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ABSTRACT 

The electrocardiograph (ECG) is a common clinical and biomedical tool used for 

diagnosis of heart patients. The thesis is aimed towards the development of beat 

detection algorithm with high level of accuracy for ambulatory monitoring of 

arrhythmia patients. The thesis has been inspired by the need to find an efficient 

method for ECG signal analysis which is simple and has good accuracy. The 

initial task for efficient analysis is the removal of effect of noise. It actually 

involves the use of wavelet filters which extract the required cardiac components 

by rejecting the background noise and the second task is that of R peak detection. 

Efficiency of the method is measured in terms of sensitivity and positive 

predictivity. The development, simulation and the evaluation of the methodology 

is done in MATLAB environment and the database of MIT-BIH is used for the 

purpose of the evaluation. The accuracy of the algorithm is evaluated against the 

MIT-BIH arrhythmia database, giving an average sensitivity of 99.71% and 

positive predictivity of 99.64% respectively. 

Keywords: Electrocardiogram, Motion artifacts, Mexican hat wavelet, First 

derivative of Gaussian, Continuous Wavelet Transform. 
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CHAPTER 1: INTRODUCTION 

1.1  Background 

An electrocardiogram (ECG) is a Cartesian representation of the electrical 

potential generated by the heart. Since its invention in 1887, it has been an 

invaluable diagnostic tool for the clinician. Traditionally, the ECG is recorded in a 

hospital setting, or by an ambulatory device and the analysis is done offline by 

trained clinical personnel. This restricts the ease in the mobility and the comfort of 

the patient. Moreover various methods have been developed for this purpose [13]. 

Continuous monitoring of the ECG signal using a body-worn wireless system for 

people at increased risk potentially allows detecting anomalies earlier and 

reducing the hospitalization needs [14]. 

The development of new advanced techniques of signal processing 

together with the fast improvement of computational systems have led to the 

design of various devices and algorithms for the analysis of ECGs. Many 

methodologies have been developed for this purpose and different techniques have 

been used and the researches are going on for this problem. Among these 

techniques are Time Domain methods such as Zero-Crossing [15] and Signal 

Derivatives [16], Digital Filters [17], Filter Banks [18], Neural Networks [19] and 

Wavelet Analysis [7][12].  

The challenge of beat detection increases in case of ambulatory monitoring 

of ECG signal as the motion artifacts is considerably higher than in hospital 

monitoring. Thus, such an algorithm is required which is robust against noise 

induced by daily life activities and also gives a high level of accuracy. Therefore, 

the thesis is aimed towards development of the algorithm which is focussed on 

removal of effect of noise and beat detection with high level of accuracy. 



2 

 

1.2 Problem Statements 

The major challenge with the ambulatory cases is the occurrence of high 

level of noises that corrupt the ECG signal and development of the algorithm that 

removes the effects of noise and detects the beats with high level of accuracy. The 

major concerns with the method are as follows: 

1. Removal of effect of noise. 

2. Detection of the QRS complex of the ECG signals, also known as the beat 

detection. 

An algorithm using continuous wavelet transform has been designed that 

works under reasonable levels of noise due to movement of electrodes. For the 

performance evaluation of the methodology, MIT-BIH database has been used 

and compared with the methodologies that already have high level of accuracy 

(above 99%).  

1.3 Objectives 

There are mainly two objectives: 

1. To develop an algorithm to remove effects of noise that occurs in 

ambulatory monitoring. 

2. To develop an algorithm to detect R peaks in an ECG signal with high 

accuracy using wavelet transform for ambulatory cases. 

1.4 Applications 

The results of this thesis will help develop a system that will be beneficial 

with the good health and healthy heart of human being. Moreover its applications 

can be summarized as follows: 
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1. Continuous monitoring of the ECG signal without hospitalization of heart 

patients. 

2. Development of the system for cardiac monitoring with high level of 

accuracy. 

1.5 Organization of the report 

The thesis is divided into eight chapters. The first chapter deals with the 

background, problem statement, objectives and applications. Chapter two gives brief 

introduction about ECG; it deals with the overview of ECG, it's physiological 

interpretation, features, noise in ECG and a brief introduction to arrhythmia. Chapter 

three gives a brief introduction about wavelet transform, its types and its bio-medical 

applications. This chapter also gives a short introduction about the mother wavelets 

used in the thesis. Chapter four presents literature review; it deals with cardiac signal 

analysis, various existing methodologies with their drawbacks and need for new 

algorithm. The chapter five deals with methodology; this chapter gives description 

about the new algorithm divided into three sections. The details of evaluation 

procedure have been discussed in chapter six. Chapter seven shows results and 

analytical discussion of the result and Chapter eight presents conclusion of the thesis 

work and future enhancements. The end of thesis is provided with references. 
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CHAPTER 2: ELECTROCARDIOGRAM 

2.1 Overview of ECG 

ECG is a trans-thoracic interpretation of the electrical activity of 

the heart over time captured and externally recorded by skin electrodes. Normal 

electric impulse is derived from the SA node, located in the upper wall of right 

atrium. SA node is a group of special muscle cells in heart, capable of generating 

impulses and contraction of the cardiomyocytes. Cardiomyocytes are the major 

structure of a heart which builds two atriums and two ventricles.  

Each cardiac cell is surrounded by and filled with solutions of Sodium 

(Na+), Potassium (K+), and Calcium (Ca++). The interior of the cell membrane is 

considered to be negative with respect to outside during resting conditions. When 

an electric impulse is generated in the SA node, the interior part becomes positive 

with respect to the exterior. This change of polarity is called depolarization. After 

depolarization, the cell comes back to its original state. This phenomenon is called 

repolarization. The ECG records the electrical signal of the heart as the muscle 

cells depolarize (contract) and repolarize. The effects of depolarization and 

repolarization are shown in Table 2.1. 

Table 2.1 Electrophysiology 

Action Effect 

Depolarization 
Shifting of electrolytes across the cell membrane causes change 

in electric charge of the cell. It results in contraction. 

Repolarization 
Internal negative charge is restored and the cells return to their 

resting state. 

http://en.wikipedia.org/wiki/Electricity
http://en.wikipedia.org/wiki/Heart
http://en.wikipedia.org/wiki/Time


5 

 

SA node is also called pacemaker since it is the leader of the heart beat 

rhythm. It produces 60-100 heart beats (cycles) per minute which is considered a 

normal heart rate. In case of the Human physiology: primary impulse from the SA 

node is taken by inter-nodal ways that connect the SA node and AV node, which 

is placed between ventricles and atriums of a heart. Further, signal goes through 

His‘s bundle into ventricle muscle causing ventricular depolarization. The 

generation of ECG signal is described in detail in section 2.2. The three elements: 

SA node, AV node and His‘s bundle are components of the conduction system of 

a heart as shown in Fig. 2.1. 

 

Fig. 2.1 Heart and its conduction system 

ECG signal mainly consists of P wave, QRS complex and T wave as 

shown in Fig. 2.2. P wave shows us the activation of atriums i.e. depolarization. 

QRS complex shows the ventricles action (depolarization). T wave is a 

representation of repolarisation of ventricle muscle cells, coming back into stable 

stage for another contraction. 
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2.2   Physiological Interpretation 

An ECG recorded for offline analysis is conventionally written to graph 

paper, with a horizontal scale of 40ms per division and a vertical scale of 0.1mV 

per division, with divisions occurring at 1mm intervals. As a depolarized region 

moves towards an electrode, a positive deflection will be recorded on the ECG, 

and a negative deflection will be recorded as the regions closest to the electrode 

become repolarized. For historical reasons, the turning points of a normal ECG are 

conventionally labeled P, Q, R, S and T (see Fig. 2.2). Some texts also include a U 

wave, but U is often of very low amplitude or absent altogether. The P wave 

occurs as the atria are depolarizing, and hence contracting. This typically takes 

approximately 120ms. Following the P wave, comes the QRS complex. This 

represents the ventricles depolarizing, and completes in about 100ms. Since the 

ventricles are much larger cavities than the atria, a larger electrical potential 

results from their depolarization and the QRS complex is of larger magnitude than 

the P wave. During the T wave, the ventricles are repolarizing. In the human heart, 

the repolarization takes place in the direction of the endocardium to epicardium 

(i.e. in the opposite direction to polarization). Hence, the T wave extends in the 

same direction as the R peak. 

 

Fig. 2.2 ECG signal 
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2.3      Noise in ECG 

Like any other physical signals, ECGs suffer from various forms of noise. 

Noise can arise from various sources. Some of the important sources of the noise 

have been discussed herein. The major categories of noise are: low frequency base 

line wander (BW) caused by respiration, high frequency random noise caused by 

power line interference (50 or 60Hz) and random shifts of the ECG signal 

amplitude caused by motion artifacts. 

2.3.1 Power line interference and other electrical environmental noise 

A carefully prepared ECG can significantly reduce the magnitude of this 

kind of noise. However ECGs recorded during emergency situations may not have 

the benefit of such careful preparation. Fortunately, this type of noise is generally 

of a higher frequency (≥ 50Hz) than the components normally of interest in ECG 

analysis. 

2.3.2 Motion Artifacts 

Motion artifact is the noise introduced to the ECG signal that results from 

motion of the electrode. More specifically, movement of the electrode or lead wire 

produces deformations of the skin around the electrode site. The deformations of 

the skin change the impedance and capacitance of the skin around the sensing 

electrode. The impedance and capacitance changes are sensed by the ECG 

electrode and result in artifacts that are manifest as large amplitude signals on the 

ECG.  

The presence of motion artifact may result in misdiagnosis, can prolong 

procedure duration, and may lead to delayed or inappropriate treatment decisions. 

This type of noise manifests itself as near or complete saturation lasting for up to 

one second. This type of noise becomes worse in ambulatory cases. In some 



8 

 

applications where multi-channel ECG is used; alternative channels maybe used 

during periods where this noise is present. 

2.3.3 Respiration noise 

This is caused by the patient‘s normal respiratory function giving rise to 

electrical activity in the intercostal muscles. It manifests itself as low frequency 

―baseline shift‖ with a frequency of less than 0.4 Hz. 

2.3.4 Muscle noise 

The ECG from any conscious patient will exhibit noise due to muscle 

contractions. These can be particularly troublesome for ECG analysis since their 

spectrum and waveform can closely match that of the wanted signal. 

2.4 Important Features of ECG 

A simple example of ECG analysis is the measurement of heart rate. This 

involves detecting the R peaks and measuring the RR intervals (the time between 

each ventricular contraction). Normally, this will be identical to the PP intervals, 

however under pathological conditions, the two may become independent. Hence 

detection of the P wave and R wave provides useful data. Advanced ECG analysis 

typically calls for segmentation of each beat into its component waves. The 

relative durations and amplitudes of each wave are often indicative of certain 

clinical conditions. For example, an abnormally wide P wave can be a predictor of 

atrial fibrillation [4]. 

Similarly, an elevated voltage in the ST segment is commonly associated 

with acute transmural myocardial ischemia (i.e. loss of blood supply to the cardiac 

muscles) [6]. Other studies have used the relative positions and magnitudes of the 

segmented components in stochastic learning tools to perform beat classification 

[5]. Con-temporary research, thus frequently requires detection not only of the 
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peaks, but also an accurate location of the onset and offset of each ―complex‖, and 

the points delimiting them. These are generally known as the fiducial points. 

There is no consensus as to which points are the most useful in ECG analysis, but 

many studies have been concerned with the peaks of P, Q, R, S and T as well as 

the onset and offset of P and T [7][8][9]. 

2.5     Arrhythmia 

For a normal healthy person the ECG comes off as a nearly periodic signal 

with depolarization followed by repolarization at equal intervals. However, 

sometimes this rhythm becomes irregular.  

Cardiac arrhythmia (also dysrhythmia) is a term for any of a large and 

heterogeneous group of conditions in which there is abnormal electrical activity in 

the heart. The heart beat may be too fast or too slow, and may be regular or 

irregular. Arrhythmia comes in varieties. It may be described as a flutter in chest 

or sometimes ―racing heart‖. The diagnosis of arrhythmia requires 

electrocardiogram. By studying ECG, doctors can diagnose the disease and 

prescribe the required medications. 
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CHAPTER 3: WAVELET TRANSFORM 

3.1 Introduction  

A wavelet is a mathematical function used to divide a given function 

or continuous-time signal into different scale components. Usually one can assign 

a frequency range to each scale component. Each scale component can then be 

studied with a resolution that matches its scale. A wavelet transform is the 

representation of a function by wavelets.  

 Wavelet is a wave-like oscillation with an amplitude that starts out at zero, 

increases, and then decreases back to zero. It can typically be visualized as a "brief 

oscillation" like one might see recorded by a seismograph or heart monitor. 

Generally, wavelets are purposefully crafted to have specific properties that make 

them useful for signal processing. Wavelets can be combined, using a "reverse, 

shift, multiply and sum" technique called convolution, with portions of an 

unknown signal to extract information from the unknown signal. Such a process is 

known as wavelet transform. 

3.2  Classification 

Wavelet transforms are classified into discrete wavelet transforms (DWTs) 

and continuous wavelet transforms (CWTs). They can be used to represent 

continuous-time (analog) signals. CWTs operate over every possible scale and 

translation whereas DWTs use a specific subset of scale and translation values or 

representation grid. 

3.2.1 Continuous Wavelet Transform 

The continuous wavelet transform (CWT) is a time–frequency analysis 

method which differs from the more traditional short time Fourier transform 

(STFT) by allowing arbitrarily high localization in time of high frequency signal 

http://en.wikipedia.org/wiki/Continuous_signal
http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Seismograph
http://en.wikipedia.org/wiki/Heart_monitor
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Continuous_wavelet_transform
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features. The CWT does this by having a variable window width, which is related 

to the scale of observation—a flexibility that allows for the isolation of the high 

frequency features. Another important distinction from the STFT is that the CWT 

is not limited to using sinusoidal analyzing functions. Rather, a large selection of 

localized waveforms can be employed as long as they satisfy predefined 

mathematical criteria (described below). The wavelet transform of a continuous 

time signal, x(t), is defined as: 

 (   )  
 

√ 
∫  ( )
 

  
  (

   

 
)                                           (3.1) 

Where, ψ (t) is the complex conjugate of the analyzing wavelet function 

ψ(t), a is the dilation parameter of the wavelet and b is the location parameter of 

the wavelet.  

3.2.2 Discrete Wavelet Transform 

In its most common form, the DWT employs a dyadic grid (integer power 

of two scaling in a and b) and orthonormal wavelet basis functions and exhibits 

zero redundancy. (Actually, the transform integral remains continuous for the 

DWT but is determined only on a discretized grid of a scales and b locations. In 

practice, the input signal is treated as an initial wavelet approximation to the 

underlying continuous signal from which, using a multiresolution algorithm, the 

wavelet transform and inverse transform can be computed discretely, quickly and 

without loss of signal information.) A natural way to sample the parameters a and 

b is to use a logarithmic discretization of the a scale and link this, in turn, to the 

size of steps taken between b locations. To link b to a we move in discrete steps to 

each location b, which are proportional to the a scale. This kind of discretization 

of the wavelet has the form 

    ( )    
 

√  
  (

       
 

  
 )                  (3.2) 



12 

 

where the integers m and n control the wavelet dilation and translation 

respectively; a0 is a specified fixed dilation step parameter set at a value greater 

than 1, and b0 is the location parameter which must be greater than zero. A 

common choice for discrete wavelet parameters a0 and b0 are 2 and 1 respectively 

[21]. 

3.3 Mother Wavelet 

The wavelet analysis is thus performed using a prototype function called 

the wavelet base,  (t) (  (t)   L2, i.e. finite energy functions). The main 

characteristic of the wavelet base is given by 

∫  ( )    
 

  
                       (3.3) 

This means that the wavelet base is oscillatory and has zero mean value. 

Also, this function needs to satisfy the admissibility condition so that the original 

signal can be reconstructed by the inverse Wavelet Transform.  

∫
  ( )  

   
     

 

  
             (3.4) 

The admissible condition implies that the Fourier transform of the wavelet 

must have a zero component at zero frequency. Hence, the wavelet transforms are 

inherently band-pass filters in the Fourier domain, defined as Wavelet filters. Any 

function that has finite energy is square integrable and satisfies the wavelet 

admissibility condition can be a wavelet [20]. 

The mother wavelets used in the algorithm are first derivative of Gaussian 

and Mexican hat wavelet which have been described in detail below: 
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3.3.1 First Derivative of Gaussian 

  Gaussian function (named after Carl Friedrich Gauss) is a function of the 

form: 

 (      )  
 

 √  
  

 

 
(
   

 
) 

             (3.5) 

Where,   is the mean,   is the standard deviation and    is known as 

variance. Equation 3.5 can be written as: 

 ( )    
 
(   ) 

               (3.6) 

For some real constants a, b, c > 0, and e ≈ 2.71828... (Euler's number). 

The graph of a Gaussian is a characteristic symmetric "bell curve" shape 

that quickly falls off towards plus/minus infinity. The parameter 'a' is the height of 

the curve's peak, 'b' is the position of the centre of the peak, and ‗c’ controls the 

width of the "bell". 

Suppose,   
   

 
                 (3.7)  

 The first-derivative of the Gaussian is shown in Fig. 3.1 which is given by, 

 ( )       
 

                     (3.8) 

http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Real_number
http://en.wikipedia.org/wiki/E_(mathematical_constant)
http://en.wikipedia.org/wiki/Graph_of_a_function
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Fig. 3.1 First derivative of Gaussian 

3.3.2 Second Derivative of Gaussian/ Mexican Hat Wavelet 

 The Mexican hat wavelet is the second derivative of a Gaussian function 

given by, 

 ( )    (      )    
 
            (3.9) 

This wavelet, shown in Fig. 3.2 , has been used in practice for a number of 

data analysis tasks in science and engineering including: the morphological 

characterization of engineering surfaces, the interrogation of laser-induced 

ultrasonic signals used to measure stiffness coefficients in a viscoelastic 

composite material and the analysis of turbulent flows. In addition, the Mexican 

hat is used extensively in studies requiring the use of modulus maxima methods as 

its maxima lines (and those of all other derivatives of Gaussian functions) are 

guaranteed continuous across scales for singularities in the signal. 
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Fig. 3.2 Mexican hat wavelet 

3.4 Biomedical applications of the wavelet transform 

Physiological signals are mostly non-stationary, such as the 

electrocardiogram (ECG), the electroencephalogram (EEG) and the 

electromyogram (EMG). Those signals represent the electrical activity of the 

heart, the brain and the muscles, respectively. The main difficulty in dealing with 

biomedical signal processing is the extreme variability of the signals and the 

necessity to operate on a case by case basis [22]. The Wavelet transform (WT) has 

been extensively used in biomedical signal processing, mainly due to the 

versatility of the wavelet tools. The WT has been shown to be a very efficient tool 

for local analysis of non-stationary and fast transient signals due to its good 

estimation of time and frequency (scale) localizations [23].  
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CHAPTER 4: LITERATURE REVIEW  

4.1    Cardiac Signal Analysis 

Many new approaches to cardiac signal analysis can be found in the 

literature; such as algorithms based on filter banks [18], neural networks [19], 

non-linear transformations [17] and the wavelet transform [7][10]. In Fig. 4.1, the 

number of publications in the IEEE online database related to electrocardiogram 

(ECG) signal detection for three different types of algorithms, being filter-based, 

wavelet transform and neural networks are shown. Besides the fact that wavelet 

analysis is still relatively new, the wavelet-based signal processing methods have 

been evolving very rapidly and the rate of publication keeps increasing steadily. 

There are a number of methods that can be found in the literature which are being 

used so far for the analysis of the ECG signals. 

 

Fig. 4.1 IEEE online database publications of algorithms for cardiac signal 

detection 
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4.2 Existing Methodologies and their drawbacks 

4.2.1  Pan – Tompkins Algorithm 

In the eighties, J. Pan and J.W. Tompkins have developed an algorithm 

that found a well-balanced trade-off between detection performance and 

computational complexity, which was a very important design parameter at that 

time [10]. The Pan-Tompkins Algorithm is represented in terms of block diagram 

which is shown in Fig. 4.2. 

 

Fig. 4.2 Block Diagram of Pan-Tompkins Algorithm 

The components in the block diagram of Pan-Tompkins algorithm has been 

described below: 

4.2.1.1 Band pass Filter 

The band pass filter for the QRS detection algorithm reduces noise in the 

ECG signal by matching the spectrum of the average QRS complex. This 

attenuates noise due to muscle noise, power line interference, baseline wander, T 

wave interference. The pass band that maximizes the QRS energy is in the 5Hz-

35Hz range. The filter implemented in this algorithm is composed of cascaded 

high pass and low pass Butterworth IIR filters. 

4.2.1.2 Differentiator 

Differentiation is a standard technique for finding the high slopes that 

normally distinguish the QRS complexes from other ECG waves. The derivative 

procedure suppresses the low frequency components of P and T waves, and 
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provides a large gain to the high-frequency components arising from the high 

slopes of the QRS Complex. 

4.2.1.3 Squaring 

The squaring operation makes the result positive and emphasizes large 

differences resulting from QRS complexes; the small differences arising from P 

and T waves are suppressed. The high frequency components in the signal related 

to the QRS complex are further enhanced. This is a non-linear transformation that 

consists of point by point squaring of the signal samples. 

4.2.1.4 Moving Window Integrator 

The squared waveform passes through a moving window integrator with 

window of 150 ms duration. This integrator sums the area under the squared 

waveform over a suitable interval, advances one sample interval, and integrates 

the new predefined interval window. This helps to select features which have both 

large slope and width, reducing false detections caused by spikes. 

4.2.1.5 Adaptive Thresholding  

Adaptive thresholding is the process of smartly updating thresholds and 

estimating the time where the coming beat is about to occur. This makes this 

algorithm robust against noise and even against data loss. An adaptive dual 

threshold is applied both to the output of filter and integrator. A QRS complex is 

considered to be present, if and only if the signal exceeds the upper threshold in 

both cases. If a QRS is not detected within 1.66 times the running average of the 

RR period, then the thresholding stage is applied again, but using the lower of the 

two thresholds. 

The Pan-Tompkins detector suffers a number of problems which are listed 

below: 
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1. The algorithm tends to misidentify T waves as QRS complexes. So it is 

necessary to compare the slope of the detected feature with that of the 

previously detected QRS complex. If the slope is less than one half, then it 

is declared to be a T wave and discarded. 

2. Any QRS occurring within 200ms of the previous one is not detected. 

Further, the dual thresholds are lowered, depending upon the time from the 

previous detection. 

3. The complex nature of the algorithm involves many parameters, e.g. the 

ratio between upper and lower threshold, the period over which the first 

threshold stage applies, the size of the moving window etc. The authors 

present results based on empirical optimizations of these parameters. 

Whilst the results seem impressive, it cannot be determined to what extent 

the parameters have been over-optimized to suit the test data. 

 These problems mean that abrupt changes in rhythm or ectopic beats can 

be missed or delayed. It also means that the output lags the input by 200ms. In 

general, noise, a very irregular heart rhythm and sudden changes in amplitude of 

the peak might all lead to this problematic behavior. More details on this can be 

found in [11]. 

4.2.2   Discrete Wavelet Transform method 

Algorithms based on DWT use the discrete wavelet transform to analyze 

band-pass filtered versions of the signal on a dyadic scale. When a suitable mother 

wavelet is chosen, the filtered signals will have sharp peaks at points where there 

is occurrence of beat. Nimmala proposes such an algorithm in [10], where the 

redundant algorithm is proposed to yield time-invariant behavior and the use of 

this for the beat detection. The first derivative of Gaussian is used as mother 

wavelet and a multi-scale analysis is used for robust peak detection in which 

scales 2
1
 – 2

4 
are used for peak detection (at a sampling frequency of 250 Hz). The 
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DWT algorithm is quite sensitive to noise, which is relatively often detected as a 

peak. DWT misses a beat too because the actual beat is not present or has a very 

odd shape. This can be caused by packet losses or distortion in the signal due to 

movement. The algorithm is good with its sensitivity but is weak in terms of 

positive predictivity. This method gives large number of false positives. 

4.2.3 Band Power Method 

The use of the Band Power Method along with the defined system can give 

good result with the use of very less power but the algorithm is considered to be 

weak in terms of its accuracy. The flowchart for the band power based beat 

detection algorithm is shown in Fig. 4.3. It shows a detailed threshold calculation 

used in the method.  

 

Fig. 4.3 Flowchart for Band power based beat detection algorithm  
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The band power based beat detection algorithm is described below: 

1. The analog preprocessor ASIC provides two band power channels in-

phase band power and quadrature band power which gives both magnitude 

and phase information. The algorithm takes only magnitude component 

and takes the sum of squares of the in-phase and quadrature components 

after removing DC component from the signals.  

2. The result is then compared with an adaptive threshold to detect the 

presence of a QRS complex. Two peaks detected within a 250 ms interval 

are considered to be a part of a single QRS complex.  

3. The exact R peak location is found using a time domain peak search on the 

absolute value of the ECG signal after subtraction of its DC component.  

4. A search window of size 200 ms is used around the band power threshold 

crossing.  

5. The adaptive threshold is calculated based on a 1Hz low pass filtered 

version of the band power magnitude limited to a minimum value of 30 % 

of the peak value.  

 

More Details on this algorithm can be found in [1] and [2]. 

4.2.4 Romero Algorithm 

Romero et al. [12] developed an algorithm based on the Modulus Maxima 

calculated from the CWT. The algorithm gives good accuracy but consumes more 

power as compared to the band power based beat detection algorithm. 

The algorithm is described below: 

1. Perform CWT (using as mother wavelet the second derivative of the 

Gaussian function or Mexican hat) on the input data, in selected scales. 

The scales considered were those corresponding to the frequency band of 

15 to 18 Hz because those were found to be optimal for QRS detection. 
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2. Extract the Modulus Maxima of the CWT computed. 

3. Square the values obtained. 

4. Search the maximum value and determine the threshold as a percentage of 

the maximum. 

5. Each value above the threshold within the scales considered (regardless in 

which scale) is regarded as a peak. Organize them so that only unique 

peaks are found. All modulus maxima found within an interval of 0.25 

seconds of each other are then inspected in turn and the point with the 

maximum value is selected as the fiducial point. 

6. For each detected beat, search in time domain for the actual maximum of 

the absolute value in a small area around the detection point (200 

milliseconds). 

4.3 Need for new algorithm 

Pan-Tompkins algorithm implements adaptive thresholding method in 

which thresholds are smartly updated and the time where the coming beat is about 

to occur is estimated. This process makes this algorithm robust against noise and 

even against data loss. However, if the estimated temporal heart rate is false due to 

a burst of noise (the estimated heart rate will then become too high), it can get 

stuck, because it does not find a beat within the expected time window, hence it 

will search back, and might possibly detect a T-wave resulting in lowering the 

threshold for the R-peak and shortening the expected beat time.  

 DWT algorithm is quite sensitive to noise. This algorithm detects noise 

signal as peak. Therefore, this method has relatively large number of false 

positives. DWT misses a beat too because the actual beat is not present or has a 

very odd shape. This can be caused by packet losses or distortion in the signal due 

to movement. The algorithm is good with its sensitivity but is weak in terms of 

positive predictivity.  The use of the Band Power Method along with the defined 

system can give good result with the use of very less power but the algorithm is 

considered to be weak in terms of its accuracy.  
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Romero algorithm uses CWT for R peak detection. This algorithm gives 

good accuracy but consumes more power as compared to the band power based 

algorithm. In the study described by the authors they concluded that the frequency 

band that best matches with the QRS complex energy is the range of 15 - 18 Hz. 

This range has been concluded to be the best frequency band after the analysis of 

different types of QRS morphology. Tests performed in real signals also proved 

this frequency band to be successful in differentiating QRS complex from other 

components within the ECG. This implementation ignores all beats that occur 

within a time window of 200ms of the detected beat [12]. Several tests performed 

by the authors of the paper also concluded that the optimal threshold is of 30% 

from the maximum. This algorithm performs continuous wavelet transform on 

ECG signal and Mexican hat wavelet is used as mother wavelet. 

 The thesis is focussed on the development of the algorithm that removes 

the effect of noise and detects location of R peaks with high level of accuracy. The 

algorithm performs continuous wavelet transform separately on the input ECG 

signal using mother wavelets as first derivative of Gaussian and Mexican hat 

wavelet and computes sum of the resulting CWT coefficients. The new algorithm 

gives better accuracy and robustness to noise than using Mexican hat alone. 

Certain modifications have been done in the Romero algorithm to give new 

improved algorithm which is described in detail in chapter 5. 
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CHAPTER 5: METHODOLOGY 

The thesis is focussed on the development of the algorithm which is robust 

to noise and detects R peaks with high level of accuracy. The algorithm performs 

continuous wavelet transform on input ECG signal. First derivative of Gaussian 

and Mexican hat wavelet are used as mother wavelets to perform CWT. The 

algorithm was first implemented using first derivative of Gaussian only. Large 

number of false peaks was detected. The algorithm was then implemented using 

Mexican hat wavelet. Number of false peaks reduced; however increasing the 

number of missed detections. Thus, the algorithm named as Combinatory CWT 

algorithm was derived which combines useful features of both first derivative of 

Gaussian and Mexican hat wavelet to give best results.  

The Combinatory CWT algorithm can be broadly classified into following 

three sections:  

5.1 CWT computation for R peak detection 

The detailed process for computation of continuous wavelet transform of the input 

ECG signal for R peak detection is described by the following steps: 

1. Perform continuous wavelet transform separately on the input ECG signal 

using mother wavelets as first derivative of Gaussian function and second 

derivative of Gaussian function (Mexican hat wavelet).  

2. Compute absolute values of the CWT coefficients obtained. 

3. Add the coefficients. 

4. Calculate maximum value of the result obtained from step 3. Calculate 

threshold recursively. The threshold calculation method is described in 

detail in section 5.2. 

5. Compare signal obtained from step 3 with the threshold obtained from step 

4 to detect the presence of R peak. 
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6. The time duration at which the peak is detected after the last detection of 

peak is calculated.  

7. If the duration is greater than 250 ms, the peak detected is considered to be 

a new peak and stored. Otherwise, it is compared with the previous 

maximum value of peak and stored along with its location value if it is 

greater among the two. 

The flowchart for the CWT computation for R peak detection is shown in Fig. 5.1 

 

Fig. 5.1 Flowchart showing CWT computation for R peak detection 
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5.2 Threshold Calculation 

The threshold value is computed recursively – by using a weighted sum of 

previous thresholds and the newly calculated threshold. Several weights have been 

investigated to find the optimal values. In this implementation, the threshold is 

changed in case of abrupt changes in rhythm, in order to verify whether the 

rhythm change is due to a change in cardiac activity or to false detections as a 

result of noise. 

The threshold calculation method can be enumerated by the following 

steps: 

1. Calculate maximum value of P where, P is the sum of absolute values of 

the CWT coefficients obtained by performing continuous wavelet 

transforms on the input ECG signal separately using first derivative of 

Gaussian and Mexican hat wavelet. 

2. Compute 40 % of the value obtained from step 1. 

3. Calculate the threshold value recursively using a weighted sum of eight 

previous thresholds and newly calculated threshold. 

The flowchart for the detailed threshold calculation is shown in Fig. 5.2. 

 

Fig. 5.2 Flowchart showing threshold calculation 
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5.3 Overlapping of ECG segments 

A segment (time window) of 2 seconds of data is extracted from an ECG 

signal giving an overlap of 0.3 seconds with the previous window and again 0.3 

seconds with the next one. To avoid mismatches in the overlap sections, the 

detections obtained in the first 0.3 seconds and the last 0.3 seconds within the 

window are ignored as seen in Fig. 5.3. This was considered necessary in order to 

avoid boundary effects in the CWT computation and beat detection. 

 

Fig. 5.3 Three ECG segments overlapped 0.3 seconds with window immediately 

before and after  
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CHAPTER 6: EVALUATION PROCEDURE 

To determine the efficacy of a system intended to detect or classify 

features in an ECG, the system will need to be tested and its performance 

reported. For the evaluation of the algorithm being developed, an evaluation 

protocol is defined that permits the evaluation of the performance as a function of 

a wide range of conditions. This test protocol has been used for benchmarking the 

different methods and to study the improvement made with the methodology 

defined within this thesis work.  

Efficiency of the method is measured in terms of sensitivity and positive 

predictivity. The development, simulation and the evaluation of the methodology 

is done in MATLAB environment and the database of the MIT-BIH arrhythmia is 

used for the purpose of the evaluation. 

6.1  MIT-BIH database 

 For the development and testing of beat detection algorithms there are 

available several standard databases that are accepted as reference benchmarks. 

They are well annotated and validated and contain a high number of representative 

ECGs and some not so common examples of cardiomyopathies that are important 

in the clinical practice. The most common ones are the MIT-BIH and the AHA 

(American Heart Association) databases. The MIT-BIH database is recorded by 

the Boston‘s MIT and Beth Israel Hospital and consists in several datasets for 

different test purposes, as the Arrhythmia database. This dataset was started to be 

collected in the 70‘s and it has been distributed for almost 30 years until today. 

Nowadays it is probably the most popular ECG database that is widely used in the 

scientific community for the development and test of algorithms. 

For testing and improving the algorithm described in this thesis, the MIT-

BIH Arrhythmia database was considered. This database is publicly and freely 

available on the website of physionet (www.physionet.org). It has become a 
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standard and is a good tool to compare the performance of different algorithms 

with the same dataset. The database contains half-hour recordings of 23 patients, 

randomly selected from a large database with Holter recordings, partly recorded in 

the hospital (60%) and partly out of the hospital (40%). 25 other signals were 

selected to include a variety of clinically relevant phenomena. All signals are 

numbered – signals numbered below 125 are from the first category whereas 

signals 200 and higher are from the later one. 

In most recordings, two electrode configurations are available: modified 

limb lead II and modified lead V1. The analysis in this thesis work has been 

restricted to the first lead configuration. All signals have been recorded analogue, 

and are digitized in a later stage at 360 Hz. Annotation has been done by two 

independent cardiologists, with a simple beat detection algorithm output as 

starting point. Discrepancies were solved by consensus. In the course of years, 

some mistakes in the annotations have been corrected. This study has used the 

most recent annotations (as of 2011). 

6.2  Algorithm validation  

After running the algorithm using a testing ECG, the output was compared 

with the annotations and the sensitivity and positive predictivity were calculated. 

These parameters are the ones that are usually used to compare beat detection 

algorithms and most of the publications offer them to show the performance of the 

algorithms. The sensitivity is defined as: 

   
  

     
            (6.1) 

And the positive predictivity: 

   
  

     
            (6.2) 
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Where, TP is true positives (the number of correctly detected beats), FN is false 

negatives (the number of missed beats) and FP is false positives (the number of 

wrongly detected beats). 

A beat is considered to be correctly detected if there is an annotated beat 

within a certain time window around the detected beat (typically +/- 100 ms). If 

two or more beats are detected for one annotated beat, there is one true positive 

and one false positive. The value of these parameters is measured in terms of 

percentage and therefore they range from 0 to 100. An optimal algorithm should 

try to maximize both parameters, so the sum of both parameters (Se + PP) can also 

be used as a unique parameter to maximize within a range from 0 to 200. 

6.3  Evaluation on the signal with varying level of noise 

To evaluate the algorithm, ECG signals with varying signal to noise ratio 

ranging from -10dB to +10dB were generated. For this purpose, a clean ECG 

signal (first channel of recording 100 in MIT-BIH arrhythmia database) was 

superimposed with the noise  available from the MIT-BIH database containing 

physiological and electrode motion artifact noise mixed at an SNR varying from 

+10dB down to -10dB. The good performance of the algorithm on these signals 

could assure the good performance for the ambulatory cases.  
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CHAPTER 7: RESULTS AND DISCUSSION 

The evaluation procedure as described in previous section has been 

followed. The results obtained so far are described in detail in this section.  

7.1  Evaluation results on MIT-BIH database 

The MIT-BIH arrhythmia database has been chosen for the evaluation 

procedure. Table 7.1 shows the sensitivity and positive predictivity values 

obtained from the Combinatory CWT algorithm for 35 different files of MIT-BIH 

arrhythmia database. 

Table 7.1 Sensitivity and positive predictivity of MIT-BIH arrhythmia database 

using Combinatory CWT algorithm 

S.

N. 

MIT-BIH 

File 

Combinatory CWT S.

N. 

MIT-BIH 

File 

Combinatory CWT 

Se PP Se PP 

1 100.mat 100.00 99.91 19 208.mat 99.15 99.73 

2 101.mat 99.89 99.62 20 209.mat 100.00 99.87 

3 102.mat 99.91 99.77 21 210.mat 98.90 99.66 

4 103.mat 99.95 99.81 22 212.mat 100.00 99.82 

5 104.mat 99.82 99.06 23 213.mat 99.81 99.75 

6 105.mat 99.30 97.92 24 214.mat 99.73 99.87 

7 107.mat 99.91 99.91 25 215.mat 99.94 99.85 

8 108.mat 99.49 98.48 26 217.mat 99.86 99.82 

9 109.mat 99.80 99.96 27 219.mat 99.95 99.72 

10 111.mat 99.95 99.67 28 220.mat 100.00 99.76 

11 112.mat 100.00 99.80 29 221.mat 99.67 99.92 

12 116.mat 99.38 99.33 30 222.mat 99.84 99.68 

13 118.mat 100.00 99.82 31 223.mat 99.81 99.88 

14 122.mat 100.00 99.92 32 228.mat 99.51 99.37 

15 200.mat 99.92 99.73 33 230.mat 100.00 99.73 

16 201.mat 98.36 99.53 34 233.mat 99.84 99.84 

17 203.mat 98.42 99.02 35 234.mat 99.89 99.75 

18 205.mat 99.81 99.96  Average 99.71 99.64 
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The average sensitivity and positive predictivity for the Combinatory 

CWT algorithm are obtained as 99.71 and 99.64 respectively. 

The Combinatory CWT algorithm has been compared with the Pan-

Tompkins algorithm, CWT computation for R peak detection using first derivative 

of Gaussian and CWT computation for R peak detection using Mexican hat 

wavelet in terms of sensitivity and positive predictivity. The comparison chart in 

Fig.7.1 shows average sensitivity and positive predictivity for the different 

algorithms. These values are calculated for all the 35 files of MIT-BIH arrhythmia 

database.  

 

Fig.7.1 Comparison chart showing average Se and PP for different algorithms 
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useful features of both first derivative of Gaussian and Mexican hat wavelet have 

been combined to optimize the performance of the new algorithm giving better 

result which is clearly shown in Fig.7.1. Pan-Tompkins Algorithm gives poor 

result in terms of both average sensitivity and positive predictivity i.e., Se=97.7% 

and PP=97.33% whereas, Combinatory CWT algorithm gives average sensitivity 

of 99.71% and average positive predictivity of 99.64% which is the best result 

among the four algorithms shown in the comparison chart.  

7.2  R peak detection 

The algorithm has been tested against the 2 seconds of ECG segments 

(time window) with overlap time of 300 ms with the previous window and again 

300 ms with the next one. To avoid mismatches in the overlap sections, the 

detections obtained in the first 0.3 seconds and the last 0.3 seconds within the 

window are ignored. This was considered necessary in order to avoid boundary 

effects in the CWT computation and beat detection. The R peaks of the ECG have 

been detected properly by the algorithm with a very slight variation in the time. 

The time difference is in the range of 1-2 samples, however, the accuracy is well 

maintained. 

 

Fig. 7.2 R peak detection in a 2 second window using Combinatory CWT 

algorithm 
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Fig. 7.2 shows the CWT computation performed on the ECG signal based 

on the methodology defined in this thesis work. Based on the threshold being 

calculated and finding the region of the crossing of the CWT coefficients by the 

threshold, the R peak of the ECG is detected.  

7.3  Varying SNR values 

Motion Artifacts is added to the ECG signal (100.mat) varying values of 

SNR ranging from -10dB to +10dB and the algorithm is also tested against the 

noisy signal to detect the presence of beats. Sensitivity and positive predictivity 

are computed for each value of SNR. The graph showing the variation of Se and 

PP with the variation in the values of SNR for Combinatory CWT algorithm and 

Pan-Tompkins algorithm is shown in Fig. 7.3.  

 

Fig. 7.3 Se and PP versus SNR (dB) for Combinatory CWT algorithm and Pan-

Tompkins algorithm 

It can be seen that as the SNR value decreases, there is consequent 

decrease in the performance of the algorithm and basically with the positive 

predictivity i.e. number of false detections has been increased. The values for Se 

and PP for lower values of SNR are even worse in case of Pan-Tompkins 

Algorithm.  
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CHAPTER 8: CONCLUSION AND FUTURE 

ENHANCEMENTS 

8.1   Conclusion 

 With the results obtained so far, it can be concluded that the Combinatory 

CWT algorithm can be used for the removal of effect of noise such as motion 

artifacts and detection of R peaks in an ECG signal with high level of accuracy. 

The Combinatory CWT algorithm combines useful features of both first derivative 

of Gaussian and Mexican hat wavelet to give best results. Average sensitivity and 

positive predictivity computed against MIT-BIH arrhythmia database were found 

to be 99.71% and 99.64% respectively. The algorithm was also compared with 

Pan-Tompkins algorithm. It performed far better in comparison to the Pan-

Tompkins algorithm. The algorithm was also tested against the noisy ECG signal 

by adding motion artifacts to the clean ECG signal varying values of SNR from -

10 dB to +10 dB. Despite slight decrement of the performance with the decrement 

in the SNR values, the results can be considered to be good based on the 

evaluation procedure that has been followed.  

8.2 Future Enhancements 

The algorithm has been tested against the 2 seconds of ECG segments 

(time window) with overlap time of 300 ms with the previous window and again 

300 ms with the next one so that the algorithm can be used for low power real 

time implementation in future. This segmentation of the ECG section and the 

overlapping method confirms its applicability in the real time system with low 

power usage since, the memory requirement for such system will also be low. 

Despite the evaluation being performed in the MATLAB environment, for the 

confirmation of its real time applicability in the embedded system, its evaluation 

should again be done with the real time inputs and in some hardware systems.   
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