SCREENING OF *MYCOBACTERIUM TUBERCULOSIS* BY SELECTIVE INHIBITION WITH PARA-NITROBENZOIC ACID, ITS CYTOCHEMICAL STAINING AND DRUG SUSCEPTIBILITY TO PRIMARY ANTI-TUBERCULAR DRUGS

A

Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology

(Medical)

by

Sujay Nepali

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2007

RECOMMENDATION

This is to certify that Mr. Sujay Nepali has worked under our supervision and guidance on the thesis entitled "Screening of *Mycobacterium tuberculosis* by selective inhibition with para-nitrobenzoic acid, its cytochemical staining and drug susceptibility to primary anti-tubercular drugs" as a partial fulfillment of M.Sc. Degree in Microbiology. To the best of our knowledge this is an original research work of him and has not been submitted for any other degree.

Dr. Prakash Ghimire, Ph.D. Associate Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal Mr. Dhruba Kumar Khadka Sr. Medical Technologist (Microbiologist) National Tuberculosis Centre Thimi Bhaktapur Nepal

Date: _____

CERTIFICATE OF APPROVAL

On the recommendation of Associate Professor **Dr. Prakash Ghimire, Ph.D.** and **Mr. Dhruba Kumar Khadka** this dissertation work by **Mr. Sujay Nepali**, entitled "Screening of *Mycobacterium tuberculosis* by selective inhibition with paranitrobenzoic acid, its cytochemical staining and drug susceptibility to primary anti-tubercular drugs" has been approved for the examination and is submitted to Tribhuvan University in partial fulfillment of the requirement for M.Sc. Degree in Microbiology.

> Dr. Anjana Singh Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date: _____

BOARD OF EXAMINERS

Recommended by:

Dr. Prakash Ghimire, Ph.D. (Supervisor)

Mr. Dhruba Kumar Khadka (Supervisor)

Approved by:

Dr. Anjana Singh, Ph.D. Head of Department

Examined by:

Ms. Shaila Basnyat (Internal Examiner)

Dr. Basista Rijal (External Examiner)

Date: _____

ACKNOWLEDGEMENT

I am indebted to all those who, directly or indirectly, have made it possible for me to complete this dissertation.

With great pleasure, I have a special debt of gratitude and respect to my supervisors **Dr**. **Prakash Ghimire**, Associate professor, Central Department of Microbiology, TU and **Mr. Dhruba Kumar Khadka**, Sr. Medical Technologist (Microbiologist), National Tuberculosis Centre, Thimi, Bhaktapur for providing me with an opportunity to work under excellent supervision. This dissertation work would not have come into this shape without their valuable suggestions, patient counsel, continuous encouragement and support.

I have deep gratitude to **Dr. Pushpa Malla**, Director, National Tuberculosis Centre (NTC), Thimi, Bhaktapur for allowing me to complete this work at NTC laboratory.

I wish to extend my deep sense of appreciation to **Mr. Rajkumar Pokharel**, Chief, nutrition section, Nutrition section and Child health division, Ministry of Health, Department of Health Service, Teku, who provided me valuable materials and constructive suggestions during this study period.

I am highly obliged to **Ms. Shaila Basnyat**, Lecturer, Central Department of Microbiology, TU for her valuable suggestions, guidance and kind concern. A special thanks to **Mr. Anil Thapa**, Biostatistics Officer, MIS, Department of Health Service.

I must express my genuine thanks to all the staffs of National Tuberculosis Centre, Thimi, Bhaktapur for their continuous help and support through various means. Although there is a long list, my heartfelt thanks are due to **Mr. Bhola Choudhary**, **Mr. Ram Babu Shrestha, Mr. Jagat Khadka, Mr. Shanta Ram Raujara, Ms. Sheela Pradhan, Mr. Pradip Kumar Shrestha** and **Mr. Bikash Lama** for their help and cooperation throughout the period of my study. I am equally thankful to **Mr.** Kailash Bahadur Karki and Mr. Pradhyumna Bhandari of SAARC Tuberculosis and HIV/AIDS Centre, Thimi, Bhaktapur.

I owe much to my brother **Mr. Shishir Sharma** and sister **Ms. Sangeeta Shrestha**, who continuously encouraged and supported me to complete this work.

I wish to express my heartfelt thanks to all my friends specially **Ms. Sushma Acharya**, who helped me throughout my work. My heartfelt thanks also go to **Mr. Bijay Shrestha** and **Mr. Suman Subba**.

Finally, I would like to express my emotional feelings towards my parents who showed their blessings, love, affection and constant encouragement and moral support in every steps of my life.

Date: _____

Mr. Sujay Nepali

ABSTRACT

This diagnostic study was conducted at National Tuberculosis Centre (NTC), Thimi, Bhaktapur from September 2006 to June 2007; with the objectives of screening of *Mycobacterium tuberculosis* using para-nitrobenzoic acid (PNB) added to the culture medium, the virulence testing using neutral red and response of the isolates to primary set of anti-tubercular drugs.

Of 857 sputum samples taken, 68.3% were from male and 31.7% from female. Out of total, 28.7% were positive for acid fast bacilli (AFB) by fluorescence microscopy, of which 78.45% were male and 21.55% were female. Out of total smear positive cases, 87% were also positive in culture on Ogawa medium.

All the Ogawa culture positive samples failed to grow on LJ medium containing PNB. However all the isolates were neutral red test positive. The drop catalase test and 68°C labile catalase test were also used for the confirmation of the isolated *M. tuberculosis*.

The proportion method used for the drug susceptibility test showed that 43.46% of the culture positive isolates were sensitive to all four primary anti-tubercular drugs. The resistance rate to one drug was found in 11.21%, to two drugs in 14.95%, to three drugs in 13.55% and to four drugs in 16.82% of the isolates. Multi-drug resistance (MDR) was observed in 28.97% of the isolates.

Hence, the use of PNB in culture media is useful in the screening of *M. tuberculosis* along with its differentiation from non-tuberculous mycobacteria. Similarly, neutral red, a biochemical test used for identification of other bacteria, can be used for the virulence testing of *M. tuberculosis* – the method which is easy and rapid. The susceptibility testing result can be used as the guidance for proper treatment and in the management of MDR cases.

TABLE OF CONTENTS

	Page no.
Title page	i
Recommendation	ii
Certificate of approval	iii-iv
Acknowledgement	v-vi
Abstract	vii
Table of contents	viii-xiii
List of abbreviations	xiv-xvi
List of tables	xvii
List of figures	xviii
List of photographs	xix
List of appendices	xx-xxi
CHAPTER I: INTRODUCTION	1-3
CHAPTER II: OBJECTIVES	4
CHAPTER III: LITERATURE REVIEW	5-41
3.1 Definition	5
3.2 Historical overview	5-6
3.3 Epidemiology	7-9
3.3.1 TB worldwide	7
3.3.2 TB in the South-East Asia Region (SEAR)	7-8
3.3.3 TB in Nepal	8
3.3.4 The molecular epidemiology of tuberculosis	8-9
3.4 Pathogenesis of tuberculosis	9-14
3.4.1 Infection and transmission	9-10
3.4.2 Predisposing factors in the development of tuberculosis	10

3.4.3 Virulence factors of tubercle bacilli	11-12
3.4.4 Types of tuberculosis	13-14
3.4.4.1 Pulmonary tuberculosis	13-14
3.4.4.1.1 Primary pulmonary tuberculosis	13-14
3.4.4.1.2 Post primary tuberculosis	14
3.4.4.2 Extrapulmonary tuberculosis	14
3.5 Immunology of tuberculosis	14-18
3.5.1 Early immunological events after infection	15
3.5.2 Macrophage activation and granuloma formation	15-16
3.5.3 Cytotoxic cells and protective immunity	16
3.5.4 The immune spectrum in tuberculosis	16-17
3.5.5 Genetic factors in mycobacterial immunity	18
3.6 Blood examination during tuberculosis	18
3.7 HIV/AIDS and Tuberculosis	19
3.8 Microbiology of tuberculosis	19-33
3.8.1 Etiology	19-20
3.8.2 Bacterial morphology	20
3.8.3 Clinical and radiological diagnosis of pulmonary tuberculosis	21
3.8.4 Laboratory diagnosis of pulmonary tuberculosis	21-30
3.8.4.1 Specimen collection and transport	21-22
3.8.4.2 Macroscopic examination	22
3.8.4.3 Microscopic examination	23
3.8.4.4 Culture of sputum sample	24-27
3.8.4.4.1 Homogenization and decontamination	24
3.8.4.4.2 Culture media for isolation of mycobacteria	25-26
3.8.4.4.3 Inoculation and incubation	26-27
3.8.4.5 Identification of mycobacteria	27-30
3.8.4.5.1 Growth rate and growth at 25°C and 42°C	27
3.8.4.5.2 Growth on medium containing p-nitrobenzoic a	cid27-28
3.8.4.5.3 Niacin test	28

3.8.4.5.4 Catalase test	28
3.8.4.5.5 Nitrate test	28-29
3.8.4.5.6 Urease test	29
3.8.4.5.7 Pyrazinamidase test	29
3.8.4.5.8 Thiophen-2-Carboxylic acid Hydrazide (TCH)	
susceptibility test	29
3.8.4.5.9 Cytochemical staining with neutral red	30
3.8.5 Molecular techniques for identification of mycobacteria	30-31
3.8.6 Serological diagnosis of tuberculosis	31-32
3.8.6.1 Immunochromatographic test	31
3.8.6.2 Enzyme linked immunosorbent assay	31-32
3.8.7 Tuberculin testing	32
3.8.8 Antimicrobial susceptibility testing	32-33
3.8.8.1 Conventional methods of susceptibility testing	32-33
3.8.8.2 Rapid methods of susceptibility testing	33
3.9 Anti-tuberculosis chemotherapy	34-38
3.9.1 Susceptibility of mycobacteria to antimicrobial agents	34
3.9.2 Treatment regimens	35-37
3.9.3 Adverse effects of anti-TB drugs	37-38
3.10 Drug resistant tuberculosis	38-41
3.10.1 Types of drug resistance	38-39
3.10.2 Mechanism of resistance	40
3.10.3 MDR-TB: Multi-drug resistant TB	40-41
3.10.4 XDR-TB: Extensive drug resistant TB	41
CHAPTER IV: MATERIALS AND METHODS	42-54
4.1 Materials	42
4.2 Methods	42-43
4.2.1 Study setting	42

4.2.2 Study design	42
4.2.3 Study population	42
4.2.4 Study period	42
4.2.5 Data collection and analysis	43
4.3 Laboratory methodology	43-53
4.3.1 Specimen collection	43
4.3.2 Collection of sputum sample	43
4.3.3 Evaluation of sputum	44
4.3.4 Macroscopic examination of sputum	44
4.3.5 Microscopic examination of sputum	44-46
4.3.5.1 Sputum smear preparation	45
4.3.5.2 Acid fast staining by Fluorochrome method	45-46
4.3.6 Culture of sputum	45-48
4.3.6.1 Homogenization and decontamination of sputum for cultur	e46
4.3.6.2 Culture of homogenized and decontaminated sample	46
4.3.6.3 Culture examination	46-48
4.3.6.3.1 Recording and reporting of laboratory results	47
4.3.6.3.2 Microscopic examination by ZN-staining	47
4.3.6.3.3 Subculture from Ogawa medium on LJ medium	47-48
4.3.7 Identification of isolates	48-50
4.3.7.1 Growth on medium containing p-nitrobenzoic acid (PNB)	48
4.3.7.1.1 Inoculum preparation	48
4.3.7.1.2 Inoculation and incubation	48
4.3.7.2 Cytochemical staining	48-49
4.3.7.2.1 Neutral red test	48-49
4.3.7.3 Biochemical tests	49-50
4.3.7.3.1 Drop catalase test	49
4.3.7.3.2 68°C labile catalase test	49-50
4.3.8 Antimicrobial susceptibility testing	50-53
4.3.8.1 Preparation of drug containing media	50

4.3.8.2 Preparation of bacillary suspension	51
4.3.8.3 Dilution of bacillary suspension for inoculation	51
4.3.8.4 Inoculation and incubation	51-52
4.3.8.5 Interpretation of results	51-53
4.3.8.5.1 Sensitive (S)	52
4.3.8.5.2 Resistant (R)	52-53
4.3.9 Quality control	53-54
CHAPTER V: RESULTS	55-62
5.1 Age and gender of the suspected patients enrolled in the study	55-56
5.2 Pattern of acid fast bacilli in sputum smears by fluorescence microscopy	56-57
5.3 Pattern of culture results	57-58
5.4 Growth pattern on LJ medium containing PNB	59
5.5 Results of biochemical tests	59
5.5.1 Drop catalase test	59
5.5.2 68°C labile catalase test	59
5.6 Results of cytochemical staining	59-60
5.7 Antibiotic susceptibility pattern of Mycobacterium tuberculosis	60-62
5.7.1 Resistance pattern of the isolates	60-61
5.7.2 Susceptibility pattern of <i>M. tuberculosis</i> among different age groups	61-62
CHAPTER VI: DISCUSSION AND CONCLUSION	63-69
6.1 Discussion	63-68
6.1.1 Identification of the isolates	64-66
6.1.1.1 Growth on LJ medium containing PNB	64-65
6.1.1.2 Cytochemical staining with neutral red	65-66
6.1.1.3 Biochemical tests	66
6.1.2 Antimicrobial susceptibility test	67-68
6.2 Conclusion	69

CHAPTER VII: SUMMARY AND RECOMMENDATIONS	70-72
7.1 Summary	70-71
7.2 Recommendations	72
CHAPTER VIII: REFERENCES	73-88
APPENDICES: I-IX	i-xx

LIST OF TABLES

No.	Title Pa	age no.
1.	Known and suspected virulence factors of Mycobacterium tuberculosis	12
2.	Grouping of tuberculosis according to histological features	17
3.	Recommended treatment regimens for each treatment category	37
4.	Symptoms based approach to adverse effects of anti-TB drugs	37-38
5.	Macroscopic examination of sputum sample	44
6.	Interpretation of stained smear by fluorescence microscopy	45
7.	Recording and reporting of culture	47
8.	Concentrations of primary anti-tubercular drugs used in DST	50
9.	Serial dilution of bacillary suspension	51
10.	Critical concentrations of primary anti-tubercular drugs used in the study	52
11.	Age and genderwise distribution of the suspected patients included in the	
	Study	56
12.	AFB smears positivity among male and female patients	56
13.	Agewise distribution of AFB smears positive and negative cases	57
	by fluorochrome staining	
14.	Pattern of culture results with respect to fluorescence staining	58
15.	Genderwise distribution of culture results	58
16.	Result of culture positive samples on LJ medium containing PNB	59
17.	Result of biochemical tests and cytochemical staining	60
18.	Pattern of antibiotic susceptibility of isolates	60
19.	Pattern of drug resistance of <i>M. tuberculosis</i> (n=214) determined by	
	the proportion method	61
20.	Antibiotic susceptibility pattern among different age groups of patients	62

LIST OF FIGURES

Figure 1. Flow chart of methodology Gender distribution of the patients included in the study Figure 2. Figure 3. Gender distribution of smear positive and negative cases Figure 4. Agewise distribution of smear positive and negative cases Figure 5. Pattern of culture of smear positive cases Figure 6. Pattern of culture among male and female patients Figure 7. Pattern of culture in detail Figure 8. Percentage representation of antibiotic susceptibility pattern of isolates Figure 9. Pattern of drug resistance in total isolates Figure 10. Drug susceptibility pattern among male and female patients Figure 11. Agewise distribution of antibiotic susceptibility pattern

LIST OF PHOTOGRAPHS

- Photograph 1. ZN-stained sputum smear showing red AFB of *M. tuberculosis*
- Photograph 2. Auramine-O stained sputum smear showing glowing *M. tuberculosis*
- Photograph 3. Processing of samples inside the safety cabinet at NTC
- Photograph 4. Microscopic observation of ZN-stained slides
- Photograph 5. Culture of Mycobacterium (From left to right: plain Ogawa medium, culture on Ogawa medium, plain LJ medium and sub-culture on LJ medium)
- Photograph 6. No growth observed on PNB containing medium (From left to right: plain LJ medium, plain PNB containing LJ medium, test strain inoculated PNB medium and H₃₇Rv inoculated PNB medium)
- Photograph 7. Drop catalase test (From left to right: H₃₇Rv-positive control, plain
 LJ medium-negative control and test strain)
- Photograph 8. Heat labile catalase test (Loss of catalase activity at 68°C)
- Photograph 9. Cytochemical staining with neutral red (From left to right: test1positive, H₃₇Rv-positive control, test2-positive and neutral solutionnegative control)
- Photograph 10. Antimicrobial susceptibility testing of test strain by proportion method (From left to right: Controls I, II and III; INH-0.25µg/ml & 8µg/ml; RFP-20µg/ml & 40µg/ml; SM-4µg/ml & 8µg/ml; and EB-2µg/ml & 1µg/ml)
- Photograph 11. Antimicrobial susceptibility testing of standard strain- H₃₇Rv by proportion method (From left to right: Controls I, II and III; INH-0.25µg/ml & 8µg/ml; RFP-20µg/ml & 40µg/ml; SM-4µg/ml & 8µg/ml; and EB-1µg/ml & 2µg/ml)

LIST OF APPENDICES

		Page no.
APPENDIX-I:	Questionnaire	i
APPENDIX-II:	Material used during the study	ii-iii
	1. Equipments	ii
	2. Glasswares	ii
	3. Plastics	ii
	4. Safety	ii
	5. Chemicals and media base	iii
	6. Miscellaneous supplies	iii
APPENDIX-III:		iv-xi
	I. Composition and preparation of culture media	iv-vi
	A. 2% Modified Ogawa medium	iv-v
	B. Lowenstein-Jensen (LJ) medium	v-vi
	II. Composition and preparation of staining reagent	ts vi-viii
	A. Fluorochrome staining reagents	vi-vii
	B. Ziehl-Neelsen (ZN) staining reagents	vii-viii
	III. Preparation of 0.5 mg/ml para-nitrobenzoic acid	d
	(PNB) containing media	viii
	IV. Digestion and decontamination reagent	ix
	V. Composition and preparation of biochemical and	d
	cytochemical reagents	ix-xi
	i. Catalase reagents	ix-x
	ii. Neutral red reagents	x-xi
	VI. Mc Farland No. 1 preparation	xi
APPENDIX-IV:	Preparation of drug solutions and drug containing	
	media	xii-xiv

APPENDIX-V:	Sputum smears preparation	XV
APPENDIX-VI:	Staining procedures	xvi-xvii
	1. Fluorochrome staining procedure	xvi
	2. Ziehl-Neelsen (ZN) staining procedure	xvi-xvii
APPENDIX-VII:	Sodium hydroxide (Modified Petroff) method for digestion and decontamination of sputum sample	xviii
APPENDIX-VIII:	Quality check of media for drug susceptibility test	xix
APPENDIX-IX:	Identification of Mycobacterium tuberculosis	XX

LIST OF ABBREVIATIONS

AFB	Acid Fast Bacilli
AIDS	Acquired Immuno Deficiency Syndrome
APC	Antigen Presenting Cell
AST	Antimicrobial Susceptibility Testing
BACTEC	Becton Dickinson and Company
BCG	Bacille Calmette Guéruin
CDC	Centre for Disease Control
CMI	Cell Mediated Immunity
CR	Conventional Receptor
CRP	C-Reactive Protein
DNA	Deoxyribo Nucleic Acid
DOTS	Directly Observed Treatment Short course
DST	Drug Susceptibility Test
EMB/E	Ethambutol
ESR	Erythrocyte Sedimentation Rate
E-test	Epsilometer-test
GLC	Gas Liquid Chromatography
HIV	Human Immunodeficiency Virus
HLA	Human Leukocyte Antigen
HPA	Hybridization Protection Assay
HPLC	High Performance Liquid Chromatography
HSP	Heat Shock Proteins
ICT	Immuno Chromatographic Technique
IFN	Interferon
IL	Inter-Leukin
ImCRAC	Immuno-Cross-Reactive Antigen Compound
INH/H	Isoniazid

IS	Insertion Sequence
IUATLD	International Union Against Tuberculosis and Lung Diseases
LAMs	Lipoarabinomannans
LCR	Ligase Chain Reaction
LIPA	Line Probe Assay
LJ media	Lowenstein Jensen media
LTBI	Latent TB Infection
MDR	Multi Drug Resistant
MDR-TB	Multi Drug Resistant-Tuberculosis
MGIT	Mycobacterium Growth Indicator Tube
MHC	Major Histocompatability Compound
MIC	Minimum Inhibitory Concentration
MOTT	Mycobacteria Other than Tuberculous bacilli
MTC	Mycobacterium Tuberculosis Complex
NALC-NaOH	N-Acetyl Cysteine-Sodium Hydroxide
NRAMP	Natural Resistance-Associated Macrophage Protein
NTC	National Tuberculosis Centre
NTM	Non-Tuberculous Mycobacteria
NTP	National Tuberculosis Programme
PCR	Polymerase Chain Reaction
PGRS	Polymorphic GC rich Repetitive Sequence
PNB	Para-NitroBenzoic acid
PPD	Purified Protein Derivative
РТВ	Pulmonary Tuberculosis
PZA/Z	Pyrazinamide
RFLP	Restriction Fragment Length Polymorphism
RFP/R	Rifampicin
RNI	Reactive Nitrogen Intermediate
ROI	Reactive Oxygen Intermediate
SAARC	South Asian Association for Regional Cooperation

SEAR	South East Asia Region
SLDs	Second Line Drugs
SM/S	Streptomycin
SPSS	Statistical Package for Social Science
STC	SAARC Tuberculosis Centre
ТВ	Tuberculosis
TCH	Thiophen-2-Carboxylic acid Hydrazide
TLC	Thin Layer Chromatography
TNF	Tumor Necrosis Factor
WHO	World Health Organization
XDR	Extended Drug Resistant
ZN staining	Ziehl-Neelsen staining
Z-TSP	Zephiran-Tri-Sodium Phosphate