MICROBIOLOGICAL STUDY ON GASTROENTERITIS OF CHILDREN FROM KANTI CHILDREN'S HOSPITAL WITH REFERENCE TO CYCLOSPORA AND ROTAVIRUS INFECTION

A Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology (Medical)

> by Shradha Chipalu

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal 2007

RECOMMENDATION

This is to certify that Ms. Shradha Chipalu has completed this dissertation work entitled "MICROBIOLOGICAL STUDY ON GASTROENTERITIS OF CHILDREN FROM KANTI CHILDREN'S HOSPITAL WITH REFERENCE TO CYCLOSPORA AND ROTAVIRUS INFECTION" as a partial fulfillment of M. Sc. Degree in Microbiology under our supervision. To our knowledge this thesis work has not been submitted for any other degree.

Dr. Anjana Singh, Ph.D. Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Dr. Jeevan Bahadur Sherchand, Ph.D. Professor Department of clinical Microbiology and Chief, Health Research Laboratory Institute of Medicine Tribhuvan University Teaching Hospital Maharajgung, Kathmandu Nepal

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Anjana Singh** and **Prof. Dr. Jeevan Bahadur Sherchand** this dissertation work by **Miss. Shradha Chipalu** entitled "**MICROBIOLOGICAL STUDY ON GASTROENTERITIS OF CHILDREN FROM KANTI CHILDREN'S HOSPITAL WITH REFERENCE TO CYCLOSPORA AND ROTAVIRUS INFECTION**" has been approved for the examination and is submitted to the Tribhuvan University in Partial fulfillment of the requirement for M. Sc. Degree in Microbiology.

Dr. Anjana Singh, Ph. D Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Dr. Anjana Singh Supervisor

Prof. Dr. Jeevan Bahadur Sherchand Supervisor

Approved by:

Dr. Anjana Singh Head of Department

Examined by:

Dr. Basudev Pandey External examiner

Miss Shaila Basnyat Internal Examiner

Date: _____

ACKNOWLEDGEMENT

I owe heartfelt appreciation to my respected supervisors Dr. Anjana Singh, Head of the Department, Central Department of Microbiology and Prof. Dr. Jeevan Bahadur Sherchand, Department of Clinical Microbiology and Chief of Health Research Laboratory, IOM, TUTH for their constant guidance, academic support and encouragement throughout my dissertation work.

I sincerely express deepest thanks to Prof. Dr. Jeevan Bahadur Sherchand for kindly permiting me to carry out my study in Health Research Laboratory and for providing me required materials and experienced guidance during entire period of this work.

My special thanks goes to Ms Punita Gauchan, Ms Indu Lamsal and Mr. Govinda Gurung, staff of Health Research Laboratory for their help and co-operation during this research work.

I would like to acknowledge the tremendous help and support of all teachers, staffs of Central Department of microbiology, TU, and my friends specially, Bina Jayena, Rojita Tuladhar, Deena Shrestha, Chamala Lama, Kamala Basnet, Sarita and Pramesh during the study period.

Finally, I would like to extend my gratitude to my family for being my constant support system that they have been.

Shradha Chipalu

ABSTRACT

A study was conducted from May to September 2006 among children below 5 years of age attending Kanti Children's Hospital who were suspected of gastroenteritis. Among five hundred samples, three hundred and eighty six were taken from patient suffering from diarrhoea and one hundred and fourteen were non-diarrhoeal. Samples were collected and investigated in Health Research Laboratory, Institute of medicine by wet saline, iodine mount, and Ziehl Neelson staining for *Cyclospora* and other parasites, Enzyme Immuno Assay for rotavirus and selective culture method for bacteriological investigation.

The prevalence of enteropathogens observed was (52.1%) in diarrhoeal cases and (39.5%) in nondiarrhoeal cases. Out of 386 diarrhoeal samples (16.8%) was positive for rotavirus, (7.8%) for *Cyclospora*, (3.4%) for bacteria and (24.1%) for other parasites. Out of 114 non-diarrhoeal samples (4.8%) was positive for rotavirus, (6.14%) for *Cyclospora*, one case for bacteria and (28.1%) for other parasites.

Among diarrhoeal case rotavirus infection was seen highest in the age group 7-24 months (21.6%), month of September (28%) and in males (17.95%) than in females (14.8%). Cyclosporiasis was found highest in the age group 0-6 months (12.5%) and in month of July (16.45%). Among non-diarrhoeal cases, rotavirus infection was seen highest in the age group 7-24 months (5.7%), month of May (13.3%) and in males (4.54%) than in females (4.16%). Cyclosporiasis was found highest in the age group 25-60 months (12%), and in month of June (15.78%).

Among the bacterial pathogens isolated, *Vibrio* spp (2.6%) was the major causative agent followed by *Salmonella* spp. (.12%) and *Shigella* spp. was not found in a single case. Among diarrhoeal cases, the prevalence rate of bacterial pathogen was higher in the age group 25-60 months (2.3%), in the month of September (16%) and in females (1.8%). Among non-diarrhoeal cases, it was only found in the age group 25-60 months (0.9%). In non-diarrhoeal cases, it was found only in the month of August (3.3%) and only females were infected (0.9%).

In diarrhoeal cases, the protozoans were Entamoeba *histolytica* (9.3%), *Giardia lamblia* (8.3%), *Cyclospora* (7.8%), *Entamoeba coli* (1.1%), *Cryptosporidium parvum* (0.8%), *Blastocystis hominis* (1.8%). Whereas in non-diarrhoeal cases, *Giardia lamblia* (10.5%), *Entamoeba histolytica* (7.0%), *Cyclospora* (6.1%), *Entamoeba coli* (0.8%), *Cryptosporidium parvum* (0.7%) and *Blastocystis hominis* (3.5%).

In diarrhoeal cases, the helminthes were *Ascaris lumbricoides* (1.1%), *Hymenolepsis nana* (1.1%), *Trichuris trichuria* (0.5%), *Taenia* spp. (0%), whereas in non-diarrhoeal cases, *Ascaris lumbricoides* (1.2%) *and Trichuris trichuria* (1.2%), *Hymenolepsis nana* (0.9%), *Taenia spp.* (0.9%).

The prevalence of enteropathogen was found highest in the children consuming tap water and children having nausea and vomiting.

TABLE OF CONTENTS

	PAGE NO.
Title page	i
Recommendation	ii
Certificate of approval	iii
Acknowledgement	V
Abstract	vi
List of abbreviations	vii
Table of contents	ix
List of tables	xiii
List of figures	xiv
List of photographs	XV
List of appendices	xvii
CHAPTER I	
1. INTRODUCTION	1-3
CHAPTER II	
2. OBJECTIVES	4
2.1 General objectives	4
2.2 Specific objectives	4
CHAPTER III	
3. LITERATURE REVIEW	5-35
3.1 Diarrhoea	5
3.1.1 Acute watery diarrhoea (AWD)	5
3.1.2 Dysentery	7
3.1.3 Persistent diarrhoea	7
3.2 Anatomy and General Features of Gastrointestinal Tract	7
3.3 Immunity against Infection in gastrointestinal Tract	9
3.3.1 Presence of normal flora	9
3.3.2 Acidity of stomach	9
3.3.3 Normal peristalsis	9
3.3.4 Flow of liquid	9
3.3.5 Shedding and replacement of epitheliumlymphoid tissue (Payer's Patches	
3.3.6 Secretory IgA and phagocytic cells within the Gut	10
3.4 Microbial factors in pathogenesis of GI tract infection	10
3.4.1By proliferation within or close to Intestinal mucosal cells and	10
destroying them thus disrupting the function	10
3.4.2Producing a toxin that affects fluid secretion, cell function, or	10
neurological function	10
3.4.3By invading the mucosal epithelium, causing cellular destruction and occasionally invading the blood stream and going	
to systemic disease	10
3.4.4 By adhering to the intestinal mucosa, thus preventing the normal	
function of absorption	11

3.5 Aetiological agents of Gastroenteritis	11
3.5.1 Bacteria	12
3.5.1.1 Salmonella	12
3.5.1.2 Shigella	15
3.5.1.3 Vibrio cholerae	17
3.5.2 Parasites	19
3.5.2.1 Cyclospora cayetanensis	20
3.5.2.2 Entamoeba histolytica	24
3.5.2.3 Giardia lamblia	26
3.5.2.4 Ascaris lumbricoides	27
3.5.2.5 Trichuris trichuria	28
3.5.2.6 Hymenolepsis nana	29
3.5.2.7 Hookworm	30
3.5.2.8 Cryptosporidium parvum	31
3.5.3 Rotaviruses	32

CHAPTER IV

4. MATERIALS AND METHODS	36-39
4.1 Subject	36
4.2 Sample collection	36
4.3 Laboratory processing of samples	36
4.3.1 Macroscopic examination	36
4.3.2 Microscopic examination	37
4.3.3 Culturing on enrichment, differential and selective medium	38
4.3.4 Examination of culture plates	38
4.3.5 Identification	38
4.4 Purity plate	39
4.5 Quality control	39
4.6 Micro plate enzyme-immunoassay for the qualitative detection	
of Rotavirus antigen in human stool (Meridian Bioscience, Inc.)	39
CHAPTER V	
5. RESULTS	40-60
CHAPTER VI	
6.1. DISCUSSION	61
6.2.CONCLUSION	73
CHAPTER VII	
7.1 SUMMARY	74
7.2 RECOMMENDATIONS	77
REFERENCES	79-89

APPENDICES I-IX

I-XX

LIST OF TABLES

	110	2110
Table1	Differences between Amoebic and Bacillary dysentery	6
Table2	Clue for identification of enteropathogens	8
Table4	Frequency distribution according to hospital registration	40
Table5	Age wise distribution of diarrhoeal and non-diarrhoeal cases	41
Table6	Sex wise distribution of diarrhoeal and non-diarrhoeal cases	41
Table7	Frequency distribution according to source of drinking water used by patients	s 43
Table8	Frequency distribution according to clinical symptoms in diarrhoeal case	43
Table9	Frequency distribution based on number of stool/day in diarrhoeal case	44
Table10	Frequency distribution based on consistency of stool in diarrhoeal case	44
Table11	Frequency distribution based on status of dehydration in diarrhoeal case	44
Table12	Frequency distribution based on treatment in diarrhoeal case	45
Table13	Month wise distribution of diarrhoeal and non-diarrhoeal case	45
Table14	Distribution of rotavirus in diarrhoeal and non-diarrhoeal case	46
Table15	Distribution of intestinal parasites in diarrhoeal and non-diarrhoeal case	46
Table16	Distribution of bacterial pathogen in diarrhoeal and non-diarrhoeal case	47
Table17	Distribution of enteropathogen among total case	47
Table18	Age wise distribution of Rotavirus	49
Table19	Sex wise distribution of Rotavirus	50
Table20	Month wise distribution of Rotavirus	50
Table21	Distribution of Rotavirus according to source of drinking water	51
Table22	Distribution of Rotavirus according to clinical symptoms of patients	52
Table23	Age wise distribution of Cyclospora cayetanensis	52
Table24	Sex wise distribution of Cyclospora cayetanensis	53
Table25	Month wise distribution of Cyclospora cayetanensis	53
Table26	Distribution of Cyclospora cayetanensis according to source of drinking	
water		54
Table27	Distribution of Cyclospora cayetanensis according to clinical symptoms of	

patients		55
Table28	Age wise distribution of bacterial pathogen	56
Table30	Sex wise distribution of bacterial pathogen	56
Table31	Month wise distribution of bacterial pathogen	57
Table32	Age wise distribution of parasites	58
Table33	Sex wise distribution of parasites	58
Table34	Month wise distribution of parasites	59
Table35	Association between pathogenic parasite and bacteria	59
Table36	Association between Cyclospora cayetanensis and bacterial infection	60
Table37	Association between rotavirus and bacterial infection	60
Table38	Association between rotavirus and parasitic infection	60

LIST OF FIGURES

- Figure1 Frequency distribution of diarrhoeal and non-diarrhoeal cases
- Figure2 Age wise distribution of patients
- Figure3 Area wise distribution of patients
- Figure4 Sex wise distribution of patients
- Figure5 Frequency distribution of enteropathogens
- Figure6 Age wise distribution of rotavirus in diarrhoeal case
- Figure7 Sex wise distribution of rotavirus in diarrhoeal case
- Figure8 Month wise distribution of rotavirus in diarrhoeal case
- Figure9 Age wise distribution of *Cyclospora cayetanensis* in diarrhoeal case
- Figure 10 Sex wise distribution of *Cyclospora cayetanensis* in diarrhoeal case
- Figure11 Month wise distribution of *Cyclospora cayetanensis*
- Figure12 Age wise distribution of parasite in diarrhoeal case
- Figure13 Month wise distribution of parasite in diarrhoeal case
- Figure 14 Association of *Cyclospora cayetanensis* and bacterial pathogen

LIST OF PHOTOGRAPHS

Photograph 1	Oocysts of Cyclospora cayetanensis in normal saline wet mount
	preparation (40X)
Photograph 2	Ziehl Neelson staining of Cyclospora cayetanensis (100X)
Photograph 3	Cysts of <i>Giardia lamblia</i> in normal saline wet mount preparation (40X)
Photograph 4	Cysts of Entamoeba histolytica in normal saline wet mount
	preparation (40X)
Photograph 5	Egg of Trichuris trichuria in normal saline wet mount preparation
	(40X)
Photograph 6	Egg of Ascaris lumbricoides in normal saline wet mount preparation
	(40X)
Photograph 7	Egg of <i>Hymenolepsis nana</i> in normal saline wet mount preparation
Thotograph 7	(40X)
Dhotograph 9	
Photograph 8	Enzyme immunoassay for Rotavirus antigen detection
Photograph 9	Pure culture of Vibrio spp. on Thiosulphate Citrate Bile Salt Sucrose
1 hotograph 9	
	agar
Photograph 10	Biochemical tests of Vibrio spp.
Photograph 11	Pure culture of Salmonella spp. on Salmonella-Shigella agar
Photograph 12	Biochemical tests of Salmonella spp.

LIST OF APPENDICES

		PAGE NO.
Appendix I	Questionnaire	i
Appendix II	Microbiological Profile	ii
Appendix III	List of equipments used during the study	iii
Appendix IV	A. Composition and Preparation of Different culture media	iv
	B. Composition and Preparation of different biochemical tests media	a v
	C. Composition and Preparation of Different Staining and test Reagents	vii
Appendix V	Gram staining procedure	xi
Appendix VI	Methodology of biochemical tests used for the identification of pathogens	xii
Appendix VII	Table 1 Growth characteristics of Salmonella and Shigella spp	xiv
	Table2 Biochemical Tests of Salmonella and Shigella spp	xiv
	Table3 Biochemical characteristics of Vibrio related groups	xiv
Appendix VIII	Data analysis (chi square test)	xvi
Appendix IX	Kit Brochure (Premiere TM Rotaclone)	xi

LIST OF ABBREVIATIONS

+ve	Positive
μg	Microgram
μl	Microlitre
μm	Micrometer
ACIP	Advisory Committee on Immunization Practices
AIDS	Acquired Immunodeficiency Syndrome
ALA	Amoebic Lever Abscess
AWD	Acute Watery Diarrhoea
cAMP	Cyclic Adenosine Monophosphate
CFR	Case Fatality Rate
DALY	Disability-Adjusted Life Year
DCA	Deoxycholate Citrate Agar
DIC	Differential Interference Contrast
DNA	Deoxyribonucleic Acid
DoHS	Department of Health Services
EHEC	Enteroadherant E.coli
EIA	Enzyme Immuno Assay
EIEC	Enteroinvasive E.coli
ELISA	Enzyme Linked Immunosorbent Assay
EPEC	Enteropathogenic E.coli
ETEC	Enterotoxigenic E.coli
GI Tract	Gastrointestinal tract
Gm	Gram
H_2O_2	Hydrogen Peroxide
H_2S	Hydrogen Sulphide
HIV	Human Immunodeficiency Virus
IgA	Immunoglobulin A
K/A	Alkali/Acid
$K_2Cr_2O_7$	Potassium dichromate
MA	MacConkey Agar
MR-VP	Methyl Red-Voges Proskauer

NA	Nutrient Agar
Nm	Nanometer
NSP4	Non-Structural protein 4
OF	Oxidative Fermentative
OPD	Out Patient Department
ORT	Oral Rehydration Treatment
PAGE	Poly Acrylamide Gel Electrophoresis
РАНО	Pan American Health Organization
PCR	Polymerase Chain Reaction
RBC	Red Blood Corpuscles
RNA	Ribonucleic Acid
RTPCR	Reverse Transcriptase Polymerase Chain Reaction
RV	Rotavirus
SIM	Sulphur Indole Motility
spp	Species
SS Agar	Salmonella-Shigella Agar
TCBS	Thiosulphate Citrate Bile Salt Agar
ТСР	Toxin Co-regulated Pilus
TSI agar	Triple Sugar Iron Agar
TUTH	Tribhuvan University Teaching Hospital
UV	Ultraviolet
-ve	Negative
VP	Viral Protein
WBC	White Blood Corpuscles
WHO	World Health Organization