USE OF LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP) FOR DIRECT DETECTION OF Mycobacterium IN SPUTUM

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (MEDICAL)

BY BAL RAM ADHIKARI

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2007

LETTER OF RECOMMENDATION

The thesis entitled "Use of a Loop-Mediated Isothermal Amplification (LAMP) for Direct Detection of *Mycobacterium* In Sputum " has been completed by Mr. Bal Ram Adhikari under my supervision. I hereby recommended this thesis for examination by the Thesis committee as a partial fulfillment for the Degree of Master of Science in Microbiology (Medical).

Dr. Prakash Ghimire, Ph.D. Associate Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Date..... Dr. Basu Dev Pandey, Ph.D. Senior Medical Officer Sukra Raj Tropical and Infectious Disease Hospital Teku, Kathmandu, Nepal Date:

Dr. Bhawana Shrestha Project chief, German-Nepal Tuberculosis Project (GENETUP), Kalimati Kathmandu, Nepal.

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Prakash Ghimire, Dr. Basudev pandey** and **Dr. Bhawana shrestha**, this dissertation of **Mr. Bal Ram Adhikari** is approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirements for **Master of Science degree in Microbiology (Medical)**.

Dr. Anjana Singh, Ph.D. Head Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Dr. Prakash Ghimire Supervisor

Dr. Basu Dev Pandey Supervisor

Dr. Bhawana Shrestha Supervisor

Approved by:

Examined by:

Date:

Dr. Anjana Singh Head of Department

External Examiner

Internal Examiner

ACKNOWLEDGMENT

I would like to express my great debt of gratitude to my respected supervisor Dr. Prakash Ghimire, Associate Professor, Central Department of Microbiology, Tribhuvan University Kirtipur for his continuous inspiration, full support and expert guidance.

I would like to express my deep sense of gratitude to my respected supervisors Dr. Basudev pandey, Senior Medical Officer, Sukraraj Tropical Hospital, Teku. and Dr. Bhawana shrestha, Project Chief, German-Nepal Tuberculosis Project(GENETUP), for their constant inspiration and valuable suggestions during the entire period of my dissertation work.

I want to express my thankful to all of the patients, who were included in my research, without whose co-operation I never complete my research work. I am eternally grateful to them and wish to get well soon.

I am thankful to Associate professor Dr. Anjana singh, Head of Department, Central Department of Microbiology, Kirtipur, Kathmandu. I am equally thankful to Prof. Dr. Shital Raj Basnyat, Asso. Prof. Shreekant Adhikari, Asso. Prof. Dwej Raj Bhatta, Assistant Professor Mrs Saila Basnyat, Assistant Professor Mr Binod Lekhak and all the respected teachers and staffs of Central Department of Microbiology for their full fledge support.

My deep sense of gratitude extends to Dr. Bishnu Acharya, Everest International and Research Center, for his inspiration and valuable comment during working period in the laboratory.

I am very much grateful to Mr. Bhagawan Maharjan, lab incharge, GENETUP, for his help during sample collection and over all lab performance. I am also thankful to Mr. Suraj Shrestha, Mr. Sujit Maharjan, Mrs Meera Shrestha and all other staffs of German-Nepal Tuberculosis Project (GENETUP), for their kindness and help during my research work.

I would also like to express my sincere gratitude to Prof. Dr. Suzuki, Dr. Yoda and all Japanese team for their supplies of LAMP reagents as well as technical assistance.

I would like to acknowledge to all of my colleagues Nirajan Bhattarai, Manita Guraguin, Dhan K. Pant Rup Bahadur Kunwar, Madan S. Bohara, Khagendra K.C. for their valuable suggestions and help to complete my research work.

I extend my thanks to Ms Binita Koirala and Mr. Shant Raj Khanal for their help during study period.

Finally, I would like to express my deepest gratitude to my parents, brother and sister for their blessing, understanding and encouragement to complete this work.

Date:

Bal Ram Adhikari

ABSTRACT

Most first line anti-tuberculosis drugs have less invitro activity against *M. avium*, *M. intracellular* and *M. kansasii*. Therefore rapid species identification and proper use of drugs are key requirements for the effective treatment and case management of tuberculosis as well as *Mycobacterium avium* complex-pulmonary disease (MAC-PD) and *Mycobacterium kansasii*-pulmonary disease (MK-PD). The development and evaluation of new diagnostic technique, which can diagnose causative agent in simple and rapid way, is the necessity of this century. Loop-Mediated Isothermal Amplification (LAMP) provides new possibilities of above requirements for direct detection of *M. tuberculosis*, *M. avium* complex and *M. kansasii* in sputum samples.

This study was carried out from October 2005 to September 2006. A total of 190 (129 from 43 new suspected pulmonary tuberculosis patients and 61 from 61 follow up patients) sputum samples were included in this study. All these samples were further processed for flurochrome staining but only 130(69 from new suspected pulmonary tuberculosis patients and 61 from follow up patients) sputum specimens were subjected to culture and LAMP. Thus 130 sputum specimens were included in this study to compare them with microscopy, culture and LAMP. Among them 50(38.46%) were found to be positive by flurochrome staining, culture and LAMP. Similarly 48(36.92%) samples were negative by all diagnostic methods. 1(0.77%) microscopy and culture positive cases were negative by culture. 3(2.31%) culture positive cases were negative by LAMP. 8(6.16%) culture negative cases were positive by LAMP. 8(6.16%) culture negative by culture and LAMP. Microscopy and LAMP. 8(6.16%) culture negative by culture and LAMP. Microscopy negative samples were positive by culture and LAMP. 8(6.16%) culture negative by culture and LAMP. Microscopy and LAMP. 8(6.16%) culture negative by culture and LAMP. Microscopy negative samples were positive by culture and LAMP. 8(6.16%) culture negative by culture and LAMP.

Out of 78(100%) total LAMP positive cases, 76(97.44%) were positive with *M. tuberculosis* primer and remaining 2(2.56%) were positive with *M. intracellular* primer. None of the *M. avium* and *M. kansasii* cases were found from the samples that were included in this study.

While comparing the LAMP results with gold standard culture, the sensitivity, specificity, predictive value of positive test, predictive value of negative test, percentage of false negative and percentage of false positive of LAMP were found to be 94.36%, 81.36%, 85.90%, 92.31%, 5.63% and 18.64% respectively. Similarly, LAMP had sensitivity 98.14% and specificity 67.11% while compare with microscopy.

Therefore, LAMP is sensitive and specific molecular technique, which can be used effectively for the diagnosis of clinically, microscopically, and culturally confusing cases thus facilitating the effective treatment and case management of tuberculosis and other atypical mycobacterial infection. Due to its easy operation and rapid amplification efficiency, it can be used in well-equipped laboratories for clinical use if sample preparation, nucleic acid extraction and cross-contamination controls are addressed.

Key words: *M. tuberculosis, M avium* complex, *M. kansasii*, LAMP, TB, MAC-PD, MK-PD, Sputum

TABLE OF CONTENTS

Title	Page		Ι	
Reco	ommenda	ation	II	
Certificate of Approval			III	
Boar	d of Exa	aminers	IV	
Ackı	nowledge	ement	V	
Abst	ract		VI	
Tabl	e of Con	itents	VII	
List	of Abbre	eviations	XI	
List	of Table	s	XIII	
List	of Figure	XIV		
List	of Photo	graphs	XV	
List	of Apper	ndices	XVI	
CHA	APTER-	I: INTRODUCTION	1-3	
CHA	APTER-	II: OBJECTIVES	4-5	
2.1	Gener	ral Objective	4	
2.2	Speci	fic Objective	4	
CHA	APTER-	III: LITERATURE REVIEW	5-44	
3.1	Disea	ises	5	
3.2	Мусо	Mycobacterium		
	3.2.1	Mycobacterium tuberculosis	7	
	3.2.2	Mycobacterium avium complex and Mycobacterium kansasii	8	
3.3	Trans	smission	8	
3.4	Pathogenesis			
3.5	Risk o	Risk of Infection		
3.6	Host	Host Defense		
3.7	Clinic	Clinical Presentation		

3.8	Treatment and control				
3.9	Diagnosis				
	3.9.1 Laboratory Diagnosis	14			
	3.9.1.1 Acid-fast microscopy	14			
	3.9.1.2 Culture	15			
	3.9.2 Other Diagnostic techniques for pulmonary Mycobacteriosis	17			
	3.9.2.1 Radiographic finding	17			
	3.9.2.2 Immunological Diagnostic methods	18			
	3.9.2.3 High-performance liquid chromatography	19			
	3.9.2.4 Molecular Techniques for the Diagnosis of Pulmonary Mycobacteriosis	19			
3.10	Loop-Mediated Isotheramal Amplification (LAMP)				
	3.10.1 Characteristics of LAMP	23			
	3.10.2 The principal of LAMP method	23			
	3.10.3 Components of LAMP				
	3.10.4 Procedure of LAMP				
	3.10.5 Optimized condition for LAMP	28			
	3.10.6 Sensitivity of LAMP	29			
	3.10.7 Primers for Mycobacterium tuberculosis, Mycobacterium intracellular and Mycobacterium kansasii	29			
	3.10.8 Primers for LAMP	30			
	3.10.9 Gyrase B gene (gyr B)	34			
	3.10.10 LAMP for diagnosis of TB, MAC-PD,				
0.11	MK-PD and other diseases	35			
3.11	RT-LAMP	41			
3.12	Sensitivity specificity and predictive values of diagnostic test	43			
CHA	PTER IV: Material and Methods	45-51			
4.1	Material	45			
4.2	Methods	45			
	4.2.1 Study Site	45			

	4.2.2	Sputum Specimens			
	4.2.3	Sample Collection			
	4.2.4	Sample	47		
		4.2.4.1	Digestion, Decontamination and Concentration	47	
		4.2.4.2	Sputum Microscopy	48	
		4.2.4.3	Sputum Culture	48	
		4.2.4.4	Loop-Mediated Isothermal Amplification (LAMP)	49	
CHAP	TER V	7: 5. Resu	llts	52-59	
5.1	Labora	atory Resi	ult	52	
	5.1.1	Study group A			
		5.1.1.1	Microscopy	52	
		5.1.1.2	Culture	52	
		5.1.1.3	LAMP	53	
5.1.2	Stud	y group E	3	53	
		5.1.2.1	Microscopy	53	
		5.1.2.2	Culture	54	
		5.1.2.3	LAMP	54	
5.1.3	Com	parative 1	results of total sputum specimens	54	
5.1.4	Dist	tribution of Total Culture Positive Sputum 55			
5.1.5	Dist	Distribution of Total LAMP Positive Sputum with <i>M.tuberculosis</i>			
	Prim	ier		56	

5.1.6	Distribution of Total Lamp Positive Cases with M.intracellular Primer	57
5.2	Quality Control	57

APP	APPENDICES i-		
REF	ERENCES	72-86	
7.2	Recommendation	69	
7.1	Summary	68	
СНА	PTER VII: Summary and recommendation	68-69	
6.2	Conclusion	67	
6.1	Discussion	60	
СНА	PTER VI: Discussion and Conclusion	60-67	
5.3	Evaluation of Tests:	58	

LIST OF TABLES

- Table 1:Comparative results of 69 sputum specimens with microscopy, culture and
LAMP
- Table 2:Comparative Results of 61 sputum specimens with microcopy, culture and
LAMP.
- Table 3:Comparative Result of Microscopy, Culture and LAMP from 130
Samples.
- Table 4:Age and Sex wise distribution of total culture positive cases.
- Table 5:Age and Sex wise distribution of total *M. tuberculosis* cases.
- Table 6:
 Age and Sex wise distribution of total *M. intracellulare* cases.
- Table 7:Quality control
- Table 8:Comparison of LAMP with reference to culture.
- Table 9:
 Comparison of LAMP with reference to microscopy

LIST OF FIGURES

Figure 1	: Basic principle of LAMP
Figure 2	: Flow chart of Methodology
Figure 3	: Flow chart for Decontamination
Figure 4	: Positive Results of 69 sputum samples from different diagnostic test method (Group A)
Figure 5	: Positive Results of 61 sputum samples from different diagnostic test method (Group B)
Figure 6	: Distribution of Total LAMP Positive Cases with Different Primers
Figure 7	: Result of total samples by microscopy, culture and LAMP.
Figure 8	: Sex Wise Distribution of Total Culture Positive Cases
Figure 9	: Sex Wise Distribution of Total LAMP Positive Cases with <i>M. tuberculosis</i> Primer

LIST OF PHOTOGRAPHS

- Photograph 1: Culture of Mycrobacteria on Lwenstein-Jensen medium
- Photograph 2: Laboratory performance at the lab
- Photograph 2: Visual judgment of LAMP
- Photograph 4: Laboratory performance of LAMP during the study period

LIST OF APPENDICES

Appendix I	:	Materials
Appendix II	:	Bacteriology media
Appendix III	:	Reagents/Chemicals
Appendix IV	:	Primers used by Iwamoto et al. (2003)
Appendix V	:	Classification of Mycobacteria
Appendix VI	:	Screening test result by diagnosis
Appendix VII	:	Statistical analysis of test
Appendix VIII	:	Treatment regimens for tuberculosis, MAC-PD and MK-PD
Appendix IX	:	Grading of culture result
Appendix X	:	Standard Operating Procedure for LAMP
Appendix XI	:	Results of total samples with microscopy, culture and LAMP

LIST OF ABREVIATIONS

A	:	Adenine
AFB	:	Acid fast bacilli
BCG	:	Calmette-Guerin Bacilli
bp	:	base pair
С	:	Cytosine
d ATP	:	2'- deoxyadenosine 5'-triphosphate
d TTP	:	2'-deoxythymine 5'-triphosphate
d CTP	:	2'-deoxycytidine 5'-triphosphate
d GTP	:	2'-deoxyguanosine 5'-triphosphate
d NTPs	:	Deoxyrionucleoside triphosphates
DNA	:	Deoxyribonucleic acid
FD	:	Fluorescence Dye
G	:	Guanine
С	:	Cytosine
HIV	:	Human Immuno-Deficiency Virus
IFN	:	Interferon
KDa	:	Kilo Dalton
LAMP	:	Loop-Mediated Isothermal Amplification
L-J	:	Lowenstein-jensen Medium
LTBI	:	Latent Tuberculosis Infection
MAC	:	Mycobacterium avium complex
MAC-PD	:	Mycobacterium avium complex-Pulmonary Disease
MAV	:	Mycobacterium avium
MIN	:	Mycobacterium intracellulare
МК	:	Mycobacterium kansasii
MK-PD	:	Mycobacterium kansasii- Pulmonary Disease
MTB	:	Mycobacterium tuberculosis bacilli
MOTT	:	Mycobacteria Other Than Tuberculosis

NAA	:	Nucleic Acid Amplification
NALC	:	N-acetyl-L-cysteine
NTC	:	National Tuberculosis Center
NTP	:	National Tuberculosis Programme
NTM	:	Non tuberculosis Mycobacteria
NK	:	Natural killer cell
OD	:	Optical Density
PCR	:	Polymerase Chain Reaction
РТВ	:	Pulmonary Tuberculosis
RFLP	:	Restriction fragment length polymorphism
rpm	:	Revolution Per Minute
ТВ	:	Tuberculosis
WHO	:	World Health Organization
Z-N	:	Ziehl-Neelsen