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ABSTRACT 

Grid shells show properties of discrete structures as well as properties of the continuous 

shell due to its topology. For single layered grid shells, the major failure mode is 

buckling. The major factors that affect the load-carrying capacity of grid shells are grid 

element properties, connection property, shell geometry and imperfections. 

Determination of buckling load of grid shell before the design process is very necessary. 

This is achieved by establishing equivalency between a grid shell and a continuous shell 

and applying the analytical equation of a continuous shell. Different equivalent models 

(volume, area, moment of inertia, split rigidity & orthotropic equivalency) are used to 

determine equivalent properties and an analytical equation for the continuous shell is 

modified to accommodate those properties to calculate the buckling load of the grid 

shell. 

The geometry is an open circular-cylindrical grid shell subjected to normal load with 

simply supported boundary conditions. The analysis parameters are grid shape, grid 

size and span to depth ratio. The analytical solution is achieved by solving the buckling 

equation of the continuous shell for different equivalent models. A 2D Arch analysis is 

prepared to establish the accuracy of modelling techniques and the accuracy of FEM. 

A program in MATLAB is written for the analytical method. Geometries are generated 

in Rhino6 using the Grasshopper plugin. A numerical solution is achieved by modelling 

geometry and grid element properties in ANSYS and performing a linear buckling 

analysis. The result from the analytical and numerical methods is compared. From 

parametric analysis, it is concluded that a denser grid shows bending dominated 

characteristics whereas a coarser grid shows membrane dominated characteristics. For 

the denser grid, the orthotropic equivalence model for the quadrilateral grid and 

equivalent split rigidity for the triangular grid, and coarser grid equivalent volume 

model can be used to calculate the load-carrying capacity of the grid shell. 

Keywords: Grid Shell, Circular-Cylindrical Shell, load-carrying capacity, equivalent 

model, linear buckling analysis, ANSYS 
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CHAPTER 1: INTRODUCTION 

The objective of this thesis is to perform a parametric stability (load-carrying capacity) 

analysis of an open circular-cylindrical grid shell. The geometry of the grid shell under 

consideration is open circular-cylindrical. The span to depth ratio is varied and the load-

carrying capacity of grid shells is calculated. Also, the difference in the behaviour of 

shells with quadrilateral and the triangular grid is analyzed. 

1.1 Definition of Grid Shell 

Shells exhibit more stiffness over plate structures due to their extra curvature. 

Continuous solid shells are more efficient in covering large spaces and carrying a load 

over other types of structures. Grid shells also have the properties of the continuous 

shell but are composed of grids rather than continuous solid-surface. In the 1960s, Frie 

Otto and the Institute of Lightweight Structures developed grid shells as an innovative 

structural system. A grid shell is described by Edmund Happold as a “doubly curved 

surface formed from a lattice of timber bolted together. The lattice is a mechanism with 

one degree of freedom" (Mesnil, 2013). More recently grid shell is defined as “a 

structure with the shape and strength of double curvature shell but made of a grid 

instead of a solid surface. The structure can cross large spans with very few materials. 

They can be made of any kind of material: steel, aluminium, wood and cardboard also” 

(Douthe, et al., 2006). Grid shells are made of one-dimensional elements. Terms like 

“latticed shell” or “reticulated shell” is also used for grid shell. Some of the grid shells 

constructed in the world are presented in Table 1.1 (Malek, 2012). 

Table 1.1: Some grid shells built in the world 

Year Structures Location 

1975 Mannheim Multihalle Mannheim, Germany 

1989 Museum for Hamburg History Hamburg, Germany 

1989 Swimming Arena Neckarsulm Neckarsulm, Germany 

1994 Meeting Hall Flemish Council Brussels, Belgium 

2000 Great Court London, United Kingdom 

2000 Japan Pavilion Hanover Expo Hanover, Germany 

2002 German Historical Museum Berlin, Germany 

2011 Centre Pompidou-Metz Metz, France 

2011 National Maritime Museum Amsterdam, Netherlands 
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Figure 1.1: Japan Pavilion 

 
Figure 1.2: The Great Court grid shell at British Museum 

1.2 Advantages of Grid Shells 

Grid Shells provide great visual elegance to the structure. They are very efficient for 

covering large spaces. Some of the advantages of grid shells are highlighted below. 

• Grid shells provide visual elegance and beauty. 

• Grid shells save material to be used due to their discrete topography. 

• Grid shells provide a great amount of natural lighting. The intensity of lighting 

can be varied by varying panel shapes and sizes. 

• Grid shells are very efficient in covering existing as well as new spaces. 
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• Grid shells can be used as temporary structures, lightweight structures and 

dynamic structures as well. 

1.3 Problems in Grid Shell Structure and Need of Study 

Despite various advantages, grid shell has not been a structure used frequently in the 

world. The main reason for less use might be due to its complexity in structural analysis 

and construction process. There is a debate about whether a quadrilateral grid or 

triangular grid is efficient. Are grid shells bending or membrane dominated? How much 

singularity and imperfections affect the buckling load? The variation of load-carrying 

capacity with variation in topology and topography is also a subject of research. 

1.4 Analysis Parameters 

From the review of the previous works done on grid shells mentioned in Chapter 3, it 

can be deduced that the following are the parameters that affect the load-carrying 

capacity of grid shells. 

• Span and depth (span to depth ratio) 

• Grid shape 

• Grid Size 

Imperfections and Joint Rigidity are the other factors that affect the load-carrying 

capacity. But these factors are not in the scope of this thesis. 

1.5 Objectives of the Thesis 

The objectives of this thesis are: for open circular-cylindrical grid shell, 

1. Compare buckling load calculated from analytical and numerical methods and 

suggest a better equivalent model approximation. 

2. Analyze the effect of span to depth ratio, grid type (quadrilateral & triangular) 

and grid size on the load-carrying capacity. 

3. Identify bending dominated and membrane dominated characteristics. 

1.6 Assumptions and Limitations 

For the progress of this thesis there are some assumptions and limitations, which are: 

• The connections are considered rigid connections. 

• For the dimensions selected, the grid shell is an intermediate type. 

• Local instability is not considered for analysis. 
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• Singularity and Imperfection are not considered. The shell considered is the 

perfect shell. 

• Shell considered is discrete and not elastically bent grid shell. 
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CHAPTER 2: THEORY 

This chapter illustrates the necessary theoretical background for the continuum model 

approach and analytical solution of the buckling problem of the continuous shell. Since 

the aim of this thesis is to prepare a parametric stability analysis of an open circular-

cylindrical grid shell, literature regarding both grid shells and buckling of shells is 

mentioned here. 

2.1 Continuum Approach 

To analyze grid shells, an approach has to be formulated. The approach considered here 

is the continuum approach. In this approach, some equivalencies are established 

between a continuous and a grid shell. A grid shell is related to a continuous shell the 

latter being as its calculation model. For initiation there are some basic assumptions 

made which are given as follows (Pshenichnov, 1993): 

• The reticulated shell middle surface and those of its calculation model coincide. 

• The deformation of the reticulated shell`s rod coincides with those of the 

calculation model. 

• Force and moments in one the cross-section of the reticulated shells (after their 

avenging) and its calculating model are statically equivalent. 

Three groups of equations define the equilibrium, strain-displacement relationship and 

stress-strain relationship which are: equilibrium equation, geometric equation and 

constitutive equations respectively. The first two groups are similar for grid shell and 

its continuous model. The third group differ according to grid stricture and material of 

grid shells. 

There are various continuum approaches to define a grid shell as a continuous shell. 

Some of the approaches are listed below (Malek, 2012): 

• Equivalent Volume: The volume of the grid shell and its equivalent continuous 

shell is taken as nearly equal and an equivalent thickness of the continuous shell 

is defined. 

• Equivalent Area: The Cross-section area of the grid element of the grid shell 

and its equivalent continuous shell is taken as equal and an equivalent thickness 

of the continuous shell is defined. 



18 

 

• Equivalent MOI: An equivalent depth for equivalent MOI is defined for 

equivalent continuous shell 

• Split Rigidity: Two thicknesses defined by flexural and extensional 

deformations are defined. 

• Orthotropic: Differential equations and rigidities are derived. 

2.2 Form Finding 

To model and construct grid shells, the grid points are determined. Grid points 

collectively define the global shape (form) of the grid shells. The form of the grid shell 

is determined so that the forces are in equilibrium. In earlier days hanging chain models 

were used for form-finding. The hanging chains are in pure tension, to determine the 

shape in compression the model is inverted. The hanging chain model of the grid shell 

structure of the Herzogenriedpark building of the Mannheim Bundesgartenschau(1975) 

is shown in Figure 2.1 (Green & Lauri, 2017). 

 
Figure 2.1: Hanging chain model of the Mannheim. 

After the development of numerical tools, new methods are developed for form-finding. 

The Dynamic Relaxation (DR) method is used for the form-finding of grid shells. A.S. 

Day developed an explicit solution technique for statical analysis of structures called 

Dynamic Relaxation. In the DR method, the system is solved as a fictitious dynamic 

system within discrete time steps. Shape in equilibrium corresponding to minimum 

potential energy is determined.  
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2.3 Buckling of Shells 

2.3.1 Buckling of Continuous Shells 

Thin shells with certain geometric and boundary conditions carry load entirely by their 

membrane action. As the load is carried without bending action, we get the privilege of 

using small thicknesses. But with small thickness buckling action is very desirable. The 

load at which buckling occurs is less than the load at which failure occurs due to 

membrane stresses. The design of thin shells is normally dominated by the stability 

consideration and not merely the material strength requirement. Hence, stability 

analysis of thin shells acquires prime importance in designing thin shells (Farshad, 

1992). Shell buckling is always disastrous, unlike a column. Bending stiffness is 

required to control buckling. Without bending stiffness, buckling cannot be resisted. 

For continuous shells, the stability and load-carrying capacity is gained from doubly 

curved geometry. Imperfection is very sensitive to shell buckling. 

Linear and non-linear buckling analysis is done to determine the buckling load of shells.  

A non-linear analysis is more complicated and a closed form solution cannot be found. 

Linear analysis results in a fairly close value of buckling load. So, non-linear analysis 

is not used in the design process. The linear shell buckling analysis in the general case 

must be based on geometrically non-linear shell theory. The buckled shape is 

infinitivally close to the unbuckled shape so, the equations of the shallow shell can also 

be applied (Ventsel & Krauthammer, 2001). 

Timoshenko and Gere (1985) has derived equilibrium equations for the circular-

cylindrical shell under normal pressure loading (𝑋 = 0, 𝑌 = 0, 𝑍 = 𝑞) considering 

non-linear shell theory. The equilibrium equations are given in Eq. 2.1. 

 
Figure 2.2: Geometrical properties and co-ordinate system of shell 
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Figure 2.3: Forces and moments on the differential element of the shell 

𝑋 𝑍 

𝑌 
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After simplification for the case of buckling under normal pressure and simply 

supported boundary conditions, equilibrium equations are reduced to the equations 

given in Eq. 2.2. 

𝑎
𝜕𝑁𝑥

𝜕𝑥
+

𝜕𝑁𝜃𝑥

𝜕𝜃
+ 𝑞𝑎 (

𝜕2𝑣

𝜕𝑥𝜕𝜃
−

𝜕𝑤

𝜕𝑥
) = 0 

𝜕𝑁𝜃
′

𝜕𝜃
+ 𝑎

𝜕𝑁𝑥𝜃

𝜕𝑥
−

𝜕𝑀𝜃

𝑎𝜕𝜃
−

𝜕𝑀𝑥𝜃

𝜕𝑥
= 0 

𝑎
𝜕2𝑀𝑥

𝜕𝑥2
+

𝜕2𝑀𝜃

𝑎𝜕𝜃2
+

𝜕2𝑀𝑥𝜃

𝜕𝑥𝜕𝜃
+

𝜕2𝑀𝜃𝑥

𝜕𝑥𝜕𝜃
+ 𝑁𝜃

′ − 𝑞 (𝑤 +
𝜕2𝑤

𝜕𝜃2
) = 0 

Eq. 2.2 

The geometric equations and constitutive equations for the circular-cylindrical shell are 

given in Eq. 2.3 and Eq. 2.4 respectively. 

𝜖𝑥 =
𝜕𝑢

𝜕𝑥
 

𝜖𝜃 =
𝜕𝑣

𝑎𝜕𝜃
−

𝑤

𝑎
 

𝛾𝑥𝜃 =
𝜕𝑢

𝑎𝜕𝜃
+

𝜕𝑣

𝜕𝑥
 

𝜅𝑥 = −
𝜕2𝑤

𝜕𝑥2
 

𝜅𝜃 = −
1

𝑎2
(

𝜕𝑣

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
) 

𝜅𝑥𝜃 = −
1

𝑎
(

𝜕𝑣

𝜕𝑥
+

𝜕2𝑤

𝜕𝑥𝜕𝜃
) 

Eq. 2.3 

𝑁𝑥 = 𝐶(𝜖𝑥 + 𝜈𝑐𝜖𝜃) 

𝑁𝜃 = 𝐶(𝜖𝜃 + 𝜈𝑐𝜖𝑥) 

𝑁𝑥𝜃 = 𝑁𝜃𝑥 = 𝑆 =
𝐶(1 − 𝜈𝑐)

2
𝛾𝑥𝜃 

𝑀𝑥 = 𝐷(𝜅𝑥 + 𝜈𝐷𝜅𝜃) 

𝑀𝜃 = 𝐷(𝜅𝜃 + 𝜈𝐷𝜅𝑥) 

𝑀𝑥𝜃 = 𝑀𝜃𝑥 = 𝐻 = 𝐷(1 − 𝜈𝐷)𝜅𝑥𝜃 

Eq. 2.4 

Using geometric and constitutive equations, equilibrium equations can be reduced in 

terms of three displacement components given in Eq. 2.5. Substituting, 

𝜙 =
𝑞𝑎

𝐶
, 𝛼 =

𝐷

𝐶𝑎2
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(𝑎2
𝜕2𝑢

𝜕𝑥2
+

1 − 𝜈𝑐

2

𝜕2𝑢

𝜕𝜃2
) +

𝑎(1 + 𝜈𝑐)

2

𝜕2𝑣

𝜕𝑥𝜕𝜃
− 𝜈𝑐𝑎

𝜕𝑤

𝜕𝑥
+ 𝜙𝑎 (

𝜕2𝑣

𝜕𝑥𝜕𝜃
−

𝜕𝑤

𝜕𝑥
)

= 0 

𝑎(1 + 𝜈𝑐)

2

𝜕2𝑢

𝜕𝑥𝜕𝜃
+ (

𝑎2(1 − 𝜈𝑐)

2

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝜃2
) −

𝜕𝑤

𝜕𝜃
 

+𝛼 (𝑎2(1 − 𝜈𝐷)
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝜃2
+ 𝑎2

𝜕3𝑤

𝜕𝑥2𝜕𝜃
+

𝜕3𝑤

𝜕𝜃3
) = 0 

𝑎𝜈𝑐

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝜃
− 𝛼 (

𝜕3𝑣

𝜕𝜃3
+ (2 − 𝜈𝐷)𝑎2

𝜕3𝑣

𝜕𝑥2𝜕𝜃
+ 𝑎4

𝜕4𝑤

𝜕𝑥4
+

𝜕4𝑤

𝜕𝜃4

+ 2𝑎2
𝜕4𝑤

𝜕𝑥2𝜕𝜃2
) − 𝑤 − 𝜙 (𝑤 +

𝜕2𝑤

𝜕𝜃2
) = 0 

Eq. 2.5 

For simply supported boundary condition, the force and displacement component at 

boundaries (𝑥 = 0, 𝑙) are 𝑣 = 0, 𝑤 = 0, 𝑁𝑥 = 0, 𝑀𝑥 = 0. To satisfy these boundary 

conditions, the displacement components are represented in double-sine series which 

are given in Eq. 2.6. 

𝑢 = 𝑈𝑛 cos
𝜋𝑥

𝑙
𝑐𝑜𝑠𝑛𝜃 

𝑣 = 𝑉𝑛 sin
𝜋𝑥

𝑙
𝑠𝑖𝑛𝑛𝜃 

𝑤 = 𝑊𝑛 sin
𝜋𝑥

𝑙
𝑐𝑜𝑠𝑛𝜃 

Eq. 2.6 

Substituting displacement components in Eq. 2.5 we get, 

𝜆 =
𝜋𝑥

𝑙
 

(−𝜆2 −
1 − 𝜈𝑐

2
𝑛2) 𝑈𝑛 + (

1 + 𝜈𝑐

2
𝑛𝜆 + 𝑛𝜆𝜙) 𝑉𝑛 + 𝜆(𝜈𝑐 + 𝜙)𝑊𝑛 = 0 

(
1 + 𝜈𝑐

2
𝑛𝜆) 𝑈𝑛 − (

1 − 𝜈𝑐

2
𝜆2 + 𝑛2 + 𝛼(1 − 𝜈𝐷)𝜆2 + 𝛼𝑛2) 𝑉𝑛 

−(𝑛 + 𝛼𝑛𝜆2 + 𝛼𝑛3)𝑊𝑛 = 0 

(𝜈𝑐𝜆)𝑈𝑛 − (𝑛 + 𝛼𝑛3 + 𝛼(2 − 𝜈𝐷)𝑛𝜆2)𝑉𝑛 

−(1 + 𝛼𝜆4 + 𝛼𝑛4 + 2𝛼𝑛2𝜆2 + 𝜙(1 − 𝑛2))𝑊𝑛 = 0 

Eq. 2.7 

Eq. 2.7 yields a trivial solution which is 𝑈𝑛 = 𝑉𝑛 = 𝑊𝑛 = 0. But for buckling 

deformation values of 𝑈𝑛, 𝑉𝑛 & 𝑊𝑛 ≠ 0. For buckling, determinant of the Eq. 2.7 must 

be zero which leads to a quadric equation where only 𝑞 and 𝑛 are unknown. Though 𝑛 

is considered as continuous variable, it is actually an integer variable. The minimum 
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value of 𝑞 is critical load or buckling load and corresponding value of 𝑛 is no, of half 

wave of deformation. 

2.3.2 Buckling of Grid Shells 

Grid shells carry their loads mainly by compression force. It has been well established 

that buckling is the dominant failure mode of single-layered grid shells (Gioncu, 1985). 

In a single-layer grid shell, the problem of buckling comes forward. It is assumed that 

individual member of the grid shell remains straight and stable during buckling. Grid 

shells exhibit common features of both framed structures and solid shells. Various 

researches have been done on the buckling of grid shells and their mechanics. Some of 

them has been mentioned in Chapter 3. 
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CHAPTER 3: LITERATURE REVIEW 

Gioncu (1995) has given a detailed overview of the state-of-the-art on buckling of 

reticulated shells. He has mentioned fundamentally important factors in the buckling of 

reticulated shells which are: 

• Form or Global Shape: Classification based on their Gaussian-Curvature 

• Reticulation Form: Triangular and Quadrilateral Shapes 

• Structural Element: Strut or Beam or Single or Double Layer 

• Connections: Joint System 

A grid shell has been defined as a special structural system that consists of a 

quadrilateral internal structure, beam element, and rigid joints. For ideal shells the loss 

of stability can be produced by two instability points; limit point and bifurcation point. 

Two main approaches: the equivalent continuum method and discrete method, to 

analyze buckling load for reticulated shells has been illustrated and uncertainties 

involved in those methods have been highlighted. Local buckling is a dangerous form 

of instability in reticulated shells. Various instability modes have been identified which 

are: 

• Member Instability: When buckling of individual members occurs. 

• Node Instability: When all member connected to a node undergoes axial strain. 

• Torsional Instability: When bending rigidity in the surface plan is weaker. 

• Line Instability: when all the nodes of a ring of a dome and the connected 

members are involved in the loss of stability. 

Forman and Hutchinson (1970) has presented buckling analysis of few reticulated 

shells with both equivalent continuum analysis and discrete analysis which is regarded 

as exact analysis. To model a simple shell buckling problem, buckling of an axially 

compressed infinite reticulated beam has been formulated considering varying joint 

rigidity. Discrete analysis has been done applying the principle of virtual work. A 

shallow section of reticulated spherical shell and infinite reticulated cylindrical shell 

with the triangular (equilateral) grid has been analyzed using both equivalent continuum 

and discrete analysis. In continuum analysis equivalent flexural rigidity, axial rigidity, 

Poisson's ratio and load has been defined for equivalent continuous shell and its 
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buckling load has been determined. In discrete analysis, member equations and 

equilibrium equations have been established and are solved as an eigenvalue problem. 

Sumec (1992) has performed linear stability analysis of grid shells. It has been stated 

that in single layer grid shell, the problem of stability comes forward than the material 

strength (failure). The grid shell with a triangular grid has been analyzed with a 

continuum approach. The shape of a buckled segment of the surface has been assumed 

as a spherical segment. Applying the equivalent rigidity model and theory of finite 

deflection of shell, governing equations of shallow grid shell has been derived. Initial 

shape imperfection has also been taken into account in governing equation. Applying 

the Bubnov-Galerkin method, an analytical closed-form formulation for critical 

pressure has been derived. The rigidity of joints (rigid & hinged) has been taken into 

account. Some numerical examples have been presented to know the effect of radius of 

curvature & element length of grid shell on the critical pressure. It has been concluded 

that: 

• The factors on which critical external normal pressure depends are the radius of 

curvature of grid shell, length of grid element & their sectional characteristics, 

material properties & initial shape imperfection of the shell and type of 

connecting nodes. 

• For grid shells with hinged or rigid joints and an ordinary continuum model, the 

formula derived in closed form is an available tool. 

Mesnil, et al. (2017) has done a comparative analysis of linear buckling load of grid 

shells with kagome grid and quadrangular grid. A strategy has been proposed for the 

covering of kagome meshes with planner's faces. Barrel vault and dome structures have 

been chosen for analysis. A method to convert quadrilateral meshes to kagome meshes 

has been derived. The analysis parameters chosen are aspect ratio, span to depth ratio, 

structural density ratio, buckling ratio and structural efficiency. A circular hollow 

section made of steel has been used as a grid element and support has been supposed to 

be pin joints. A uniform vertical projected load and non-symmetrical load has been 

applied as two load cases. A linearized buckling analysis has been performed for 

different values analysis parameters. The sensitivity of the kagome grid shell to 

geometrical imperfections has also been discussed. It has been concluded that the 

kagome grid has significantly higher performance compared to the quadrilateral grid 

for both symmetric and non-symmetric load cases. 
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Bulenda and Knippers (2001) has explained some parameters influencing the failure 

load of domes & barrel vaults and has made suggestions for the imperfection in shape. 

Non-linear finite element analysis of the imperfect structure has been performed to 

check the stability of the grid shell. Stability behaviour and factors affecting the stability 

of grid shell has been discussed. Imperfection types, method of application and scaling 

has been illustrated. Paraboloid over a circle and parabolic barrel vault shape has been 

considered for analysis. Boundary condition (hinged & rigid), the height of shell and 

height to span ratio have been taken as analysis parameters. A geometrically non-linear 

analysis has been performed and the load-displacement curve has been computed 

incrementally via the load control method. It has been concluded that the dome structure 

is very imperfection sensitive and barrel vaults are less imperfection sensitive but carry 

much less load. 

Mesnil (2013) has studied the influence of pre-stress on the stability of elastic grid 

shells. A parametric study has been conducted which focuses on both pre-buckled arch 

and initially flat circular elastic grid shell with different grid spacing and levels of pre-

stress. Realistic values for analysis parameters have been determined from existing 

projects. A hollow circular section has been used as a grid element. A pre-buckled 2D 

Arch has been chosen for the validation of the computational method. Firstly, a 

comparative analysis of the buckling capacity of the unstressed and pre-stressed arch 

has been prepared. Secondly, the buckling analysis, as well as the form-finding of 

different structures, have been performed using finite element analysis. The parameters 

that have been chosen to describe the problem are grid spacing, the height of the 

structure after form-finding, bending stiffness of beam and the critical line load. It has 

been concluded that: 

• For high levels of pre-stress, an elastic grid shell and grid shell have the same 

bending mode shapes. 

• Elastic grid shells are subject to two competing effects: the geometrical stiffens 

and loss of stiffness due to pre-stress. 

• Elastic grid shells behave similarly to rigid grid shells. So, the tools developed 

for rigid grid shells could be applied to elastic grid shells. 

Malek (2012) has done a parametric study of the buckling load of grid shells varying 

the topology and topography. A Spherical-cap and corrugated barrel vault have been 

chosen for analysis. For spherical cap grid shells, the effect of grid size grid shape and 



27 

 

span to depth ratio on buckling load has been studied. For corrugated barrel vault grid 

shells, the effect of corrugation has been studied. Different equivalent models have been 

used to establish equivalency between grid shell and equivalent continuous shell. 

Expression for buckling of the continuous shell has been used to determine the buckling 

load of grid shells analytically. A 2D Arch analysis is prepared to establish the accuracy 

of FEM. Linear buckling analysis has been done for analysis parameters. It has been 

concluded that: 

• A triangular grid is better for steeper shells (spherical cap). 

• A denser grid is recommended for the shallower shell. 

• Buckling load decreases with increases in grid size and shallowness. 

• Corrugation improves the load-carrying capacity of barrel vaults.  

• The equivalent area model gives a conservative estimate of the buckling load of 

the grid shell. 
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CHAPTER 4: METHODOLOGY 

This chapter illustrates the methodology for the progress of this thesis. The 

methodology is oriented towards the fulfilment of the objectives of this thesis. A 

process is established from previous works done, to answer some of the research 

questions and problems in grid shells mentioned in Chapter 1.3 

 
Figure 4.1: Flowchart of methodology 

4.1 Procedure for Parametric Analysis 

The parameters required for analysis has been deduced from the literature review in 

Chapter 1.4. The numerical value of parameters for analysis is identified from 

previously built grid shells. An insight on analysis methods, their usefulness and 

limitations are very necessary. 

4.1.1 Selection of analysis parameters 

In the recent decade, several grid shell structures have been constructed around the 

world. The structures are built individually as per requirement. Various materials (from 

steel to cardboard) and geometries have been used. These grid shells have varying 

Selection of Analysis 
Parameter and Geometry

Method of analysis

Analytical Method

Derrivation of 
Equation for 

Buckling Problem 
of Coninuous Shell

Calculation  of Buckling 
Load of Grid Shell

Definition of 
Equivalent Model and 

Calculation of 
Equivalent Properties

Numerical Method (FEM)

Model Verification

Preparation of Finite 
Element Model in 

ANSYS

Determination of 
Buckling Load of 

Grid Shell

Comparison of Results 
from Analytical and 
Numerical Method

Discussion and 
Conclusion

Analysis of 
Results for 
Variation in 
Parameters



29 

 

values and a combination of parameters. Some grid shells with their parameters are 

given in Table 4.2 (Mesnil, 2013) (Schober, 2015). 

In the construction of grid shells, a quadrilateral grid has been used mainly which is 

easier to construct. But for aesthetic requirements triangular grid has also been used. 

The size of the grid varies from 500mm to 2000mm. A grid cannot be too fine and use 

short elements because it would use more material and would not fulfil the required 

functionality. Also, the grid should not be too coarse and use slender elements because 

it would invite local instability. As the member length is shorter than buckle 

wavelength, the member axial load is well below the Euler buckling load of simply 

supported column (Forman & Hutchinson, 1970). It enables the use of an equivalent 

continuum approach. 

The span to depth ratio indicates the shallowness or steepness of the grid shell. Span to 

depth ratios (r) of 5, 14, 20 are chosen for analysis as a representative value of 

previously built grid shells and shallowness of shell. Quadrilateral and triangular grid 

with grid size(s) of 500mm, 1000mm & 1500mm is selected. Grid element (rod) made 

of steel (𝐸 = 210GPa, 𝜈 = 0.3) with solid cross-section of 50mm x 50mm is selected for 

analysis. Open circular-cylinder geometry is chosen for analysis. Other factors required 

to define geometry are mentioned in Chapter 5.2. The analysis parameters and grid 

element properties are summarized in Table 4.1. 

Table 4.1: List of properties of grid shell and analysis parameters 

Global Geometry Open circular-cylindrical 

Span to depth ratio (𝑟) 5, 14, 20 

Grid Shape 
Quadrilateral & Triangular 

(Single Layered) 

Grid Size/Spacing of grid element  (𝑠) 500mm, 1000mm, 1500mm 

Grid element (rod) Size 50mm x 50mm 

Cross-Section Area of grid element (𝐴) 2500mm2 

Moment of Inertia of grid element (𝐼) 5.208 x 105mm4 

Torsional Moment of Inertia of grid element (𝐽) 8.813 x 105mm4 

Modulus of Elasticity (𝐸) 210000 N/mm2 

Poission`s ratio (𝜈) 0.3 

Modulus of Rigidity (𝐺) 80769.23 N/mm2 
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Table 4.2: Some grid shells with their parameters 

Grid Shell Year Location 
Span 

(m) 

Rise 

(m) 
Span/Rise 

Grid  

Shape 

Grid  

Size(m) 

Element 

Size(mm) 
Material 

Mannheim 

Multihalle 
1975 

Mannheim, 

Germany 
55 x 55 15.5 3.55 Quadrilateral 0.5 x 0.5 50 x 50 Timber 

Museum for 

Hamburg History 
1989 Hamburg, Germany 50 x 17 5 3.4 Quadrilateral 

1.17 x 

1.17 
60 x 40 Steel 

Swimming Arena 

Neckarsulm 
1989 

Neckarsulm, 

Germany 
25.2 5.75 4.38 Quadrilateral 1.0 x 1.0 60 x 40 Steel 

Railway station 

Berlin 
1998 Berlin, Germany 

18 x 

9.7 
3.8 2.55 Quadrilateral 1.5 x 1.2 60 x 60 Steel 

Yas Mall, Atrium 

roof 
2013 Abu Dhabi, UAE 29 x 52 3.52 14.77 Quadrilateral 

2.18 x 

2.15 
80 x 160 

Steel 

(Hollow 

Sections) 

Cabot Circus 2007 Bristol, UK 40/60  5.26 Quadrilateral 1.5 x 1.75 60 x 80 Steel 

Weald and 

Downland Museum 
2002 West Sussex, UK 16.5 9.5 1.74 Triangular 1.0 x 1.0 50 x 35 Timber 
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4.1.2 Method of Analysis 

The basic process of solving a problem is identification, formulation and solution. The 

formulation can be done either by assessing the properties and constraints of the 

problem and preparing a model for each problem differently or by fitting an existing 

solution to a problem with some assumptions. The succeeding approach is applied here 

for the analytical solution. A discrete (grid) shell is idealized as a continuous shell 

establishing some equivalence. Results for the continuous shell are applied to the 

discrete shell with those equivalencies and final solutions are regarded as grid shell. 

In engineering, every problem may not result in a closed-form solution. With increasing 

complexity in the idealization and formulation of a problem, an exact solution becomes 

less feasible. Numerical methods are applied for those problems whose exact solutions 

are not available. FEM is a common tool for solving such complex problems. Finite 

element models are prepared for each combination of parameters mentioned in Chapter 

4.1.1 and results are compared with the analytical solution. A 2D-Arch analysis is 

prepared using FEM and the method is validated by comparing the results from the 

exact analytical solution. 

4.2 Analytical Method 

In this thesis, an equivalent continuous shell is defined for grid shell to solve the 

problem analytically. A shell has to transfer the load either by membrane action or by 

bending action or by a combination of them. The load transfer characteristics are 

defined by its axial (membrane) or bending rigidity. The thickness has to be decided 

based on the trade-of of whether the shell has to transfer load by membrane action or 

bending action. 𝐶 and 𝐷 are the axial and bending rigidity which are given in Eq. 4.1 

& Eq. 4.2 respectively. 

𝐶 =
𝐸ℎ

(1 − ʋ2)
 Eq. 4.1 

𝐷 =
𝐸ℎ3

12(1 − ʋ2)
 Eq. 4.2 

A relationship between the element of grid shell (rod) and shell`s axial and flexural 

rigidities is defined using methods illustrated in Chapter 2.1. An equivalent thickness 

and modulus of elasticity are defined for a continuous shell. 
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4.2.1 Equivalent Volume Model 

In this model, it is idealized that a volume can be deformed into a continuous and 

reticulated shell. The volume of rods at the boundary is neglected and the volume of 

intersection of the rod is counted twice. There is a very low error between the volume 

between the grid shell and its equivalent continuous shell. 

 
Figure 4.2: Equivalent volume model 

𝑉𝑐𝑜𝑛𝑡𝑖𝑛𝑖𝑜𝑢𝑠 𝑠ℎ𝑒𝑙𝑙 = 𝑉𝑟𝑜𝑑 Eq. 4.3 

For quadrilateral grid; 

2𝐴𝑠 =  ℎ𝑒𝑞𝑠2 

ℎ𝑒𝑞 =  
2𝐴

𝑠
 Eq. 4.4 

For triangular grid; 

ℎ𝑒𝑞 =  
8𝐴

√3𝑠
 Eq. 4.5 

4.2.2 Equivalent Area Model 

In this model, the cross-section area of a rod of the grid shell is taken as equivalent to 

the cross-section area of the continuous shell. The equivalent area represents the 

membrane characteristics of the grid shell. 

 
Figure 4.3: Equivalent area model 

𝐴𝑟𝑜𝑑 = 𝐴𝑐𝑜𝑛𝑡𝑖𝑛𝑖𝑜𝑢𝑠 𝑠ℎ𝑒𝑙𝑙 Eq. 4.6 
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For quadrilateral grid; 

𝐴𝑠 = ℎ𝑒𝑞𝑠2 

ℎ𝑒𝑞 =
𝐴

𝑠
 Eq. 4.7 

For triangular grid; 

ℎ𝑒𝑞 =
2𝐴

𝑠
 Eq. 4.8 

4.2.3 Equivalent Moment of Inertia Model 

In this model moment of inertia of a rod of the grid, the shell is taken as equivalent to 

the moment of inertia of cross-section of the continuous shell. Area and moment of 

inertia give the bound between axial and bending characteristics of grid shell. 

𝑀𝑂𝐼𝑟𝑜𝑑  =  𝑀𝑂𝐼𝑐𝑜𝑛𝑡𝑖𝑛𝑖𝑜𝑢𝑠 𝑠ℎ𝑒𝑙𝑙   Eq. 4.9 

For quadrilateral grid; 

𝐼 =  
𝑠ℎ𝑒𝑞

3

12
 

ℎ𝑒𝑞 = (
12𝐼

𝑠
)

1/3

 Eq. 4.10 

For triangular grid; 

ℎ𝑒𝑞 = (
24𝐼

𝑠
)

1/3

 Eq. 4.11 

4.2.4 Split Rigidity Model 

In this model both axial and bending rigidities are defined for an equivalent continuous 

shell. Considering the homogenized models (Mesnil, et al., 2017) has given rigidities 

for an equivalent continuous shell. 

For quadrilateral grid; 

𝐶𝑒𝑞 =
𝐸𝐴

𝑠
 

𝐷𝑒𝑞 =
𝐸𝐼

𝑠
 

Eq. 4.12 

For triangular grid 
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𝐶𝑒𝑞 =
2𝐸𝐴

𝑠
 

𝐷𝑒𝑞 =
2𝐸𝐼

𝑠
 

Eq. 4.13 

4.2.5 Orthotropic Equivalence Model 

Pshenichnov (1993) has derived a set of the equation for the orthotropic shell from the 

anisotropic shell and has used a constitutive equation for an element of grid shell (rod) 

to derive the expressions for forces and moments of the equivalent continuous shell. 

The equivalent properties of the grid shell are given in Eq. 4.14 and Eq. 4.15. 

For quadrilateral grid (two families of the rod, n=2); 

𝐶𝑒𝑞 =
𝐸𝐴

𝑠
 , 𝜈𝑐 = 0 

𝐷𝑒𝑞 =
𝐸𝐼

𝑠
 , 𝜈𝐷 = 0 

Eq. 4.14 

For triangular grid (three families of the rod, n=3); 

𝐶𝑒𝑞 =
9𝐸𝐴

8𝑠
 , 𝜈𝑐 =

1

3
 

𝐷𝑒𝑞 =
3𝐸𝐼(1 + 𝛾)

8𝑠
 , 𝑣𝐷 =

1 − 𝛾

3 + 𝛾
 

𝛾 =
𝐺𝐽

𝐸𝐼
 

Eq. 4.15 

 
Figure 4.4: Undeformed grid shell (Quadrilateral grid 𝑟=14, 𝑠=1000) 
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Figure 4.5: Deformed grid shell (Quadrilateral grid 𝑟=14, 𝑠=1000) 

4.3 Numerical Method 

The finite element formulation of buckling problem of beam element can be described 

in Eq. 4.16 and Eq. 4.17 (Zienkiewicz & Taylor, 2005) 

[𝐾𝐸]{𝑄} = {𝐹} Eq. 4.16 

[[𝐾𝑀] − 𝜆𝑛[𝐾𝐺]]{𝑄𝑛} = {0} Eq. 4.17 

Where, [𝐾𝐸] is stiffness matrix, {𝑄} is displacement vector and {𝐹} is load vector for 

linear force analysis. Solving Eq. 4.16, forces in each element can be calculated which 

is given by [𝑇𝑖]. [𝐾𝑀], [𝐾𝐺], {𝑄𝑛} and 𝜆𝑛 are stiffness matrix for large displacement, 

geometric stiffness matrix, displacement vector of 𝑛𝑡ℎ mode and load factor of 𝑛𝑡ℎ 

mode respectively which are given in Eq. 4.18. 

[𝐾𝐺] = ∑[

𝑖

[𝐿𝑖]𝑇(∫ [𝑁`]
𝑇

[𝑇𝑖][𝑁`]𝑑𝑥)[𝐿𝑖]
𝑙

0

] 

[𝐾𝑀] = ∑[

𝑖

[𝐿𝑖]
𝑇(∫ [𝐵𝑎]𝑇[𝐷𝑇][𝐵𝑎]𝑑𝑥

𝑙

0

)[𝐿𝑖]]  

Eq. 4.18 

Where, [𝑁] is shape function, [𝐵𝑎] is the strain-displacement relationship for large 

displacement and [𝐷𝑇] is elastic relationship. Eq. 4.17 can be solved as an eigenvalue 

problem (|[𝐾𝑀] − 𝜆𝑛[𝐾𝐺]| = 0) and load factor 𝜆𝑛 can be determined. Multiplying 

applied load by the load factor, buckling load is determined. 
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For this thesis, test geometries for analysis are created in Rhino 6 using the Grasshopper 

plugin. The geometries are imported in ANSYS Workbench 2020 R1 and a finite 

element analysis model is prepared with properties given in Table 4.1. Linearized 

buckling analysis is prepared and numerical results are compared with analytical 

results. 

Table 4.3: Summary of equivalent models and equivalent properties 

Equivalent 

Model 

Equivalent Properties 

Quadrilateral Grid Triangular Grid 

ℎ𝑒𝑞  𝐶𝑒𝑞  𝐷𝑒𝑞  ℎ𝑒𝑞 𝐶𝑒𝑞 𝐷𝑒𝑞 

Equivalent 

Volume 

2𝐴

𝑠
 

𝐸ℎ𝑒𝑞

(1 − ʋ2)
 

𝐸ℎ𝑒𝑞
3

12(1 − ʋ2)
 

8𝐴

√3𝑠
 

𝐸ℎ𝑒𝑞

(1 − ʋ2)
 

𝐸ℎ𝑒𝑞
3

12(1 − ʋ2)
 

Equivalent 

Area 

𝐴

𝑠
 

𝐸ℎ𝑒𝑞

(1 − ʋ2)
 

𝐸ℎ𝑒𝑞
3

12(1 − ʋ2)
 

2𝐴

𝑠
 

𝐸ℎ𝑒𝑞

(1 − ʋ2)
 

𝐸ℎ𝑒𝑞
3

12(1 − ʋ2)
 

Equivalent 

Moment of 

Inertia 

(
12𝐼

𝑠
)

1
3
 

𝐸ℎ𝑒𝑞

(1 − ʋ2)
 

𝐸ℎ𝑒𝑞
3

12(1 − ʋ2)
 (

24𝐼

𝑠
)

1
3
 

𝐸ℎ𝑒𝑞

(1 − ʋ2)
 

𝐸ℎ𝑒𝑞
3

12(1 − ʋ2)
 

Split 

Rigidity 
 

𝐸𝐴

𝑠
 

𝐸𝐼

𝑠
  

2𝐸𝐴

𝑠
 

2𝐸𝐼

𝑠
 

Orthotropic 

Equivalence 
 

𝐸𝐴

𝑠
, 

𝜈𝑐 = 0 

𝐸𝐼

𝑠
 , 

𝜈𝐷 = 0 

 

9𝐸𝐴

8𝑠
 , 

𝜈𝑐 =
1

3
 

3𝐸𝐼(1 + 𝛾)

8𝑠
 , 

𝑣𝐷 =
1 − 𝛾

3 + 𝛾
 

𝛾 =
𝐺𝐽

𝐸𝐼
 

4.4 Model Verification and 2D Arch Analysis 

For the validation of a more complicated computational modelling technique required 

for grid shell, simpler failure mode and buckling mode of 2D Arch is analyzed. 2D 

Arch is a proper prototype to test various methods and approximations for the study of 

grid shells. 2D Arch shows an interplay between bending and membrane action. Malek 

(2012) and Mesnil (2013) has used 2D Arch analysis for verifying modelling 

techniques. 

4.4.1 Buckling Load Convergence 

Timoshenko and Gere (1985) has given expression for buckling load for a circular arch 

under normal loading which is given in Eq. 4.19. 



37 

 

 
Figure 4.6: 2D Arch geometry 

𝑞𝑐 =
𝐸𝐼

𝑅3
(

𝜋2

𝛼2
− 1) Eq. 4.19 

For 2D Arch, it has been established that for span/depth≤20 the mode of failure is due 

to buckling. For verifying the accuracy of FEM both buckling load convergence and 

load equivalency are checked. An arch of span 15000mm, span to depth ratio 5, 14 & 

20 and properties similar to grid element (rod) are taken for analysis. Both analytical 

and finite element analysis results are compared and the accuracy of FEM is 

established. The results are shown in Table 4.4. Applying normal load to an arch in 

ANSYS Workbench is not possible so instead vertical load is applied. As the arch 

becomes shallow, the difference between vertical and normal load becomes smaller and 

the error between analytical and finite element results becomes smaller. 

Table 4.4: Comparison of the buckling load of 2D Arch 

Geometric Properties 
Buckling 

Load(𝑞𝑐)(N/mm) 
Error 

Span(𝐿) 

(mm) 

Span to 

depth ratio 

(𝑟) 

Radius 

(𝑅)(mm) 

Angle(𝛼) 

(rad) 
Analytical FEM % 

15000 5 10875 0.761013 1.364E+00 1.238E+00 9.281 

15000 14 26785.71 0.283794 6.917E-01 6.617E-01 4.346 

15000 20 37875 0.199337 4.980E-01 4.873E-01 2.149 
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Figure 4.7: Comparison of the buckling load of 2D Arch 

 
Figure 4.8: The deformed shape of the arch (𝑟=14) 

The maximum error between analytical and FEM results is 9.281% for 𝑟=5 and reduces 

with the reduction in the value of 𝑟. The error is also due to applied vertical load instead 

of normal load. But in the case of grid shell, a normal load can be applied. 

4.4.2 Load Equivalency 

In an analytical solution of 2D Arch, the load applied is linear pressure load. But for 

grid shells, the load applied is point load at joints. So, it is necessary to establish that 

analytical solution assuming pressure load can be used for grid shells when the applied 
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load is point load at joints. If 𝑃 is point load, 𝑁 is no. of node and 𝑆 is the arc length of 

the arch then buckling load can be determined from Eq. 4.20. 

𝑞𝑐 =
𝑃𝑁

𝑆
 Eq. 4.20 

 
Figure 4.9: Load equivalence for the arch (𝑟=14) 

For arch of 𝑟=14, the error between the analytical result and FEM result is 4.35% with 

300 elements. The result also shows FEM results for both pressure load and point load 

are almost the same. 
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CHAPTER 5: PARAMETRIC STABILITY ANALYSIS 

5.1 Introduction 

Grid shells have various advantages which are illustrated in Chapter 1.2. A circular-

cylindrical grid shell has simpler geometry and omits many complexities in 

construction due to geometry. Previous literature in Chapter 3 has stated that the failure 

mode of the grid shell is buckling. This chapter illustrates both the analytical method 

and FEM to calculate the buckling load of the grid shell. Buckling load in sense of 

strength is understood as the load-carrying capacity of grid shells. 

 
Figure 5.1: Roof Bugis Street Singapore (Schober, 2015) 

5.2 Analysis Parameters 

An open circular-cylindrical grid shell with span (𝐿) 15000mm and length (𝑙) 30000mm 

is considered for analysis. Other analysis parameters are given in Table 4.1. 

 
Figure 5.2: Geometric property of grid shell 
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5.3 Analytical Method 

The equivalent continuum approach is used to determine the buckling load of the grid 

shell analytically. Various continuum models are illustrated in Chapter 4.2. equivalent 

properties (𝐶𝑒𝑞 , 𝐷𝑒𝑞 , 𝜈𝑐 & 𝜈𝐷) are calculated by a program written in MATLAB. 

Equivalent properties are calculated for quadrilateral and triangular grids with variation 

in grid size as other parameters are constant in this analysis. Parameters 𝜙 and 𝛼 in Eq. 

2.7 is determined as 𝜙 =
𝑞𝑎

𝐶𝑒𝑞
 and 𝛼 =

𝐷𝑒𝑞

𝐶𝑒𝑞𝑎2 and modified equation is the governing 

equation for buckling problems. Buckling load of grid shell is determined by solving 

modified Eq. 2.7 with equivalent properties and span to depth ratio as an input 

parameter. A program in MATLAB is written to calculate the buckling load of grid 

shells analytically as a matrix of grid size and continuum model for each value of span 

to depth ratio. The final results are presented as graphical plots of buckling load vs grid 

size for each value of span to depth ratio. Source code for the program in MATLAB is 

given in Chapter A.2. 

5.4 Numerical Method 

For finite element analysis, geometries are generated in Rhino6 & Grasshopper with a 

maximum length error of 1.9% for the quadrilateral grid and 7.8% for the triangular 

grid. 18 geometrical models are created for analysis parameters, and visual code for 

geometry generation is given in Chapter A.3. The geometries are imported in ANSYS 

SpaceClaim and models for further analysis are created. The element of grid shell (rod) 

is modelled as beam element in ANSYS Material properties & cross-section is assigned 

and mesh is generated with an element size of 50mm. Point force is applied at vertices 

(joints) in radial (normal) direction and simply supported boundary condition is applied. 

Linear buckling analysis is performed to calculate the buckling load of the grid shell. 

5.5 Analysis Results 

5.5.1 Model Verification 

To proceed for further analysis, it becomes necessary to verify the analytical validity of 

the equation derived to calculate buckling load of continuous shell and source code 

written for calculating buckling load of grid shell. Also, the accuracy of FEM in solving 

buckling problems is established. 6 models of the continuous shell with different 

thicknesses are prepared in ANSYS and buckling loads of respective models are 

determined. Parameters and results are presented in Table 5.1. 
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Table 5.1: Parameters and results for continuous shell 

Geometric Properties Buckling Load(𝑞𝑐)(N/mm2) Error 

Grid 

Shape 

Grid 

Size(𝑠)

(mm) 

Span(𝐿) 

(mm) 

Length(𝑙) 

(mm) 

Span to 

depth 

ratio(𝑟) 

Equivalent 

Model 

Equivalent 

Thickness(ℎ𝑒𝑞)

(mm) 

Analytical FEM % 

Quadrilateral 1000 15000 30000 5 Eq. Volume 5 3.196E-04 3.200E-04 0.12 

Quadrilateral 1000 15000 30000 14 Eq. Area 2.5 1.464E-05 1.473E-05 0.55 

Quadrilateral 1000 15000 30000 20 Eq. MOI 18.4202 1.319E-03 1.324E-03 0.37 

Triangular 1000 15000 30000 5 Eq. Volume 11.547 2.594E-03 2.604E-03 0.4 

Triangular 1000 15000 30000 14 Eq. Area 5 8.316E-05 8.349E-05 0.39 

Triangular 1000 15000 30000 20 Eq. MOI 23.2079 2.358E-03 2.365E-03 0.29 
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The model uses shell elements and the maximum error between analytical and finite 

element results is 0.55% for the first buckling mode. Because the corresponding 

buckling load has only 0.55% error from the analytical result this error is negligible. 

5.5.2 Analytical Results 

Buckling load of grid shell calculated analytically is presented as the graphical plot in 

Figure 5.3 to Figure 5.8. The graphical plots clearly show that the equivalent MOI 

model and equivalent area model gives an upper and lower bound of the behaviour of 

grid shell except for small grid size for the triangular grid. But for practical purposes, a 

small grid size is not desired. 

 
Figure 5.3: Analytical buckling load of grid shell (Quadrilateral grid, 𝑟=5) 
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Figure 5.4: Analytical buckling load of grid shell (Quadrilateral grid, 𝑟=14) 

 
Figure 5.5: Analytical buckling load of grid shell (Quadrilateral grid, 𝑟=20) 
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Figure 5.6: Analytical buckling load of grid shell (Triangular grid, 𝑟=5) 

 
Figure 5.7: Analytical buckling load of grid shell (Triangular grid, 𝑟=14) 
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Figure 5.8: Analytical buckling load of grid shell (Triangular grid, 𝑟=20) 

5.5.3 Numerical Results 

The objective of this thesis is to study the change in load-carrying capacity of grid shells 

as a function of grid type, grid size and span to depth ratio. The output of finite element 

analysis is presented in Figure 5.9 and Figure 5.10. 

 
Figure 5.9: Numerical buckling load of grid shell (Quadrilateral grid) 
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Figure 5.10: Numerical buckling load of grid shell (Triangular grid) 

 
Figure 5.11: The deformed shape of grid shell (Triangular grid 𝑟=5, 𝑠=500) 
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reduces rapidly. The load-carrying capacity for the triangular grid is 2 to 3 times more 

than the quadrilateral grid. 

5.5.4 Comparison of Analytical and Numerical Result 

From Figure 5.12 to Figure 5.17 plots both numerical and analytical results for all 

values of span to depth ratio for the quadrilateral and triangular grid. 

 
Figure 5.12: Comparison of buckling load (Quadrilateral grid, 𝑟=5) 

 
Figure 5.13: Comparison of buckling load (Quadrilateral grid, 𝑟=14) 
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Figure 5.14: Comparison of buckling load (Quadrilateral grid, 𝑟=20) 

 
Figure 5.15: Comparison of buckling load (Triangular grid, 𝑟=5) 
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Figure 5.16: Comparison of buckling load (Triangular grid, 𝑟=14) 

 
Figure 5.17: Comparison of buckling load (Triangular grid, 𝑟=20) 
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characteristics whereas the coarser grid shows more membrane dominated 

characteristics. A factor 𝛽𝑞 is defined in Eq. 5.1 which gives the degree of membrane 

characteristics. Value of 𝛽𝑞 > 1 indicates that the behaviour of grid shell is membrane 

dominated. 

𝛽𝑞 =
(𝑞𝑐)𝐸𝑞.  𝑀𝑂𝐼 − (𝑞𝑐)𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙

(𝑞𝑐)𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − (𝑞𝑐)𝐸𝑞.  𝐴𝑟𝑒𝑎
 Eq. 5.1 

 
Figure 5.18: Degree of membrane dominance for the quadrilateral grid (𝛽𝑞) 

 
Figure 5.19: Degree of membrane dominance for the triangular grid (𝛽𝑞) 
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Figure 5.18 and Figure 5.19 shows the variation of 𝛽𝑞 with grid size and span to depth 

ratio. The value of 𝛽𝑞 for grid size 1000mm and 1500mm remains well above 1. For 

grid size 500mm value of 𝛽𝑞 remains well below 1. So, it can be concluded that for the 

denser grid (500mm) grid shell remains bending dominated with the increase in 

shallowness but for the coarser grid (>1000mm) grid shell remains membrane 

dominated with the increase in shallowness. An equivalent model cannot estimate the 

buckling load of the grid shell with considerable accuracy. But the equivalent model 

can yield a conservative value at the beginning of the design process which can omit 

the risk of changing the parameters after structural design. For coarser grid size 

(>1000mm) equivalent volume model is the best model to calculate the buckling load 

of the grid shell. For denser grid size (500mm), the orthotopic equivalence model for 

the quadrilateral grid and equivalent split rigidity model for the triangular grid can yield 

a conservative value of buckling load. 

 
Figure 5.20: Efficiency of grid shell 
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5.6 Discussion 

In this thesis, an open circular-cylindrical shell of span(𝐿) 15000mm, length(𝑙) 

30000mm and span to depth ratio(𝑟) 5, 14 & 20 are considered for analysis. In the 

design and construction of the grid shell, its geometrical properties are described in 

terms of span and span to depth ratio. But in analytical solution span and radius of 

curvature describes the geometrical properties. For span to depth ratios 5, 14 & 20 the 

radius of curvature (the radius for cylindrical shell) are 10875mm, 26785,71mm & 

37875mm respectively. The results can also be analyzed in terms of the radius of 

curvature. Ratio 𝐿/𝑎 describes the type of shell as short, intermediate and long. The 

range of 𝐿/𝑎 with equivalent thickness from equivalent models indicates the grid shell 

considered is intermediate. For the intermediate shell, the value of buckling load is 

different for different parameters but the pattern of values remains the same for the 

equivalent models. As the numerical results fall well within the bound, the conclusions 

drawn from the result of this thesis can be applied for the intermediate grid shell. 

The failure mode of a single-layered gird shell is buckling. So, the higher value of 

buckling load higher is the load-carrying capacity of the grid shell. Grid sizes 

considered here are 500mm, 1000mm and 1500mm. A grid size of about 500mm is 

considered a denser grid whereas a grid size ≥ 1000mm is considered a coarser grid. 

As the grid size increases load-carrying capacity of the grid shell decreases. For a 

steeper shell a coarser grid can also result in a significantly high load carrying capacity 

but for a shallower shell coarser grid results in a very low load-carrying capacity. A 

coarse grid can be used for a steeper grid shell but the use of a dense grid is suggested 

for a shallower grid shell. 

The numerical value of buckling load of grid shell falls well within the bound of 

membrane and bending characteristics. A denser grid shows bending dominated 

characteristics whereas a coarser grid shows membrane dominated characteristics. With 

the increase in span to depth ratio bending characteristics remains the same for the 

denser grid, but the coarser grid membrane characteristics remain the same. The load-

carrying capacity of grid shells decreases with increases in span to depth ratio. 

The triangular grid shows more load-carrying capacity than the quadrilateral grid as it 

has more in-plane stiffness. The triangular grid shows 2 to 3 times more capacity than 

the quadrilateral grid. The ratio 𝜂 defines the efficiency of grid type, the triangular grid 

is more efficient for coarser grid size. 
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Different equivalent models act as a tool for calculating the load-carrying capacity of 

grid shells analytically. Equivalent area and equivalent moment of inertia give the lower 

and upper bound for it. For coarser grid equivalent volume model and, denser grid 

orthotropic equivalence model for the quadrilateral grid and equivalent split rigidity 

model for the triangular grid can be used to calculate the load-carrying capacity of grid 

shell. 
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CHAPTER 6: CONCLUSIONS 

6.1 Summary and Conclusions 

The objectives described in Chapter 1.5 are achieved by conducting a parametric 

analysis of an open circular-cylindrical grid shell varying grid size, grid type and span 

to depth ratio and calculating the load-carrying capacity of grid shells using both 

analytical and numerical methods. Different continuum models are used to define grid 

shells as equivalent continuous shells. The equation for calculating the buckling load 

of the continuous shell is modified to accommodate the equivalent properties of the grid 

shell and an analytical solution is achieved. Geometries are modelled in ANSYS and 

the numerical solution is achieved. Comparison of analytical and numerical results is 

presented in graphical plot form. The conclusions are summarized in the following 

points: 

1. For coarser grid equivalent volume model and, denser grid orthotropic 

equivalence model for the quadrilateral grid and equivalent split rigidity model 

for the triangular grid is suggested as an approximate equivalent model. 

2. The load-carrying capacity for the triangular grid is 2 to 3 times more than the 

quadrilateral grid. The triangular grid is more efficient for coarser grid size. 

Also, the triangular grid is more efficient for shallower shells. 

3. Denser grid shows bending dominated characteristics whereas the coarser grid 

shows membrane dominated characteristics. The bending or membrane 

dominance characteristics are defined based on the closeness of numerical value 

of buckling load with the equivalent moment of inertia model (Upper bound) 

and equivalent area model (Lower bound) respectively. 

4. For denser grid bending dominated characteristics remains the same with an 

increase in shallowness whereas for coarser grid membrane dominated 

characteristics remains the same with an increase in shallowness. 

6.2 Recommendations for Further Work 

Parametric stability analysis of open circular-cylindrical grid shells has been conducted. 

But the analysis has been performed with some limitations. This motivates other areas 

for continued research. 

1. The shape considered here is an open circular-cylindrical grid shell. Other 

shapes of grid shells can also be analyzed. 
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2. The connection considered is rigid. The effect of flexibility of connection on the 

load-carrying capacity of grid shells may be studied. 

3. Non-linear and post-buckling behaviour of grid shells may be studied. 

4. The effect of unsymmetrical loading may be analyzed. 

5. Local instability and snap-through buckling behaviour may be studied. 
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ANNEX A: FLOWCHART AND SOURCE CODE 

A.1 Flow Chart 

A program in MATLAB is written to achieve an analytical solution of the buckling load 

of the grid shell. Flowchart for the source code in MATLAB is presented in Figure A.1. 

 
Figure A.1: Flowchart for source code in MATLAB 
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Figure A.2: Flowchart for sub-function for calculating equivalent properties 

 
Figure A.3: Flowchart for sub-function for calculating buckling load 

A.2 Source code in MATLAB 

In MATLAB the built-in functions for calculating determinants, solving quadratic 

equations, etc. are utilized. Looping functions are used for iterative processes. 

********************************************************* 

% Buckling of Grid Shell 

% Units are in N and mm 

% Definition of Global Variable 

  

global A I J E nu G L l  
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% Properties of grid element(rod) 

  

A=50*                                     % Area of 

Rod(mm2) 

I=50^4/12;                          % Moment of 

Inertia(mm4) 

J=0.141*50^4;             % Torsional Moment of 

Inertia(mm4) 

E=210000;                     % Modulus of 

Elasticity(N/mm2) 

nu=0.3;  m                                % Poission`s 

Ratio 

G=E/(2*(1+nu));                 % Modulus of 

Rigidity(N/mm2) 

L=15000;                            % Span of Grid 

Shell(mm) 

l=30000;                          % Length of Grid 

Shell(mm) 

  

% r=Span to Depth Ratio 

% r=5,14,20 

% s=Grid Size (Spacing) 

% heq=Equivalent Thickness 

% Ceq=Equivalent Axial Rigidity 

% Deq=Equivalent Bending Rigidity 

% nuc=Poission`s Ratio for Axial Rigidity 

% nud=Poission`s Ratio for Bending Rigidity 

% Topology='tria','quad' 

% 'tria'=Triangular 

% 'quad'=Quadrilateral 

% Model='eqvol','eqarea','eqmoi','eqsprig','eqortho' 

% 'eqvol'=Equivalent Volume 

% 'eqarea'=Equivalent Area 

% 'eqmoi'=Equivalent Moment of Inertia 

% 'eqsprig'=Equivalent Split Rigidity 

% 'eqortho'= Orthotropic Equivalence 

% qc=Buckling Load 

model={'eqvol','eqarea','eqmoi','eqsprig','eqortho'}; 

qc=zeros(); 

for j=1:1:5 

    for i=1:1:19 

    s=(i+1)*100; 

[Ceq,Deq,nuc,nud]=Equivalent_Properties('tria',char(model

(j)),s); 

    qc(i,j)=Buckling_Continuous(Ceq,Deq,nuc,nud,20); 

    end 

end 

********************************************************* 

function 

[Ceq,Deq,nuc,nud]=Equivalent_Properties(topography,model,

s) 
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% Calculation of Equivalent Properties 

  

global A I J E nu G  

switch(topography)             % Triangular/Quadrilateral 

    case 'quad'                           % Quadrilateral 

        switch(model) 

            case 'eqvol'              % Equivalent Volume 

                heq=2*A/s; 

                [Ceq,Deq]=Equivalent_Rigidity(heq); 

                nuc=nu; 

                nud=nu; 

            case 'eqarea'               % Equivalent Area 

                heq=A/s; 

                [Ceq,Deq]=Equivalent_Rigidity(heq); 

                nuc=nu; 

                nud=nu; 

            case 'eqmoi’   % Equivalent Moment of Inertia 

                heq=(12*I/s)^(1/3); 

                [Ceq,Deq]=Equivalent_Rigidity(heq); 

                nuc=nu; 

                nud=nu; 

            case 'eqsprig'    % Equivalent Split Rigidity 

                Ceq=E*A/s; 

                Deq=E*I/s; 

                nuc=nu; 

                nud=nu; 

            case 'eqortho'      % Orthotropic Equivalence   

                Ceq=E*A/s; 

                Deq=E*I/s; 

                nuc=0; 

                nud=0; 

        end 

    case 'tria'                                                                 

        switch(model) 

            case 'eqvol'                                                   

                heq=8*A/(sqrt(3)*s); 

                [Ceq,Deq]=Equivalent_Rigidity(heq); 

                nuc=nu; 

                nud=nu; 

            case 'eqarea'                                                    

                heq=2*A/s; 

                [Ceq,Deq]=Equivalent_Rigidity(heq); 

                nuc=nu; 

                nud=nu; 

            case 'eqmoi'                                                    

                heq=(24*I/s)^(1/3); 

                [Ceq,Deq]=Equivalent_Rigidity(heq); 

                nuc=nu; 

                nud=nu; 

            case 'eqsprig'                                                     
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                Ceq=2*E*A/s; 

                Deq=2*E*I/s; 

                nuc=nu; 

                nud=nu; 

            case 'eqortho'                                                       

                Ceq=9*E*A/(8*s); 

                gam=G*J/(E*I); 

                Deq=3*E*I*(1+gam)/(8*s); 

                nuc=1/3; 

                nud=(1-gam)/(3+gam); 

        end 

end 

end 

********************************************************* 

function [ceq,deq] = Equivalent_Rigidity(heq) 

global E nu 

ceq=E*heq/(1-nu^2); 

deq=E*heq^3/(12*(1-nu^2)); 

end 

********************************************************* 

function [qc]= Buckling_Continuous(Ceq,Deq,nuc,nud,r) 

  

% Calculation of Buckling Load of Equivalent Continuous 

Shell 

  

% qc=Load 

% n=Buckling Mode 

  

global L l 

syms q eival 

a=L/2*(r/4+1/r); 

phi=q*a/Ceq;                              % Phi Parameter 

alph=Deq/(Ceq*a^2);                     % Alpha Parameter 

lam=a*pi()/l;                           % Lamda Parameter 

  

% Solution of Eigen Value Problem 

  

qn=zeros(); 

for n=2:1:50 

eival(1,1)=-(lam^2+(1-nuc)/2*n^2); 

eival(1,2)=n*lam*((1+nuc)/2+phi); 

eival(1,3)=lam*(nuc+phi); 

eival(2,1)=(1+nuc)/2*n*lam; 

eival(2,2)=-((1-nuc)/2*lam^2+n^2+alph*n^2+alph*(1-

nud)*lam^2); 

eival(2,3)=-(n+alph*n*lam^2+alph*n^3); 

eival(3,1)=nuc*lam; 

eival(3,2)=-(n+alph*n^3+alph*(2-nud)*n*lam^2); 

eival(3,3)=-

(1+alph*lam^4+alph*n^4+2*alph*lam^2*n^2+phi*(1-n^2)); 

y=det(eival)==0; 



64 

 

sol=solve(y,q); 

qn(n-1)=min(double(sol)); 

end 

qc=min(qn); 

end 

********************************************************* 

A.3 Visual Code in Grasshopper 

 
Figure A.4: Visual code in Grasshopper for quadrilateral grid 

 
Figure A.5: Visual code in Grasshopper for surface creation for a triangular grid 

 
Figure A.6: Visual code in Grasshopper for grid creation for a triangular grid 


