[image: image13.emf][image: image14.png]40

Wgsm
Deelp

33

o o O N
M cl Aa— S

1U92194 uopiusoday

<

10

SNR(dB)





TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

Pulchowk Campus

Thesis No: 066/MSI/602

A THESIS REPORT ON
“CONNECTED DIGIT RECOGNITION IN LOW BIT RATE CODING”

By

Devendra Kathayat
(066/MSI/602)
Thesis Report
Submitted to

Masters of Science in Information and Communication Engineering,

Department of Electronics and Computer Engineering

November, 2012

[image: image15.png]50

o T o »
o e T

JuddRd uonIus 033y

44

10

SNR (dB)





TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

Pulchowk Campus

Thesis No: 066/MSI/602

A THESIS REPORT ON

“CONNECTED DIGIT RECOGNITION IN LOW BIT RATE CODING”

By

Devendra Kathayat

(066/MSI/602)
Thesis Report

Submitted to

Masters of Science in Information and Communication Engineering,

Department of Electronics and Computer Engineering

November, 2012
CONNECTED DIGIT RECOGNITION IN LOW BIT RATE CODING
By

Mr. Devendra Kathayat

066/MSI/602

Thesis Supervisor

Mr.Sharad Kumar Ghimire, Assistant Professor

A thesis submitted in partial fulfillment of the requirements for the

Degree of Master of Science in Information and Communication

Engineering

Department of Electronics and Computer Engineering
Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

November, 2012
COPYRIGHT ©

The author has agreed that the library, Department of Electronics and Computer Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis freely available for inspection. Moreover the author has agreed that the permission for extensive copying of this thesis work for scholarly purpose may be granted by the professors, who supervised this work recorded herein or, in their absence, by the Head of Department, wherein this thesis was done. It is understood that the recognition will be given to the author of this thesis and to the Department of Electronics and Computer Engineering, Pulchowk Campus in any use of the material of this thesis. Copying of publication or other use of this thesis for financial gain without approval of the Department of Electronics and Computer Engineering, Institute of Engineering, Pulchowk Campus and author’s written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in whole or part should be addressed to:

Head of Department

Department of Electronics and Computer Engineering

Institute Of Engineering

Pulchowk Campus

Lalitpur, Nepal
Recommendation

The undersigned certify that it has been read and recommended to the Department of Electronics and Computer Engineering for acceptance, a thesis entitled “Connected Digit Recognition in Low Bit Rate Coding, submitted by Mr. Devendra Kathayat in partial fulfillment of the requirement for the award of the degree of “Master of Science in Information and Communication Engineering”.
..................................................................
Supervisor: 
Sharad Kumar Ghimire
Assistant Professor

Department of Electronics and Computer Engineering,

Institute of Engineering,

Pulchowk Campus
……………………………………………
External Examiner: 

Mukesh Kumar Keshari

Computer Engineer

Ministry of Home Affairs

Departmental Acceptance

The thesis entitled “Connected Digit Recognition in Low Bit Rate Coding, submitted by Mr. Devendra Kathayat in partial fulfillment of the requirement for the award of the degree of “Master of Science in Information and Communication Engineering” has been accepted as a bonafide record of work independently carried out by him in the department.

.…………………………………..
Dr. Arun Kumar Timalsina
Head of Department

Department of Electronics and Computer Engineering,

Institute of Engineering,

Tribhuvan University,

Pulchowk, Nepal.
Acknowledgements
Firstly, I would like to express my enormous gratitude to my supervisor Mr. Sharad Kr. Ghimire. He has had a clear view, great ideas and an infinite amount of time and patience to guide me throughout the work. I am very fortunate for having numerous technical discussions with him from which I benefited enormously. In addition to his appreciated professional and pedagogical skills, I also highly value his politeness and friendliness in our co-operation.

I express my sincere thanks to Mr. Samir Thapa for helping me carrying out the experiments. I also express thanks to all the faculties of Pulchowk Campus for providing sound academic environment.

Finally, I would like to dedicate this work to my parents, and helpful friends for all the confidence, love and affection they have showed upon me.

Devendra Kathayat

Pulchowk Campus

Institute of Engineering

Wednesday, March 09, 2022
ABSTRACT

This thesis deals with the recognition of digits uttered in continuous manner in noisy coded environment (i.e uttering a telephonic data like phone number). Experiments are carried out in Nepali language, but limited to ten digits (0-9). First acoustic training model with clean data is constructed. Testing for clean data shows 100% recognition. With noisy, coded and noisy coded conditions recognition performance degraded significantly. But with spectral preprocessing method it yields better recognition performance. Three different noises (babble, factory and machine gun) with three different signal to noise ratio (10dB, 15dB and 20dB) are used for noise addition. Babble noise with 10 dB SNR (signal to noise ratio) has lowest recognition rate whereas machine gun noise with 20 dB SNR has highest recognition percentage. GSM (Global System for Mobile Communication) and CELP (Code Book Excited Linear Prediction) are used for coding.

Keywords: Hidden Markov Model, Global System for Mobile Communication (GSM), Code Book Excited Linear Prediction (CELP), Spectral subtraction,
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Chapter One
INTRODUCTION
Speech is the most convenient means of communication between people. In today’s world, speech communication is not only for face-to-face interaction, but also between individuals at any moment, anywhere, via a wide variety of modern technological media, such as wired and wireless telephony, voice mail, and the Internet. With the rapid development of communication technologies, a promising speech communication technique for human-to-machine interaction has come into a great research issue. Automatic speech recognition (ASR) is the core challenge towards the natural human-to-machine communication technology. Automatic speech recognition is the process to automatically convert a speech waveform into a sequence of words by machine. Though in current situation, there have been a number of successful commercial ASR products but still many problems exist in real world ASR applications. The recognition accuracy of a machine is, in most cases, far from that of a human listener, and its performance would degrade dramatically with small modification of speech signals or speaking environment. In this thesis, speech recognition is limited to digit recognition problem and Nepali digit recognition is chosen as the task where the digits are uttered, in continuous manner, thus resulting connected digits. So, the main issues in this task are the difficulties produced due to background noise and speech coding.  
1.1 Connected Digit Recognition
Connected digit speech recognition has an important role in speech recognition area because of its wide applications such as automated banking system, voice-dialing telephone, etc. Connected digit recognition system allows several digits to be spoken together with minimal pause between them. The task is to convert the spoken digits into text form. The basic block diagram for this process is depicted in Figure 1.1.
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There are four essential steps in recognition process.

Speech Signal Preprocessing: It is a process of preparing speech signal for further processing. This process composes of signal pre-emphasis, smoothing window. The speech signal is pre-emphasized by first order digital filter and the pre-emphasized signal is blocked into frame by a hamming window to reduce the amplitude at the edge.

Feature Extraction: The second step in recognition process is to extract the features from the speech. The most widely used feature vector in speech recognition is Mel Frequency Cepstral Coefficients (MFCC). 
Pattern Classification: This block aims at measuring the similarity between an input feature and a reference pattern (obtained during training) and accordingly determines a reference, which best matches the input speech, as an output. The most commonly used pattern matching is called Hidden Markov Models (HMM) [2] which characterize speech signals using a pre-train “hidden” Markov chain.

Decoding Process: This block runs an algorithm to find an optimal solution for the recognition stage. The probabilistic measures are taken to calculate how much an unknown input speech matches the given set of HMMs. The most commonly used algorithm for this task is Viterbi algorithm.

1.2 Issues in Coded Speech Recognition

Speech coding is the art of creating a minimally redundant representation of the speech signal that can be efficiently transmitted or stored in digital media, and decoding the signal with the best possible perceptual quality. The recent improvements both in speech coding algorithms and Digital Signal Processing (DSP) hardware have resulted in an increased use of low rate codecs in communication systems. In particular, in mobile communication applications algorithms with bit rates in the range of 4 kBit to 16 kBit per second more and more replace the standard 64 kBit Pulse Code Modulation (PCM) coding scheme. For speech coders to work at this reduced bitrate, some speech information has to be removed and it is only natural to expect that the performance of speech recognition systems will deteriorate when coded speech is applied as input to a recognition system. From the point of view of a speech recognition system, the coding results in distortions of the speech signal that may lead to a decrease in recognition accuracy.
1.3 Issues in Noisy Speech Recognition
Background noises are generally expected during conversation. Speech recognition in such a noisy environment is itself a challenging work and lots of researches are yet going on to carryout for efficient recognition. Noise has two main effects over the speech representation. It introduces a distortion and causes a loss of information, due to its random nature. This distortion due to the noise causes a mismatch between the training (clean) and testing (noisy) conditions. The acoustic models, trained with speech acquired under clean conditions do not model speech acquired under noisy conditions accurately, and this degrades the performance of speech recognizers. Most of the methods for robust speech recognition are mainly concerned with the reduction of this mismatch. The degraded speech is uncomfortable to perceive and gives poor performance when features are extracted for automatic speech processing tasks. Therefore the degraded speech needs to be processed to provide perceptual enhancement and also better features for further processing.
1.4 Objectives

Connected digit speech recognition has an important role in speech recognition area because of its wide application such as automated banking system, voice dialling telephone, etc.

The main objective of this thesis is:

· To recognize the continuous utterance of digits in mobile environment
· To study of recognition of voice in noisy and coded condition.
· To study the performance of spectral performance technique.
1.5 Scope of the Thesis
The main aim of this thesis is to improve the accuracy of the performance for recognizing digit in a low bit rate coding with noisy condition. Most of the current
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works address only the problem of speech recognition under noisy environment or under coded condition.
 However, since mobile environment involves both these issues, the recognition of digit under noisy coded condition is carried out. To carry out the experiments based on this, Nepali digit recognition system is chosen as the task. The model is built using HMM and clean, noisy and noisy coded data are tested. Figure 1.2 is the block diagram which summarizes the overall scope of the work.

1.6 Brief overview of the thesis

 The related background theory, issues in coded speech recognition, issues in noisy speech recognition, objectives and scope of the thesis are included in chapter one. Chapter 2 explains the literature review, which includes the previous work done in coded speech recognition, noisy speech recognition and noisy coded speech recognition.
Chapter 3 provides detail methodology about speech recognition under noisy and coded condition. It includes explanation of Hidden Markov Model, coding techniques used (GSM and CELP) and results of related experiments along with preprocessing method for connected digit recognition in noisy coded environment. Explanation of spectral subtraction method and results of related experiments are also included in this chapter. Chapter 4 explains experimental environment. It includes brief introduction about the software used; Cygwin, HTK, Julius and Audacity. This chapter also includes experimental results. Chapter 5 is summary and conclusions. It includes summary, contribution of the thesis and direction of future work.
Chapter Two
Literature Review
In this section focus is on the related work that has been done previously by several researchers. Speech has long been perceived as a natural interface between people and computers and hence has received much focused attention. Decades of research in the speech community has led to usable systems and convergence of the features and models used for speech analysis. Due to disturbance caused in the speech by coding or background noise effects, the distortion occurs in the performance. Several researches have studied the effect of the distortion and approached towards the methods that can reduce the distortion.

2.1 Coded Speech Recognition

When the speech is coded and tested for recognition, then there occurs a mismatch between the training data and testing data, thus likely, producing degradation in the performance. For this, many researchers have attempted to improve the performance of the coded speech recognition.

Juan M. Huerta [3] has studied about the effect of Global System for Mobile (GSM) communication codecs in speech recognition. In his thesis, he has focused on characterizing the distortion introduced to the speech signal by the speech codec and has proposed methods for reducing the detrimental effect of coding on recognition accuracy. The focus of his thesis is on the Full Rate GSM (FR-GSM) codec. He has proposed a method to generate recognition features directly from codec parameters where it is shown that, by selectively constructing a cepstral feature vector from the GSM codec parameters it is possible to reduce the effect of coding on recognition.

B. T Lilly and K. K Paliwal [4] have studied about the effects of speech coders on speech recognition. In their paper, six different speech coders ranging from 4.8 kbits/s to 40 kbits/s have been used with two different speech recognition systems 1) isolated word recognition and 2) phoneme recognition from continuous speech. The effects on speech recognition performance by tandeming each of the speech coders are also presented. They have concluded that the lower bit rate speech coders, GSM and Code Excited Linear Prediction (CELP) have a significant effect on speech recognition due to distortions they introduce. 

S. Euler and J. Zinke [5] have examined the influence of different coders in the range from 64 kbit/sec to 4.8 kbit/sec on both a speaker independent isolated word recognizer and a speaker verification system. Applying systems trained with 64 kBit/sec to e.g. the 4.8 kbit/sec data increases the error rate of the word recognizer by a factor of three. For rates below 13 kBit/sec, the speaker verification has more affected than the word recognition. The performance has improved significantly if word models are provided for the individual coding conditions. Therefore, they used a Gaussian classifier for estimation of the coding condition of a test utterance. The combination of this classifier and coder specific word models has yielded a high overall recognition performance.
2.2 Noisy Speech Recognition

The main goal in noisy speech recognition is to eliminate the noisy part and enhance the clean speech part. Based on this, different methods have been proposed by the researchers for recovering the clean speech from the noisy speech.

Steven F.Boll [6] has proposed noise suppression algorithm for reducing the spectral effects of acoustically added noise in speech. The approach used is to estimate the magnitude spectrum of the underlying clean speech by subtracting the noise spectrum from the noisy speech spectrum. This estimator requires the estimate of the current noise spectrum by estimating the average noise magnitude measured during the nonspeech activity. Since the energy of different types of noises focuses on different frequencies, the effect of additive noise on each frequency bank is different. Based on this, Ye Tian et al. [7] have proposed adaptive frequency bank selection for noisy speech recognition. In their proposal, unlike standard MFCC which uses all frequency banks for cepstral coefficients, they only use the frequency banks that are slightest corrupted and discarded the seriously obscured ones. Cepstral coefficients are calculated only on the selected frequency banks. Moreover, acoustic model is also adopted to match the modification of acoustic feature. The experiments which they have conducted on speech recognition show that the proposed algorithm led to better performance than spectral subtraction.

B.T Logan et al. [8] have proposed new algorithm for enhancing the speech when only the noisy signal is available. The system uses auto regressive Hidden Markov Model to model the clean speech and noise and combines these to form a model of noisy speech. The combined model is used to determine the likelihood of each observation being just a noise. These likelihoods are used to weight each observation. Now, the enhancement is performed using Weiner filters formed from the clean speech and noise models.

2.3 Noisy coded speech recognition

Sabin Kafley et al. [1] have used both spectral and temporal domain preprocessing method to increase the performance of recognition of digits in noisy coded environment. They have used Spectral Subtraction method and Minimum Mean Square Error (MMSE) Estimation for spectral domain, and Linear Prediction Residual Enhancement method for temporal domain. In their work, they show that recognition performance can be increased by using both preprocessing (spectral and temporal domain) method in tandem.
Chapter Three 
Methodology

3.1 Connected Digit Recognition in Clean Environment

In any pattern recognition problem, there must be some model which classifies the pattern. At first, the model has to be built by training it with the collected data. When the model is built properly then it can be used for testing other data. Here HMM model for training and testing purpose is used. 68 utterances sentences are used for training purpose and the remaining 10 sentences (50 Nepali digit words) for testing purposes. The database consists of digits ranging from 0 to 9, each repeated in a random manner with an average of 17 times.

The concept of HMM has been described below.

HMM is a stochastic signal model which is referred to as Markov sources or probabilistic functions of Markov chains in the communication literature. This model is an extension to the concept of Markov Model which includes the case where the observation is a probabilistic function of the state. That means, the resulting model is a doubly embedded stochastic process with an underlying stochastic process that produces the sequence of observations. To be precise in definition, HMM is a finite set of states, each of which is associated with a (generally multidimensional) probability distribution. Transitions among the states are governed by a set of probabilities called transition probabilities. In a particular state an outcome or observation can be generated, according to the associated probability distribution. It is only the outcome, not the state visible to an external observer and therefore states are “hidden” to the outside; hence the name Hidden Markov Model.

Following are the elements that define HMM

1. N, The number of states in the model,

s = {s1,s2,.......sN} ………………………………………………………....(3.1)
2. M, Number of distinct observation symbol per state,

v = {v1,v2,....vM} …………………………………………………………(3.2)
3. State transition probability distribution A = {aij} where

aij = P [qt+1 = sj |qt = si] , 1 ≤ i, j ≤ N  ……………………………………..(3.3)
4. Observation symbol probability distribution in state j,

B = { bj(k) } where

bj(k) = P [vk at t|qt = sj ] 1 ≤ j ≤ N, 1 ≤ k ≤ M  …………………………...(3.4)
5. Initial state distribution ∏ = {∏j} where

∏j = P [q1 = si] 1 ≤ i ≤ N ..……………………………………………….(3.5)
So, a complete specification of an HMM requires specification of two model parameters (N and M) , specification of observation symbols, and the specification of three probability measures A,B,∏. Therefore HMM is indicated by the compact notation

λ = (A,B,∏) …………………………………………………….(3.6)
The main goal of the recognition process in HMMs is to determine a sequence of hidden states that the observed signal has gone through and the second goal is to define the likelihood of observing that particular event given a state determined in the first process. Given the definition of hidden Markov models, there are three problems of interest:

• 
The Evaluation Problem: Given a model and a sequence of observations, what is the probability that the model generated the observations? This solution can be found using the forward algorithm [9].

• 
The Decoding Problem: Given a model and a sequence of observations, what is the most likely state sequence in the model that produced the observation? This solution can be found using the Viterbi algorithm [9].

• 
The Learning Problem: Given a model and a sequence of observations, what should the models parameters be so that it has the maximum probability of generating the observations? This solution can be found using the Baum-Welch algorithm (or the forward-backward algorithm) [9].

In an HMM based speech recognition system, the input to the HMM is a discrete time sequence of parameter vectors. For this work, MFCC has been used as the features. The mel-frequency cepstrum (MFC) is a representation of the short-term power spectrum of a sound, based on a linear cosine transform of a log power spectrum on a nonlinear mel scale of frequency. Mel-frequency cepstral coefficients (MFCCs) are coefficients that collectively make up an MFC. They are derived from a type of cepstral representation of the audio clip (a nonlinear "spectrum-of-a-spectrum"). The difference between the cepstrum and the mel-frequency cepstrum is that in the MFC, the frequency bands are equally spaced on the mel scale, which approximates the human auditory system's response more closely than the linearly-spaced frequency bands used in the normal cepstrum. MFCCs are commonly derived as follows: 

1. Take the Fourier transform of a signal.

2. Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows.

3. Take the logs of the powers at each of the mel frequencies.

4. Take the discrete cosine transform of the list of mel log powers.

5. The MFCCs are the amplitudes of the resulting spectrum.

For each digit, one HMM model is created resulting 10 HMM files. For entire training and testing, based on HMM modeling, HTK toolkit is used [9]. The experiment is performed by building the clean model and testing the clean utterances. Being matched condition, the recognition rate was obtained to be 100%.

3.2 Connected Digit Recognition in the Presence of Coding

Now, as the speech signal transmitted through wireless channel will be in coded form, so the test data has to be coded so as to represent it in few bits. For this purpose, to see the effect of coding, experiments have been carried out by coding the test data by the use of two different coders namely GSM and CELP as briefly described below.

3.2.1 Global System for Mobile (GSM) Communication

The full-rate GSM codec is a linear predictive regular-pulse excited-long-term predictive (RPE-LTP) based codec operating with a bit rate of 13 kbps. The 8 kHz speech signals enter the codec where they are analyzed in frames of 160 samples from which the 8th-order LPC parameters are obtained every 20 ms, thus producing an LPC analysis rate of 50 frames per second. The LPC parameters are represented as log area ratio (LAR) coefficients which are quantized and then transmitted. Each set of LAR coefficients is represented using 36 bits, thus 1800 bits per second are allocated in LPC information (15% of the total bit rate).

The residual signal from the LPC analysis (i.e. the short-term residual) is subdivided into subframes of 40 samples each and coded by a regular pulse excited-longterm prediction codec whose quantized parameters are transmitted using the remaining 85% of the bits. 

The RPE-LTP codec can be described in simplified form as a two-part process: a long-term predictor process (the LTP block) that produces an estimate of the short term residual signal, and a Regular Pulse Excitation process (the RPE block) which is responsible for representing the “unpredicted” part of the short-term residual signal (called the long-term residual signal) using a reduced number of bits. Under normal conditions, the LTP block will try to capture the long-term periodicity of the signal associated principally with voiced speech segments based on a subframe cross correlation analysis. For the purpose of illustration two diagrams are presented representing simplified versions of the RPE-LTP codec that process the short-term residual signal that comes out of the LPC analysis. The two diagrams presented correspond to two versions of the RPE-LTP codec: an ideal codec and a real codec. By comparing and contrasting these simplified codecs it can be identified the source and nature of the distortion introduced to the reconstructed version of the residual signal.

Figure 3.1 is a simplified block diagram of an ideal RPE-LTP codec. The primary difference between the ideal codec and a real RPE-LTP codec is that the ideal codec does not produce quantized versions of its signals or parameters. For this reason, the ideal codec does not achieve any reduction in bit rate. The short-term residual signal e[n] enters the ideal codec and is compared to the short-term residual estimate e-[n] produced by the LTP block. The difference between these two signals corresponds to the part of the residual signal which the long-term Predictor block was unable to predict. This signal is called the long-term residual signal r[n], and it represents what needs to be added to the short-term residual estimate to obtain the reconstructed short term residual signal. In other words, this signal represents a sort of “innovation” or unpredictable part of the short-term residual signal. The decoder section of the codec contains an identical long-term Predictor block which generates a short-term residual estimate, based on the received LTP parameters and the previously reconstructed version of the short-term residual. After the short-term residual estimate is generated, the ideal codec adds the received innovation part of the signal (i.e., the long-term residual) to it. Because the sum of the long-term residual and the short-term residual estimate signal results in exactly the residual sequence, the ideal codec produces no loss or distortion in the restored signal: in this ideal case the reconstructed short-term residual e^[n] and the short-term residual e[n] are equal. However, the ideal codec must transmit an exact copy of the long-term residual signal to achieve this, so its bit rate is no less than the bit rate of the original short-term residual sequence.


In reality, the RPE-LTP coder transmits a subsampled and quantized approximation of the long-term residual sequence and the LTP information in order to achieve bitrate reduction. Generally, the coder does not provide all the information that is needed to obtain a perfect reconstruction. The reconstructed representation of the longterm residual obtained from the transmitted information (called the quantized longterm residual r^[n], or reconstructed long-term residual) is only an approximation to the original innovation sequence. Figure 3.2 illustrates this process by adding to the codec the block labeled RPE coding. The amount of degradation in the reconstructed signal will be related to the energy of the original long-term residual signal which in turn depends on how well the long-term predictor module in the coder is able to “follow” or predict the next subframe of the time sequence based on previous reconstructed subframes.


The RPE codec introduces distortion to the quantized long-term residual that is proportional to the energy present in it. From the analysis of the operation of the RPELTP codec above, the energy of the long-term residual can be associated with the predictability of the short-term residual. Because the different phones of any given language can be associated with a certain level of periodicity, or predictability (for example, vowels are likely to be more predictable than consonants), it can be expected to find certain patterns in the distribution of the amount of distortion introduced by the RPE-LTP coding process. 

Other existing coding schemes in which the error minimization block consists of a predictive component (i.e., closed-loop prediction-based coders,) can be thought to operate in a similar fashion as the basic system of Figure 3.2, with the main differences between codecs being the way the long-term prediction is performed and how the long-term residual gets represented and the effects of this quantized representation in the reconstructed long-term residual.

3.2.2 Codebook Excited Linear Prediction (CELP)

CELP speech codec is the result of a U.S. DoD program launched to develop a third-generation secure telephone unit by the use of 4.8 kbps modem technology. In 1988, the DoD conducted a survey of 4.8 kbps speech codecs to be used in such secure systems. The selected codec was developed by the DoD and AT&T Bell labs. The FS-1016 standard is based on an 10th order LPC analysis, followed by a CELP representation of the short-term residual signal. The long-term periodicity is modeled by an adaptive codebook (which is an equivalent process to the LTP block of the GSM codec). The adaptive codebook is generated from previous subframes of the reconstructed short-term residual. The long-term residual signal, or difference between the short-term residual and the short-term residual signal estimate, is coded by means of a fixed ternary stochastic codebook. The use of ternary values in the stochastic codebook (-1,0,+1) allows for fast search of the optimal codes. The selection of the optimal scaled excitation vectors (both adaptive and stochastic) is performed by minimizing a time varying, perceptually weighted distortion measure. This codec uses, as does the FR-GSM counterpart, 8 kHz as sampling rate. Its frame size is 30 ms long with four 7.5 ms subframes per frame.


Figure 3.3 shows a simplified block diagram of the operation of the overall CELP analyzer. The major similarities with the GSM codec are the closed loop prediction, and the decomposition of the analysis of the short-term residual into a fixed stochastic codebook component (corresponding to the RPE analysis of GSM) and an adaptive codebook component (corresponding to the LTP block in GSM) aimed at modeling the pitch.
3.3 Preprocessing methods for connected Digit recognition in noisy coded environment

Since there has been a mismatch between the training data and the testing data, so that the performance has degraded. Here, some speech enhancement techniques is used to improve the quality of speech which are briefly described below.

The problem of enhancing noisy speech received considerable attention and in the literature variety of methods has been proposed. The noisy speech enhancement methods available may be broadly classified into two categories, namely, spectral and temporal domain enhancement methods. The spectral domain enhancement methods attempt to suppress the noise. These include spectral subtraction methods and MMSE short-time spectral amplitude (STSA) estimator methods. The temporal domain enhancement methods enhance the characteristics of the speech signal in the time domain. These include linear prediction (LP) residual enhancement and event based analysis methods. 

3.4 Preprocessing of Noisy Coded Speech in Spectral Domain

3.4.1 Spectral Subtraction Method 

Spectral subtraction is performed by subtracting the average magnitude of the noise spectrum from the spectrum of the noisy speech to estimate the magnitude of the enhanced speech spectrum. The noise is assumed to be uncorrelated and additive to the speech signal. The noise estimation is obtained based on the assumption that the background noise is locally stationary so that the noise characteristics computed during the speech pauses are a good approximation to the noise characteristics.

3.4.2 Spectral Subtraction Basics 
One of the most popular methods of reducing the effect of background (additive) noise is Spectral Subtraction. Suppose speech signal x(m) is corrupted by background noise n(m); that is:

y(m) = x(m) + n(m) ……………………………………………………………..(3.7)
Windowing the signal:

yw(m) = xw (m) + nw (m) …………………………………………………..........(3.8)
Fourier transform of both sides

Yw(ejω) = Xw (ejω) + Nw (ejω) …………………………………………………….(3.9)
Where Yw(ejω) , Xw (ejω) and Nw (ejω) are the Fourier transforms of windowed noisy, speech and noise signals respectively. To simplify the notation the w subscript is dropped. Multiplying both sides by their complex conjugates:

|Y (ejω)|2 = |X (ejω)|2 + |N (ejω)|2 + 2|X (ejω)||N (ejω)|cos(),……………………..(3.10)
where is the phase difference between speech and noise: 

 X (ejω) - < N (ejω),

Taking the expected value of both sides:

E{|Y (ejω)|2}= E{|X (ejω)|2}+ E{|N (ejω)|2}+ E{2|X (ejω)||N (ejω)|cos()},

= E{|X (ejω)|2}+ E{|N (ejω)|2}+ 2E{|X (ejω)|}E{|N (ejω)|}E{cos()}, …..(3.11)
In the deriving last equation two reasonable assumptions are made:

1. Noise and speech magnitude spectrum values are independent of each other. 

2. The phase of noise and speech are independent of each other and of their magnitude. 

Power Spectral Subtraction 
In power spectral subtraction it is assumed that E{cos()}=0, 

hence:

E{|Y (ejw)|2}= E{|X (ejw)|2}+ E{|N (ejw)|2}, …………………………………..(3.12)
|X (ejw)|2 = |Y (ejw)|2 - E{|N (ejw)|2}, …………………………………………..(3.13)
The power spectrum of noise is estimated during speech inactive periods and subtracted from the power spectrum of the current frame resulting in the power spectrum of the speech. Generally Spectral subtraction is suitable for stationary or very slow varying noises (so that the statistics of noise could be updated during speech inactive periods). 

Magnitude Spectral Subtraction 

In magnitude spectral subtraction it is assumed that E{cos()}=1, hence:

E{|Y (ejw)|2}= E{|X (ejw)|2}+ E{|N (ejw)|2} +2E{|X (ejw)|}E{|N (ejw)|}

= ( E{|X (ejw)|}+ E{|N (ejw)|} )2 

E{|Y (ejw)|}= E{|X (ejw)|}+ E{|N (ejw)|} …………………………………...…(3.14)
The magnitude spectrum of the noise is averaged during speech inactive periods and, again, assuming that the variations of noise spectrum are tolerable, the magnitude spectrum of speech is estimated by subtracting the average spectrum of noise from each segment. 

|X (ejw)| = |Y (ejw)| - E{|N (ejw)|} ………………………………………………….(3.15)
Residual Noise

As a result of the fluctuations of noise spectrum (whether power or magnitude) around its mean (expected) value, there is always some difference between the actual noise and its mean value. Hence some of the noise remains in the spectrum in the case that the value of noise is greater than its mean and some of the speech spectrum also is removed in the case that our estimate of noise is greater than the actual value of noise. The latter produces negative values in spectrum. These negative values are prevented or set to a floor (sometimes zero) using different techniques. The overall effect puts a noise in the output signal known as residual. The narrow band relatively long-lived portion of residual noise is sometimes referred to as musical noise:
Chapter 4 
Simulation and Results
4.1 Experimental Environment
4.1.1 Cygwin
Cygwin is a Linux-like environment for Windows. It contains the Bash Shell scripting language and the Perl scripting language. Both are required to run the HTK Acoustic Model build scripts. 

 4.1.2 HTK
HTK (Hidden Markov Model Toolkit) is software toolkit for handling HMMs. It is mainly intended for speech recognition, but has been used in many other pattern recognition applications that employ HMMs, including speech synthesis, character recognition and DNA sequencing. The software is open source but there are limitations on the distribution of the HTK Toolkit itself. 

 However, there is no limitation on the distribution of the Acoustic Models created with the toolkit. HMMs can be used to model any time series and the core of HTK is similarly general-purpose. However, HTK is primarily designed for building HMM-based speech processing tools, in particular recognizer. Thus, much of the infrastructure support in HTK is dedicated to this task. As shown in the figure 4.1, there are two major processing stages involved. Firstly, the HTK training tools are used to estimate the parameters of a set of HMMs using training utterances and their associated transcriptions. Secondly, unknown utterances are transcribed using the HTK recognition tools.

4.1.3 Julius

Julius uses Acoustic Models in HTK format, and Grammar files in its own format. Julius is a large vocabulary continuous speech recognition (LVCSR) engine. Julius is used in dictation applications. Julian is a special version of Julius that performs grammar based speech recognition. Julian is used for command and control applications. 

4.1.4 Audacity
Audacity is a free, easy-to-use and multilingual audio editor and recorder for Windows, Mac OS X, GNU/Linux and other operating systems. Audacity can be used to:

· Record live audio.

· Convert tapes and records into digital recordings or CDs.

· Edit MP3 or WAV sound files.

· Cut, copy, splice or mix sounds together.

· Change the speed or pitch of a recording

4.2 Speech Recognition Engine
All Speech Recognition Engines ("SRE"s) are made up of the following components:

· Language Model or Grammar - Language Models contain a very large list of words and their probability of occurrence in a given sequence. They are used in dictation applications. Grammars are a much smaller file containing sets of predefined combinations of words. Grammars are used in IVR or desktop Command and Control applications. Each word in a Language Model or Grammar has an associated list of phonemes (which correspond to the distinct sounds that make up a word).
· Acoustic Model - Contains a statistical representation of the distinct sounds that make up each word in the Language Model or Grammar. Each distinct sound corresponds to a phoneme.
· Decoder - Software program that takes the sounds spoken by a user and searches the Acoustic Model for the equivalent sounds. When a match is made, the Decoder determines the phoneme corresponding to the sound. It keeps track of the matching phonemes until it reaches a pause in the user speech. It then searches the Language Model or Grammar file for the equivalent series of phonemes. If a match is made it returns the text of the corresponding word or phrase to the calling program. 

4.2.1 Grammar

A recognition Grammar essentially defines constraints on what the SRE can expect as input. It is a list of words and/or phrases that the SRE listens for. When one of these predefined words or phrases is heard, the SRE returns the word or phrase to the calling program - usually a Dialog Manager (but could also be a script written in Perl, Python, etc.). The Dialog Manager then does some processing based on this word or phrase. 

The example of a voice-operated interface to for phone dialing is if the SRE hears the sequence of words: 'Call Steve Young', it returns the textual representation of this phrase to the Dialog Manager, which then looks up Steve's telephone number and then dials the number.

4.2.2 Acoustic Model
An Acoustic Model is a file that contains a statistical representation of each distinct sound that makes up a spoken word. It must contain the sounds for each word used in grammar. The words in the grammar give the SRE the sequence of sounds it must listen for. The SRE then listens for the sequence of sounds that make up a particular word, and when it finds a particular sequence, returns the textual representation of the word to the calling program (usually a Dialog Manager). Thus, when an SRE is listening for words, it is actually listening for the sequence of sounds that make up one of the words defined in the Grammar. The Grammar and the Acoustic model work together.
 
Therefore, when  Acoustic Model  is to recognize the phrase 'call Steve Young', the SRE is actually listening for the phoneme sequence "k", "ao", "l", "s", "t", "iy", "v", "y", "ah" and "ng". If each of these phonemes aloud in sequence, it will give an idea of what the SRE is looking for. 

Commercial SREs use large databases of speech audio to create their Acoustic model.  Because of this, most common words that might be used in a Grammar are already included in their Acoustic Model. 

When creating own Acoustic Models and Grammars, the phonemes that make up the words in Grammar must be included in Acoustic Model.

4.2.3 Julian Grammars 

In Julian, a recognition grammar is separated into two files: 

· The ".grammar" file which defines a set of rules governing the words the SRE is expected to recognize; rather than listing out each word in the .grammar file, a Julian grammar file uses "Word Categories" - which is the name for a list of words to be recognized (which are defined in a separate ".voca" file); 

· The ".voca" file which defines the actual "Word Candidates" in each Word Category and their pronunciation information. The phonemes that make up this pronunciation information must be the same as will be used to train Acoustic Model.

4.3 Recording the data
Speech data are collected from twenty eight Nepali male speakers and two Nepali female speakers aged 7-32 years. Total 78 sentences are collected, each sentence containing five Nepali digit words. Speech is recorded   through a microphone at 16 kHz using Audacity 1.3.
4.4 Results
 The experiments are performed by coding the test utterances by these two coders, the result of which is shown in Table 4.1. For coding the test utterances, standard C code available in [10] is used.
	Coder
	Recognition percent

	GSM
	70

	CELP
	55
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Table 4.1 shows the result of the experiment performed on the coded test data. The result shows that GSM coder gives the least error than the other. This is because GSM coder operates at 13kbps whereas CELP coder does operate at 4.8 kbps and thus results have been obtained accordingly. 
4.4.1 Connected Digit Recognition in Presence of Noise

During test utterance generally background noise is expected, so three kinds of noises are added to clean test utterances with different signal to noise ratio. These noises are factory, babble and Machine Gun noise, each having SNR’s of 10 decibel (dB), 15dB and 20dB and the performance of recognition has been tested. Noise sources have been collected from noisex database [11] and Audacity 1.3 Beta software has been used for the addition of noise. Table 4.2, 4.3 and 4.4 shows the result of the experiments performed on test utterances in presence of three different noises. Here noisy data are tested with respect to clean model.

	SNR (dB)
	Recognition percent

	10
	43

	15
	52

	20
	58


[image: image2.png]SNR(dB)

1U92194 uopusoday







	SNR (dB)
	Recognition percent

	10
	34

	15
	38

	20
	48
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	SNR (dB)
	Recognition percent

	10
	73

	15
	76

	20
	84
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Above three tables shows the recognition rate of test data when affected with different noises of different SNRs. Here, the performance has degraded due to addition of noise. For all types of noises, 10dB noise has produced maximum error and 20dB has produced minimum error which is because 10dB means noise containment is more as compared to those in 15 and 20dB. Comparing among Table 4.1, Table 4.2, Table 4.3 and Table 4.4 it can be clearly observed that addition of noise has led the recognition performance much degraded than in presence of coding alone.

4.4.2 Connected Digit Recognition in noisy coded environment
Here speech in presence of background noise is coded, so the resultant test data contains coded noisy speech. These coded noisy speeches are tested with respect to clean model.

	Coder
	SNR (dB)
	Recognition percent

	GSM
	10
	22

	
	15
	28

	
	20
	36

	CELP
	10
	19

	
	15
	21

	
	20
	24
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	Coder
	SNR(dB)
	Recognition percent

	GSM
	10
	17

	
	15
	30

	
	20
	39

	CELP
	10
	18

	
	15
	20

	
	20
	24
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	Coder
	SNR(dB)
	Recognition percent

	GSM
	10
	48

	
	15
	50

	
	20
	54

	CELP
	10
	28

	
	15
	32

	
	20
	35
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Tables 4.5, 4.6 and 4.7 show the results of experiment performed on noisy speech coded with mentioned coders with clean model. In Table 4.3, it is observed that 20dB factory noise coded with GSM has given the maximum recognition for the clean model. 

Similarly Tables 4.6 and 4.7 also show recognition % for coded test data with babble and machine gun noise respectively with different signal to noise ratio. Here also, it can be observed that in an average, the recognition of coded noisy speech did lead the model to significantly differentiate with the recognition of noisy speech without being coded (Table 4.2, 4.3 and 4.3). The average recognition of noisy coded speech is about 32% whereas average recognition of noisy speech without being coded is about 56%.  Further, it can be noticed from the above tables that in an average, GSM coder has worked better than CELP coder. GSM coder has average recognition of 35% and CELP coder has average recognition of 24%. These tables show that there has been higher degradation effect in the noisy speech after being coded by mentioned coders.
4.4.3 Connected digit recognition in noisy coded environment with respect to noisy model

Now the coded noisy test utterance is tested with respect model trained with 10 dB corresponding noise.
Table 4.8 Recognition percent for coded test data with factory noise

	Coder
	SNR (dB)
	Recognition percent

	GSM
	10
	25

	
	15
	33

	
	20
	40

	CELP
	10
	20

	
	15
	23

	
	20
	27




Table 4.9 Recognition percent for coded test data with babble noise

	Coder
	SNR (dB)
	Recognition percent

	GSM
	10
	31

	
	15
	35

	
	20
	38

	CELP
	10
	21

	
	15
	23

	
	20
	26
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Comparing Table 4.5, 4.6 and 4.7 to Table 4.8, 4.9 and 4.10 respectively recognition percentage is increased about 4%. From these results, it can be concluded that training the model with noisy data along with clean data gives better result as compared to results obtained through clean model. 
      Table 4.10 Recognition percent for coded test data with Machine Gun noise

	Coder
	SNR (dB)
	Recognition percent

	GSM
	10
	55

	
	15
	56

	
	20
	57

	CELP
	10
	32

	
	15
	36

	
	20
	38



Figure 4.11 Recognition percent for coded test data with factory noise
4.4.4 Connected Digit Recognition after Spectral Pre processing

Following this spectral processing algorithms, the test data in presence of noise alone has been enhanced and tested for the performance of recognition. The results of the experiments have been shown on Table 4.11, 4.12 and 4.13.
Table 4.11, 4.12 and 4.13 shows the performance of recognition of noisy test data after being enhanced by spectral subtraction method. As compared to Table 4.2, 4.3 and 4.4 it can be seen that for all kinds of noise types, the degradation occurred due to noise is overcome by these enhancement techniques. 
Table 4.11 Recognition percent for noisy test data (factory noise) after enhancement by spectral processing 

	SNR (dB)


	Recognition percent

	10
	58

	15
	67

	20
	70
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 Table 4.12 Recognition percent for noisy test data (babble noise) after enhancement          by spectral processing 

	SNR  (dB)
	Recognition percent


	10
	50

	15
	54


	20
	59





Table 4.13 Recognition percent for noisy test data (Machine Gun noise) after enhancement by spectral processing 

	SNR (dB)
	Recognition percent

	10
	87

	15
	91

	20
	93


Now the same spectral processing methods are used to enhance the test utterances in presence of coding and noise, and experiments are carried out to test the performance of recognition. Tables 4.14, 4.15 and 4.16 show the results of the experiment for coded test utterances in presence of factory, babble and MG noise.
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Table 4.14 Recognition percent for coded test data with factory noise after enhancement by spectral processing 

	Coder
	SNR (dB)
	Recognition percent


	GSM
	10
	31


	
	15
	38


	
	20
	41


	CELP
	10
	24



	
	15
	28


	
	20
	29
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Table 4.15 Recognition percent for coded test data with babble noise after enhancement by spectral processing 

	Coder
	SNR (dB)
	Recognition percent


	GSM
	10
	27


	
	15
	33



	
	20
	47



	CELP
	10
	24



	
	15
	27



	
	20
	28
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Table 4.16 Recognition percent for coded test data with Machine Gun noise after enhancement by spectral processing 

	Coder
	SNR (dB)
	Recognition percent


	GSM
	10
	58


	
	15
	60


	
	20
	61



	CELP
	10
	37


	
	15
	40



	
	20
	41



Among these observations CELP coder with 10 dB babble and factory noise have least recognition percentage whereas GSM coder with 20dB factory noise has maximum recognition percentage. This is because GSM is higher bit rate coder than CELP. Comparing with Table 4.15, 4.16 and 4.17 recognition percentage is almost increased by 15%. This shows that spectral subtraction yields better recognition performance. 

Chapter Five
SUMMARY AND CONCLUSIONS
5.1 Summary
In this work, a limited vocabulary system in which Nepali digit is chosen as a part of speech. The HMM model used here has worked well for the clean data, thus leading 100% recognition rate. However as the data is added by noise and coded by using different coders, then the model classifies the uttered digit incorrectly which concludes that the model needs to be built properly by modifying the parameters of the HMM, and requires proper training data by using noisy coded data for training. Further, it has been seen that, being a limited vocabulary system, but there has been significant variance in the performance rate of recognition of coded noisy speech as compared to noisy speech recognition rate when the model built for training uses clean speech. So, it can be concluded that coding and noise has significant effect in the digit-speech recognition.
 The model built for training using noisy speech has increased the recognition rate. Further, it is seen that speech enhancement technique for suppressing the noisy part in the noisy speech has made the recognition performance better.
5.2 Contribution of the thesis

In this thesis, the performance of recognition of Nepali digits uttered continuously in noisy coded environment is explored. The existing works have shown only about the effect of coding or effect of noise in a separate manner. In this thesis, the real scenario of mobile environment where background noise and coding both take place at a time is addressed. The effect of coding during recognition performance in mobile environment is explored. Further, it is found that use of spectral processing method for preprocessing the noisy coded speech yields better performance in recognizing the noisy coded digits.
5.3 Limitations of the thesis

This work is limited to small vocabulary system only digits (0-9), which can be extended to large vocabulary application for noisy coded condition. The experiments have shown 100% recognition only on clean speech data. Under noisy coded condition HMM model has poor recognition performance.
5.4 Direction for future work


Taking care of the results so far obtained, numerous experiments can be performed to extend the result towards better performance. However apart from these, the same experiment can also be performed with the types of model other than HMM. Since it is seen that for noisy data, HMM model has classified some of the digits wrongly, the approach that uses Neural Network (NN) model is planned to use for training and testing purpose.

In this work only spectral preprocessing (spectral subtraction method) is used to enhance the audio data which is buried in noise. The spectral subtraction method may contain some negative values due to errors in estimation of noise spectrum which can be overcome by half wave rectifying those values to ensure non-negative magnitude spectrum. To overcome this problem Minimum Mean Square Error (MMSE) can be used. Further, to yield better recognition performance temporal preprocessing like Linear Prediction (LP) Enhancement followed by spectral preprocessing can be used to enhance degraded speech. The system can thus be able to perform continuous speech recognition for Nepali language, which has been one of the important tasks in the field of Human Computer Interaction.
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Figure 1.1 Block diagram of connected digit recognition system [1]
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 Figure 1.2 Block diagram of voice digit recognition system in noisy coded condition [1]





Transcription








Speech Data





Unknown Speech





Transcription





Figure 4.1 Fundamental of HTK [9] 
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Figure 3.3 Simplified block diagram of CELP codec [3]
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Figure 3.2 A simplified block diagram of a real RPE-LTP short term residual codec [3]





Figure 3.1 A simplified block diagram of an ideal RPE-LTP short term residual codec [3]





Long term residual r[n]





 Reconstructed Short term residual e^[n]





Long term predictor





Short term 


residual  estimate e-[n]





Table 4.1 Recognition percent for coded test data





Table 4.2 Recognition percent for test data affected with Factory noise





Table 4.3 Recognition percent for test data affected with babble noise





Table 4.4 Recognition percent for test data affected with Machine Gun noise





Table 4.5 Recognition percent for coded test data with factory noise





Table 4.6 Recognition percent for coded test data with babble noise





 Table 4.7 Recognition percent for coded test data with Machine Gun noise
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Figure 4.2 Recognition percent for coded test data





Figure 4.3 Recognition percent for test data affected with factory noise





Figure 4.4 Recognition percent for test data affected with babble noise





Figure 4.5 Recognition percent for test data affected with Machine Gun noise





Figure 4.6 Recognition percent for coded test data affected with factory noise





Figure 4.7 Recognition percent for coded test data affected with babble noise





Figure 4.8 Recognition percent for coded test data affected with MG noise





Figure 4.9 Recognition percent for coded test data affected with factory noise





Figure 4.10 Recognition percent for coded test data affected with babble noise





Figure 4.12 Recognition percent for noisy test data (factory noise) after enhancement by spectral processing





Figure 4.13 Recognition percent for noisy test data (babble noise) after enhancement by spectral processing





Figure 4.14 Recognition percent for noisy test data (factory noise) after enhancement by spectral processing





Figure 4.15 Recognition percent for coded test data with factory noise after enhancement by spectral processing





Figure 4.16 Recognition percent for coded test data with babble noise after enhancement by spectral processing





Figure 4.17 Recognition percent for coded test data with Machine Gun noise after enhancement by spectral processing
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