Bayesian Modelling Approaches on some Issues of

Agro-Food Production and Quality Control

A Thesis Submitted to

Central Department of Statistics

Institute of Science and Technology

Tribhuvan University, Kirtipur, Kathmandu, Nepal

For the Degree of

Doctor of Philosophy (Ph. D.) in Statistics

Ram Prasad Khatiwada

2010

Recommendation

I have the pleasure of forwarding the thesis entitled "**Bayesian Modelling Approaches on some Issues of Agro-Food Production and Quality Control**" by Mr. Ram Prasad Khatiwada, for the award of the degree of Doctor of Philosophy (Ph. D.) in Statistics. The work presented in this thesis has been carried out under my supervision and has not been submitted for the award of a degree to any university.

Prof. Azaya Bikram Sthapit, Ph. D.

Supervisor,

Head,

Central Department of Statistics

Institute of Science and Technology

Tribhuvan University, Kathmandu, Nepal.

Declaration

I hereby declare that the work presented in this thesis has been done by myself and, has not been submitted for the award of any degree. All sources of information have been specially acknowledged by reference to the authors or institutions.

Ram Prasad Khatiwada Central Campus of Technology Institute of Science and Technology Tribhuvan University

TRIBHUVAN UNIVERSITY Institute of Science and Technology

DEAN'S OFFICE

Kirtipur, Kathmandu, Nepal

Or Science

Dean's Office Kirtipur, 2045

Reference No .:

TO WHOM IT MAY CONCERN

This is to certify that Mr. Ram Prasad Khatiwada has been successfully defended Ph.D. viva-voce examination held on July 7, 2011. The Research Committee of the Institute of Science and Technology has approved and recommended for the degree of Doctor Philosophy (Ph.D.) of in Statistics of Tribhuvan University, Nepal.

The topic of His thesis is "Bayesian Modelling Approaches on some Issues of Agro-Food Production and Quality Control".

Prof. Dr. Mukunda Prasad Gajurel

Dean

Telephone: 977-1-4330844

Fax: 977-1-4331755

Website: http://www.tribhuvan-university.edu.np E-mail: deaniost@wlink.com.np

Date:....

July 10, 2011

Acknowledgements

First of all, I would like to express my sincere gratitude to my respected supervisor Prof. Dr. Azaya Bikram Sthapit, Head, Central Department of Statistics, who devoted his valuable time in guiding, inspiring and encouraging me constantly.

I also wish to record my sincere gratitude to all the faculties as well as administrative staff of the Central Department. The moral support rendered to me by them during my work will be remembered forever.

I am also indebted to Institute of Science and Technology, Tribhuvan University and my duty station Central Campus of Technology, Dharan for providing me three years' study leave.

I would like to thank the teachers, the administrative staff and the students of Central Campus of Technology, Dharan, who have directly or indirectly helped me in different ways during my work.

I am also grateful to several people abroad, who have helped me providing suggestions and necessary materials to my work. I would especially like to thank Dr. B. M. Colosimo (Polytecnico di Milano, Italy), Prof. Jeffery Grynaviski (University of Chicago, US), Prof. Anthony O'Hagan (University of Sheffield, UK), and Prof. Richard Arnold (Victoria University, New Zealand). I am grateful to Prof. S. K. Upadhyay, Banaras Hindu University, who has inspired me and provided me with valuable comments. I wish to express my thanks to the friends who encouraged me during the ATP on Bayesian Statistics at Banaras.

My special thanks go to my friends Rishi Raj Gautam, Ram Gautam, Dil K. Limbu, Kamal Maden, Rohit Dhungel and Dr. Tika Ram Aryal for their valuable support and suggestions.

I am grateful to my wife Khina (Shanta), daughters Bhumika and Srijana and son Hemanta, without whose sacrifices and constant support I could not have completed this work.

Finally, I would like to acknowledge Nepal Academy of Science and Technology (NAST) for providing me a partial financial support for the study with a research fellowship.

Abbreviations/Acronyms

AEL	Absolute Error Loss
AIC	Akaike Information Criteria
BE	Bayes Estimator
BF	Bayes Factor
BIC	Bayesian Information Criteria
BUGS	Bayesian Analysis using Gibbs Sampling
CBS	Central Bureau of Statistics
ССР	Critical Control Point
cdf	cumulative density function
DAG	Directed Acyclic Graphs
FAO	Food and Agricultural Organization
FDA	Food and Drug Administration
НАССР	Hazard Analysis and Critical Control Point
HPD	Highest Probability Density
IG	Inverse Gamma
iid	independently and identically distributed
ISBA	International Society for Bayesian Analysis
EM	Expectation and Maximization
LEL	Lowest Expected Loss
LQL	Limiting Quality Level
MA	Metropolis Algorithm

MC	Monte Carlo
MCMC	Markov Chain Monte Carlo
MHA	Metropolis Hastings Algorithm
ML	Maximum Likelihood
MLE	Maximum Likelihood Estimator
MSE	Mean Squared Error
NIG	Normal Inverse-Gamma
pdf	probability density function
pmf	probability mass function
RE	Relative Efficiency
sd	standard deviation
SEL	Squared Error Loss
SE (or se)	standard error
SSE	Sum of Squared Error
TQM	Total Quality Management
WinBUGS	Windows version of Bayesian Analysis using Gibbs Sampling
WFP	World Food Program
WHO	World Health Organization

List of Tables

Table 3.1	Some conjugate priors for common likelihood functions	28
Table 5.1	Summary of the estimated parameters and confidence intervals	
	using classical method	63
Table 5.2	Summary of the prior density, likelihood and the posterior density	
	with precisions	64
Table 5.3	Summary of the posterior distribution using normal informative	
	prior	64
Table 5.4	Summary of the predictive distribution using normal informative	
	prior	64
Table 5.5	Summary of the posterior density using normal informative prior	66
Table 5.6	Summary of the posterior density using non-informative prior	67
Table 6.1	Sampling plan for $\beta = 0.1$ using binomial cdf	72
Table 6.2	Summary of the Beta (2, 38) distribution	73
Table 6.3	Sampling plan for and $\beta = 0.1$ using posterior distribution	74
Table 6.4	Summary of posterior distribution $Be(a+c,n+b-c)$	74
Table 7.1	Calculation of failure rate per operation units /points	78
Table 7.2	The posterior estimates of the parameters of failures to operation	
	points	79
Table 8.1	Summary of the correlation and regression coefficients	85
Table 8.2	Summary of the Simple and partial correlation coefficient	
	regarding porosity, moisture content and bulk density	87
Table 8.3	Summary of the multiple correlation of porosity with moisture	
	content and bulk density	87
Table 8.4	Summary of the linear regression coefficients on porosity	
	with moisture content and bulk density	87
Table 8.5	WinBUGS results for the parameters in NIG model	88
Table 9.1	Summary statistics of the percentage protein and gluten content	
	of a variety of wheat flour	94
Table 9.2	Summary of the correlation and regression coefficients	
	between percentage of protein and gluten content	94
Table 9.3	Summary of the posterior density of the parameters in model 1	95
Table 9.4	Summary of the posterior density of the parameters in model 2	97

List of Figures

Figure 3.1	An Outline of Bayesian method	17
Figure 5.1	Plot of the posterior density of average weight (θ)	65
Figure 5.2	Triplot of the prior density, posterior density and likelihood	65
Figure 5.3	Plot of the predictive density of the weight (X)	65
Figure 5.4	Kernel density plots of the posterior distribution through MCMC	
	using WinBUGS	66
Figure 5.5	Trace of the posterior distribution through MCMC using WinBUGS	66
Figure 5.6	The density plots of the posterior distribution for 5000 and	
	30000 iteration	67
Figure 5.7	The trace of the last 400 iteration of the posterior distribution	67
Figure 6.1	Distribution of sample nonconforming proportion	72
Figure 6.2	Plot of the prior distribution of average proportion nonconforming	
	items	73
Figure 6.3	Plots of posterior distribution	75
Figure 7.1	Graphic modelling of the parameters in failure to operation points	77
Figure 7.2	Kernel Density plots of the parameters in estimating failure to	
	operation points	80
Figure 7.3	Box plots of predictive alpha and beta	81
Figure 7.4	Box plots of posterior failure rate (theta data)	81
Figure 7.5	Box plots of posterior average failure rate (lambda theta, t_i)	81
Figure 7.6	Scatter plots of posterior failure rate (theta data)	82
Figure 7.7	Model fit summaries for the predictive failure rate (theta data)	82
Figure 8.1	Scatter plots of moisture content vs bulk density	86
Figure 8.2	The scatter plots of bulk density vs porosity	86
Figure 8.3	Scatter plot of the predicted values of porosity (mu)	89
Figure 8.4	Plot of fitted model with credible region for predicted values of	
	porosity	89

Figure 8.5	Density plots of regression coefficients and precision	89
Figure 8.6	Box plots of the regression coefficients and precision	90
Figure 8.7	Box plots of the predicted values of porosity	90
Figure 8.8	Correlation plots of regression coefficients	90
Figure 8.9	Density plots of SSE, MSE, R-square and overall gain in	
	relative efficiency of the fitted model	91
Figure 9.1	Posterior density plots of alpha and beta in model 1	96
Figure 9.2	Trace plots of alpha and beta for the 200 iterations in model 1	96
Figure 9.3	The density plot and trace of the tau in model 1	96
Figure 9.4	Box plots of alpha and beta for model 1	96
Figure 9.5	Posterior density plots of alpha and beta in model 2	98
Figure 9.6	Trace plots of alpha and beta for the 200 iterations in model 2	98
Figure 9.7	The density plot and trace of the tau in model 2	98
Figure 9.8	Box plots of beta and alpha for model 2	98
Figure 9.9	Box plots of posterior mu in model 1	100
Figure 9.10	Box plots of posterior mu in model 2	100
Figure 9.11	Scatter plot of mu in model 1	100
Figure 9.12	Scatter plot of mu in model 2	100
Figure 9.13	Plots of fitted line with 95% credible region for model 1	101
Figure 9.14	Plots of fitted line with 95% credible region for model 2	101

Contents

Part One

Chapters	Topics	Page(s)
Chapter I		
Introd	duction	1 - 8
1.1	Background	1
1.2	Statement of the Research Problem	2
1.3	Rationale of the Research	3
1.4	Research Question	5
1.5	Review Practicalities	6
1.6	Structure of the Thesis	8
Chapter II:		

Obje	ctives	9 -11
2.1	Objectives of the Study	9
2.2	Major Issues and Variables	9
2.3	Sources of Sample and Data	10
2.4	Delimitations of the Study	11

Chapter III:

Literat	ture Rev	view	12-42
3.1	Qualit	Quality 1	
	3.1.1	Introduction	12
	3.1.2	Principles of Quality Control / Management	13
	3.1.3	Review of Bayesian Approaches in Food Quality Contr	ol 14
3.2	Bayes	ian Statistics	15-34
	3.2.1	An Introduction to Bayesian statistics	15
	3.2.2	Underlying Principle of the Bayesian Approach	17
	3.2.3	Steps in Bayesian Method	17

	3.2.4	Mathematical Notations and Foundation	17
	3.2.5	Likelihood Function and Bayes' Theorem	21
	3.2.6	Priors: An Overview	22
	3.2.7	Some useful Terminologies in Bayesian Analysis	30
3.3	Comp	utational Methods in Bayesian Paradigm	35-42
	3.3.1	Introduction	35
	3.3.2	Markov Chain Monte Carlo	35
	3.3.3	Monte Carlo Method	37
	3.3.4	Importance Sampling	38
	3.3.5	Gibbs Sampling	39
	3.3.6	The Metropolis Algorithm (MA)	41
	3.3.7	The Metropolis-Hasting Algorithm (MHA)	41
	3.3.8	Computer Programs used for Analysis	42

Chapter IV:

Methodology		43-60	
4.1	Bayes	Bayesian Inference	
	4.1.1	Preliminaries	43
	4.1.2	Bayesian Estimation	44
	4.1.3	Hypothesis Testing and Bayes Factor	49
4.2	Bayes	ian Modelling	51-60
	4.2.1	Introduction to Statistical Models	51
	4.2.2	Modelling in Bayesian Paradigm	52
	4.2.3.	Graphical Models	54
	4.2.4	Normal Regression Model	55
	4.2.5	Random Effect Model	56
	4.2.6	Generalized Linear Model	58
	4.2.7	Bayesian Models with Hierarchical Priors	59
	4.2.8	Model Checking in Bayesian Paradigm	60

Part Two

Chapte	er V:		
	An Ap	plication of Bayesian Method in Estimating the Weights of	
	Packag	ged Food	61-69
Chapte	er VI:		
	Analy	sis of Beta Prior Distribution for an Acceptance Sampling Pla	n of
	Food I	Product	70-75
Chapte	er VII:		
	Model	ling Failure to operation points for Canning process in a Fruit	t
	Juice l	Industry	76-82
Chapte	er VIII:		
I		Iodel for Predicting Porosity of a Rice Variety in terms of Mo	oisture
		at and Bulk density	83-92
Chapte	IV.		
Chapte		al Regression Models with two different priors for Estimation	of
		al Regression Models with two different priors for Estimation	93-101
	Glute	n content relating to Protein content in a Variety of Wheat	95-101
Chapte	er X:		
	Conclu	usion and Recommendations	102-104
	10.1	Preliminary	102
	10.2	Conclusions	103
	10.4	Recommendations for Further Areas of Research	104
Summ	ary		105-109
Appendix A: Data Tables		110-114	
Appen	dix B: `	WinBUGS' Codes	115-119
Appen	dix C: '	Theoretical Methods of Computations	120-129
Refere	nces:		130-141