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ABSTRACT

Solar energy has immense promise as a source of renewable energy. It is abundant throughout
the year, although it is subject to uncertainty due to various parameters. Sun energy sources’
affectivity and productivity can be improved by accurate forecasting of solar radiation. Fore-
casting Global Solar Radiation (GSR) in the field of research has attracted widespread attention
from the research community in many practical fields including energy. Different models for
predicting GSR potential have been used in the literature. One of the most prominent linear
models for time series forecasting is the Autoregressive Integrated Moving Average (ARIMA).
There are also different machine learning models which show promising forecasting results. To
take advantage of the unique benefits of ARIMA and machine learning models in linear and
nonlinear modeling the data of solar radiation potential, we propose a hybrid method combining
ARIMA and machine learning models ANN(Artificial Neural Network) and LSTM(Long Short
Term Memory) models in this study. The dataset was obtained for the location of Kushma,
Parbat for duration between 1990 to 2014. For the supplied data sets, the ARIMA plus ANN
hybrid model was seen to be the best method for predicting solar radiation potential. The cor-
relation coefficient (R square) is calculated 0.847. The error values for this model are accessed
as RMSE, MAPE and MAE of 1.719, 6.456 and 1.330 respectively. The experimental results
of real data sets show that the combined model can effectively improve the prediction accuracy
achieved by any model used alone. TThe acquired results also demonstrated that the created
model could be utilized to calculate the solar radiation potential of any geographic region with
known climatic parameters.
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CHAPTER 1: INTRODUCTION

1.1 Background

One of the most important energy sources that may be received directly from the sun is solar
energy. Sun is rich in energy and helps the survival of human beings and all the living things on
the earth. Solar radiation is significantly affected when it passes through the earths atmosphere
(WECS, 2010). Solar energy is the energy emitted by the sun in the form of radiation. This
energy is obtained through the thermonuclear reaction process (Iqbal, 2012). Because Nepal is
located at a favorable latitude, it receives roughly 300 days of sunshine each year, with an annual
average solar radiation of 3.66.2 kWh/𝑚2/day per year. In addition, there are approximately
6.8 hours of sunshine per day (Tarpley, 1979). Solar energy is used as an alternative energy
source not only in remote areas, but also in urban areas of Nepal. Solar energy is crucial for
heating systems, pumping water to construct contemporary agricultural greenhouses, and solar
photovoltaic lighting (Awasthi and Poudyal, 2018). Nepal is in the monsoon climate zone,
with annual rainfall ranging from 1,000 to 2,500 millimeters, with 80 percent to 90 percent of
that falling during the monsoon season through June through September. In the summertime,
maximum mean temperature varies from over 40𝑜𝐶 in the lowlands to 20𝑜𝐶 in the central
plateau hills, and below 16𝑜𝐶 in the highlands at 2,000 m to 4,000 m. Temperatures at higher
altitudes are substantially colder in the winter (International Renewal Energy, 2018).

Recent climate change and high demand for electricity have led to the need for electricity
from green and renewable sources, including solar energy. Solar energy, an abundant source of
sustainable energy, has the least environmental impact and makes the sun an important source of
energy (Heng et al., 2017).Using autoregressive integrated moving average (ARIMA), artificial
neural network (ANN), and long-term short-term memory (LSTM) models, we offer a mixed
algorithm to time series analysis. The following viewpoints provide motivation for such hybrid
approach. First, determining whether such a time series undergoing consideration is produced
by an underpinning linear or nonlinear mechanism, and whether one technique is far more
efficient than another, is sometimes challenging in reality. As a result, selecting the appropriate
method for a given situation is challenging for tippers. Various models are usually examined,
and the one with the best accurate result is chosen. The final model chosen, however, is not
exactly the right for future developments due to various possible factors involved such as sample
variation, modelling ambiguity, and systemic transformation. The challenge of model selection
can be solved with little extra effort by combining multiple strategies. Secondly, actual data
are infrequently linear or non-linear in nature. They frequently include both linear and non -
linear patterns. If this is really the situation, neither ARIMA or hardly machine learning (ML)
methods could be used to analyze and simulate time series since this ARIMA model cant solve
non-linear interactions and the neural network model can’t either handle linear and nonlinear
patterns alike. Complex autocorrelation patterns can thus be more properly described in the
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dataset by merging ARIMA and ML models. Third, the forecasting research nearly universally
agrees that no strategy is the best throughout every scenario, as presented in the articles by
(Chatfield, 1988) and (Jenkins, 1982). This is mostly owing to the fact that real-world problems
are frequently complicated, and an approach may not always be capable of capturing multiple
trends with equal effectiveness. The majority of studies on time series prediction utilizing
neural network models are found in the literature such as (Tang and Fishwick, 1993), (Hwarng,
2001), Given mixed results, employ ARIMA models as standards comparasionăto evaluate the
success of the ANN model. Numerous empirical investigations, involving multiple large-scale
predicting competitions, show that integrating numerous new variations can sometimes enhance
prediction accuracy when compared to the standaloneămodel, without the need to determine the
"real" or "perfect" model (Makridakis et al., 1982). As a result, combining several models can
enhance prediction productivity by improving the potential to gather distinct patterns within the
data. Numerous empirical investigations have also shown that integrating several new variations
improves forecasting accuracy when compared to using each model separately. Furthermore,
the integrated model seems to be more resistant to potential data structure changes. Solar
radiation forecast is based on online data.

Time series analysis is a valuable research subject that has gotten a lot of interest from the
academic and scientificăresearchers in a lot of different fields, including finance ((Wei, 2016),
(Adhikari and Agrawal, 2014)), agriculture ((Ezzine et al., 2014), (Garrett et al., 2013)), energy
((Sadaei et al., 2014), (Bahrami et al., 2014)) and transport ((Xiao et al., 2012), (Zhang et al.,
2013)), environment ((Deng et al., 2015), (Feng et al., 2015)), etc. In recent decades,Numerous
efforts have been made by researchers to construct effective prediction models in order to
enhance predictive performance, but the research and development of new predictive models to
improve forecast accuracy has not stopped (De Gooĳer and Hyndman, 2006). A neural network
is a highly distributed simultaneous processor made up of simple computationalăelements that
seem to have a natural inclination to accumulate and grant access empirical evidences. Artificial
intelligence that replicates the activity of the human brain is known as ANN (Haykin, 2010).
ANNs can analyze linear and nonlinear phenomena without making underlying assumptions,
which is the case with many of the conventional analytical techniques. They were employed in
a variety of scientific and technological domains ((Yang et al., 2005); (Chantasut et al., 2004)).

1.2 Problem Statement

A hybrid forecasting model has recently appeared, called a hybrid model. The hybrid model
can be a combination of the same or different models. One of the most popular categories of
mixed models is linear and nonlinear mixed models. For example, To take advantage of the
unique benefits of ARIMA and ANN in linear and nonlinear analysis, Zhang (2003) devised a
mix of regression integral moving average and artificial neural network. The simulation results
indicated that, instead of employing ARIMA or ANN alone, the Zhang approach could be a
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more effective way to increase predictive performance. However, a disadvantage of the Zhang
model is that it assumes that the linear and nonlinear elements of the time - series data have
an additive connection. Therefore, in some cases, the Zhang model does not perform as well
as its components (ie, ARIMA and ANN) (Taskaya-Temizel and Casey, 2005). Furthermore,
with respect to the mixed results of the Zhang model, Khashei and Bĳari (Khashei and Bĳari,
2011) extended the Zhang model by defining time series as a function of linear and non-linear
components. In the Khashei and Bĳari model, ARIMA first extracts the linear component of
the time series. Then, they assumed that the non-linear component remained in the ARIMA
residuals and in the time series data. Secondly, ANN is used to examine the function of
ARIMA results, the lag of ARIMA residuals, and the lag value of time series. In fact, these two
hybrid models (Zhang model and Khashei and Bĳari model) are applied to several real-world
applications, such as stock index (Wang et al., 2012), agricultural product prices (Shahwan
and Odening, 2007), moisture content soil (Liu et al., 2008), agricultural imports Value (Lee
and Liu, 2014), irrigation water demand (Pulido-Calvo and Gutierrez-Estrada, 2009), sugar and
alcohol (Ribeiro and Oliveira, 2011), and Goldman Sachs Commodity Index (GSCI) futures
prices (Bo et al., 2007). Usually, these hybrid models promise better predictions, but are only a
measure of average accuracy. Therefore, in certain forecast periods, a single model can provide
higher accuracy. In addition, the input variable is just the lag value of the time series. In
accordance with these limitations, it is possible to improve the accuracy of the prediction by
suitably combining a single model and a mixed model and input preprocessing. As far as we
know, the study of GSR forecasts is limited to the use of the ARIMA model, emperical models
and ANN models. Although GSR is one of the most important sources of renewable energy for
the world there is no research on the hybrid model of GSR from Nepal. Nepal is also enlisted as
the fourth vulnerable county in terms of climate change. These natural calamities can directly
affect the production of hydroelectricity. There is a high need of sustainable energy supply and
it can be performed with the mix of solar energy. Therefore, GSR prediction can help decision
makers involved in energy demand supply chain improve production plans, assist the ministries
in policy formulation and generate profits in the energy markets. For these reasons, it seems
interesting to use the prediction of GSR in Parbat district as a case study in this paper. Therefore,
we propose a new mixed forecast model for daily GSR. By involving a ARIMA and ML, the
proposed model has been significantly expanded from the Zhang model and the Khashei and
Bĳari models. Furthermore, the proposed model not only includes the lag value of the time
series as an input variable, but also includes additional variables such as the moving average and
the annual seasonal index. The experiment comprehensively carried out various hybridization
schemes in terms of structure and variables to find the most suitable prediction model for the
export of cassava. Building dependable solar energy systems necessitates knowledge of the GSR
in the area where the system will be installed. Several countries built GSR method to predict
sun radiation and aid in the construction of solar power generation. We still don’t have any such
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modeling for GSR in Nepal, thus this is the first effort to create one for Kaski district, which will
also be expanded to other regions afterwards. Moreover, for the past few decades, numerous
researches have been carried out for effective solar irradiance prediction. Usually, a time series
forecasting has been focused using a single model (Patil, 1990); (Tang and Fishwick, 1993). In
this work, three different models are implemented and also a hybrid model is purposed.

1.3 Objectives

The objectives of this study are given below.
Main Objectives

• To create a hybrid model using ARIMA and machine learning model (ANN and LSTM)
to predict GSR in Kusuma, Parbat.

Specific Objectives

• To analyze the accuracy of different standalone models.

• To identify the best effective model for prediction of GSR in Kusuma, Parbat.

• To recommend the best model for the study site.

1.4 Rationale of the Study

Many researchers have found that prediction methods are so modern that they overshadow
traditional methods when applied to various data sets. However, modern forecasting methods
have not been widely used to estimate global solar radiation. Many research is mainly focused
on the performance of hybrid model in a generalized set of time series data, as climate change
is found to be unequivocal it is equally important to analyze the model efficiency for climatic
data as well. The research is mainly focused on predicting the global solar radiation potential
and calculating the efficiency of such models for climatic data. It‘s more like an exploration of
how data analytics also supports achievability of renewable energy.

1.5 Scope and Limitation of Research

The scope of the study is to identify the errors in forecasting the time series data for solar
radiation potential. This shall be identified by studying different statistical error measurement
factors. Three different types of models along with the hybrid will be used for the study. Finally,
alternative methods and directions are proposed for future research. The data used in this study
is acquired from a website and hence can be faulty in different way. Also, some assumptions
are made to create a hybrid model.
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First, the most fundamental restriction must be reported in carrying out the construction
of the investigation in general. This thesis is subject to restrictions with respect to the time
and time required for different processes. In particular, the computational load of problems
increases in parallel with the needs of time. Of course, these restrictions lead to a need for
simplifications through a multitude of thesis elements. One of these simplifications is related
to data collection. Lack of required format and sufficient data from ground radiant sources,
the data was collected from the satellite station. only the historical data of solar radiation were
used, limiting our model and the reference points for the architecture of the univariate Time
Series. A multivariate series model with additional explanatory variables would have resulted
in a stronger base to attract empirical conclusions. Therefore, the structure of the univariate
time series limits the validity of the generalization of the hybrid model. This could mean that
the application in different periods of time, or in another solar radiation, would have led to less
accurate forecasts.

Another branch of the all-encompassing time constraint is the simplification applied to
our data size. The fundamental advantage of neural networks is that they can handle large
amounts of data, which means that this work is limited in checking such learning algorithms.
As mentioned in the previous paragraph, including additional data points by covering a longer
period of time or additional variables will increase the utility of the neural network. Considering
the conversion from daily data to monthly data, realizing that this limitation may be seen as a
contradiction. It is undeniable that this conversion reduces the number of data points input to
the model. However, this is viewed as a compromise between the time span of coverage and
computational feasibility. The use of monthly data can cover a longer period of time without
the computational effort becoming unmanageable. The desire to provide a sufficient amount of
data for the neural network leads in this work to rely on the simplification of the data verification
division. Usually, time series cross-validation involves breaking up a large amount of data in
order to verify it over many time steps. However, the lack of data in neural networks means that
the window size of the time series cross-validation remains large, which reduces the number
of possible evaluation steps. However, it should be refuted that every time step in our data
breakdown involves the forecasting and calculation of performance indicators made up of 289
solar radiation data. Against this background, the creation of a general model from the initial
training data and its evaluation on a limited number of test sets was determined as an acceptable
compromise.

The restrictions relating to time and calculation efforts also induce the need for limitations
in model applications. In this thesis, automatic paintings were used to reduce time consumption
of certain methodological passages. These automated frames are excellent for this reason;
However, they can also cause sub-optimal solutions or a potentially hindered learning, as
it reduces the investigator’s participation. In other cases, for example, in the inclusion of the
reference models, the setting of the parameters is limited, which will have softens on the validity
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of the results. Limited time has also conducted this thesis that makes no effort to look inside
the black box of the LSTM Beizer (1995). Traditionally, the applications of advanced neuronal
networks for decision-making have received criticisms to be used in favor of interpretable
models. This criticism has activated an answer in which the researchers have developedmethods
to support the transfer through neuronal networks, which allow mechanisms to cause learning.
On the other hand, this thesis presented has no effort to explain the causes of changes in the
potential of solar radiation, but discuss the potential value of modern learning applications in
energy forecasts. These limitations presented are the starting point for a discussion on how this
specific method can be embroidered in further research, and therefore contribute to improving
the predictive power and implicit learning through greater interpretability.
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CHAPTER 2: LITERATURE REVIEW

2.1 Global Solar Radiation

The sun is the greatest source of energy. It is considered the most important renewable energy
source. Furthermore, the most plentiful source of energy on the planet is solar radiation. But we
humans, especially in Nepal, are using fossil fuel for daily use. As we are moving towards the
new era and the interest in solar power application areas are increasing everyday. Firewood was
the most dependent source of energy for household cooking with 84 percent dependent in Nepal.
There is an average of 2550 sunshine hours per year with an average of 6.59 sunshine hours per
day. The use of solar energy is now a necessity to satisfy an important part of the country’s
energy needs. The need of renewable energy sources and difficulty in assessing the potential of
production renewable energy come together with great challenges, physically and economically.
The Sun, as the ultimate source of energy could be decisive in producing renewable energy
for daily usage. Solar radiation values are only available for a limited number of locations
and therefore need to be interpolated to find the value of other locations in order to obtain
the best possible location for a solar park (International Renewal Energy, 2018). The artificial
neural network is an efficient artificial intelligence model for making predictions by training the
model with appropriate data variables. Various literatures show that many researchers outside
of Nepal, such as (Widrow, 1960); (Rosenblatt, 1958) and (Ghosh and Deuser, 1995) estimate
total global solar radiation using the ANN model which is based on meteorological factors.
These models cannot be used efficiently in Nepal due to seasonal variations, different weather
and geographic conditions, as stated by (Carpenter and Grossberg, 2010). The uncertainty of
solar radiation and the modeling capabilities of artificial neural networks (ANN) have inspired
the application of ANN techniques to predict solar radiation.

2.2 Autoregressive Integrated Moving Average

In an ARIMA model, the forecasted value of a variable is believed to be a linear mixture of
many prior observations and random errors. That is, the core principle that generates the time
series has the form, as given by BoxJenkins,

𝑌𝑡 = 𝜃0 + 𝜙1𝑦𝑡1 + 𝜙2𝑦𝑡2 + · · · + 𝜙𝑝𝑦𝑡 𝑝 + 𝜖𝑡 − 𝜙1𝜖𝑡−1 − 𝜙2𝜖𝑡−2 − · · · − 𝜙𝑞𝜖𝑡−𝑞 (2.1)

where 𝑦𝑡 and 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑡 are the true value and random error in time t, respectively. 𝑝ℎ𝑖𝑖 (i =
1,2,......, p) and 𝑏𝑒𝑡𝑎 𝑗 (j = 0,1,2,..., q) are model parameters. The integers p and q are known as
model orders. The random errors 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑡 are assumed to be independent and evenly dispersed,
with a mean of zero and a variance of 𝑠𝑖𝑔𝑚𝑎2. Eq. (2.1) includes numerous key ARIMAmodel
group specific instances. When q = 0, (2.1) transforms into an AR model of order p. The model
simplifies to anMAmodel of order q when p = 0. One of the most important aspects of ARIMA
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modeling is determining the model’s right order (p, q). Developed from prior work by (Yule,
1926) and (Wold, 1938), (Box and Jenkins, 1970) has discovered a realistic method for building
ARIMA models that has far-reaching consequences for time series research and prediction.
Model development, parameter estimates, and diagnostic imaging are all iterative processes in
the Box-Jenkins approach. The model estimation principle states that a time series created by
an ARIMA process must exhibit theoretical autocorrelation features. It is sometimes possible
to detect one or more plausible explanations for a given time series by examining experimental
and predicted autocorrelation characteristics. (Box and Jenkins, 1970) suggested identifying the
ordering of the ARIMAmodel that used the autocorrelation function and partial autocorrelation
function of the data set as essential tools A data processing is frequently necessary in the
recognize phase to create the trend analysis stationary. Stationarity is a requirement for building
an ARIMA model that can be used for prediction. The statistical features of a stationary
time series, including the average mean and autocorrelation architecture, remain relatively
stable. When time series exhibit pattern and homogeneity of variance, differentiation and
power modifications are frequently used to eliminate the pattern and stabilize the variance
before fitting an ARIMA structure. Determining the parameters of the model is simple when
one basic model has been defined. To reduce the total degree of mistakes, the parameters are
estimated. A non-linear optimization method can be used to accomplish this. The diagnostic
evaluation of the model’s suitability is the final step in the modeling process. This is used to
see if the model’s hypotheses concerning mistakes 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑡 are correct. The goodness of fit
of the preliminary model to the past records could be assessed using a variety of diagnostic
statistics and residuals diagrams. If the model is insufficient, a new preliminary model must be
identified, followed by the parameter estimates and model verification procedures. Alternative
models can be suggested using diagnostic data. This three-step modeling procedure is usually
conducted multiple times before a successful model is chosen. The final model chosen can be
utilized to make predictions.

2.3 Artificial Neural Network

The proportion of non-linear architectures that may be used to explain and forecast a time series
increases considerably when the linear restriction in the model form is removed. According
to (De Gooĳer and Kumar, 1992), a successful nonlinear model should be general enough
to capture some of the nonlinear processes in the data. The availability of historical data in
meteorological supply databases and the fact that ANNs are data-driven methods that can make
a non-linear association between sets of input and output variables make this modeling software
tool be very attractive (Notton et al., 2018). Since the costs of solar radiation meters are very
high, it is not possible to install these meters everywhere (Fouilloy et al., 2018). Artificial
neural networks are one type of model that can approximate diverse data nonlinearities. ANNs
are versatile computer frameworks that may be used to model a wide range of nonlinear issues.
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ANN models have a significant advantage over other types of nonlinear models in that they are
universal approximators that can accurately approximate a wide range of functions. Their power
is derived from the parallel processing of digital information. The model building method does
not necessitate any prior assumptions about the model shape. Instead, the network model is
heavily influenced by the data’s features. There are two types of artificial neural networks:
feedforward and feedback networks (loops). The network connection in the first network does
not form a loop, whereas the latter network can have one or more loops. The most common
feedforward network sequence is hierarchical networks, wherein neurons are organized onto
levels with strict connections in one direction via one layer to the next (Jain et al., 1996).
According to (Zhang et al., 2001), For time series analysis and prediction, the hidden neuron
layer feedforward system is by far themostwidely usedmodel structure. The architecture ismade
up of three layers of simple processing elements coupled by acyclic links. The mathematical
description of the association between output 𝑦𝑡 and the inputs 𝑦𝑡−1, 𝑦𝑡−2, ..., 𝑦𝑡−𝑝 is as follows:

𝑦𝑡 = 𝛼0 +
𝑞∑
𝑗=0

𝛼 𝑗𝑔(𝛽0 𝑗 +
𝑝∑
𝑖=0

(𝛽𝑖 𝑗 )𝑦𝑡−1) (2.2)

where 𝑎𝑙 𝑝ℎ𝑎 𝑗 (j = 0,1,2,...,q) and 𝑏𝑒𝑡𝑎𝑖 𝑗 i = 0,1,2,...,p; j = 1,2,...,q) are model parameters
known as weight vectors, where p describes the amount of input nodes and q represents the
number of hidden layers. As a hidden layer function f(), the logistic function is commonly used.
it is utilized to transport data across layers, it is given by

𝑔(𝑥) = 1
1 + 𝑒𝑥𝑝(−𝑥) (2.3)

As a result, the ANNmodel in (2.2) conducts a nonlinear functional mapping from past data
𝑦𝑡1, 𝑦𝑡2, , 𝑦𝑡 𝑝 to the future data 𝑦𝑡 , i.e.,

𝑦𝑡 = 𝑓 (𝑦𝑡1, 𝑦𝑡2, , 𝑦𝑡 𝑝, 𝑤) + 𝜖𝑡 (2.4)

where w is a vector comprising all parameters and f is a framework and connection weights-
based function. The neural network becomes a nonlinear autoregressive framework as a result.
Expression implies single output node in the output layer (2.2), which is commonly used for
one-step-ahead forecasting. The simple network presented in (2.2) is remarkably powerful in
that it can approximate any function as long as the number of hidden nodes q is large enough.
(Hornik et al., 1990). In practice, in out-of-sample prediction, a simple network layout with
a modest number of hidden nodes typically works effectively. This could be related to the
overfitting effect that occurs frequently in neural network models. Although an overfitted model
has a perfect match to the dataset used to construct it, it has poor expressive capability for
variables beyond the samples. The factor q is dependent on the inputs, and there is no set
formula for calculating it. The selection of the quantity of lagged data, p, the size of the input
sequence is yet another important issue of ANN modeling of time-series data, in addition to

9



determining an adequate number of hidden nodes. Because it determines the autocorrelation
(non-linear) architecture of the data series, this is likely its most crucial parameter to predict in
an ANNmodel. There is, nevertheless, no concept which can be used to govern the choice of p.
As a result, studies are frequently conducted to determine both an adequate p and an appropriate
q. The network is ready to be analyzed, which is a process of parameter estimation, after a
network structure (p, q) is defined. The coefficients are determined in such a manner that a
generic accuracy requirement, like mean square error, is reduced, just like in ARIMA analysis.
Other than the basic backpropagation training procedure, this is done with various efficient
nonlinear optimization algorithms. In most cases, the estimated model is tested on a distinct
allocated dataset that has not been subjected to that same training phase. This procedure differs
from the one used in the construction of ARIMA models, which normally uses a sample for the
identification, estimation and evaluation of the model. The reason for this is that the ARIMA
model’s general (linear) shape is given first, and then the model’s order is inferred from the
data. The conventional statistical approach believes that the best model for fitting past data is
likewise the best model for predicting the future. (Fildes andMakridakis, 1995) under stationary
conditions. In the case of ANNs, both the shape of the model (non-linear) and the model’s
order should be calculated from the data. As a result, an ANN model has a higher chance
of overfitting the dataset. The ARIMA and ANN models share several characteristics. Each
encompass a diverse range of models with varying model orders. To get the best outcomes, data
transformation is frequently required. To create an effective model, you’ll need a high sample
size. Your modeling procedures are continuous and exploratory, and individual judgment is
sometimes necessary to implement the model. Saving is typically a guiding criterion when
picking a good time series forecasting, due to the possibility of overfitting with both models.

2.4 Long-Short Term Memory

Figure 2.1: LSTM architecture in its most basic form

The LSTM model developed by Hochreiter and Schmidhuber (1997) in 1997 is indeed a
subset of the recurrent neural network (RNN) architecture. The LSTM model was created with
the intention of learning through long-term relationships. It is made up of the LSTM structure,
which is a complicated structure buried within the layers. LSTM is a popular and commonly
used deep learning model today, with applications in a variety of fields, as mentioned by Atienza
(2018). The underlying LSTM architecture is shown in Fig. 2.1.
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Thememory-based RNN cell is at the heart of the LSTM’s basic structure. This memory cell
is useful for searching and retrieving from the past. This memory cell facilitates the transmission
of previous data to the next level. Based on its training needs, the model selects past data. It is
a frequent exercise for the LSTM network to retain valuable information over just a significant
period of time, but it is a crucial behavior of the LSTM network ((Zhao et al., 2017)). In Figure
2.2, the fundamental LSTM structure is shown. Here, 𝑥𝑡 symbolizes the preceding unit’s input

Figure 2.2: Basic Cell structure of LSTM

data or output at time step t, ht indicates the hidden output value, and ht1 refers the prior or past
output. The LSTM model contains gates such as input gate, output gate, forget gate, and inputs
modulation gate. Eqs. (5), (6), and (7) are used to compute the input gate 𝐼𝑡 𝑗 , forget gate 𝐹𝑡 𝑗 ,
and output gate 𝑂𝑡 𝑗 of the LSTM model.

𝐼𝑡 𝑗 = 𝜎(𝑊𝐼𝑥𝑡 +𝑊𝐼ℎ𝑡−1 + 𝑏𝐼) 𝑗 (2.5)

𝐹𝑡 𝑗 = 𝜎(𝑊𝐹𝑥𝑡 +𝑊𝐹ℎ𝑡−1 + 𝑏𝐹) 𝑗 (2.6)

𝑂𝑡 𝑗 = 𝜎(𝑊𝑂𝑥𝑡 +𝑊𝑂ℎ𝑡−1 + 𝑏𝑂) 𝑗 (2.7)

The sigmoid activation function is represented by 𝑠𝑖𝑔𝑚𝑎, the voltage vectors are represented
by b, and the weight matrices are represented by W. The memory is maintained with in LSTM
model at time t, and afterwards the modified memory function 𝑐 𝑗 𝑡 is computed using Eq (2.8),

𝑐𝑡 𝑗 = 𝐹𝑡 𝑗𝑐 𝑗 𝑡−1 + 𝐼𝑡 𝑗𝑐 𝑗 𝑡 (2.8)
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Now, using Eq. (2.9), the upgraded memory subject matter is estimated, and then Eq. (2.10) is
used to predict the LSTM model’s result.

𝑐𝑡 𝑗 = 𝑡𝑎𝑛ℎ(𝑊𝐶𝑥𝑡 +𝑊𝐶ℎ𝑡−1 + 𝑏𝐶) 𝑗 (2.9)

ℎ 𝑗 = 𝑂 𝑗 𝑡𝑎𝑛ℎ(𝑐 𝑗 ) (2.10)

The epoch, like certain other ANNs, is in charge of LSTM training phase. This epoch is
responsible for calculating the network load W. The epoch, that is related to the number of
iterations upon that particular dataset, determines the network weight. With deep learning
models, the problem of enhancing the network via changing the weights is crucial. As a
consequence, transmitting all the data across the same network multiple times is a good idea,
and we may aim for an even more accurate and precise forecasting model using it. However,
because each dataset may contain different behaviors, the number of epochs required to achieve
optimal weights is unknown. As a result, various numbers of epochs might well be necessary
for the optimum train network.

2.5 Hybrid Model

In their respective linear and non-linear domains, both of the ARIMA and ANN modeling have
been successful. However, none of them is a universal model suitable for all circumstances.
The ARIMA models approach to complex nonlinear problems may not be adequate. On the
other hand, the use of RNA to model linear problems has produced mixed results. For example,
On the basis of simulation results, (Denton, 1995) shown that artificial neural surpass linear
regression models in the presence of outliers or cointegration with in data. The effectiveness
of RNA for linear regression issues was also discovered to be dependent on sample size and
noise level, according to (Markham and Rakes, 1998). As a result, applying ANNs to any form
of data is not recommended. Because it’s difficult to fully comprehend the qualities of data
in a real-world scenario, a hybrid method that combines linear and non-linear model - based
powers can be a useful solution. Multiple features of the underlying patterns can be conveyed
by merging different models. A time series can be thought of as having a linear autocorrelation
architecture and a nonlinear element. In other words,

𝑦𝑡 = 𝐿𝑡 + 𝑁𝑡 (2.11)

, where 𝑦𝑡 is the time series data for time t, and 𝐿𝑡 and 𝑁𝑡 are the linear and nonlinear parts
of the time series data for time t, respectively. These two components must be calculated based
on the data. We first let ARIMA model the development pipeline, and then the linear model’s
residuals will only include the non - linear relation. Let 𝑒𝑡 be the linear model’s remainder at
time t, and then

𝑒𝑡 = 𝑦𝑡 − 𝐿
′
𝑡 (2.12)

12



where 𝐿
′
𝑡 is the estimated relationship’s predicted value for time t given by equation (2.2).

When establishing whether linear models are weak, residuals are critical. If there are still linear
correlation structures in the residuals, a linear regression model is insufficient. In contrast,
residual analysis is unable to uncover any nonlinear patterns within the data. In addition, there
are currently no generic diagnostic metrics for nonlinear autocorrelation links. As a result, even
if a model has passed diagnostic testing, it may still be insufficient since nonlinear interactions
have not been adequately modeled. The ARIMA’s limitation will be revealed if the residuals
show a large nonlinear trend. By using ANNs to model residuals, nonlinear relationships can
be uncovered. With n input neurons, the ANN model for residuals can be expressed as

𝑒𝑡 = 𝑓 (𝑒𝑡−1, 𝑒𝑡−2, , 𝑒𝑡−𝑛) + 𝜖𝑡 (2.13)

where 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑡 is the random error and f() is the neural network-determined nonlinear
function. It’s worth noting that the error term isn’t always random if the model f isn’t acceptable.
As a result, proper model identification is crucial. The forecast from (2.13) will be denoted as
𝒩𝑡 , and the combined forecast will be

𝑦
′
𝑡 = 𝐿

′
𝑡 + 𝒩𝑡 (2.14)

, where 𝑦 ′
𝑡 is the prediction at time t.

In summary, the suggested hybrid system technique comprises of two parts. An ARIMA
method is used to assess the linear aspects of the issue in the first stage. The residuals from the
ARIMAmodel are modeled using a neural network model in the second stage. The residuals of
the linear model will contain information on the nonlinearity because the ARIMAmodel cannot
represent the nonlinear nature of the data. The findings of the neural network can be utilized to
anticipate the ARIMA model’s error terms. In determining diverse patterns, the hybrid model
takes advantage of the unique features and strengths of both the ARIMA and ANN models. To
improve overall modeling and forecasting performance, it may be suitable for modelling linear
and nonlinear patterns independently using various models and then integrate the forecasts. As
previously indicated, subjective judgment of model order and model soundness is frequently
required while developing ARIMA and ANN models. It’s possible that the hybrid technique
will use poor models. The current BoxJenkins technique, for example, focuses on low order
autocorrelation. Even if strong higher-order autocorrelations exist, a model can be considered
acceptable if lower-order autocorrelations aren’t significant. This suboptimality should not
undermine the usefulness of the hybrid model. Many author has pointed out that for a hybrid
model to produce superior predictions, the component model must be suboptimal.
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CHAPTER 3: RESEARCH METHODOLOGY

3.1 Overview

The research methods outlines what research is, how it is conducted, what type of data is needed
for a study, and which data gathering instruments are most suited to the study’s objectives. The
suggested study employs an inductive research strategy. Moving from individual findings
to bigger generalizations is how inductive inquiry works. This study uses only quantitative
methods of data collection for the study. The research area will be observed and interpreted
using case study research strategy. Case study methodology helps to study in depth and explore
the reality. The area under research will be studied to obtain detail information in context
of various physical, social, economic, institutional and natural components. This study will
also identify adaptation practices by the community, which aids in making the post-earthquake
settlement more climate resilient.

3.2 Data Collection

Lack of required format and sufficient data from the ground-based sources, the data were
collected from satellite-based station. The satellite data were collected from the web portal
https://globalweather.tamu.edu/. Specifically, the data were selected for the location with lat-
itude 28.25 and longitude 83.75, whose co-ordinate locate to Kusma, Parbat. The data we
collected is in the timeframe between 1990-2014. The 18 years data between 1990 to 2008
period were used for training purpose and the remaining 6 years data between 2009 to 2014
were used for testing and plotting (validation) purposes.

Figure 3.1: Solar radiation potential from 1990 to 2014
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3.3 Methods and Materials

There are three basic steps to the researchmethodology. The first part consists primarily of a desk
study, which includes a review of a variety of publications via academic journals, conference
proceedings, and books in order to provide a solid foundation for the research findings. Likewise,
second phase requires research of the study area and collection of data. Finally, Python 3.8.8 was
used to create models and perform different calculations. Lack of required format and sufficient
data from the ground-based sources, the data were collected from online mediums. The data
was collected from the https://globalweather.tamu.edu/. Specifically, the data were selected for
the location with latitude 28.25 and longitude 83.75, whose coordinates lie to Kusma, Parbat.
The data were cleaned to only contain dates and Solar potential in MJ/m2. The data ranges from
1990-01-01 to 2014-07-31. The plot of overall dataset is as shown in the figure 3.1. Figure 3.2
is the histogram plot of the solar radiation data set.

The data were cleaned to only contain dates and Solar potential in MJ/m2. The data ranges
from 1990-01-01 to 2014-07-31. Total of 8000 daily data points were converted to a total of
294 monthly data. The datas are split into 75-25% i.e 220 and 74 respectively for training and
testing.

Figure 3.2: Histogram of GSR

3.4 Autoregressive Integrated Moving Average Model

To begin, we must assess whether or not the time series is stationary. For this, we use the
Augmented Dickey-Fuller (ADF) analysis. It’s a kind of test known as a unit root test. A unit
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root test, by definition, determines how severely a time series is challenged by a trend. ADF
optimizes an information criteria over many lag values using an autoregressive model. The
test’s null hypothesis would be that the time series isn’t stationary and can be expressed by a
unit root. Another hypothesis would be that the data series is stationary. We perform this by
importing adfuller from statsmodels.tsa.stattools in python. The result is interpreted using the
p-value from the test. From the test it is found that the p-value is 0.03 (<0.05) hence we reject
the null hypothesis and finalize that the time series of solar radiation potential is stationary.
From the result of ADF test we can interpret that the order ’d’ which is the differencing term of

Figure 3.3: Monthly Solar Radiation

the ARIMA is zero. Now next step is to determine the ARIMA model’s additional parameters.
For this case we used auto_arima function form pmdarima library. This function uses the AIC
(Akalke’s Information Criterion) score to determine the quality of a given model order. It just

Figure 3.4: Prediction of ARIMA model

tries to reduce the AIC score as much as possible. The lowest AIC score was 315.876 for
ARIMAmodel of order (7, 0, 2). The overall flow of ARIMAmodel is as shown in the figure 3.
After the order is fixed, we trained the data. The content is divided into 2 parts, one as training
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and one for the testing. The last 74 days data were reserved for testing purpose. This is because
we train the system just on dataset first and then hide the testing component of the model. We
execute prediction on the test data as once model is built to assess how well it works. To train
the model, we simply call the ARIMA method, pass it our collection of data, and specify the
ARIMA order we would like to train. The actual data is then compared with the predicted reuslt.
The figure below shows the plot between ARIMA prediction and actual data. The residuals

Figure 3.5: Flow diagram for ARIMA model

were calculated differentiating the actual and predicted value as described in equation 2.12.
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3.5 Machine Learning Model

To develop an ANN model, we used Keras, which is a powerful and open-source library of
Python for developing and evaluating deep learning models. The starts by loading the dataset.
The data loaded is same as shown in figure (2). We divided the dataset into training and testing,
same as we did with the ARIMA model. The data is separated in this way: the last 74 monthly
data points are utilized for testing, while the rest of the data is used to train the model. After
that, we design a Sequential model and gradually add layers till we achieve satisfactory results.
The challenge of increasing the number of input neurons and layers is complex. A method of
trial and error experimentation is used to find the ideal network structure. The Dense class’
is used to define final fully connected layers. The activation function can be supplied as the
second input, and the number of interconnected neurons with in layers can be specified as the
first argument. Figure 3.6 depicts the flow diagram of an ANN model.

Figure 3.6: Flow diagram for ANN model

Here we have used 50 x 25 x 1 network. In both the input and hidden layers, the activation
function is tanh,’ whereas in the output nodes, a linear activation function is utilized. Finally
after creating themodel, we compiled by adding additional properties. The additional properties
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are added so that while training the network. In our sample dataset, the model determines the
best weights to map inputs to outputs. The optimizer was used to look for potential network
weights, and the loss function was utilized to examine a set of weights. We utilized the loss
function mean squared error’ and the optimizer adam’ in this scenario. The adam’ variant of
the gradient descent method is popular because it self-tunes and produces good results in a
wide range of problems. We next used fit()’ routines to train the imported data. The training is
done in epochs, with each epoch divided into batches. The model can be applied to a variety
of epochs, with each epoch consisting of one or more batches, depending on the batch size
selected. The training process will go through the dataset for a specified number of iterations

Figure 3.7: Flow diagram for Hybrid ARIMA-ANN model

called epochs, which we must provide with the epochs option. The batch size, which is set
via the batch size option, is the number of dataset rows that are evaluated before the model
weights are modified inside each epoch. We utilized 2000 epochs and a batch size of 512 in this
example. Experimentation and trial and error are also used to select these setups. Finally, we
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put the model to the test with the testing dataset.

3.6 Hybrid Model

The purposed model makes use of ARIMA along with the machine learning model. Firstly,
making use of ARIMA model, residuals is calculated. The residuals are presumed to be
nonlinear because the ARIMA model captures the linear element of the time series. These data
are fed to the machine learning models ANN and LSTM. The results from these models are
summed with the result from the ARIMA model making it the final prediction. The flow of
hybrid model is as shown in figure 3.6.
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CHAPTER 4: STUDY AREA
We have selected Parbat, Nepal as the research site for this project. Parbat District, is one of the
eleven directly constituent districts of the Gandaki province of Nepal. This district has Parbat as
its headquarters, with an area of 494 square kilometres. It is Nepal’s fourth smallest district. It
spans the latitudes of 28◦ 00’ 19" N and 28◦ 23’ 59" N, as well as the longitudes of 830 33’ 40"
E and 83◦ 49’ 30" E. 66.9% of the area lies in subtropical climatic zones (Karmacharya, 2013).
The Kushma Parbat is Hill station is beautiful and diversified geographically. The climate zone
includes upper tropical, subtropical, temperature and subalpine in between the elevation ranging
from 300m to 3000m where rocky hills surround the place (Subedi and Subedi, 2019). Parbat
District, is one of the eleven directly constituent districts of the Gandaki province of Nepal.
This district has Parbat as its headquarters, with an area of 494 square kilometres.

Figure 4.1: Map of Nepal,
Source: Department of Survey, GON, 2020

4.1 Data Set

The solar radiation potential of the Parbat region is represented in this data set. Predicting solar
radiation is an important yet difficult task. There have been numerous linear and nonlinear
theoretical models developed, however basic random walk models are the most effective in
out-of-sample forecasts. Recent neural network implementations in this discipline have yielded
mixed results. The information in this article is based on monthly observations from 1990 to
2014, which results in 298 data points in the time series. Each data set is divided into two
training and testing samples in order to evaluate the predictive performance of different models.
The training set is being used to create a model, and also the test mode is used to analyze it
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once it’s been built. Table 4.1 shows the data composition of the three data sets. Table 4.2 also
displays the statistical features of the dataset used to train and test the model.

Table 4.1: Composition of data set

S.N Series Sample size Training set Testing set

1 Solar Radiation Poten-
tial

294 220 74

Table 4.2: Statistical properties of the data

S.N Parameter Solar Radiation Poten-
tial

1 Unit 𝑀𝐽/𝑚2

2 Count 294
3 Mean 21.498
4 Standard Error 0.243
5 Mode 16.998
6 Standard deviation 4.177
7 Sample Variance 17.450
8 Kurtosis -1.034
9 Skewness 0.282
10 Minimum 14.233
11 Maximum 30.255
12 Sum 6320.570
13 Confidence Level

(95.0%) Interval
(21.021, 21.976)
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CHAPTER 5: RESULTS AND DISCUSSION

5.1 Results

In this chapter our results are presented, which serve as the basis for answering our research
questions on how modern forecasting methods can improve the GSR forecast. The evaluation
of the change in results is then introduced across development and test sets. This solves the
research problem by allowing us to examine more closely the stability of the model over time.
Finally, we compare our results with the existing literature.

While modeling the ARIMA model ADF test resulted in the p-value to be 0.03 confirming
the data to be stationary. The best ARIMA model was found for the order (7,0,2) with AIC of
315.876. Plot of the residuals from theARIMAmodel is as shown in figure below. The residuals

Figure 5.1: Residuals from ARIMA model

are normalized using the min_max_transform function and fed into the neural network. Keras,
a strong and open-source Python library for constructing and assessing deep learning models,
was used. The dataset was divided into two parts: training and testing. The data is separated
in this way: the last 74 monthly data points are utilized for testing, while the rest of the data is
used to train the model. After that, we design a Sequential model and gradually add layers till
we achieve satisfactory results. The challenge of increasing the number of input neurons and
layers is complex. A method of trial and error experimentation is used to find the ideal network
structure. The Dense class’ is used to define a completely connected layer. The first argument
can specify the number of neurons or nodes in the layers, and the second argument can specify
the activation function.

The best model for ANN is found using an 50 x 25 x 1 network. In both the input and hidden
layers, the activation function is tanh,’ whereas in the output layer, a linear activation function
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is utilized. Finally after creating the model, we compiled by adding additional properties. The
other attributes are added so that the model can discover the appropriate weights to map inputs
to outputs in our dataset when training the network. The optimizer was used to look for potential
network weights, and the loss function was utilized to evaluate a set of weights. We utilized
the loss function mean squared error’ and the optimizer adam’ in this scenario. The gradient
descent algorithm adam’ is a popular variant since it automatically tunes itself and produces
good results in a wide range of tasks. We next used fit()’ routines to train the imported data.
The training is done in epochs, with each epoch divided into batches. The model can be used for
numerous epochs, and each epoch is made up of one or more batches, based on the batch size
selected. The training process will go through the dataset for a specified number of iterations
called epochs, which we must provide with the epochs option. The batch size is the number
of dataset rows that are examined before the model weights are adjusted inside each epoch, as
specified by the batch size parameter. We utilized 2000 epochs and a batch size of 512 in this
example.

Similar to ANN data are fed into the LSTM model after performing minmaxscaler. This
is done because varying time intervals of data have distinct value ranges, then if the data isn’t
normalized, data near to 0 won’t add anything at all to the process of learning. LSTM also
expects the data to be in a specific format. We start by defining the Time Series Generator.
Here we create a batch of 12 data because the model will predict the next month data by using
the previous 12 months data. So the Time Series Generator will have 12 inputs and 1 output
feature. The LSTM model is created with 100 neurons, relu is used as an activation function
with optimizer adam’ and mse as a loss function. After creating the model, we have used 50
epochs to fit the model. After the model is fitted, we predicted the last 30 months of global solar
radiation potential.

The proposedmodel was tested on solar radiation data (Table 4.1) to see howwell it predicted
the future (Figure 4.4). Three measures were used in this study to predict performance: mean
square error (MSE),mean absolute error (MAE), andmean absolute percentage error (MAPE) to
compare the suggestedmodel’s performance against that of ARIMA,ANN, and LSTM. For solar
radiation data, there are monthly records on average mediated 294 (1990-2014). As a training
set, the first 206 records have been used. The test set consists of the remaining 74 records. To
begin, the ARIMA was used to construct forecast and residuals from a temporal sequence of
sun spots. The best well-fitting model is ARIMA (7,0,2). Second, the ARIMA residues are
calculated and examined using the ANN and the LSTM. The best ANN and LSTM for approach
residues and details are ANN (50x25x1) and LSTM (100x1), respectively. The performance
measures are examined after the final forecast (Table 4.2). The ARIMA-ANN model has the
lowest error in the specified data set, according to the comparison. In the ARIMA-ANN hybrid
forecast, RMSE, MAE and MAPE are 1.719, 1.330 and 6.456% respectively. For the forecast
of ARIMA-LSTM, RMSE, MAE and MAPE is 2.029, 1.638 and 7.580%, which are higher
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than the provision of ARIMA-ANN hybrid, since, in general, LSTM requires large data series
for learning. The ARIMA-ANN analysis, on the other hand, probably is the best framework
because of error measurements are low and the square value is high. As a result, the suggested
model is the most effective for forecasting solar radiation time series.

The results of different models are as shown in the table below.

Table 5.1: Performance of each Model

S.N Models 𝑅2 RMSE MAPE MAE

1 ARIMA 0.809 1.928 7.276 1.545
2 ANN 0.835 2.426 9.776 1.972
3 LSTM 0.836 1.892 6.216 1.365
4 ARIMA - ANN 0.847 1.719 6.456 1.330
5 ARIMA - LSTM 0.810 2.029 7.580 1.638

Figure 5.2: Actual and Predicted value of Solar radiation using ARIMA model

The plot of actual versus predicted solar radiation potential using ARIMA, ANN, LSTM,
ARIMA-ANN and ARIMA-LSTM is shown in figure 5.1 - 5.6.

5.2 Discussions

The aforementioned elements led us to our proposedmodel consisting of anARIMAcomponent,
an ANN component and a LSTM component, which was responsible for explaining the linear
and non-linear tendencies in the data. Our experimental approach was populated by data on
daily solar radiation potential converted to monthly solar radiation potential data. Summarizing,
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Figure 5.3: Actual and Predicted value of Solar radiation using ANN model

Figure 5.4: Actual and Predicted value of Solar radiation using LSTM model

Figure 5.5: Actual and Predicted value of Solar radiation using ARIMA-ANN model
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Figure 5.6: Actual and Predicted value of Solar radiation using ARIMA-LSTM model

this approach included a range of benchmarks consisting of conventional standalonemethods for
estimating GSR and an alternative hybridmachine learningmethod. This ensured a comparative
design of the experiment which aimed to provide findings related to our research question. In
chapter 3, different standalone models such as ARIMA, ANN and LSTM were used. In time
series forecasting, a hybrid approach of both the ARIMA-ANN and ARIMA-LSTM has indeed
been constructed to achieve significant advantages among some of the various model types and
sophistication levels. The models’ ability to forecast was validated using test data sets.

According to the findings, the ARIMA-ANN model has the best RMSE and MAPE per-
formance for the provided data set. The advantage of integrating the ARIMA with the ANN
in incorporating linear and nonlinear components of the approximations and precision with-
out linear or nonlinear assumptions means an improvement in prediction performance. The
proposed methodology for the purpose of achieving an effective and accurate implementation
of solar radiation prediction has been outlined in this approach. The approach leverages the
machine learning approaches to achieve the prescribed goals for the prediction. One of the most
important aspects in greatly boosting the accuracy of the method has been the introduction of
machine learning algorithms in the form of ANN and LSTM. The RMSE is utilized to achieve
the performance metrics of the approach. Our method is filled with selected data and the
results provided illustrate the untapped potential of modern forecasting methods for providing
input accuracy for energy planning. The prediction method selected in our article has overall
better predictive performance than conventional methods for all test sets.The RMSE achieved
by our implementation indicates significant improvements in the accuracy of the prediction of
the solar radiation. The RMSE achieved by using hybrid of ARIMA with the LSTM is 27.49
whereas with the ANN module achieves 36.55. LSTMs are unquestionably more intricate and
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difficult to train, and they rarely outperform simple ARIMA models or other machine learning
models. This is why the hybrid of ARIMA-LSTM performed poorly for the given dataset.With
an arbitrary number of inputs but a fixed number of outputs, neural networks provide the ability
to learn potentially chaotic and nonlinear relationships. The application of robust machine
learning algorithms through the use of high level libraries using the Keras approach has been
one of the key features for such a drastic improvement in the performance metrics and the
prediction through the proposed methodology.
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CHAPTER 6: CONCLUSION AND
RECOMMENDATIONS

6.1 Conclusion

This thesis aimed at investigating how modern approaches for forecasts can contribute to more
stable energy forecast. The revision of the review and literature provided the reasoning of why
this research should bemade. The hybrid methodology has addressed the time series forecasting
problem of the global solar radiation problem for energy planning. Furthermore, the review of
results revealed a decision-making area resolved with hybrid methods, despite the developments
of various standalone methods applicable to the problem.

Finally, the proposed hybrid models have outperformed standard single models in terms
of forecasting abilities. Specifically, ARIMA-ANN hybrid can be used as alternative models
for time series prediction. The engineers, scientist, planners and designers can apply the
hybrid models specified for the estimation solar radiation potential to obtain more accurate
prediction results in this study area. Also, similar prediction can be done using these models
in other location of Nepal. Furthermore, the hybrid models for solar radiation forecasting can
be applied to other climatic variables like temperature, wind, humidity, etc. sharing the similar
characteristic with the solar radiation as well.

6.2 Future Research

Further research on these field may be because the higher added value of modern forecasting
methods will lead to greater possibilities for actual energy adoption. The predictive ability
can be improved by exploring different learning algorithms or replacing databases. Parameter
optimization is expensive in time and computational work, which greatly limits the scope of this
article. In addition, the inclusion of explanatory time series is an additional area of research that
may yield interesting discoveries, and further strengthen the forecasting capabilities that modern
forecasting methods can demonstrate to attract professionals. However, as mentioned above,
we also want to point out that further research to improve the predictive capabilities of these
new methods should be carried out at the same time as attempts to automate and simplify their
implementation in real-world problems to better reduce barriers to energy mapping. Therefore,
wewill pay equal attention to the development of frameworks for implementingmodernmethods
and the continuous expansion of model complexity. Machine learning as well as deep learning
algorithms have yet to deliver the expected results for univariate time series prediction, and
additional research is needed.
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APPENDIX A: Importing Libraries in Python

import numpy as np
import pandas as pd
import ma t p l o t l i b . p y p l o t a s p l t
from s k l e a r n . p r e p r o c e s s i n g import MinMaxScaler
from s t a t sm o d e l s . t s a . a r ima_model import ARIMA
from s t a t sm o d e l s . g r a p h i c s . t s a p l o t s import p l o t _ a c f
from s t a t sm o d e l s . g r a p h i c s . t s a p l o t s import p l o t _ p a c f
from s t a t sm o d e l s . t s a . s e a s o n a l import s ea sona l_decompose
from s k l e a r n . m e t r i c s import mean_squa r ed_e r ro r , me an_ ab s o l u t e _ e r r o r , mean_ squa r e d_ l og_e r r o r
from s t a t sm o d e l s . t s a . s t a t t o o l s import a d f u l l e r
import t o r c h
from math import s q r t
import t o r c h . nn as nn
import t e n s o r f l ow as t f
from i t e r t o o l s import p r odu c t
from goog l e . c o l a b import d r i v e
from s c i p y . s t a t s import sem
from s t a t i s t i c s import mode
from c o l l e c t i o n s import Coun te r
from s c i p y . s t a t s import k u r t o s i s
import s c i p y . s t a t s a s s t
from s t a t sm o d e l s . t s a . s t a t t o o l s import a d f u l l e r
from k e r a s . p r e p r o c e s s i n g . s equence import T ime s e r i e sG e n e r a t o r
from k e r a s . models import S e q u e n t i a l
from k e r a s . l a y e r s import Dense , A c t i v a t i o n , Dropout
from s k l e a r n import p r e p r o c e s s i n g
from k e r a s . wrappe r s . s c i k i t \ _ l e a r n import Ke r a sReg r e s s o r
from k e r a s . l a y e r s . r e c u r r e n t import LSTM
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APPENDIX B: Code Used

df=pd . r e ad_ c s v ( ’Mydata . c sv ’ , i n d e x_ c o l = ’ Date ’ , p a r s e _ d a t e s =True )

X = df [ ’ S o l a r ’ ]
r e s u l t = a d f u l l e r (X)
d=−1
pr in t ( ’ADF␣ S t a t i s t i c : ␣\% f ’ \% r e s u l t [ 0 ] )
pr in t ( ’p− va l u e : ␣\% f ’ \% r e s u l t [ 1 ] )
pr in t ( ’ C r i t i c a l ␣Va lues : ’ )
f o r key , v a l u e in r e s u l t [ 4 ] . i t ems ( ) :

pr in t ( ’ \ t \%s : ␣ \%.3 f ’ \% ( key , v a l u e ) )
i f r e s u l t [ 1 ] <=0 . 05 :

d=0
e l s e :
f o r i in range ( 1 , 4 ) :

X=pd . DataFrame (X)
X=X−X. s h i f t ( p e r i o d s =1)
X=X. dropna ( )
X=np . a r r a y (X)
r e s u l t = a d f u l l e r (X)
pr in t ( ’ d=\% f ’ \% i )
pr in t ( ’ADF␣ S t a t i s t i c : ␣\% f ’ \% r e s u l t [ 0 ] )
pr in t ( ’p− va l u e : ␣\% f ’ \% r e s u l t [ 1 ] )
pr in t ( ’ C r i t i c a l ␣Va lues : ’ )
f o r key , v a l u e in r e s u l t [ 4 ] . i t ems ( ) :

pr in t ( ’ \ t \%s : ␣ \%.3 f ’ \% ( key , v a l u e ) )
i f r e s u l t [ 1 ] <=0 . 05 :

d= i
break

q_ar ima = range ( 0 , 3 )
d_ar ima=d
p_ar ima = range ( 0 , 8 )
AIC_arima = [ ]
ARIMAX_model = [ ]
pdqs = [ ( x [ 0 ] , d_ar ima , x [ 1 ] ) f o r x in l i s t ( i t e r t o o l s . p r o du c t ( p_ar ima , q_ar ima ) ) ]

f o r pdq in pdqs :
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t ry :
mod = ARIMA( df [ ’ S o l a r ’ ] , o r d e r =pdq )

r e s u l t s = mod . f i t ( )
pr in t ( ’ARIMAX{}␣−␣AIC : { } ’ . format ( pdq , r e s u l t s . a i c ) )
AIC_arima . append ( r e s u l t s . a i c )
ARIMAX_model . append ( [ ( 1 , 1 , 0 ) , pdq ] )

except :
cont inue

o r d e r = ARIMAX_model [ AIC_arima . i ndex (min ( AIC_arima ) ) ] [ 1 ]
pr in t ( o r d e r )
model = ARIMA( df [ ’ S o l a r ’ ] , o r d e r )
f i t = model . f i t ( )

# s p l i t i n t o t e s t and t r a i n
p e r c e n t a g e = 0 .75
s e r i e s = df [ ’ S o l a r ’ ] . t o l i s t ( )
s i z e = i n t ( l en ( s e r i e s ) ∗ 0 . 7 5 )
t r a i n , t e s t = s e r i e s [ 0 : s i z e ] , s e r i e s [ s i z e : l en ( s e r i e s ) ]
model = ARIMA( t r a i n , o r d e r = ( 7 , 0 , 2 ) )
mod e l _ f i t = model . f i t ( )

model=ARIMA( df [ ’ S o l a r ’ ] , o r d e r = ( 7 , 0 , 2 ) )
model=model . f i t ( t r a n s p a r ams = F a l s e )
model . summary ( )

#ARIMA For e ca s t
h i s t o r y = t r a i n
f o r t in range ( l en ( t e s t ) ) :

model = ARIMA( h i s t o r y , o r d e r = ( 7 , 0 , 2 ) )
mod e l _ f i t = model . f i t ( d i s p =0)
o u t p u t = mod e l _ f i t . f o r e c a s t ( )
yh a t = o u t p u t [ 0 ]
r e s i d _ t e s t . append ( t e s t [ t ] − ou t p u t [ 0 ] )
p r e d i c t e d 1 . append ( yha t )
obs = t e s t [ t ]
h i s t o r y . append ( obs )

38



pr in t ( ’ p r e d i c t e d=%f , ␣ expe c t e d=%f ’ % ( yha t , obs ) )
t e s t _ r e s i d = [ ]
f o r i in r e s i d _ t e s t :

t e s t _ r e s i d . append ( i [ 0 ] )
e r r o r = mean_ squa r ed_e r r o r ( t e s t , p r e d i c t e d 1 )
pr in t ( ’ Te s t ␣MSE: ␣%.3 f ’ % e r r o r )
p l t . p l o t ( t e s t )
p l t . p l o t ( p r e d i c t e d 1 )
p l t . show ( )

# R e s u i d a l A n a l y s i s
t r a i n , t e s t = s e r i e s [ 0 : s i z e ] , s e r i e s [ s i z e : l en ( s e r i e s ) ]
model = ARIMA( t r a i n , o r d e r = ( 7 , 0 , 2 ) )
mod e l _ f i t = model . f i t ( d i s p =0)
pr in t ( mod e l _ f i t . summary ( ) )
r e s i d u a l s = pd . DataFrame ( mod e l _ f i t . r e s i d )
r e s i d u a l s . p l o t ( )
p l t . show ( )
r e s i d u a l s . p l o t ( k ind= ’ kde ’ )
p l t . show ( )
pr in t ( r e s i d u a l s . d e s c r i b e ( ) )

#ARIMA−ANN Hybrid
window_size = 50
def make_model ( window_size ) :

model = S e q u e n t i a l ( )
model . add ( Dense ( 50 , i npu t_d im=window_size , k e r n e l _ i n i t i a l i z e r =" un i fo rm " ,
a c t i v a t i o n =" t anh " ) )
model . add ( Dense ( 25 , k e r n e l _ i n i t i a l i z e r =" un i fo rm " , a c t i v a t i o n =" t anh " ) )
model . add ( Dense ( 1 ) )
model . add ( A c t i v a t i o n ( " l i n e a r " ) )
model . compi le ( l o s s = ’ mean_ squa r ed_e r r o r ’ , o p t im i z e r = ’ adam ’ )
re turn model

model = make_model ( 5 0 )
min_max_sca le r = p r e p r o c e s s i n g . MinMaxScaler ( )
t r a i n = np . a r r a y ( r e s i d u a l s ) . r e s h a p e ( −1 ,1 )
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t r a i n _ s c a l e d = min_max_sca le r . f i t _ t r a n s f o r m ( r e s i d u a l s )

t r a i n_X , t r a i n _Y = [ ] , [ ]
f o r i in range (0 , l en ( t r a i n _ s c a l e d ) − window_size ) :

t r a i n _X . append ( t r a i n _ s c a l e d [ i : i +window_size ] )
t r a i n _Y . append ( t r a i n _ s c a l e d [ i +window_size ] )

new_tra in_X , new_t ra in_Y = [ ] , [ ]
f o r i in t r a i n _X :

new_t ra in_X . append ( i . r e s h a p e ( −1 ) )
f o r i in t r a i n _Y :

new_t ra in_Y . append ( i . r e s h a p e ( −1 ) )
new_t ra in_X = np . a r r a y ( new_t ra in_X )
new_t ra in_Y = np . a r r a y ( new_t ra in_Y )
model . f i t ( new_tra in_X , new_tra in_Y , epochs =500 , b a t c h _ s i z e =512 , v a l i d a t i o n _ s p l i t = . 0 5 )

t e s t _ e x t e n d e d = t r a i n . t o l i s t ( ) [ −1∗ window_size : ] + t e s t _ r e s i d
t e s t _ d a t a = [ ]
f o r i in t e s t _ e x t e n d e d :

t ry :
t e s t _ d a t a . append ( i [ 0 ] )

except :
t e s t _ d a t a . append ( i )

t e s t _ d a t a = np . a r r a y ( t e s t _ d a t a ) . r e s h a p e ( −1 ,1 )
min_max_sca le r = p r e p r o c e s s i n g . MinMaxScaler ( )
t e s t _ s c a l e d = min_max_sca le r . f i t _ t r a n s f o r m ( t e s t _ d a t a )
t e s t_X , t e s t _Y = [ ] , [ ]
f o r i in range (0 , l en ( t e s t _ s c a l e d ) − window_size ) :

t e s t _X . append ( t e s t _ s c a l e d [ i : i +window_size ] )
t e s t _Y . append ( t e s t _ s c a l e d [ i +window_size ] )
new_test_X , new_tes t_Y = [ ] , [ ]

f o r i in t e s t _X :
new_tes t_X . append ( i . r e s h a p e ( −1 ) )

f o r i in t e s t _Y :
new_tes t_Y . append ( i . r e s h a p e ( −1 ) )

new_tes t_X = np . a r r a y ( new_tes t_X )
new_tes t_Y = np . a r r a y ( new_tes t_Y )
p r e d i c t i o n s = model . p r e d i c t ( new_tes t_X )
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p r e d i c t i o n s _ r e s c a l e d =min_max_sca le r . i n v e r s e _ t r a n s f o rm ( p r e d i c t i o n s )
Y = pd . DataFrame ( new_tes t_Y )
p red = pd . DataFrame ( p r e d i c t i o n s )
p l t . p l o t (Y)
p l t . p l o t ( p r ed , c o l o r = ’ r ’ )
p l t . show ( )
e r r o r = mse ( t e s t _ r e s i d , p r e d i c t i o n s _ r e s c a l e d )
pr in t ( ’ Te s t ␣MSE: ␣%.3 f ’ % e r r o r )

r e d _ f i n a l = p r e d i c t i o n s _ r e s c a l e d + p r e d i c t e d 1
Y = pd . DataFrame ( t e s t )
p r ed = pd . DataFrame ( p r e d _ f i n a l )
p l t . p l o t (Y)
p l t . p l o t ( p r ed , c o l o r = ’ r ’ )
p l t . show ( )

#LSTM
s c a l e r = MinMaxScaler ( )
s c a l e r . f i t ( t r a i n )
s c a l e d _ t r a i n = s c a l e r . t r a n s f o rm ( t r a i n )
n _ i n pu t = 12
n _ f e a t u r e s = 1
g e n e r a t o r = T ime s e r i e sG e n e r a t o r ( s c a l e d _ t r a i n , s c a l e d _ t r a i n , l e n g t h =n_ inpu t , b a t c h _ s i z e =64)
model = S e q u e n t i a l ( )
model . add (LSTM(100 , a c t i v a t i o n = ’ r e l u ’ , i n p u t _ s h a p e =( n_ inpu t , n _ f e a t u r e s ) ) )
model . add ( Dense ( 1 ) )
model . compi le ( o p t im i z e r = ’ adam ’ , l o s s = ’mse ’ )
model . f i t ( g e n e r a t o r , epochs =50)
t e s t _ p r e d i c t i o n s = [ ]

f i r s t _ e v a l _ b a t c h = s c a l e d _ t r a i n [− n_ i n pu t : ]
c u r r e n t _ b a t c h = f i r s t _ e v a l _ b a t c h . r e s h a p e ( ( 1 , n_ inpu t , n _ f e a t u r e s ) )

f o r i in range ( l en ( t e s t ) ) :

c u r r e n t _ p r e d = model . p r e d i c t ( c u r r e n t _ b a t c h ) [ 0 ]
t e s t _ p r e d i c t i o n s . append ( c u r r e n t _ p r e d )
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