A STUDY ON MICROBIOLOGY OF URINARY TRACT INFECTION AT TRIBHUVAN UNIVERSITY TEACHING HOSPITAL KATHMANDU NEPAL

A DISSERTATION SUBMITTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY (ENVIRONMENT AND PUBLIC HEALTH)

BY SHOVA KHANAL

CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2006

RECOMMENDATION

This is to certify that **Ms. SHOVA KHANAL** has completed this dissertation work entitled "A STUDY ON MICROBIOLOGY OF URINARY TRACT INFECTION AT TRIBHUVAN UNIVERSITY TEACHING HOSPITAL KATHMANDU NEPAL" as a partial fulfillment of Master of Science Degree in Microbiology under our supervision. To our knowledge, this work has not been submitted for any other degree.

Dr. Anjana Singh Assoc. Prof. and Head of the Department Central Department of Microbiology Tribhuvan University, Kathmandu Mr. Binod Lekhak Assistant Professor Central Department of Microbiology Tribhuvan University, Kathmandu Prof. Dr. Bharat Mani Pokhrel

Head of Department of Microbiology, Institute of Medicine, TUTH Kathmandu.

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Anjana Singh, Prof. Dr. Bharat Mani Pokhrel and Mr. Binod Lekhak** this dissertation work of **Ms. Shova Khanal** is approved for the examination and is submitted to the Tribhuvan University in the Partial fulfillment of the requirement for **Master of Science Degree in Microbiology**.

> Anjana Singh, Ph.D. Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date:

BOARD OF EXAMINERS

Recommended by:

Assoc.Prof. Anjana Singh, Ph.D. Supervisor

Mr. Binod Lekhak Supervisor

Prof. Bharat Mani Pokhrel, Ph.D. Supervisor

Approved by:

Anjana Singh, Ph. D. Head of the Department

Examined by:

Mr. Shrikant Adhikari Internal Examiner

Mr. Bishnu Raj Tiwari Microbiologist,NRCS Central Blood Trasfusion Service External Examiner

Date.....

ACKNOWLEDGEMENT

I sincerely like to express my deepest thanks to my internal supervisor **Dr. Anjana Singh**, **Head of the Department, Central Department of Microbiology** for her constructive suggestions, deep understanding and professional support to this project work.

I am equally indebted to my internal supervisor **Mr. Binod Lekhak**, **Assistant Professor**, **Central Department of Microbiology**, **Tribhuvan University** for his cooperation, valuable suggestions and tremendous support in completion of this project work. I am also obliged to honorable **Prof Dr. Sheetal Raj Basnyat**, **Dr. Prakash Ghimire**, **Ms. Shaila Basnyat** and all the teachers and staffs of Central Department of Microbiology, Tribhuvan University and to all who have been very generous and motivating.

I would like to express my sincere gratitude and heartfelt appreciation to my respected supervisor **Prof. Dr. Bharat Mani Pokhrel, Ph. D. Post Doc. Fellow (Fullbright), Head of Department of Microbiology, Institute of Medicine, TUTH** for his constant inspiration and devoting his valuable time and effort to help me during the entire period of this research work. I heartily thank him for providing me with opportunity to work in the Bacteriology Laboratory of Department of Microbiology TUTH.

I must extend my sincere gratitude towards Department of Microbiology, Tribhuvan University Teaching Hospital for providing me laboratory facilities. Many members of the Department of Microbiology have given me invaluable help during my study period and it is a deep sense of gratitude that I thank all the staffs and students of IOM for their cooperation during this thesis work. I am also thankful to **Mr. Kanchha Thapa** for his untiring cooperation during the period of sample collection.

I would like to acknowledge with sincere thanks to all my friends especially **Nisha Puri**, **Padma Shrestha**, **Meera Pudasaini**, **Sujata Lamichane**, **Jyoti Pant** for their helpful supportive contributions and excellent companionship.

I also owe much to my father **Dr. Madhav Prasad Khanal** for his limitless energy, providing information and giving comments.

Finally, I would like to mention the sustained but silent inspiration, encouragement and support provided by my family and last but not the least, the patients who provided the urine samples for the success of this project work.

Date:

Shova Khanal

ABSTRACT

A study was conducted among patients suspected of UTI attending outpatients department and hospitalized patients of Tribhuvan University Teaching Hospital, Katmandu, Nepal. The study was conducted for three months from June 2006 to August 2006. The objectives of the study were to isolate bacteria causing UTI, to correlate bacteriuria with pyuria, to determine antibiotic susceptibility pattern of isolated organisms and to analyze the MDR strains.

One hundred and eighty five midstream urine samples collected were investigated by conventional semi-quantitative culture technique, microscopy and antibiotic susceptibility test.

Only 22.16% (41/185) of the samples showed significant bacterial growth. Slightly greater prevalence of bacteriuria was found in males (24.67%) than in females (20.37%) and higher in inpatients (29.09%) than in outpatients (19.23%).Statistically it was found that there was no significant association of significant bacteriuria in males and females (P>0.05). Similarly association of presence of bacteriuria and hospitalization of patients was also found out to be statistically insignificant (P>0.05). Status of bacteriuria was found higher in age group 20-30 (19.51%) followed by 30-40 (17.07%) in female and 9.75% in 20-30 and 50-60 years in male patients.

Eight different species of bacteria were isolated among which *Escherichia coli* (65.85%) was the most predominant isolate followed by *Klebsiella species* (*K. pneumoniae* and *K. oxytoca*) (12.19%), *Staphylococcus aureus* (7.32%), *Pseudomonas aeruginosa* (4.88%), *Streptococcus faecalis* (4.88%). The other organisms isolated were *Proteus vulgaris* (2.44%) and *Enterobacter species* (2.44%).

Predictors concerning pus cell count (\geq 5/HPF) and erythrocytes count (\geq 3/HPF) were analyzed to determine the positive predictive value (PPV) relation to the significant bacteriuria. PPV for pus cell count was found to be higher (54.38%) than that of RBC count (27.27%).

Gram-negative bacilli (excluding *Pseudomonas aeruginosa, Klebsiella oxytoca, Klebsiella pneumoniae*) showed best susceptibility towards Nitrofurantoin(58.33%) followed by Ceftriazone (50%). Amikacin was also effective as Nitrofurantoin against *Pseudomonas aeruginosa, K. oxytoca,* and *K. pneumoniae*. The most effective antibiotic to overall grampositive bacteria was found to be Novobiocin (100%) and Erythromycin (60%).

Multidrug resistance was observed in 56.09% (23/41) bacterial isolates of which the most predominant was *Echerichia coli* 62.96% (17/27) and that in *Klebsiella pneumoniae* was 50%(2/4).

Key words: urinary tract infection, pyuria, high power field, bacteriuria, multi drug resistant.

TABLE OF CONTENTS

Title Page	i
Recommendation	ii
Certificate of Approval	iii
Board of Examiner	iv
Acknowledgement	V
Abstract	vi
Table of Contents	vii
List of Tables	X
List of Figures	xi
List of Photographs	xii
List of Appendices	xiii
Abbreviations	xiv
CHAPTER-I : INTRODUCTION	1-3
CHAPTER-II : OBJECTIVES	4
2.1 General Objective	4
2.2 Specific Objectives	4
CHAPTER-III: LITERATURE REVIEW	5-38
3.1 Urinary tract infection	5
3.2 Types of urinary tract infection	7
3.3 Resident microorganisms of the urinary tract	11
3.4 Host defense mechanism	11
3.5 Factors predisposing to urinary tract infection	13
3.6 Multiplication of bacteria in urine	14
3.7 Pathogenesis	15
3.7.1 Source of infection	15

3.7.2 Mode of infection	15
3.7.3 Causative agents of urinary tract infection	17
3.7.4 Bacterial virulence factors	19
3.7.5 Clinical Features	21
3.8 Laboratory diagnosis of urinary tract infection	21
3.8.1 Specimen collection	21
3.9 Antibiotic susceptibility testing	26
3.9.1 Measurement of antimicrobial activity	30
3.9.2 Choice of antibiotics for susceptibility tests in urinary tract infection	32
3.10 Antimicrobial drug resistance	33
3.10.1 Antibiotic resistance mechanisms 34	4-38
CHAPTER-VI : MATERIALS AND METHODS 39	9-44
4.1 Study population	39
4.2 Specimen collection	39
4.3 Specimen evaluation	39
4.4 Macroscopic examination	40
4.5 Microscopic examination	40
4.6 Culture of specimen	40
4.7 Examination of culture plate	40
4.8 Identification of isolates	41
4.9 Antibiotic susceptibility test	42
4.10 Quality control	44
4.11 Data analysis	44
CHAPTER-V: RESULTS 45	5-58
5.1 Indoor and outdoor distribution of patients	45
5.2 Age and gender wise distribution of patients visiting TUTH	45
5.3 Pattern of culture results	46

5.3 Pattern of culture results	46
5.4 Growth pattern in indoor and outdoor patients	47

5.5 Growth pattern in male and female patients	47
5.6 Growth pattern in various age groups	47
5.7 Pattern of bacterial isolates causing urinary tract infection	48
5.8 Bacterial growth patterns in male and female patients	49
5.9 Pyuria versus bacteriuria	49
5.10 Pyuria versus bacteriuria in male and female patients	50
5.11 Haematuria versus bacteriuria	51
5.12 Antibiotic susceptibility profile of bacterial isolates	52
5.12.1 Gram-negative bacteria	52
5.12.2 Gram-positive bacteria	53
5.13 Antibiotic susceptibility profile of different group of bacteria	
5.13.1 Antibiotic susceptibility profile of E. coli	54
5.13.2 Antibiotic susceptibility profile of Klebsiella spp	54
5.13.3 Antibiotic susceptibility profile of gram-negative bacteria other	than <i>E</i> .
coli and Klebseilla spp	55
5.13.4 Antibiotic susceptibility profile of other gram-positive bacteria	56
5.14 Resistance pattern of isolates against commonly used antibiotics	57
5.15 Multiple drug resistant patterns of bacterial isolates	58
CHAPTER-VI : DISCUSSION AND CONCLUSIONS	59-72
6.1 Discussion	59
6.2 Conclusions	72
CHAPTER-VII : SUMMARY AND RECOMMENDATIONS	73-75
7.1 Summary	73
7.2 Recommendations	75
REFERENCES	76-89
APPENDICES	i-xviii

LIST OF TABLES

Table 1:	Precipitating factors in the development of urinary tract infection	14		
Table 2 :	Microbial causes of infections of the urinary tract			
Table 3:	Macroscopic observation of urine			
Table 4 :	Indoor and outdoor distribution of patients visiting TUTH			
Table 5 :	Age and gender wise distribution of patients			
Table 6:	Pattern of culture results	46		
Table 7:	Growth pattern in indoor and outdoor patients	47		
Table 8:	Growth pattern in male and female patients	47		
Table 9:	Growth pattern in various age groups	48		
Table 10:	Pattern of bacterial isolates causing UTI	48		
Table 11 :	Bacterial growth pattern in male and female patients	49		
Table 12:	Pyuria versus bacteriuria	50		
Table 13:	Presence of pus cells (5per HPF) versus significant growth	50		
Table 14:	Pyuria versus bacteriuria in male and female Patients	51		
Table 15:	Haematuria versus bacteriuria	52		
Table 16:	Presence of erythrocytes (3perHPF) versus significant growth.	52		
Table 17:	Antibiotic susceptibility profile of gram-negative bacteria	53		
Table 18:	Antibiotic susceptibility profile of gram-positive bacteria	53		
Table 19:	Antibiotic susceptibility profile of E. coli	54		
Table 20:	Antibiotic Susceptibility Profile of Klebsiella spp	55		
Table 21:	Antibiotic susceptibility profile of gram-negative bacteria other than	E coli		
	and <i>Klebseilla spp</i> .	56		
Table 22:	Antibiotic susceptibility profile of other gram-positive bacteria	57		
Table 23:	Resistance pattern of bacterial isolates against commonly used antibi	otics		
		58		
Table 24:	Distribution MDR among the bacterial isolates in UTI	58		

LIST OF FIGURES

- Figure 1 Flow diagram for processing of urine sample
- Figure 2 Indoor and outdoor patients requesting urine culture
- Figure 3 Age and gender wise distribution of patients requesting for urine culture
- Figure 4 Pattern of culture results
- Figure 5 Growth patterns in outdoor and indoor patient
- Figure 6 Growth pattern in male and female
- Figure 7 Percentage distribution of bacterial isolates from urine sample
- Figure 8 Bacterial growth patterns in male and female patients
- Figure 9 Pyuria versus bacteriuria
- Figure 10 Antibiotic susceptibility patterns of gram-negative bacteria
- Figure 11 Antibiotic susceptibility pattern of gram-positive bacteria

LIST OF PHOTOGRAPHS

- Photograph 1 Significant growth of *Escherichia coli* on MacConkey agar plate
- Photograph 2 Pure culture of *Staphylococcus aureus* on Blood agar plate
- Photograph 3 Biochemical tests of *Escherichia coli*
- Photograph 4 Antibiotic susceptibility test of Escherichia coli
- Photograph 5 Antibiotic susceptibility test of *Pseudomonas aeruginosa*
- Photograph 6 Culturing of urine sample

LIST OF APPENDICES

Appendix-I	Questionnaire
Appendix-II	List of the equipments and materials used during the study
Appendix-III	I Composition and preparation of different culture media
	II. Composition and preparation of different biochemical media
	III Composition and preparation of different staining and test reagents
Appendix -IV	Gram-staining procedure
Appendix-V	Methodology of biochemical tests used for identification of bacteria.
Appendix-VI	Method of collection of midstream urine
Appendix-VII	Morphology and cultural characteristics of bacteria isolated from urine
	sample
Appendix-VIII	Distinguishing reactions of the commoner and pathogenic
	Enterobacteriaceae
Appendix-IX	Zone size interpretive chart
Appendix-X	Calculation of sensitivity, specificity, positive and negative predictive
	value and efficiency

Appendix-XI Data analysis (chi- square test)

ABBREVIATIONS

A/A	:	Acid/ Acid
ALK/A	:	Alkali/ Acid
ATCC	:	American Type Culture Collection
BA	:	Blood Agar
CDC	:	Centres for Disease Control and Prevention
CFU	:	Colony Forming Units
CONS	:	Coagulase Negative Staphylococci
DNA	:	Deoxyribonucleic Acid
EC	:	European Commission (EC)
ESBL	:	Extended Spectrum of -lactamase
Gm	:	Gram
HPF	:	High Power Field
H_2S	:	Hydrogen Sulphide
hrs	:	Hours
LF	:	Lactose fermenting
MA	:	MacConkey Agar
MBC	:	Minimum Bactericidal Concentration
MDR	:	Multi-drug Resistant
MHA	:	Mueller Hinton Agar
MIC	:	Minimum Inhibitory Concentration
μg	:	Microgram
μm	:	Micrometer
ml	:	Milliliter
mm	:	Millimeter
MR /VP	:	Methyl Red /Voges Proskauer
MSU	:	Midstream Urine
MSU	:	Midstream Urine
NA	:	Nutrient Agar

NCCLS	:	National Committee for Clinical Laboratory Standards
NCCLS	:	National Committee for Clinical Laboratory Standards
NIH	:	National Institute for Health
NLF	:	Non-lactose Fermenting
O/F	:	Oxidative/ Fermentative
OPD	:	Out Patient Department
PPN	:	Predictive Value of Negative Test
PPV	:	Predictive Value of Positive Test
RBC	:	Red Blood Cells
rmp	:	Revolution per Minute
SIM	:	Sulphide Indole Motility
TSI	:	Triple Sugar Iron
TUTH	:	Tribhuvan University Teaching Hospital
UTI	:	Urinary Tract Infection
VP	:	Voges Proskauer
WBC	:	White Blood Cells
WHO	:	World Health Organization