth in Kathmandu Valley, Nepal: Monitoring Land Use Land Cover Dynamics of a Himalayan City with Landsat Imageries.

Azari, R. 2019. Life Cycle energy Consumption of Buildings; Embodied + operational. Sustainable Construction Technologies.

Cabeza, L.F., Barreneche, C., Miró, L., Morera, J.M., Bartolí, E., Inés Fernández, A., 2013b. Low carbon and low embodied energy materials in buildings: A review. Renewable and Sustainable Energy Reviews 23, 536-542.

Chen TY, Burnett J, Chau CK. Analysis of embodied energy use in the residential building of Hong Kong. Energy 2001;26(4):323–40.

Chau, C.K., Leung, T.M., Ng, W.Y., 2015. A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings. Applied Energy 143, 395-413.

Chuai, X., Huang, X., Lu, Q., Zhang, M., Zhao, R., Lu, J., 2015. Spatiotemporal changes of built-up land expansion and carbon emissions caused by the Chinese construction industry. Environ. Sci. Technol. 49 (21), 13021e13030.

Crawford, R.H. Life Cycle Assessment in the Built Environment, Spon Press, London and New York, 2011

D'Amico, B., Pomponi, F., 2018. Accuracy and reliability: A computational tool to minimise steel mass and carbon emissions at early-stage structural design. Energy and Buildings 168, 236-250.

Department of Environmental Affairs and Tourism (DEAT), 'Green Building in South Africa: Emerging Trends', 2009, pp1-21.

Dimoudi A, Tompa C. Energy and environmental indicators related to construction of office buildings. Resources, Conservation and Recycling 2008;53(1–2): 86–95.

Ding, G., 2004. 'The Development of a Multi-Criteria Approach for the Measurement of Sustainable Performance for Built Projects and Facilities', Doctor of Philosophy Thesis. University of Technology, Sydney.

Ding, G., 2008. Sustainable construction-The role of environmental assessment tools. J. Environ. Manag. 86 (3), 451e464.

Ding, G., 2014. Life Cycle Assessment (LCA) of Sustainable Building Materials: anOverview, pp. 38e62.

Dixit, M.K., Fernandez-Solís, J.L., Lavy, S., Culp, C.H., 2010. Identification of parameters for embodied energy measurement: a literature review. Energy Build. 42 (8), 1238e1247.

Ewing, B.R., Hawkins, T.R., Wiedmann, T.O., Galli, A., Ercin, A.E., Weinzettel, J., SteenOlsen, K., 2012. Integrating ecological and water footprint accounting ina multi-regional inputeoutput framework. Ecol. Indicat. 23,1e8.

Gan, V.J.L., Cheng, J.C.P., Lo, I.M.C., Chan, C.M., 2017b. Developing a CO2-e accounting method for quantification and analysis of embodied carbon in high-rise buildings. Journal of Cleaner Production 141, 825-836.

Gerilla GP, Teknomo K, Hokao K., 2007An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment;42(7):2778–84.

Guggemos AA, Horvath A., 2005 Decision support tool for environmental analysis of commercial building structures. In: Proceedings of construction research congress: broadening perspectives.

Guo, J.e., Zhang, Z., Meng, L., 2012. China's provincial CO2emissions embodied in international and interprovincial trade. Energy Pol. 42, 486e497.

Gustavsson L, Sathre R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Building and Environment 2006;41(7): 940–51.

Gonza'lez MJ, Navarro JG., 2006 Assessment of the decrease of CO2 emissions in the construction field through the selection of materials: practical case study of three houses of low environmental impact. Building and Environment;41(7): 902–9.

Hammond, P.G., & Jones, C. (2011). The Inventory of Carbon and Ice. UK: BSRIABG.

HKEMSD, 2013. Transport - Energy Consumption Indicator. Hong Kong Electrical and Mechanical Services Department (HKEMSD), Hong Kong.

Huo, T., Cai, W., Ren, H., Feng, W., Zhu, M., Lang, N., Gao, J., 2019. China's building stock estimation and energy intensity analysis. Journal of Cleaner Production 207, 801-813. Iddon, C.R., Firth, S.K., 2013. Embodied and operational energy for new-build housing: A case study of construction methods in the UK. Energy and Buildings 67, 479-488.

ICE. (2011). The inventory of carbon and Energy (Ice). London : A joint venture of university of Bath and BSRIA

Jia Wen, T., Chin Siong, H., Noor, Z.Z., 2015. Assessment of embodied energy and global warming potential of building construction using life cycle analysis approach: Case studies of residential buildings in Iskandar Malaysia. Energy and Buildings 93, 295-302.

Jing Bingbing, L.X., Chen Su, Liu Chen and Xiong Zhenghui, 2019. Structure Type and Function of Building-Based Building Classification and Its Application. Technology for Earthquake Disaster Prevention 14(2), 293-303.

Koroneos, C and Dompros, A. Environmental assessment of brick production in Greece, Journal of Building and Environment, Vol.42, 2007, pp2114–2123.

Levine, M., Urge-Vorsatz, D., Blok, K., Geng, L., Harvey, D., Land, S., Levermore, G., Mongameli Mehlwana, A., Mirasgedis, S., Novikova, A., Rlling, J., Yoshino, H., 2007, Residential and commercial buildings, Climate Change 2007: Mitigation, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, U.K. & New York, NY, U.S.A.

Liu, B., Zhang, L., Liu, C., Wang, D., Sun, J., Luther, M., Xu, Y., 2019. Measuring energy poverty based on energy embodied in exports of vertical specialisation trade in

the construction sector. Energy Build. 196, 157e168.

Li, X., Yang, F., Zhu, Y., Gao, Y., 2014. An assessment framework for analyzing the embodied carbon impacts of residential buildings in China. Energy and Buildings 85, 400-409.

Maunder, S. E. 1992. Dictionary of Global Climate Change. London: UCL Press Limited.

McKinsey and Company, 2009."Pathways to a low-carbon economy. Version 2 of the Global Greenhouse Gas Abatement Cost Curve," .

Mitigation, 2011"IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation," .

Morel. JC, Mesbah A, Oggero M and Walker P,2011. "Building houses with local materials: Means to drastically reduce the environmental impact of construction.," *Building and Environment*, vol. 36(10), pp. 1119-1126.

Muigai, R, Alexandra, M.G and Moyo, P. Cradle-to-gate environmental impacts of the concrete industry in South Africa, Journal of the South African Institution of Civil Engineering, Vol.55, 2013, No.2, pp2-7.

Palm, V., Wood, R., Berglund, M., Dawkins, E., Finnveden, G., Schmidt, S., Steinbach, N., 2019. Environmental pressures from Swedish consumptioneA hybrid multi-regional input-output approach. J. Clean. Prod. 228, 634e644.

Pommer K, Pade C., 2006, Guidelines – uptake of carbon dioxide in the life cycle inventory of concrete. Nordic Innovation Centre.

Pomponi, F., Moncaster, A., 2018. Scrutinising embodied carbon in buildings: The next performance gap made manifest. Renewable and Sustainable Energy Reviews 81, 2431-2442.

Purnell, P., 2012. Material Nature versus Structural Nurture: The Embodied Carbon of Fundamental Structural Elements. Environmental Science & Technology 46(1), 454-461.

Ramesh, T., Prakash, R., Shukla, K., 2010. Life cycle energy analysis of buildings: an overview. Energy Build. 42 (10), 1592e1600.

Ramseur, J.L. 2010. Cap and Trade : The Kyoto Protocol, Greenhouse Gas (GHG) Emissions, Carbon Tax, emission Allowances, Acid rain SO2 Program, Ozone Transport Comission. Carbon Markets and Climate Change. The Caoitol.Net.

Säynäjoki, A., Heinonen J., Junnila, S., 2012. A Scenario Analysis of the Life Cycle Greenhouse Gas Emissions of a New Residential Area.Environmental Research Letters 7(3).

Seo S, Hwang Y. Estimation of CO2 emissions in life cycle of residential buildings. Journal of Construction Engineering and Management 2001;127(5):414–8.

Shukla, R. (2014). Burnt clay Bricks Versus Autoclaved Aerated Concrete Blocks: A Comparative Analysis. International Journal of Engineering Research & Technology (IJERT),575-580.

Smart Consulting.2019. Carbon Smart Materials Palette. Retrieved August 23,2019, from Materials Palette : https://materialspalette.org/palette/

SuzukiM,OkaT,OkadaK.The estimation of energy consumption and CO2 emission due to housing construction in Japan. Energy and Buildings 1995;22:165–9.

Suzuki M, Oka T. Estimation of life cycle energy consumption and CO2 emission of office buildings in Japan. Energy and Buildings 1998;28:33–41.

UNEP,2009. "Summary for Decision Makers. United Nations Environment Programme," *Buildings and Climate Change*, no. www.unep.org/sbci/pdfs/sbci-bccsummary.pdf (Accessed on 4 January 2015).

Wahidul K. Biswas, 2014. Carbon footprint and embodied energy consumption assassment of building construction works in Western Australia. International Journal of Sustainable Built Environment.

Wang, Y., Lai, N., Mao, G., Zuo, J., Crittenden, J., Jin, Y., Moreno-Cruz, J., 2017. Air pollutant emissions from economic sectors in China: a linkage analysis. Ecol. Indicat. 77, 250e260.

Wang, Z., Yang, Y., Wang, B., 2018. Carbon footprints and embodied CO2transfers among provinces in China. Renew. Sustain. Energy Rev. 82, 1068e1078.

Säynäjoki, A., Heinonen J., Junnila, S., 2012. A Scenario Analysis of the Life Cycle Greenhouse Gas Emissions of a New Residential Area.Environmental Research Letters 7(3).

Seo S, Hwang Y. Estimation of CO2 emissions in life cycle of residential buildings. Journal of Construction Engineering and Management 2001;127(5):414–8.

SuzukiM,OkaT,OkadaK.The estimation of energy consumption and CO2 emission due to housing construction in Japan. Energy and Buildings 1995;22:165–9.

Suzuki M, Oka T. Estimation of life cycle energy consumption and CO2 emission of office buildings in Japan. Energy and Buildings 1998;28:33–41.

Weina Zhu, Wei Feng, Xiaodong Li, Zhihui Zhang, 2020. Analysis of the embodied carbon dioxide in the building sector: A case of China. Journal of Cleaner Production, doi: https://doi.org/10.1016/j.jclepro.2020.122438.

Wei Junxiao, G.Y., Wang Song, 2016. Identification of factors influencing CO2 emissions estimation from Chinese cement industry and determination of their uncertainty. Acta Scientiae Cirumstantiae 36(11), 4234-4244.

You, F., Hu, D., Zhang, H., Guo, Z., Zhao, Y., Wang, B., Yuan, Y., 2011. Carbon emissions in the life cycle of urban building system in China—A case study of residential buildings. Ecological Complexity 8(2), 201-212.

Zabalza, I.B, Valero, A.C and Aranda A.U. ,2011 "Life cycle assessment of Building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement," *Build. Environ*, vol. 46 (5), pp. 1133-1140, 2011.

Zhang, X., Wang, F., 2017. Analysis of embodied carbon in the building life cycle considering the temporal perspectives of emissions: A case study in China. Energy and Buildings 155, 404-413.

Zhang, Z., Wang, B., 2016. Research on the life-cycle CO2 emission of China's construction sector. Energy and Buildings 112, 244-255.

Zhu, W., Zhang, Z., Li, X., Feng, W., Li, J., 2019. Assessing the effects of technological progress on energy efficiency in the construction industry: A case of China. Journal of Cleaner Production 238, 117908.

ANNEX

8.1. Questionnaire

- 1. General Information
 - a. Name of Client: ______ Address: ______ Contact Number: ______
 - b. Name of Contractor:_____ Contact Number: _____
- 2. What is the type of Building?
 - a. Residential Building
 - b. Commercial Building
 - c. Office Building
- 3. What are the construction materials used in the construction of building?

a.	Cement	f.	Tile	k.	Paints
b.	Reinforcement	g.	Granite	1.	Gypsum Board
c.	Bricks	h.	Aluminium	m.	AAC Block
d.	Sand	i.	Glass	n.	CGI sheet
e.	Aggregate	j.	Sal Wood		

4. How far the construction materials were brought from and taken to the site?

a.	Cement	km	h.	Aluminiumkm
b.	Reinforcemen	tkm	i.	Glasskm
c.	Bricks	km	j.	Sal Woodkm
d.	Sand	km	k.	Paintskm
e.	Aggregate	km	1.	Gypsum Boardkm
f.	Tile	km	m.	AAC Blockkm
g.	Granite	km	n.	CGI sheetkm

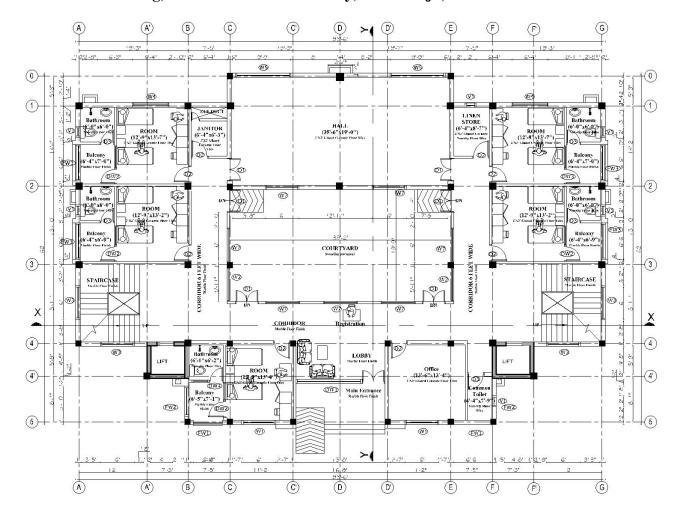
5. What is the estimated duration of operation of loaders?

_____ hours

6. What is the estimated duration of operation of mixture machine?

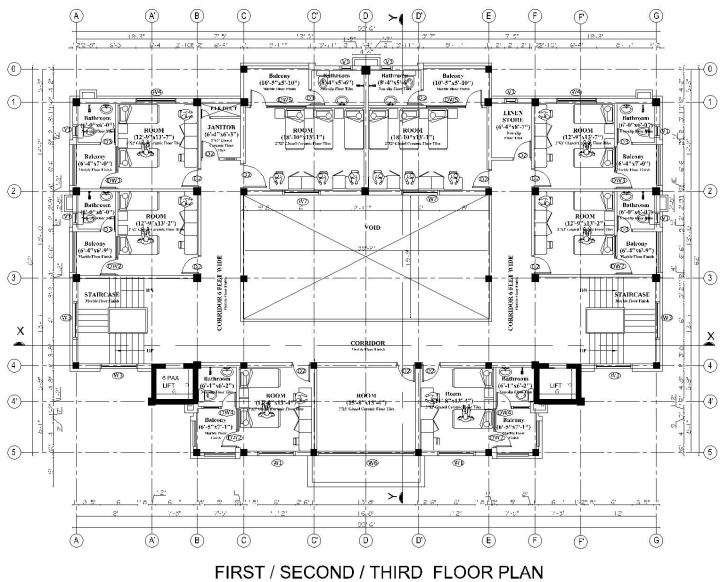
_____ hours

7. What is the estimated duration of operation of vibrator machine?

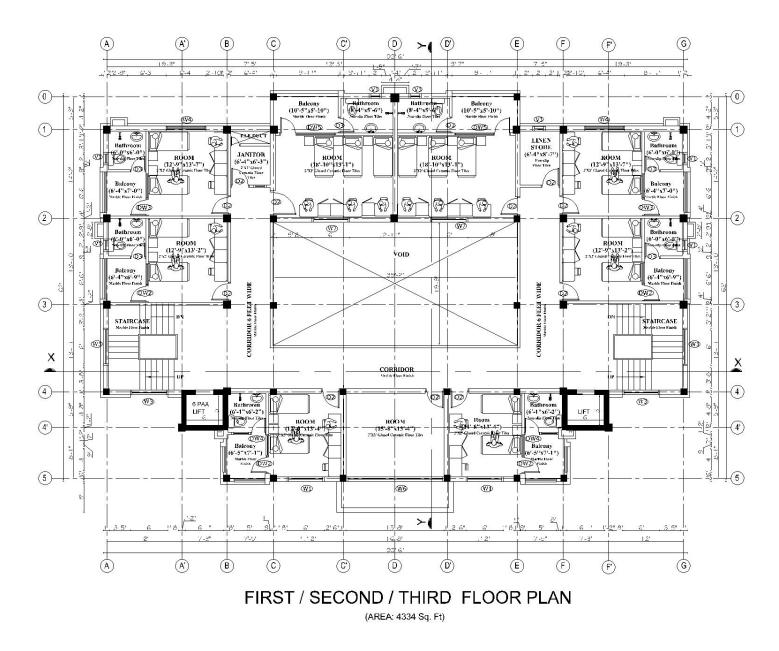

_____ hours

8. What is the total consumption of electricity in the site?

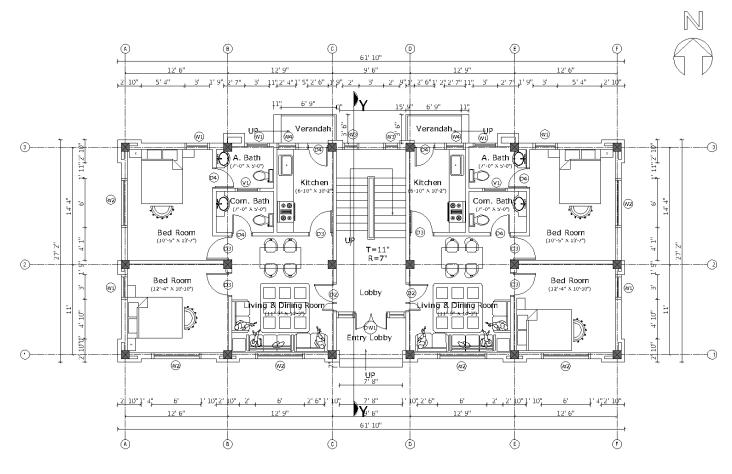
_____kwhr.

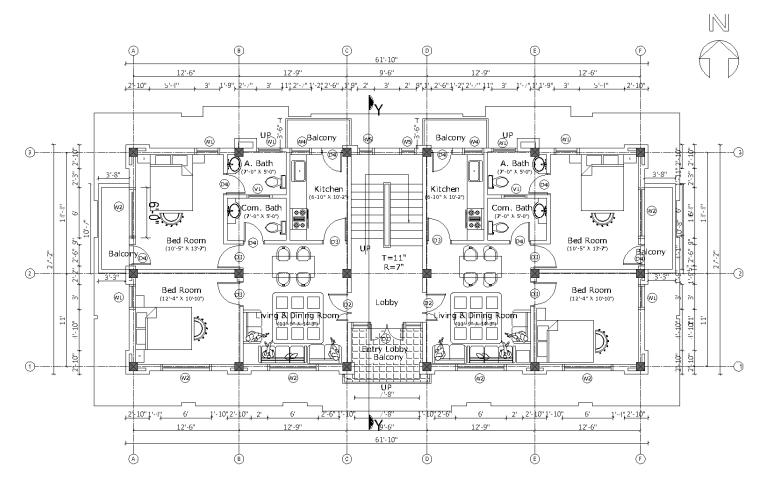

- 9. What is the type of fuel used by the labours for cooking? Also specify the estimated quantity.
 - a. LPG Gas _____ no. of cylinder
 - b. Firewood _____kg
 - c. Kerosene _____ liters

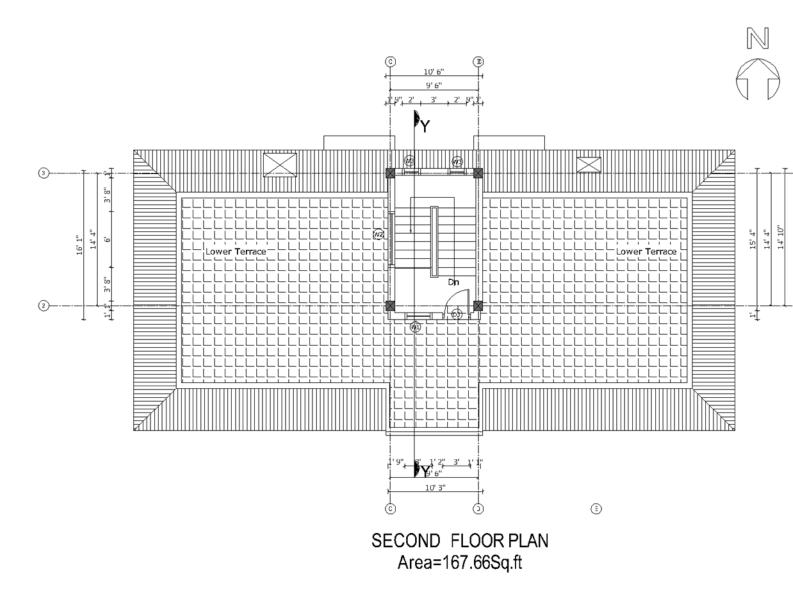
8.2.Drawings



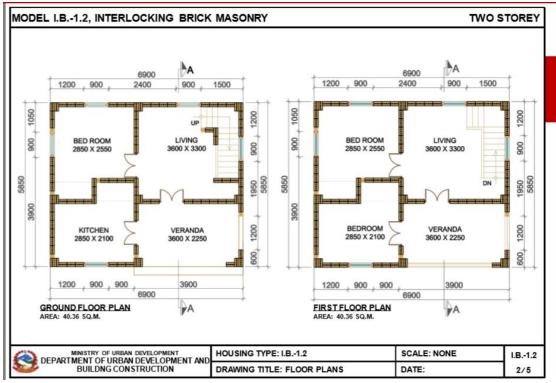
8.2.1. Hostel Building, National Judicial Academy, Manamaiju, Kathmandu


GROUND FLOOR PLAN (AREA: 4334 Sq. Ft)

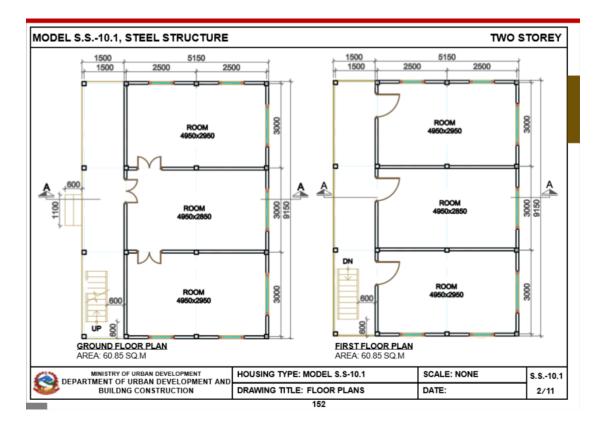

(AREA: 4334 Sq. Ft)

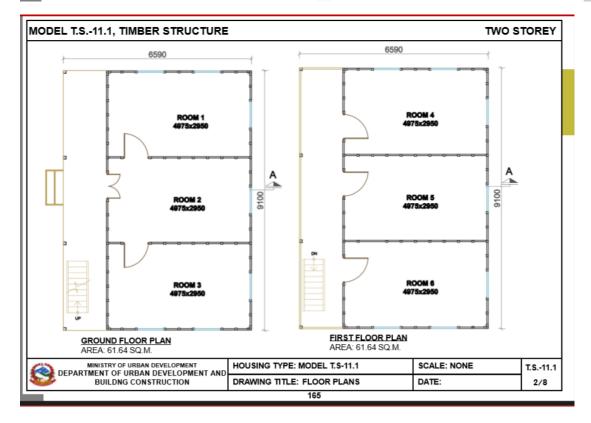

8.2.2. NJA Office Building, Manamaiju, Kathmandu

GROUND FLOOR PLAN Area=1635.29 Sq.ft



FIRST FLOOR PLAN Area=1642 195 So ft


8.2.3. NJA Faculty Building, Manamaiju, Kathmandu


8.2.4. Brick Masonry Model

	SIEEL	STRUC	TURE							TV	O STORE
		h - h									
[]				-		MATERIA	15				
LEVEL	Brick	Cement	Sand	Aggregate	Reinforcing Bar	MATERIA MS pipe	LS Steel sections	CGI Sheet	GI Plain sheet	Aluminium Door	Aluminium Window
LEVEL	Brick No.	Cement Bags	Sand Cu.m.	Aggregate Cu.m.			Steel	CGI Sheet Bundle			
LEVEL Up to Plinth Level	- PANANA - y			Aggregate	Bar	MS pipe	Steel sections		sheet	Door	Window
	No.	Bags	Cu.m.	Aggregate Cu.m.	Bar Kg.	MS pipe Kg.	Steel sections		sheet	Door	Window
Up to Plinth Level	No. 3,384.0	Bags 130.0	Cu.m. 11.0	Aggregate Cu.m. 13.0	Bar Kg. 974.0	MS pipe Kg.	Steel sections Kg.		sheet	Door Sq.m.	Window Sq.m.
Up to Plinth Level Super Structure	No. 3,384.0 -	Bags 130.0 111.0	Cu.m. 11.0 5.0	Aggregate Cu.m. 13.0 10.0	Bar Kg. 974.0 582.0	MS pipe Kg. -	Steel sections Kg.	Bundle	sheet Sq.m.	Door Sq.m. - 10.3	Window Sq.m. - 22.6
Up to Plinth Level Super Structure Roofing TOTAL MINISTRY DEPARTMENT O	No. 3,384.0 - 3,384.0 0F URBAN 0F URBAN	Bags 130.0 111.0 - 241.0	Cu.m. 11.0 5.0 - 16.0	Aggregate Cu.m. 13.0 10.0 - 23.0 HOUSIN	Bar Kg. 974.0 582.0	MS pipe Kg. - 845.4 845.4 DDEL S.S	Steel sections Kg. 3,930.1 - 3,930.1	Bundle 6.3 6.3	sheet Sq.m. 11.1	Door Sq.m. - 10.3 - 10.3	Window Sq.m. - 22.6 -

8.2.5. Steel Structure Model

	IIMBER	RSTRUC	CTURE)						т	NO STOF	RE
			har he									
						MATERIA	15					1
LEVEL	Brick	Cement	Sand	Aggregate	Reinforci ng Bar	MATERIA MS Angle & Plates	LS Wood	CGI Sheet	GI Plain sheet	Aluminium Door	Aluminium Window	
LEVEL	Brick No.	Cement Bags	Sand Cu.m.	Aggregate Cu.m.		MS Angle		CGI Sheet Bundle	1	1		
LEVEL Up to Plinth Level				Aggregate	ng Bar	MS Angle & Plates	Wood		sheet	Door	Window	
	No.	Bags	Cu.m.	Aggregate Cu.m.	ng Bar Kg.	MS Angle & Plates	Wood Cu.m. - 16.3	Bundle	sheet	Door	Window	
Up to Plinth Level	No. 3,652.7	Bags .113.	Cu.m. 16.7	Aggregate Cu.m. 8.7	ng Bar Kg. 630.0	MS Angle & Plates Kg.	Wood Cu.m.	Bundle	sheet	Door Sq.m. - 10.3	Window Sq.m.	
Up to Plinth Level Super Structure	No. 3,652.7	Bags .1.1.3. .18	Cu.m. 16.7 1.2	Aggregate Cu.m. 8.7 2.2	ng Bar Kg. 630.0 -	MS Angle & Plates Kg. - 526.3	Wood Cu.m. - 16.3	Bundle	sheet Sq.m.	Door Sq.m. - 10.3	Window Sq.m. - 22.6	
Up to Plinth Level Super Structure Roofing TOTAL	No. 3,652.7 - - 3,652.7	Bags .11.3. 18 - 131 EVELOPMENT	Cu.m. 16.7 1.2 - 17.9	Aggregate Cu.m. 8.7 2.2 - 10.9 HOUSING	ng Bar Kg. - - 630.0 - 630.0	MS Angle & Plates Kg. - 526.3 -	Wood Cu.m. - 16.3 0.2 16.5	Bundle 6.7 6.7	sheet Sq.m. 11.4	Door Sq.m. - 10.3 - 10.3	Window Sq.m. - 22.6 -	

8.2.6. Timber Structure Model

Table 28 Weight of Materials

Buildi						
ng	Cement	Cement	Aggregate(k	reinforcem	Driek(ka)	
Type R1	OPC(kg) 67024.00	PPC(kg) 42759.46	g) 200047.50	ent(kg) 18219.44	Brick(kg) 241477.44	Tile(kg) 24697.38
R1 R2						
-	63833.00	40190.96	195201.85	16960.10	348729.80	15888.22
R3	32486.00	18105.80	100039.99			6890.40
R4	32679.00		18943.06 102438.91 9828.99 119200.28			6018.50
R5	31327.00	19337.10	100522.67	11508.68	135020.64	8382.53
R6	31327.00	18629.16	100522.67	11508.68	135020.64	8382.53
R7	52574.00	23940.90	167599.86	32058.78	143106.47	9273.09
R8	53559.00	32591.50	174857.56	15974.57	236305.24	13219.36
R9	61265.57	21569.70	183717.88	16485.00	64281.19	7641.93
R10	75015.00	24782.96	225846.73	21198.12	300479.36	3530.91
R11	22623.00	14996.42	70206.87	7450.00	140897.90	1353.44
R12	70014.00	41329.98	225410.93	20805.67	233094.05	14748.80
C1	394181.00	95877.30	761751.55	99069.76	331434.03	53333.63
C2	356913.00	62081.34	657894.33	146668.82	213783.54	19328.32
C3	377148.00	74501.32	725838.47	172869.85	344103.13	19555.01
C4	3512433.00	699531.04	6454077.74	1214247.09	2586190.52	274132.67
C5	3678358.55	683953.41	6924479.50	421084.83	1979529.39	244613.66
C6	42994.00	105889.38	112379.03	34221.54	657381.85	21334.37
C7	229386.00	350887.49	1236612.64	264283.64	1134348.30	62806.66
C8	392799.00	99405.11	981230.42	157258.50	256733.26	29429.31
01	300230.00	112828.30	898645.71	81081.18	853435.60	63281.50
02	1441752.00	358521.88	2694930.21	285083.03	1264698.79	142046.78
03	639429.00	179780.04	1218390.19	146005.89	1150044.59	114677.73
04	611460.00	167016.88	1146070.90	166015.34	786347.86	67794.50
05	409960.36	69800.92	1188260.33	158986.00	145782.50	41242.23
06	1070400.00	289834.60	2004589.44	271097.00	1613445.12	22706.11
07	202880.92	77236.12	510664.42	81103.92	796303.34	45607.00
08	652965.00	166341.66	1175722.61	231820.87	1178050.51	19725.73
09	66330.30	51891.14	165774.72	15545.16	654162.31	0.00
010	745641.00	185913.32	2104538.31	319380.00	984678.86	5481.48
011	1161161.00	211719.30	2510649.14	491420.00	846325.12	93013.18
Total	16880148.70	4360187.5	35318913.09	4949288.42	19993455.1	1460136.6
Ν	31	31	31	31	31	31
Avg	544520.92	140651.21	1139319.77	159654.46	644950.17	47101.19

Buil					a i (1		
ding Type	Sal wood(kg)	Aluminiu m(kg)	Paint(k g)	Glass(kg)	Granite(k g)	Sand (kg)	Total wt(kg)
R1	7387.60	III(Kg)	452.75	694.05	5620.66	498489.26	1106869.54
R2	3805.05	769.17	350.33	947.25	3605.41	450949.58	1141230.71
R3	7942.22	458.21	204.65	564.30	410.77	225853.08	522067.30
R4 R5	7676.90	269.79 406.81	126.75 181.02	332.25 501.00	890.94 157.02	217316.22 228075.67	515721.59
-							536865.18
R6	2241.40	406.81	181.02	501.00	157.02	221157.91	530035.85
R7	1788.14	720.57	670.64	887.40	4093.39	325958.31	762671.53
R8	42078.58	4070 77	284.76	2304.15	4040.91	390432.49	965648.12
R9	1369.80	1078.77	158.51	1134.76	2829.92	323387.34	684920.38
R10	9783.68	1078.77	275.57	853.65	4429.99	424315.39	1091590.12
R11	0.00	341.28	90.87	247.05	0.00	180631.22	438838.06
R12	2381.03	691.58	391.83	851.70	3786.29	490357.17	1103863.03
C1	4918.58	5942.01	982.73	7317.75	12667.53	1478912.31	3246388.18
C2	2262.53	2789.83	547.91	3435.75	10988.88	1143132.38	2619826.63
C3	3485.41	563.20	651.18	693.60	16203.54	1286093.54	3021706.26
C4	51521.94	8944.99	10622.6	11016.00	268721.69	11035387.2	26126826.59
C5	51521.94	8944.99	5535.64	11016.00	268721.81	11535289.2	25813048.98
C6	0.00	1924.07	248.12	537.75	2198.73	319242.04	1298350.87
C7	0.00	6602.29	1133.75	360.30	2198.73	2385024.22	5673644.01
C8	7468.30	2924.91	463.21	6570.00	11009.26	1720523.48	3665814.76
01	0.00	6258.21	1136.37	2469.00	20470.44	1524557.52	3864393.83
02	12441.14	3687.86	2851.86	4541.70	35514.53	5265279.76	11511349.55
03	12180.16	2945.98	1584.52	3628.05	34010.25	2529896.71	6032573.10
04	5583.44	3963.37	1940.15	4881.00	28154.49	2440105.13	5429333.05
05	0.00	7252.53	960.36	7225.37	7748.02	1746587.09	3783805.72
06	13638.40	0.00	1539.89	6570.00	7026.91	4268497.22	9569344.69
07	2726.26	2181.56	580.61	2923.05	9572.28	1094563.72	2826343.17
08	20313.80	24.24	898.04	1304.85	8110.01	2510572.28	5965849.59
09	0.00	1344.67	310.04	931.50	0.00	542642.84	1498932.69
010	11014.45	2451.71	3316.37	2480.55	2247.31	3232190.48	7599333.85
011	5512.00	6903.62	1894.36	3233.10	53228.86	4025814.53	9410874.21
Tota							148358061.
1	292487.7	78840.45	40566.4	90953.88	828815.6	64061235.39	2
N	31.00	31.00	31.00	31.00	31.00	31.00	31.00
Avg	9435.09	2543.24	1308.60	2934.00	26735.99	2066491.46	4785743.91

Table 29 E	EC calcul	lation fr	om site	activities

Building Type	Vechicle used	No	Dura tion(hrs)	Energy type	ener gy cosu mpti on(E k)	unit	Fek	Cec(t on CO2)	EF	EE(MJ)
	Loader	1	10	Disel	0.035	ton	3.18	0.11	37195.12	3.18
R1(6	Mixture Machine Vibrator	1	44	Disel	0.038	ton	3.18	0.12	37195.12	3.18
month construc	2.2 hp water	1	44	Electricity	0.072	Mwhr	0.68	0.05	3600.00	0.68
tion period)	pump 2 hp	1	360	Electricity	0.537	Mwhr	0.68	0.37	3600.00	0.68
	Gas stove	12		LPG	0.170	ton	3.09	0.53	1510.00	3.09
	Lightining				1.200	Mwhr	0.68	0.82	3600.00	0.68
						Grand Total		1.99		
	Loader	1	15	Disel	0.052	ton	3.18	0.17	37195.12	3.18
R2(7	Mixture Machine	1	52	Disel	0.045	ton	3.18	0.14	37195.12	3.18
month construc	Vibrator 2.2 hp	1	52	Electricity	0.085	Mwhr	0.68	0.06	3600.00	0.68
tion period)	water pump 2 hp	1	720	Electricity	1.074	Mwhr	0.68	0.73	3600.00	0.68
	Gas stove	14		LPG	0.199	ton	3.09	0.61	1510.00	3.09
	Lightining				1.500	Mwhr	0.68	1.02	3600.00	0.68
						Total		2.73		
	Loader Mixture	1	16	Disel	0.056	ton	3.18	0.18	37195.12	3.18
R3(6.5	Machine	1	56	Disel	0.049	ton	3.18	0.15	37195.12	3.18
month construc	2.2 hp water	1	56	Electricity	0.092	Mwhr	0.68	0.06	3600.00	0.68
tion period)	pump 2 hp	1	682.5	Electricity	1.018	Mwhr	0.68	0.69	3600.00	0.68
	Gas stove	13		LPG	0.185	ton	3.09	0.57	1510.00	3.09
	Lightining				1.625	Mwhr	0.68	1.11	3600.00	0.68
	Landar	1	10	Diacl	0.000	Total	2.10	2.76	27105 12	2.10
	Loader Mixture	1	18	Disel	0.063	ton	3.18	0.20	37195.12	3.18
R4(8 month	Machine Vibrator	1	60	Disel	0.052	ton	3.18	0.17	37195.12	3.18
construc tion	2.2 hp water	1	60	Electricity	0.098	Mwhr	0.68	0.07	3600.00	0.68
period)	pump 2 hp	1	960	Electricity	1.432	Mwhr	0.68	0.98	3600.00	0.68
	Gas stove	16		LPG	0.227	ton	3.09	0.70	1510.00	3.09
	Lightining				2.000	Mwhr Total	0.68	1.36	3600.00	0.68
						Total		3.47		
R5(7mo	Loader	1	19	Disel	0.066	ton	3.18	0.21	37195.12	3.18
nth construc	Mixture Machine	1	60	Disel	0.052	ton	3.18	0.17	37195.12	3.18
tion period)	Vibrator 2.2 hp	1	60	Electricity	0.098	Mwhr	0.68	0.07	3600.00	0.68

	water pump 2 hp	1	630	Electricity	0.940	Mwhr	0.68	0.64	3600.00	0.68
	Gas stove	14	030	LPG	0.199	ton	3.09	0.61	1510.00	3.09
	Lightining	14		LFG	2.100	Mwhr	0.68	1.43	3600.00	0.68
	<u>-18110118</u>				2.100		0.08		5000.00	0.08
			45	D: 1	0.050	Total	2.40	3.13	07405 40	2.40
	Loader Mixture	1	15	Disel	0.052	ton	3.18	0.17	37195.12	3.18
R6(7.5	Machine	1	58	Disel	0.050	ton	3.18	0.16	37195.12	3.18
month construc	Vibrator 2.2 hp	1	58	Electricity	0.095	Mwhr	0.68	0.06	3600.00	0.68
tion period)	water pump 2 hp	1	450	Electricity	0.671	Mwhr	0.68	0.46	3600.00	0.68
pened,	Gas stove	15		LPG	0.213	ton	3.09	0.66	1510.00	3.09
	Lightining	10			1.875	Mwhr	0.68	1.28	3600.00	0.68
	0 0				1.075	Total	0.00	2.78	5000.00	0.00
	Leeden		45	Divel	0.050		2.40		27405 42	2.40
	Loader Mixture	1	15	Disel	0.052	ton	3.18	0.17	37195.12	3.18
	Machine	1	58	Disel	0.050	ton	3.18	0.16	37195.12	3.18
R7(7.5 month	Vibrator									
construc	2.2 hp	1	58	Electricity	0.095	Mwhr	0.68	0.06	3600.00	0.68
tion period)	water pump 2 hp	1	450	Electricity	0.671	Mwhr	0.68	0.46	3600.00	0.68
penea,	for		4	C	2 250		1.40	2.20	F00.00	1.40
	cooking	1	1	firewood	2.250	ton	1.46	3.29	500.00	1.46
	Lightining				1.875	Mwhr	0.68	1.28	3600.00	0.68
						Total		5.42		
	Loader	1	20	Disel	0.070	ton	3.18	0.22	37195.12	3.18
R8(7mo	Mixture Machine	1	62	Disel	0.054	ton	3.18	0.17	37195.12	3.18
nth	Vibrator 2.2 hp	1	58	Electricity	0.095	Mwhr	0.68	0.06	3600.00	0.68
tion period)	water pump 2 hp	1	1050	Electricity	1.567	Mwhr	0.68	1.07	3600.00	0.68
penedy	for cooking	1	1	firewood	3.150	ton	1.46	4.61	1510.00	1.46
	Lightining	-		menoou	2.450	Mwhr	0.68	1.67	3600.00	0.68
	8				2.430		0.08		5000.00	0.00
	Leeden		10	Divel	0.000	Total	2.40	7.80	27405 42	2.40
	Loader Mixture	1	18	Disel	0.063	ton	3.18	0.20	37195.12	3.18
R9(9	Machine	1	60	Disel	0.052	ton	3.18	0.17	37195.12	3.18
month construc	Vibrator 2.2 hp	1	60	Electricity	0.098	Mwhr	0.68	0.07	3600.00	0.68
tion period)	water pump 2 hp	1	675	Electricity	1.007	Mwhr	0.68	0.69	3600.00	0.68
periou)	Gas stove	18	575	LPG	0.256	ton	3.09	0.79	1510.00	3.09
	Lightining	10								
					1.875	Mwhr Tatal	0.68	1.28	3600.00	0.68
						Total		3.18		
R10(8.5	Loader	1	21	Disel	0.073	ton	3.18	0.23	37195.12	3.18
month	Mixture Machine	1	55	Disel	0.048	ton	3.18	0.15	37195.12	3.18
construc tion	Vibrator 2.2 hp	1	54	Electricity	0.089	Mwhr	0.68	0.06	3600.00	0.68
period)	water pump 2 hp	1	787.5	Electricity	1.175	Mwhr	0.68	0.80	3600.00	0.68

	for	1	4	firewood	2 5 70	ton	1 40	5.22	500.00	1.46
	cooking Lightining	1	1	Tirewood	3.570	ton	1.46			
	Lightining				3.825	Mwhr	0.68	2.60	3600.00	0.68
						Total		9.07		
	Loader Mixture	1	15	Disel	0.052	ton	3.18	0.17	37195.12	3.18
	Machine	1	58	Disel	0.050	ton	3.18	0.16	37195.12	3.18
R11(10 month	Vibrator									
construc	2.2 hp	1	58	Electricity	0.095	Mwhr	0.68	0.06	3600.00	0.68
tion	water pump 2 hp	1	900	Electricity	1.343	Mwhr	0.68	0.91	3600.00	0.68
period)	for	-	500	Licetherty	1.545	10100111	0.00	0.51	5000.00	0.00
	cooking	1	1	firewood	3.600	ton	1.46	5.26	500.00	1.46
	Lightining				4.500	Mwhr	0.68	3.06	3600.00	0.68
						Total		9.63		
	Loader	1	13	Disel	0.045	ton	3.18	0.14	37195.12	3.18
	Mixture									
R12(9	Machine	1	50	Disel	0.044	ton	3.18	0.14	37195.12	3.18
month	Vibrator 2.2 hp	1	58	Electricity	0.095	Mwhr	0.68	0.06	3600.00	0.68
construc	water			2.0001.010	0.000		0.00	0.00		0.00
tion period)	pump 2 hp	1	405	Electricity	0.604	Mwhr	0.68	0.41	3600.00	0.68
penea	for	10	1		0.256	ton	1 46	0.27	F00.00	1 40
	cooking Lightining	18	1	LPG	0.256	ton	1.46	0.37	500.00	1.46
	Lightining				3.150	Mwhr	0.68	2.14	3600.00	0.68
						Total		3.28		
	Loader	2	30	Disel	0.209	ton	3.18	0.66	37195.12	3.18
	truck	4	20km	Disel	1.393	ton	3.18	4.43	37195.12	3.18
C1/10	Mixture								103639.6	
C1(18 month	Machine Vibrator	1	250	Disel	0.218	ton	3.18	0.69	5	3.18
construc	vibrator	l								
	2.2 hp	1	250	Electricity	0.410	Mwhr	0.68	0.28	3600.00	0.68
tion	2.2 hp water	1	250	Electricity				0.28	3600.00	0.68
	water pump 2 hp	1	250 1620	Electricity Electricity				0.28	3600.00 3600.00	0.68 0.68
tion	water pump 2 hp for	1		Electricity	0.410	Mwhr	0.68	1.65	3600.00	0.68
tion	water pump 2 hp				0.410 2.417 0.511	Mwhr Mwhr ton	0.68 0.68 3.09	1.65 1.58	3600.00 1510.00	0.68 3.09
tion	water pump 2 hp for cooking	1		Electricity	0.410	Mwhr Mwhr ton Mwhr	0.68	1.65 1.58 5.51	3600.00	0.68
tion	water pump 2 hp for cooking Lightining	1 36	1620	Electricity	0.410 2.417 0.511 8.100	Mwhr Mwhr ton Mwhr Total	0.68 0.68 3.09 0.68	1.65 1.58 5.51 14.80	3600.00 1510.00 3600.00	0.68 3.09 0.68
tion	water pump 2 hp for cooking Lightining Loader	1 36 2	1620 	Electricity LPG Disel	0.410 2.417 0.511 8.100 0.244	Mwhr Mwhr ton Mwhr Total ton	0.68 0.68 3.09 0.68 3.18	1.65 1.58 5.51 14.80 0.77	3600.00 1510.00 3600.00 37195.12	0.68 3.09 0.68 3.18
tion	water pump 2 hp for cooking Lightining	1 36	1620	Electricity	0.410 2.417 0.511 8.100	Mwhr Mwhr ton Mwhr Total	0.68 0.68 3.09 0.68	1.65 1.58 5.51 14.80	3600.00 1510.00 3600.00 37195.12 37195.12	0.68 3.09 0.68
tion period)	water pump 2 hp for cooking Lightining Loader truck	1 36 2	1620 	Electricity LPG Disel	0.410 2.417 0.511 8.100 0.244	Mwhr Mwhr ton Mwhr Total ton	0.68 0.68 3.09 0.68 3.18	1.65 1.58 5.51 14.80 0.77	3600.00 1510.00 3600.00 37195.12	0.68 3.09 0.68 3.18
tion period) C2(20 month	water pump 2 hp for cooking Lightining Loader truck Mixture Machine Vibrator	1 36 2 4 1	1620 35 20km 260	Electricity LPG Disel Disel Disel	0.410 2.417 0.511 8.100 0.244 1.393 0.226	Mwhr Mwhr ton Mwhr Total ton ton	0.68 0.68 3.09 0.68 3.18 3.18 3.18 3.18	1.65 1.58 5.51 14.80 0.77 4.43 0.72	3600.00 1510.00 3600.00 37195.12 37195.12 103639.6 5	0.68 3.09 0.68 3.18 3.18 3.18
tion period) C2(20 month construc	water pump 2 hp for cooking Lightining Loader truck Mixture Machine Vibrator 2.2 hp	1 36 2 4	1620 	Electricity LPG Disel Disel	0.410 2.417 0.511 8.100 0.244 1.393	Mwhr Mwhr ton Mwhr Total ton ton	0.68 0.68 3.09 0.68 3.18 3.18	1.65 1.58 5.51 14.80 0.77 4.43	3600.00 1510.00 3600.00 37195.12 37195.12 103639.6	0.68 3.09 0.68 3.18 3.18
tion period) C2(20 month construc tion	water pump 2 hp for cooking Lightining Loader truck Mixture Machine Vibrator 2.2 hp water	1 36 2 4 1	1620 35 20km 260	Electricity LPG Disel Disel Disel	0.410 2.417 0.511 8.100 0.244 1.393 0.226	Mwhr Mwhr ton Mwhr Total ton ton	0.68 0.68 3.09 0.68 3.18 3.18 3.18 3.18	1.65 1.58 5.51 14.80 0.77 4.43 0.72	3600.00 1510.00 3600.00 37195.12 37195.12 103639.6 5	0.68 3.09 0.68 3.18 3.18 3.18
tion period) C2(20 month construc	water pump 2 hp for cooking Lightining Loader truck Mixture Machine Vibrator 2.2 hp	1 36 2 4 1 1	1620 35 20km 260 260	Electricity LPG Disel Disel Disel Electricity	0.410 2.417 0.511 8.100 0.244 1.393 0.226 0.427	Mwhr Mwhr ton Mwhr Total ton ton ton Mwhr	0.68 0.68 3.09 0.68 3.18 3.18 3.18 0.68	1.65 1.58 5.51 14.80 0.77 4.43 0.72 0.29	3600.00 1510.00 3600.00 37195.12 37195.12 103639.6 5 3600.00	0.68 3.09 0.68 3.18 3.18 3.18 3.18 0.68
tion period) C2(20 month construc tion	water pump 2 hp for cooking Lightining Loader truck Mixture Machine Vibrator 2.2 hp water pump 2 hp	1 36 2 4 1 1	1620 35 20km 260 260	Electricity LPG Disel Disel Disel Electricity	0.410 2.417 0.511 8.100 0.244 1.393 0.226 0.427 3.133 0.568	Mwhr Mwhr ton Mwhr Total ton ton ton Mwhr	0.68 0.68 3.09 0.68 3.18 3.18 3.18 0.68	1.65 1.58 5.51 14.80 0.77 4.43 0.72 0.29	3600.00 1510.00 3600.00 37195.12 37195.12 103639.6 5 3600.00	0.68 3.09 0.68 3.18 3.18 3.18 3.18 0.68
tion period) C2(20 month construc tion	water pump 2 hp for cooking Lightining Loader truck Mixture Machine Vibrator 2.2 hp water pump 2 hp for	1 36 2 4 1 1 1	1620 35 20km 260 260	Electricity LPG Disel Disel Disel Electricity Electricity	0.410 2.417 0.511 8.100 0.244 1.393 0.226 0.427 3.133	Mwhr Mwhr ton Mwhr Total ton ton ton Mwhr Mwhr	0.68 0.68 3.09 0.68 3.18 3.18 3.18 3.18 0.68 0.68	1.65 1.58 5.51 14.80 0.77 4.43 0.72 0.29 2.13	3600.00 1510.00 3600.00 37195.12 37195.12 103639.6 5 3600.00 3600.00	0.68 3.09 0.68 3.18 3.18 3.18 3.18 0.68

	Loader	2	32	Disel	0.223	ton	3.18	0.71	37195.12	3.18
	truck	4	20km	Disel	1.393	ton	3.18	4.43	37195.12	3.18
	Mixture									
C3(19	Machine	1	275	Disel	0.239	ton	3.18	0.76	37195.12	3.18
month	Vibrator									
construc	2.2 hp water	1	275	Electricity	0.451	Mwhr	0.68	0.31	3600.00	0.68
tion period)	pump 2 hp	1	1995	Electricity	2.977	Mwhr	0.68	2.03	3600.00	0.68
period	for									
	cooking	38		LPG	0.540	ton	3.09	1.66	1510.00	3.09
	Lightining				11.70					
	0 0				0	Mwhr	0.68	7.97	3600.00	0.68
						Total		17.86		
	Loader	2	45	Disel	0.313	ton	3.18	1.00	37195.12	3.18
	truck	4	20km	Disel	2.785	ton	3.18	8.86	37195.12	3.18
	Mixture									
C4(24	Machine Vibrator	1	250	Disel	0.218	ton	3.18	0.69	37195.12	3.18
month construc	2.2 hp	1	250	Electricity	0.410	Mwhr	0.68	0.28	3600.00	0.68
tion	water	-		2.000.000	01.10		0.00	0.20		0.00
period)	pump 2 hp	1	2160	Electricity	3.223	Mwhr	0.68	2.19	3600.00	0.68
	for									
	cooking	48		LPG	0.682	ton	3.09	2.10	1510.00	3.09
	Lightining				15.60 0	Mwhr	0.68	10.62	3600.00	0.68
						Total	0.00	25.74	5000.00	0.00
	Loader	2	180	Disel	1.253	ton	3.18	3.99	37195.12	3.18
	truck Mixture	4	20km	Disel	3.481	ton	3.18	11.07	37195.12	3.18
C5(28	Machine	1	350	Disel	0.305	ton	3.18	0.97	37195.12	3.18
month	Vibrator									
construc	2.2 hp	1	350	Electricity	0.574	Mwhr	0.68	0.39	3600.00	0.68
tion	water	1	2520	Ele etui eitu i	2 700	N. A In .e.	0.00	2.50	2000.00	0.00
period)	pump 2 hp for	1	2520	Electricity	3.760	Mwhr	0.68	2.56	3600.00	0.68
	cooking	56		LPG	0.795	ton	3.09	2.45	1510.00	3.09
	Lightining				18.20					
	Lightining				0	Mwhr	0.68	12.39	3600.00	0.68
						Total		33.82		
	Loader	2	42	Disel	0.292	ton	3.18	0.93	37195.12	3.18
	truck	4	20km	Disel	1.393	ton	3.18	4.43	37195.12	3.18
	Mixture									
C6(24	Machine	1	240	Disel	0.209	ton	3.18	0.66	37195.12	3.18
month	Vibrator 2.2 hp	1	240	Electricity	0.394	Mwhr	0.68	0.27	3600.00	0.68
construc tion	water	1	240	LIECTICITY	0.394		0.08	0.27	3000.00	0.08
period)	pump 2 hp	1	2160	Electricity	3.223	Mwhr	0.68	2.19	3600.00	0.68
. ,	for									
	cooking	48		LPG	0.682	ton	3.09	2.10	1510.00	3.09
	Lightining				13.20 0	Mwhr	0.68	8.99	3600.00	0.68
					0		0.00		5000.00	0.00
	1 1	-	~~		0.000	Total		19.57	27405 40	2.42
C7 (18	Loader	2	30	Disel	0.209	ton	3.18	0.66	37195.12	3.18
month	truck	4	20km	Disel	1.393	ton	3.18	4.43	37195.12	3.18
construc	Mixture Machine	1	230	Disel	0.200	ton	3.18	0.64	37195.12	3.18
	waching	T	230	DISCI	0.200	ton	5.10	0.04	51135.12	2.10

tion	Vibrator									
period)	2.2 hp	1	230	Electricity	0.377	Mwhr	0.68	0.26	3600.00	0.68
	water pump 2 hp	1	1350	Electricity	2.014	Mwhr	0.68	1.37	3600.00	0.68
	for	1	1330	LIECTICITY	2.014		0.08	1.57	5000.00	0.00
	cooking	36		LPG	0.511	ton	3.09	1.58	1510.00	3.09
	Lightining				8.100	Mwhr	0.68	5.51	3600.00	0.68
					0.200	Total	0.00	14.45		0.00
		2	26	Divel	0.254		2.40		27405 42	2.40
	Loader	2	36	Disel	0.251	ton	3.18	0.80	37195.12	3.18
	truck	4	20km	Disel	1.393	ton	3.18	4.43	37195.12	3.18
	Mixture Machine	1	260	Disel	0.226	ton	3.18	0.72	37195.12	3.18
C8(24 month	Vibrator	1	200	DISCI	0.220	ton	5.10	0.72	57195.12	5.10
construc	2.2 hp	1	260	Electricity	0.427	Mwhr	0.68	0.29	3600.00	0.68
tion	water									
period)	pump 2 hp	1	2160	Electricity	3.223	Mwhr	0.68	2.19	3600.00	0.68
	for				10.08					
	cooking	48		firewood	0 15.60	ton	1.46	14.74	1510.00	1.46
	Lightining				15.00	Mwhr	0.68	10.62	3600.00	0.68
						Total	0.00	33.79	5000.00	0.00
		-	10	D : 1	0.070		2.40		07405.40	2.4.0
	Loader	2	40	Disel	0.279	ton	3.18	0.89	37195.12	3.18
	truck	4	20km	Disel	1.393	ton	3.18	4.43	37195.12	3.18
	Mixture Machine	1	275	Disel	0.239	ton	2 10	0.76	37195.12	3.18
O1(24 month	Vibrator	1	275	Disei	0.239	ton	3.18	0.76	57195.12	5.10
construc	2.2 hp	1	265	Electricity	0.435	Mwhr	0.68	0.30	3600.00	0.68
tion	water									
period)	pump 2 hp	1	260	Electricity	0.388	Mwhr	0.68	0.26	3600.00	0.68
	for									
	cooking	48		LPG	0.682	ton	3.09	2.10	1510.00	3.09
	Lightining				10.80 0	Mwhr	0.68	7.35	3600.00	0.68
					0		0.00		5000.00	0.00
					0.070	Total		16.09		
	Loader	2	40	Disel	0.279	ton	3.18	0.89	37195.12	3.18
	truck	4	10km	Disel	0.696	ton	3.18	2.21	37195.12	3.18
	Mixture Machine	1	200	Dical	0.261	ton	2 10	0.92	27105 12	2 10
O2 (30	Vibrator	1	300	Disel	0.261	ton	3.18	0.83	37195.12	3.18
month construc	2.2 hp	1	300	Electricity	0.492	Mwhr	0.68	0.34	3600.00	0.68
tion	water									
period)	pump 2 hp	1	2700	Electricity	4.028	Mwhr	0.68	2.74	3600.00	0.68
	for									
	cooking	60		LPG	0.852	ton	3.09	2.63	1510.00	3.09
	Lightining				15.00 0	Mwhr	0.68	10.21	3600.00	0.68
					0		0.08		3000.00	0.08
						Total		19.85		
	Loader	2	30	Disel	0.209	ton	3.18	0.66	37195.12	3.18
O3 (28	truck	4	20km	Disel	1.393	ton	3.18	4.43	37195.12	3.18
month	Mixture	_	225	Diach	0.202	4.0.1	2.40	0.00	27405 42	2.40
construc	Machine Vibrator	1	336	Disel	0.292	ton	3.18	0.93	37195.12	3.18
tion period)	2.2 hp	1	336	Electricity	0.551	Mwhr	0.68	0.38	3600.00	0.68
periou)	water	-			0.001		0.00	0.00	2230.00	0.00
	pump 2 hp	1	2520	Electricity	3.760	Mwhr	0.68	2.56	3600.00	0.68

LightningII<		for cooking	56		LPG	0.795	ton	3.09	2.45	1510.00	3.09
Image: bit of the section of the se							Mwhr	0.68	10.48	3600.00	0.68
I coder 1 2 2 1 0.167 ton 3.18 0.53 37195.12 3.18 Machine 1 120 Disel 0.696 ton 3.18 0.33 37195.12 3.18 Machine 1 120 Disel 0.104 ton 3.18 0.33 37195.12 3.18 Vibrator 2.2 hp 1 120 Electricity 0.197 Mwhr 0.68 0.13 3600.00 0.68 vibrator							Total				
Mixture matchine (mixture construction period) Mixture Machine (mixture (mixture) 1 120 Disel 0.104 ton 3.18 0.33 37195.12 3.18 vibrator period) 1 120 Electricity 0.197 Mwhr 0.68 1.65 3600.00 0.68 cooking 3 Lectricity 2.417 Mwhr 0.68 1.65 3600.00 0.68 cooking 3 Lectricity 2.417 Mwhr 0.68 5.72 3600.00 0.68 Lightining 1 24 Disel 0.384 ton 3.18 4.33 37195.12 3.18 Mixture 1 124 Disel 0.084 ton 3.18 4.33 37195.12 3.18 Mixture 1 136 Disel 0.18 ton 3.18 4.33 37195.12 3.18 Vibrator - - Tot Tot 3.18 4.33 37195.12 3.18 Costin 36 <td></td> <td>Loader</td> <td>2</td> <td>24</td> <td>Disel</td> <td>0.167</td> <td></td> <td>3.18</td> <td>0.53</td> <td>37195.12</td> <td>3.18</td>		Loader	2	24	Disel	0.167		3.18	0.53	37195.12	3.18
Mixture matchine (mixture construction period) Mixture Machine (mixture (mixture) 1 120 Disel 0.104 ton 3.18 0.33 37195.12 3.18 vibrator period) 1 120 Electricity 0.197 Mwhr 0.68 1.65 3600.00 0.68 cooking 3 Lectricity 2.417 Mwhr 0.68 1.65 3600.00 0.68 cooking 3 Lectricity 2.417 Mwhr 0.68 5.72 3600.00 0.68 Lightining 1 24 Disel 0.384 ton 3.18 4.33 37195.12 3.18 Mixture 1 124 Disel 0.084 ton 3.18 4.33 37195.12 3.18 Mixture 1 136 Disel 0.18 ton 3.18 4.33 37195.12 3.18 Vibrator - - Tot Tot 3.18 4.33 37195.12 3.18 Costin 36 <td></td> <td>truck</td> <td>4</td> <td>20km</td> <td>Disel</td> <td>0.696</td> <td>ton</td> <td>3.18</td> <td>2.21</td> <td>37195.12</td> <td>3.18</td>		truck	4	20km	Disel	0.696	ton	3.18	2.21	37195.12	3.18
month construct in period) Vibrator 2.2 hp 1 120 Electricity 0.197 Mwhr 0.68 0.13 3600.00 0.68 water pump 2 hp 1 1620 Electricity 2.417 Mwhr 0.68 1.65 3600.00 0.68 for cooking 36 LPG 0.511 ton 3.09 1.58 1510.00 3.09 Lightining 2 1 2.40 0.840 Mwhr 0.68 5.72 3600.00 0.68 funct 1 2.4 Disel 0.393 ton 3.18 0.27 37195.12 3.18 Mature 1 136 Disel 0.118 ton 3.18 0.38 37195.12 3.18 Vibrator 2.2 hp 1 136 Electricity 0.23 Mwhr 0.68 0.15 3600.00 0.68 for 2.2 hp 1 1350 Electricity 0.214 Mwhr 0.68 5.51 3600.00 0.68		Mixture									
construct tion period2.2 hp1120Electricity0.197Mwhr0.680.133600.000.68water period361620Electricity2.417Mwhr0.681.553600.000.68for cooking3611620Electricity2.417Mwhr0.681.553600.000.68for cooking3611620Electricity2.417Mwhr0.681.523600.000.68for cooking3611620Electricity0.511ton3.091.581510.003.09for tor 	-		1	120	Disel	0.104	ton	3.18	0.33	37195.12	3.18
pamp pamp 1 1620 Electricity 2.417 Mwhr 0.68 1.65 3600.00 0.68 for - - - - - 3.09 1.58 1510.00 3.09 3.68 3.09 3.09 3.68 3.09 3.68 3.09 3.68 3.09 3.68 3.09 3.68 3.09 3.68 3.09 3.68 3.09 3.68 3.09 3.68 3.09 3.68 3.09 3.68 3.09 3.68 3.19 3.18 3.08 3.19 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.19 3.60.00 0.68 3.60.00 0.68 3.60.00 0.68 3.60.00 0.68 3.60.00 0.68 3.60.00 0.68 3.60 0.60 3.71 3.60.00 0.68 3.71 5.60.00 0.68 3.71 5.60.00 0.68 3.71 5.60.00 0.68 3.71 5.60.00 0.68	construc	2.2 hp	1	120	Electricity	0.197	Mwhr	0.68	0.13	3600.00	0.68
cooking 36 LPG 0.511 ton 3.09 1.58 151.000 3.09 Lightining 8.400 Mwhr 0.68 5.72 3600.00 0.68 Image 1 24 Disel 0.084 ton 3.18 0.27 37195.12 3.18 Mixture 0.084 ton 3.18 0.23 37195.12 3.18 Vibrator		pump 2 hp	1	1620	Electricity	2.417	Mwhr	0.68	1.65	3600.00	0.68
Lightning I I I N 8.400 Mwhr 0.68 5.72 3600.00 0.68 I<		-	36		LPG	0 5 1 1	ton	3 09	1 58	1510.00	3 09
Image: brace Image: brace <t< td=""><td></td><td></td><td>50</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			50								
Loader 1 24 Disel 0.084 ton 3.18 0.27 37195.12 3.18 Mixture 4 20km Disel 1.393 ton 3.18 4.43 37195.12 3.18 Mixture 1 136 Disel 0.118 ton 3.18 0.38 37195.12 3.18 Vibrator 2.2 hp 1 136 Electricity 0.223 Mwhr 0.68 0.15 3600.00 0.68 vater pump 2 hp 1 1350 Electricity 2.014 Mwhr 0.68 1.37 3600.00 0.68 for cooking 36 LPG 0.511 ton 3.09 1.58 1510.00 3.09 Lightining L LPG 0.511 ton 3.18 0.40 37195.12 3.18 Mixture I 240 Disel 0.209 ton 3.18 0.66 37195.12 3.18 Vibrator 2.2hp		<u>-18110118</u>				8.400		0.08		5000.00	0.08
Vortical Construct tiontion tion tion tion tion tion tion tion tion tion tion tion tion tion tion tion tiontion <b< td=""><td></td><td></td><td></td><td></td><td>D: 1</td><td>0.004</td><td></td><td>2.40</td><td></td><td>07405 40</td><td>2.40</td></b<>					D: 1	0.004		2.40		07405 40	2.40
Mixture month construct tion period Mixture Machine 1 136 Disel 0.11 ton 3.18 0.38 37195.12 3.18 Vibrator 2.2 hp 1 136 Electricity 0.223 Mwhr 0.68 0.15 3600.00 0.68 water pump 2 hp 1 1350 Electricity 2.014 Mwhr 0.68 1.37 3600.00 0.68 for cooking 36 L LPG 0.511 ton 3.09 1.58 1510.00 3.09 Lightining 1 36 Disel 0.125 ton 3.18 0.43 37195.12 3.18 Mixture month construct 1 240 Disel 0.209 ton 3.18 0.43 37195.12 3.18 Mixture month construction 1 240 Disel 0.209 ton 3.18 0.66 37195.12 3.18 Vibrator cooking 1 240 Electricity 0.394 Mwhr 0.68 0.21 3600											
OS18 month construct periodMachine1136Disel0.118ton3.180.3837195.123.18Construct pump 2 h1136Electricity0.223Mwhr0.683600.000.68pump 2 h11350Electricity2.014Mwhr0.681.373600.000.68for cooking3Electricity2.014Mwhr0.685.133600.000.68for cooking6Electricity0.511ton3.091.581510.003.09ightning1136Electricity0.125ton3.180.6037195.123.18for cooking136Disel0.125ton3.180.6637195.123.18Mixture Machine1240Disel0.209ton3.180.6637195.123.18Vibrator construct for h1240Disel0.209ton3.180.6637195.123.18Mixture h1240Electricity3.23Mwhr0.680.273600.000.68for for h21240Electricity3.23Mwhr0.683.213100.003.69ightning h1240Electricity3.23Mwhr0.683.213600.003.69ightning h111.661.621.641.621.643.693.603.69<			4	20km	Disel	1.393	ton	3.18	4.43	37195.12	3.18
construction period 2.2 hp 1 136 Electricity 0.23 Mwhr 0.68 0.15 360.00 0.68 water pump 2 hp 1 1350 Electricity 2.01 Mwhr 0.68 1.37 360.00 0.68 for cooking 36 LPG 0.511 ton 3.09 1.58 1510.00 3.09 Lightining L2 LPG 0.511 ton 3.09 1.58 360.00 0.68 Lightining L2 LPG 0.511 ton 3.09 1.58 360.00 0.68 Lightining L2 LPG 0.511 ton 3.08 0.40 37195.12 3.18 Mixture Machine 1 240 Disel 0.20 fon 3.18 4.43 37195.12 3.18 Mixture Machine 1 240 Disel 0.29 Mwhr 0.68 0.27 360.00 0.68 Vibrator Machine	-	Machine	1	136	Disel	0.118	ton	3.18	0.38	37195.12	3.18
period mump 2 hp 1 1350 Electricity 2.014 Mwhr 0.68 1.37 360.00 0.68 for cooking 36 LPG 0.511 ton 3.09 1.58 1510.00 3.09 Lightning 1 1 1 1 1 1 36 0.68 Lightning 1 1 36 Disel 1.02 Total 1.06 3.18 37195.12 3.18 for 1 36 Disel 1.393 ton 3.18 0.40 37195.12 3.18 fuck 4 20km Disel 0.209 ton 3.18 0.66 37195.12 3.18 Mixture Mixture 1 240 Disel 0.209 ton 3.18 0.66 37195.12 3.18 Vibrator 1 240 Disel 0.209 Mwhr 0.68 2.19 360.00 0.68 for 2.2 hp 1 2160	construc		1	136	Electricity	0.223	Mwhr	0.68	0.15	3600.00	0.68
cooking361010G0.511ton3.091.581510.003.09lightning8.100Mwhr0.685.513600.000.681Total13.693600.000.681Total13.693600.0037195.123.18112.00Disel1.393ton3.184.4337195.123.181Mixture37195.123.181MixtureDisel0.209ton3.184.4337195.123.181MixtureDisel0.209ton3.184.4337195.123.181Mixture12.00Disel0.304Mwhr0.680.273600.000.681Mater3600.000.681Mixture			1	1350	Electricity	2.014	Mwhr	0.68	1.37	3600.00	0.68
O O			36		LPG	0.511	ton	3.09	1.58	1510.00	3.09
Loader 1 36 Disel 0.125 ton 3.18 0.40 37195.12 3.18 Mixture 4 20km Disel 1.393 ton 3.18 4.43 37195.12 3.18 Mixture Machine 1 240 Disel 0.209 ton 3.18 0.66 37195.12 3.18 Vibrator 2.2 hp 1 240 Electricity 0.394 Mwhr 0.68 0.27 3600.00 0.68 water pump 2 hp 1 2160 Electricity 3.223 Mwhr 0.68 2.19 3600.00 0.68 for cooking 48 LPG 0.682 ton 3.09 2.10 1510.00 3.09 Lightning I 240 Disel 0.84 ton 3.18 0.27 3600.00 0.68 Tuck 4 20km Disel 0.84 ton 3.18 0.27 37195.12 3.18 <		Lightining				8.100	Mwhr	0.68	5.51	3600.00	0.68
O6 (24 month truck 4 20km Disel 1.393 ton 3.18 4.43 37195.12 3.18 Mixture month construc tion period) 1 240 Disel 0.209 ton 3.18 0.66 37195.12 3.18 Vibrator 2.2 hp 1 240 Electricity 0.394 Mwhr 0.68 0.27 3600.00 0.68 water pump 2 hp 1 2160 Electricity 3.223 Mwhr 0.68 2.19 3600.00 0.68 for cooking 48 LPG 0.682 ton 3.09 2.10 1510.00 3.09 Lightning 1 240 Disel 0.682 ton 3.08 7.35 3600.00 0.68 for cooking 48 LPG 0.682 ton 3.18 0.27 37195.12 3.18 for cooking 1 124 Disel 0.39 1.00 3.18 0.27 37195.12 3.18 for (15mont h							Total		13.69		
Mixture Machine Mixture Machine Mixture 1 240 Disel 0.209 ton 3.18 0.66 37195.12 3.18 Vibrator 2.2 hp 1 240 Electricity 0.394 Mwhr 0.68 0.27 3600.00 0.68 vibrator period 1 2160 Electricity 3.223 Mwhr 0.68 0.27 3600.00 0.68 for cooking 48 LPG 0.682 ton 3.09 2.10 1510.00 3.09 Lightning 1 240 Disel 0.682 ton 3.09 2.10 1510.00 3.09 Lightning 1 240 Disel 0.682 ton 3.09 2.10 1510.00 3.09 Lightning 1 240 Disel 0.682 ton 3.18 0.27 37195.12 3.18 for 1 240 Disel 0.157 ton 3.18 0.43 37195.12 3.18 for <t< td=""><td></td><td>Loader</td><td>1</td><td>36</td><td>Disel</td><td>0.125</td><td>ton</td><td>3.18</td><td>0.40</td><td>37195.12</td><td>3.18</td></t<>		Loader	1	36	Disel	0.125	ton	3.18	0.40	37195.12	3.18
Mixture Machine Mixture Machine Mixture 1 240 Disel 0.209 ton 3.18 0.66 37195.12 3.18 Vibrator 2.2 hp 1 240 Electricity 0.394 Mwhr 0.68 0.27 3600.00 0.68 vibrator period 1 2160 Electricity 3.223 Mwhr 0.68 0.27 3600.00 0.68 for cooking 48 LPG 0.682 ton 3.09 2.10 1510.00 3.09 Lightning 1 240 Disel 0.682 ton 3.09 2.10 1510.00 3.09 Lightning 1 240 Disel 0.682 ton 3.09 2.10 1510.00 3.09 Lightning 1 240 Disel 0.682 ton 3.18 0.27 37195.12 3.18 for 1 240 Disel 0.157 ton 3.18 0.43 37195.12 3.18 for <t< td=""><td></td><td>truck</td><td>4</td><td>20km</td><td>Disel</td><td>1.393</td><td>ton</td><td>3.18</td><td>4.43</td><td>37195.12</td><td>3.18</td></t<>		truck	4	20km	Disel	1.393	ton	3.18	4.43	37195.12	3.18
Vibrator Vibrator 1 240 Electricity 0.394 Mwhr 0.68 0.27 3600.00 0.68 vater pump 2 hp 1 2160 Electricity 3.223 Mwhr 0.68 0.27 3600.00 0.68 pump 2 hp 1 2160 Electricity 3.223 Mwhr 0.68 2.19 3600.00 0.68 for cooking 48 LPG 0.682 ton 3.09 2.10 1510.00 3.09 Lightning - - 10.80 - <		Mixture									
construction tion period) 2.2 hp 1 240 Electricity 0.394 Mwhr 0.68 0.27 3600.00 0.68 period) water pump 2 hp 1 2160 Electricity 3.223 Mwhr 0.68 2.19 3600.00 0.68 for cooking 48 LPG 0.682 ton 3.09 2.10 1510.00 3.09 Lightning L LPG 0.682 ton 3.09 2.10 1510.00 3.09 Lightning L LPG 0.682 ton 3.09 2.10 1510.00 3.09 Lightning L LPG 0.682 ton 3.09 2.10 3600.00 0.68 Lightning L LPG 0.084 ton 3.18 0.27 37195.12 3.18 Mixture Mixture Disel 0.157 ton 3.18 0.50 37195.12 3.18 construc Mixture Disel 0.157 ton	O6 (24		1	240	Disel	0.209	ton	3.18	0.66	37195.12	3.18
period pump 2 hp 1 2160 Electricity 3.223 Mwhr 0.68 2.19 3600.00 0.68 for -			1	240	Electricity	0.394	Mwhr	0.68	0.27	3600.00	0.68
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		pump 2 hp	1	2160	Electricity	3.223	Mwhr	0.68	2.19	3600.00	0.68
LightiningImage: second se			48		LPG	0.682	ton	3.09	2.10	1510.00	3.09
O7 Loader 1 24 Disel 0.084 ton 3.18 0.27 37195.12 3.18 07 truck 4 20km Disel 1.393 ton 3.18 0.27 37195.12 3.18 07 Mixture 4 20km Disel 1.393 ton 3.18 4.43 37195.12 3.18 07 Mixture 1 180 Disel 0.157 ton 3.18 0.50 37195.12 3.18 Vibrator 2.2 hp 1 180 Electricity 0.295 Mwhr 0.68 0.20 3600.00 0.68 water pump 2 hp 1 900 Electricity 1.343 Mwhr 0.68 0.91 3600.00 0.68 for cooking 30 LPG 0.426 ton 3.09 1.31 1510.00 3.09 Lightining I Image: Second Seco		Lightining					Mwbr	0.68	7 25	3600.00	0.68
O7 (15mont h construc tion period) Loader 1 24 Disel 0.084 ton 3.18 0.27 37195.12 3.18 07 (15mont h construc tion period) Mixture Machine 4 20km Disel 1.393 ton 3.18 4.43 37195.12 3.18 Vibrator 2.2 hp 1 180 Disel 0.157 ton 3.18 0.50 37195.12 3.18 Water pump 2 hp 1 180 Electricity 0.295 Mwhr 0.68 0.20 3600.00 0.68 for cooking 30 LPG 0.426 ton 3.09 1.31 1510.00 3.09 Lightining						0		0.08		5000.00	0.08
O7 (15mont h truck 4 20km Disel 1.393 ton 3.18 4.43 37195.12 3.18 O7 (15mont h Mixture Machine 1 180 Disel 0.157 ton 3.18 0.50 37195.12 3.18 Vibrator b 2.2 hp 1 180 Electricity 0.295 Mwhr 0.68 0.20 3600.00 0.68 water pump 2 hp 1 900 Electricity 1.343 Mwhr 0.68 0.91 3600.00 0.68 for cooking 30 LPG 0.426 ton 3.09 1.31 1510.00 3.09 Lightining L LPG 0.426 ton 3.09 1.31 1510.00 0.68		Loader	1	24	Disel	0.084		3.18		37195.12	3.18
O7 (15mont h construction period) Mixture Machine 1 180 Disel 0.157 ton 3.18 0.50 37195.12 3.18 Vibrator 2.2 hp 1 180 Electricity 0.295 Mwhr 0.68 0.20 3600.00 0.68 water pump 2 hp 1 900 Electricity 1.343 Mwhr 0.68 0.91 3600.00 0.68 for cooking 30 LPG 0.426 ton 3.09 1.31 1510.00 3.09 Lightining I Image: Second Secon					Disel						
Machine 1 180 Disel 0.157 ton 3.18 0.50 37195.12 3.18 (15mont h Vibrator - <t< td=""><td>07</td><td></td><td></td><td></td><td>5.00.</td><td>1.000</td><td></td><td>5.15</td><td></td><td>0.100.12</td><td>0.10</td></t<>	07				5.00.	1.000		5.15		0.100.12	0.10
h construc tion Vibrator Image: Marcine Marci	-	Machine	1	180	Disel	0.157	ton	3.18	0.50	37195.12	3.18
tion period) water pump 2 hp 1 900 Electricity 1.343 Mwhr 0.68 0.91 3600.00 0.68 for cooking 30 LPG 0.426 ton 3.09 1.31 1510.00 3.09 Lightining L Image: Second se	h	2.2 hp	1	180	Electricity	0.295	Mwhr	0.68	0.20	3600.00	0.68
period i <td>tion</td> <td></td> <td>1</td> <td>900</td> <td>Electricity</td> <td>1.343</td> <td>Mwhr</td> <td>0.68</td> <td>0.91</td> <td>3600.00</td> <td>0.68</td>	tion		1	900	Electricity	1.343	Mwhr	0.68	0.91	3600.00	0.68
Lightining 8.400 Mwhr 0.68 5.72 3600.00 0.68 Total Total 13.34	μετισά)	for									
Total 13.34			50								
						0.400		0.08		3000.00	0.00
		Loader	1	30	Disel	0.104	ton	3.18	0.33	37195.12	3.18

	truck	2	20km	Disel	0.696	ton	3.18	2.21	37195.12	3.18
08(18	Mixture Machine	1	120	Disel	0.104	ton	3.18	0.33	37195.12	3.18
month	Vibrator									
construc	2.2 hp	1	120	Electricity	0.197	Mwhr	0.68	0.13	3600.00	0.68
tion period)	water pump 2 hp	1	1350	Electricity	2.014	Mwhr	0.68	1.37	3600.00	0.68
	for cooking	36		LPG	0.511	ton	3.09	1.58	1510.00	3.09
	Lightining				4.500	Mwhr	0.68	3.06	3600.00	0.68
						Total		9.02		
	Loader	1	20	Disel	0.070	ton	3.18	0.22	37195.12	3.18
	truck	2	20km	Disel	0.696	ton	3.18	2.21	37195.12	3.18
	Mixture									
09 (18	Machine	1	100	Disel	0.087	ton	3.18	0.28	37195.12	3.18
month construc	Vibrator 2.2 hp	1	100	Electricity	0.164	Mwhr	0.68	0.11	3600.00	0.68
tion period)	water pump 2 hp	1	1350	Electricity	2.014	Mwhr	0.68	1.37	3600.00	0.68
	for cooking	36		LPG	0.511	ton	3.09	1.58	1510.00	3.09
	Lightining				4.500	Mwhr	0.68	3.06	3600.00	0.68
	8				4.500	Total	0.08	8.84	5000.00	0.08
			26	D: 1	0.425		2.40		07405 40	2.40
	Loader	1	36	Disel	0.125	ton	3.18	0.40	37195.12	3.18
	truck	2	20km	Disel	0.696	ton	3.18	2.21	37195.12	3.18
010 (24	Mixture Machine	1	150	Disel	0.131	ton	3.18	0.42	37195.12	3.18
month construc	Vibrator 2.2 hp	1	150	Electricity	0.246	Mwhr	0.68	0.17	3600.00	0.68
tion period)	water	1	1800	Electricity	2.686	Mwhr	0.68	1.83	2600.00	0.68
p = ,	pump 2 hp for	1	1800	Electricity	2.080		0.08	1.05	3600.00	0.08
	cooking	48		LPG	0.682	ton	3.09	2.10	1510.00	3.09
	Lightining				6.000	Mwhr	0.68	4.08	3600.00	0.68
						Total		11.21		
	Loader	1	30	Disel	0.104	ton	3.18	0.33	37195.12	3.18
	truck	2	20km	Disel	0.696	ton	3.18	2.21	37195.12	3.18
	Mixture									
011 (24	Machine	1	120	Disel	0.104	ton	3.18	0.33	37195.12	3.18
month construc	Vibrator 2.2 hp	1	130	Electricity	0.213	Mwhr	0.68	0.15	3600.00	0.68
tion period)	water pump 2 hp	1	1080	Electricity	1.611	Mwhr	0.68	1.10	3600.00	0.68
	for cooking	48		LPG	0.682	ton	3.09	2.10	1510.00	3.09
	Lightining				4.500	Mwhr	0.68	3.06	3600.00	0.68
						Total	0.00	9.29	2000.00	0.00
						10101		385.6		
						Total		5		
						N		31.00		
						Avg		12.44		

Table 30 Building Notation Details

Buildi ng Notati	Name of owner	Location	Name of contractor	Period(mo nth)
on	Name of owner	Location	Bright Future	
R1	Sanjaya Agrawal	Kuleshowr	Construction Pvt.Ltd	6
KI	Sanjaya Agrawai	Kuleshowi	Mahakaya	0
R2	NJA Faculty Building	Manamaiju	Construction Pvt.Ltd	7
K2	NJA Paculty Dunuing	wiananaiju	Bright Future	/
R3	Padma Colony Type A	Ramkot	Construction Pvt.Ltd	6.5
KJ	Taunia Colony Type A	Kallikot	Bright Future	0.5
R4	Padma Colony Type B	Ramkot	Construction Pvt.Ltd	8
K 4	Taunia Colony Type D	Kallikot	Bright Future	0
R5	Padma Colony Type C	Ramkot	Construction Pvt.Ltd	7
10	Tudinu Colony Type C	Runkot	Bright Future	,
R6	Padma Colony Type D	Ramkot	Construction Pvt.Ltd	7.5
Ro	Tudina Colony Type D	Runkot	Mahakaya	1.5
R7	Bindu Pradhan	Budanilkantha	Construction Pvt.Ltd	7.5
10,	Dinau Truchun	Duduiiiiiu	Pashupatinath	1.0
R8	Rohan Shrestha	Gokarna	Construction Pvt.Ltd	7
			Mahakaya	
R9	Niraj Shing Rathor	Hepali Height	Construction Pvt.Ltd	9
	<u> </u>		Mahakaya	
R10	Guest House	Gongabu	Construction Pvt.Ltd	8.5
		Ŭ	Mahakaya	
R11	Waiting and security	Tokha	Construction Pvt.Ltd	10
			Bright Future	
R12	Rakhi Chaudhary	Gaushala	Construction Pvt.Ltd	9
			Pashupatinath	
C1	Mina kumari Agrawal	Tripureshwor	Construction Pvt.Ltd	18
			Synergy Builders	
C2	Binaya Kumar Shah	Ganabal	Pvt.Ltd	20
	Shrawan kumar		Bright Future	
C3	Agrawal	Tripureshwor	Construction Pvt.Ltd	19
			Synergy Builders	
C4	Devine Bless	Swayambhu	Pvt.Ltd	24
			Pashupatinath	
C5	Hotel Eastern	Lazimpat	Construction Pvt.Ltd	28
	Hotel Ryne fitness		Synergy Builders	
C6	block	Kathmandu	Pvt.Ltd	24
~-	Hotel Ryne banqute		Synergy Builders	
C7	block	Kathmandu	Pvt.Ltd	18
a .c			Synergy Builders	_
C8	Badijaya Bank	Kathmandu	Pvt.Ltd	24
01			Synergy Builders	
01	Nja Hostel	Manamaiju	Pvt.Ltd	24
00			Pashupatinath	
O2	Nja Admin Block	Manamaiju	Construction Pvt.Ltd	30

	Tarkeshowr		Pashupatinath	
O3	Municipality building	Dharmasthali	Construction Pvt.Ltd	28
			Synergy Builders	
O4	KMC College	Kathmandu	Pvt.Ltd	18
			Synergy Builders	
05	MAX Building	Putalisadak	Pvt.Ltd	18
	Triten Norbutse		Synergy Builders	
06	Institution	Ichange	Pvt.Ltd	24
	Himalayan College		Synergy Builders	
O7	Auditorium Hall	Sankhamul	Pvt.Ltd	15
			Pashupatinath	
08	Manka Khala Building	Dallu	Construction Pvt.Ltd	18
			Mahakaya	
09	Police Building	Samakhushi	Construction Pvt.Ltd	19
	shankharapur		Synergy Builders	
O10	municipality	shankhu	Pvt.Ltd	24
	Gokerneshowr		Pashupatinath	
011	Municipality	Gorkarna	Construction Pvt.Ltd	24