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Chapter I 

 Introduction 

1.1 Background    

Nepal is primarily recognized as an agrarian country in the south Asian region, since 

67% of the country‟s population work on land and produce agricultural products 

(CBS, 2002).  The whole population depends on agriculture for sustenance and even 

those people who could have had any job are also indulged in agriculture. It is the 

most important source of foodstuff, which avails food not only to human beings but 

also to animals.  In Nepal, 50% of export products come from agriculture (Adhikari, 

2002). The major source of raw materials needed for Nepalese industries is also the 

agricultural product.   

Establishment and enhancement of agriculture-based industries is supposed to be 

vital for the sustainable development of the nation (K.C., 2002). Agro-industry, 

which plays linking role in chaining the agro products from producers to ultimate 

consumers, is the essential module to uplift the life standards of farmers, and to 

ensure the quality of life of the consumer (Bourlakis and Weightman, 2004). It is 

considered as an important concern for the national planning too. 

Agro-food production system is based on different components, such as facilities of 

irrigation, better seed, fertilizer, agricultural equipments, agricultural loan and 

transportation, food processing industries, product market and product quality 

assurance. Farmers, food processors, retailers, and consumers are considered as the 

main stakeholders of agro-food production system. Governmental departments, 

research institutions and non-governmental organizations are engaged as essential 

supplementary institutions of this system.  Agro-food production system can be 

recognized in either physical aspects or technological, economic, biological, 

sociological, political, health and environmental aspects. 
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Agricultural products are generally consumed in two ways: straight after the post 

harvest treatment of the product from the produced field or product supplied by the 

processing industries. The quality and safety attributes of the foodstuff may be 

affected far and wide farm to fork (FAO and WHO, 2002).  

Today‟s global concern, the subject of consumer concern in food production and 

quality control system,  possibly has direct or indirect relation between / amongst the 

attributes of the sectors of farmer, food processor, distributor, retailer and consumer. 

Till date, producers are not having pressure-feel from large food processors, and the 

processors not from retailers and consumers, who require better practices in relation 

to food hygiene and safety, environmentally managed and naturally sustained 

resources. In this context, the study on modelling uncertainty related to the food 

production and quality problems is considered to be of great importance. The 

statistical methods concentrated on the research problem are supposed to be essential 

to explore, establish, verify and to model the relations of the attributes of concerns 

of food production and quality control system. 

 

 1.2 Statement of the Research Problem   

Food quality system may be taken as a vital question for both, consumers and 

producers nevertheless, food quality crises often occurred all over the world. The 

inherent uncertainty and variability could evidently be shown for food products and 

food processing procedures. As a result, statistical control systems are needed, in 

order to effectively control food quality, predict potential problems and give 

suggestions for realistic control.  

The expert knowledge is often considered as the primary source of information for 

the food production and quality system. The development in information systems in 

food industries also provides us with possibilities to discover valuable information 

about quality problems from recorded data. However, due to the complexity of food 

production system, experimental data are not always considered sufficient to deal 

with new quality problems in a direct way. These problems can be dealt with the 
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help of Bayesian approach, combining experimental data with prior information 

about the parameters from expert knowledge or from past data. 

Bayesian methods are found to be successfully applied in many areas, such as 

biology, medicine, finance, economics, and marketing. So far, Bayesian approaches 

on modelling uncertainty in food production and quality control system are not 

being used widely due to lack of documentation system and supply networks. 

However, in recent years, some food industries have initiated to build information 

systems to collect data about various stages of food production, quality monitoring 

and supply networks. These information systems will be helpful to provide us with 

opportunities to employ Bayesian methods for discovering interesting relations of 

food quality problems. Bayesian analysis and inferential method are used in this 

research, expecting that, it can motivate us to recognize new methods in food quality 

control, aid in discovering possible causes for these problems, and monitor those 

causal factors to predict potential food quality problems.  

 

1.3 Rationale of the Research 

Nepal has quite a few traditional small food-processing industries and some modern 

industries (K.C., 2002). According to Nepal Standard Industrial Classification (CBS, 

1998), there are 661 such industries. Essentially, in pre-harvest sectors of 

agriculture, various studies have been made in cropping pattern, agricultural 

practices, breed development, insecticides use, and advancement of the indigenous 

food. However, so far, no sufficient studies have been made in post-harvest systems 

of food production and quality control in methodical and statistical modelling 

approaches. Statistical modelling approaches have not found been used in agro-food 

production system, post harvest processing, food industrial environment, and 

consumer risk assessment. A little number of researches on specific areas is 

sponsored by some international non-governmental organizations such as WFP and 

WHO. 
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Food materials are prepared usually as the mixture of different constituents; as a 

result, they have complex nature. The variability in food attributes is found due to 

the causes of raw materials, biological diversity, resources, processing method, and 

vendor system. Because of the wide range of variability, food quality problems have 

high degree of uncertainty, and constraints (parameter of interest) related to food are 

uncertain (Martens, 1983).  

The theoretical understanding of uncertainty and variability is found rare in food 

quality problems. Therefore, we have to rely on other sources of knowledge to 

model the uncertainty. Probabilistic approach is considered the only suitable method 

to deal with uncertainty. To obtain reliable information about system the prior 

knowledge is incorporated with the data and this approach provides the basis for 

applying Bayesian methodology on food quality control problems. 

The problems concerning the consumers, food science activities concentrate to the 

food quality and safety (Hills, 2001). The fundamental issues of food science may be 

nutritional value, shelf life, safety, uses property and packaging. Unknown quantities 

of interest in quality control experiments might be industrial safety, utility factor, 

product component, future outcome etc.  

Research activity on industrial sector is almost non-existence in Nepal, 

(Bajracharya, 2001). In food science activities, there is a lack of making inference 

statistically. To deal with such problems, mathematical model is much needed, 

which can help the food scientists to predict and to control the food quality. Such 

models are very useful to model hazard rate, life-testing, failure to specification, 

shelf life, reliability estimation, capability measure, and confidence bounds. Models 

based on probability are essential when variability and uncertainty characterized 

such food quality attributes. 

The classical statistics is used to obtain point and interval estimates of the population 

parameter and to test the hypothesis without combining prior information. While, 

Bayesian statistics is capable to use the posterior predictive level keeping informed 

the priors; and model discrimination is more applied than it has currently done in the 
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food science (Van Boekel, 2003). In this approach, uncertainties about parameters of 

food quality system are quantified according to probabilities, and then they are 

updated as information gathered from the experiment.  

Prior information is often available for food quality control from the earlier studies. 

These studies can be used as prior information because the mechanism of action of 

quality control devices is typically physical, making the effects local (limited) and 

not systemic (general). Local effects are often predictable from prior information 

when adjustments to a mechanism are minor. 

Product inspections and compositional analyses of the product in a manufacturing 

system are done either by destructive method or by non-destructive method of 

analysis. A small size of sample is preferred for application of destructive method of 

analysis. Sample having small size is not sufficient to give precise conclusion in 

classical method. In this context, we seek to employ the method, using which a small 

sized sample can give a precise conclusion. In case of Bayesian method with 

hierarchical priors, it is possible to obtain precise result with small sample size. It is 

expected that it could save the loss due to inspection using destructive method. 

 

1.4 Research Questions 

The main question of this research is how quality concerns in food production and 

quality system can be modelled; the relations are set up and they are validated using 

statistical method. It involves making inference, modelling in probabilistic or 

stochastic means and checking the proposed model fit.  

The study will attempt to explore the queries about: 

1. What are the distributions of the variables selected for the study related to 

quality problems in food production process? 

2. What are the statistical models applicable to express relations between such 

variables?   

3. How application of modelling can be done for the selected factors / variables 

using Bayesian methodologies?  
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1.5 Review Practicalities 

Hawthorn et al. (1984) discussed different statistical methods that can be used in 

agro industry sectors. Hills (2001) stated how the modelling approach is most 

exiting and influencing in food process industries and how it provides the foundation 

for improvement in food quality.  Mitasova and Milas (1998) explained how process 

modelling is aimed at improving our understanding and predicting the impact of 

natural and socio-economic processes and their interactions. Duncan (1970)
 

remarked that the estimation of lot and process characteristics could be successfully 

obtained if a prior probability of outcome in a phenomenon is known. 

Lunning (2002) focused on consumer-driven quality management in food production 

systems using a product-based approach, which integrates organizational and 

technological aspects of food product quality into one techno-managerial concept 

and presented an integrated view of quality management. Hubbard (2003) 

emphasized on the use of fundamentals of Statistics, design of experiments, 

statistical quality control, six sigma techniques and net control of products and 

processes. Bourlakis and Weightman (2004) explained in detail the management of 

the food supply system from food produced on the farm to food industries, 

wholesale and retail markets and consumers.  

For many attributes of food product, a certain effect is considered for each factor 

influencing quality. In order to model the effect of those factors, quantitative models 

are needed, when variability and uncertainty characterize the food quality attributes. 

Van der Vorst (2005) has provided the ways to quantify quality attribute of food 

products on performance measurement systems. 

In advanced food industries, the data about food production and quality control are 

recorded for the statistical point of view. These data are applicable to maintain 

modern quality trends, like, Total Quality Management (TQM) (Barendsz, 1998), 

Hazard Analysis and Critical Control Point (HACCP) (Horchner et al., 2006). These 

data are also put into operation in drawing statistical control charts, obtaining 

process capability and exploring the causal relations on the subject of process and 
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product characteristics.  Knowledge about these relations provides a possibility to 

prevent problems by monitoring and practically controlling the corresponding 

factors. Therefore, it is meaningful to employ most powerful statistical methods to 

identify new problems and discover causal relations. 

Presence of an uncertainty in the real world observation is considered as the heart of 

the statistics and modelling it in probabilistic manner. In statistics, there are two 

main ways of dealing with an uncertainty and expressing the reliability of the result 

in precise way. The classical approach is used for modelling the phenomena solely 

based upon the data and other approach is used for modelling it combining 

uncertainty concerning population parameter as the prior information with data. The 

posterior probability estimate based on prior information is said to be the Bayesian 

estimation. 

O‟Hagan (2003) has suggested the method of Bayesian inference to create a model 

to link data to parameters, formulate prior information about parameters, combine 

the two sources of information using Bayes‟ theorem, and use the resulting posterior 

distribution to derive inferences about parameters. The approaches of the Bayesian 

inference are found in several books and papers; its theoretical utility is taken in 

Lindley (1971).   

Prior information needs to be elicited to conduct Bayesian analysis; if there is prior 

information about the hypothesis, clearly, we need to incorporate it in the analysis 

(Berger, 1985). Fully Bayesian approach covers Empirical Bayes‟ Method, 

Hierarchical Bayes, MCMC (Markov Chain Monte Carlo), and Hierarchical Bays‟ 

Model (ISBA, 1992). Priors such as reference priors, default priors or objective 

Bayes priors, reference prior algorithm are used for modelling (Bernardo & Smith, 

1994). 
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1.6  Structure of the Thesis 

The thesis is primarily divided into two parts. The first part has four basic chapters. 

The first chapter deals with the introduction of the study. The second chapter 

contains the objectives, major issues, sources of sample and data and the 

delimitations of the study. The third chapter is the literature review with reference to 

the study. A review of the fundamental principles and scholarly work concerning 

quality, Bayesian methods and computational methods are presented in this chapter. 

The first section of the third chapter is review of the quality and quality concerning 

works and the second section to the review of Bayesian method. The third section of 

this chapter is related to the brief introduction of the computational programs. The 

fourth chapter deals with the methodology concerning the research. The first section 

of it is related to the Bayesian methodology for the inferential procedure and second 

section is in relation to different models concerning the quality control aspects.  

The second part of the thesis is compiled with the five contributory research articles 

corresponding to the objectives of the study. It consists of fifth chapter to ninth 

relating to the major contribution about research data and model assessment. The 

last chapter of the thesis is for the conclusions and recommendations for the further 

areas of the research.  
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Chapter II 

Objectives 

 

2.1 Objectives of the Study 

The broad objective of this study is to select some consumer concerns of food 

products and quality, and to set up and validate the relations between the variables 

using statistical methods. It involves making inference by prediction, modelling in 

probabilistic means, obtaining the advances on inferences and quality control 

method and checking proposed model on some aspects of consumer concern quality.   

The following are the specific objectives of the study: 

1.  To explore statistical models applicable to express the relations between 

variables relating to some concerns of food production and quality system.  

2.  Modelling the factors selected for the study in Bayesian point of view  

3.  To express the predictive values of the parameters in updated posterior 

density and  

4.  To check the fitted model using Bayesian approaches 

 

2.2 Major issues and Variables  

One of the major analytical issues is identification of prior distribution using past 

data or the expert knowledge related to food quality problems. If nothing is known 

about the prior, a prior (non-informative) is selected which has a negligible effect on 

the data. Another issue is selection of conditional cases and likelihood function of 

the factors to be studied for the data borrowed from experimental results and to 

express it in Bayesian framework.  

The practical issues of the study are consumer concerns of food quality.  The major 

characteristics studied in this work are: weight of the pouch product, the proportion 

of non-conforming items, modelling the uncertainty related to failure in operation 
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points (identification of CCP), predicting the product quality of rice by the 

evaluation of porosity, and estimation of gluten content for the better product quality 

of wheat flour in terms of protein content. 

The variables of the study are consumer concerning characteristics of the food 

production and quality control system. For the statistical analysis and modelling 

purpose, the physical characteristics of food, quality attribute of the product, failure 

points of quality, compositional quality variables are selected as main variables.  

 

2.3 Sources of Sample and Data 

The main sources of data for this research are documented data, the data from the 

evaluation of processing units; system maintained data and practical field/ lab data. 

The data have been collected from different sources for the purpose of analysis, 

drawing inferences and fitting model. The procedure of data collection is based on 

the industrial visit, literature survey and appraising documents of the quality 

management. No specific sampling procedures have been adopted in data collection.  

The food industries were selected in convenience, and data were gathered in 

personal contact with the management and quality personnel. Some of the data have 

been taken from the works of the researchers. Collected data have been used to set 

up Bayesian modelling and Bayesian inference.  

Dairy Development Corporation, Balaju, Kathmandu; Himalayan Snacks, Banepa, 

Kavre; Rijal Tasi Industry, Itahari Sunsari; Mahalaxmi Flour Mill, Sonapur, Sunsari, 

are the major contributors of data. The dissertations, seminar papers and project 

reports of the students of Central Campus of Technology are the other sources of 

data. 
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2.4 Delimitations of the Study 

Food product and its quality has a large number of the subjects, such as food values, 

preservation periods, safety, uses property, packaging, adulteration, pesticide used, 

hazard rates and reliability estimation etc. Also, there are hundreds of food items 

used in our daily life. In this study, an attempt is made only to use Bayesian 

methodologies to analyze new data of some concerns food quality. The study is 

focused only with application of Bayesian modelling on some issues of consumers 

primary concerns related to agro-food production and quality control data.  

The study is delimited to some aspects of quality such as weight of the product, the 

proportion of non-conforming items, identification of critical control point (CPP) in 

canning process, quality of rice in terms of porosity, and gluten content of wheat 

flour in terms of protein for the better product quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12 

 

Chapter III 

Literature Review 

3.1 Quality 

3.1.1 Introduction 

Quality, especially the food quality, is known as an opinion term, based on 

consumer‟s perception concerning a product or a service. It does not solely depend 

on maintaining the written standards or specification indicated. The judgment of the 

quality of a product decidedly depends on the response of the consumer. It is defined 

in terms of meeting consumers‟ requirement over the conformance to the 

specifications. 

Based on this viewpoint, Crosby (1979) defined quality as „conformance to 

requirements‟. By using customer loss function, Taguchi (1986) emphasized on 

customers‟ requirements. Deming (1986) refused to accept everything outside the 

specification always wrong and inside the specification entirely correct. For a given 

acceptance quality level, Mendenhall and Sincich (1995) described both the 

consumer‟s risk and producer‟s risk using operating characteristics curve. English 

(1999) defined quality as the „meeting customer‟s expectation consistently and not 

necessarily exceeding them‟. 

The quality issues in food sector have been gaining importance over the past few 

years. Food industries are able to exercise great power and influence over society. 

They can act as an agent of changing social practice and cultural food habits. With 

increasing competitiveness in the food market, they are trying to use development of 

science and technology to create new food products, to maintain food quality, to 

revolutionize consumption pattern and many other issues arisen in terms of 

production and quality control. Food producers, food quality personnel and food 

industries are continually searching for methods and means, which permit 

production of goods that meet as much as possible the characteristics demanded by 

the market.  
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Quality assurance methods and techniques can provide a useful tool for approaching 

evolving markets in the correct way. Application of statistical quality control 

analysis to monitor analytical methods in laboratory help a manufacturer improve 

the reliability of reporting and identifying the source of problems more quickly. 

 

3.1.2  Principles of Quality Control / Management 

Various established quality principles have been invented by different quality 

pioneers. Crosby (1979), Shewhart (1986), Deming (1986), Juran (1988), and 

Ishikawa (1988) presented some of the renowned quality philosophies. In their view, 

quality is not intangible, it is controllable or manageable. Taguchi (1987) advocated 

the use of designed experiments to improve measurement and calibration systems. 

Deming (1986), Juran (1988), Crosby (1979), Ishikawa (1986), Shewhart (1986), 

Imai (1989 & 1997), English (1999) have given the methodical way of quality 

management/control. The majority of their efforts are on the customer focus, 

continuous process improvement and scientific methods. Meeker and Escobar 

(1998) and Condra (1993) focused on the reliability modelling of the quality issues. 

Meeker and Escobar define the reliability in terms of quality as the probability that a 

product or subject will perform its intended function under operating conditions, 

whereas Condra emphasizes the reliability to be quality over time. They comprehend 

that the measurement of the quality based on the massive amount of data or 

information need to be simultaneously collected and stored as the production process 

is running. This leads every body to be acquainted with statistical procedure with 

sufficient information in data form while managing quality. 

Young and Guess (2002) explained how such data are stored and used in a real time 

database with regression modelling to predict strength. They emphasized that 

carefully devised data preparation can guard the analyst against miss-specified 

model assumptions and consequently incorrect estimates. Meeker and Escobar 

(1998) stated that there are often many practical cases where a better fit of the data 

are from non-normal distributions, however the normal distribution is often assumed 

for many applications during the quality improvement process. 
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The technique of quantitative risk analysis has been developed to more accurately 

represent risk in systems composed of a network of interacting factors. Vose (1996) 

remarked that the key difference in quantitative risk assessment as „it attempts to 

take into account every possible value for each variable and weights each possible 

state of affairs by the probability of its occurrence‟. Notermans & Mead (1996) 

proposed that techniques of quantitative risk assessment should be incorporated into 

HACCP systems. Vose (2000) explained a number of mathematical techniques such 

as Monte Carlo simulation and other numerical methods that have been developed 

for the purpose of quantitative risk analysis. The view of Vose (1996) on the subject 

„to take into account every possible value for each variable and weights each 

possible state of affairs by the probability of its occurrence‟ leads us to the use of 

Bayesian approach in the quality control system. 

 

3.1.3 Review of Bayesian Approaches in Food Quality Control  

In Bayesian method, Corney (2000) explained the method of designing food with 

Bayesian Belief Networks. Van Boekel (2003) gave an overview of some typical 

food-science problems. He emphasized on the use of Bayesian approaches in food 

quality modelling, modelling food quality change and food safety, product design 

and classification of foods. Fearn (2003) persuaded to apply Bayesian methods on 

many unexploited opportunities in the agro-food production chain. Stein (2003) 

provided Bayesian network technique, which serves as a model for networks 

occurring in food security, and the relations in the model reflect causal impact 

between events. For the design and food supply system, Van Beek (2003) suggested 

to use quantitative modelling. Van der Voet and Paulo (2003) discussed on some 

explorations into Bayesian modelling of risks due to pesticide intake from food. 

FAO / WHO (2000) provided the regulations for the food contamination monitoring 

and food borne disease surveillance. According to Campbell (2000), FDA has 

embarked on an initiative to investigate how Bayesian design and analysis can be 

used effectively. Campbell referred to follow www.fda.gov/cdrh/pdf/p970015b.pdf, 

and www.fda.gov/cdrh/pdf/p970033b.pdf.  Pennello (2006), [on behalf of FDA], 

presented a guidance paper for using Bayesian methods in planning clinical trials. 

http://www.fda.gov/cdrh/pdf/p970015b.pdf
http://www.fda.gov/cdrh/pdf/p970033b.pdf
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FDA (2006), itself, proposed a manual for using Bayesian analysis in clinical trials. 

Barker (2003) explained on application of Bayesian Belief Network models to food 

safety science. Kennedy et al. (2009) demonstrated some of the potential uses of 

Bayesian approaches in quantitative microbiological risk assessment to integrate 

information sources for food. 

 

3.2  Bayesian Statistics 

3.2.1 An Introduction to Bayesian Statistics 

Bayesian statistics is an approach to data analysis that provides a rational method for 

learning from evidence as it accumulates. Classical methods use the prior 

information only in the design stage; while Bayesian method uses the prior 

information not only in the design stage, but utilizes it as the vital part of the 

analysis as well. The basic idea in Bayesian statistics is that one‟s uncertainty about 

an unknown quantity of interest is represented by probabilities for possible values of 

that quantity. 

The uncertainties concerned in the statistical problems are dealt comfortably using 

probabilistic models.  In statistical analysis, probabilistic models are i) based on 

sampling re-sampling empirical data, ii) based on parametric modelling of data, and 

iii) based on parametric modelling of data with prior information. The third type of 

modelling, „parametric modelling of data with prior information’ is known as the 

Bayesian modelling approach. 

The term „Bayesian‟ is linked to the emergence of statistical thinking some 250 

years ago. The name Bayesian is going to be used in statistical procedure from the 

mid 20
th 

century (1950s- 60s). The name is given after the name of Reverend 

Thomas Bayes (1702-1761); in whose name, we have the Bayes‟ theorem in 

probability, posthumously published (in 1763) a paper ‘An essay towards solving a 

problem in the doctrine of chances’. 
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Bayesian paradigm states that probability is the only measure of one‟s uncertainty 

about an unknown quantity. Within this paradigm, parameters are treated as random 

variables. It is just a description of their uncertainty, but not variability. Bayesian 

approach to statistics firmly based on axiomatic foundation, which provides a logical 

structure and assure the mutual consistency of the methods proposed (Bernardo, 

2003). International Society for Bayesian Statistics declares that: 

Bayesian inference provides a logical, quantitative framework for iterative process 

of integrating, accumulating information, assess the current state of knowledge, 

gather new data to address remaining questions, and then update and refine 

understanding to incorporate both new and old data. ……… It has been applied in a 

multitude of scientific, technological, and policy settings. …… This approach can 

provide flexible methods to conduct conditional analysis and other amendment to 

experiments in normal line.  It can be useful in complex modelling condition where 

a conventional analysis is difficult to implement or does not exist (ISBA, 1992).
 

Bayesian analyses are often computationally intense. However, recent advances in 

computational algorithms and many-fold increases in computing speed have made it 

possible to carry out calculations for almost any Bayesian analysis. These advances 

have resulted in a remarkable increase in the use of Bayesian methods (Malakoff, 

1999). The basic tool that enabled the advances is a method called Markov Chain 

Monte Carlo (MCMC), (Gamerman, 1997; Gilks, Richardson and Spiegelhalter, 

1996). Windows version of Bayesian Inference Using Gibbs Sampling (WinBUGS) 

is commonly available computer program dedicated to making Bayesian calculations 

(Congdon, 2003).  
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3.2.2 Underlying Principles of the Bayesian Approach  

The basic principles of the Bayesian approach are: (i) uncertainties in the parameter 

of interest are expressed through the specification of probability distribution, (ii) the 

probability statement about a hypothesis is updated using Bayes‟ rule, and (iii) the 

updated probability is used for making decision and modelling of complex system. 

 

3.2.3 Steps in Bayesian Methods  

The following steps are used in implementing Bayesian methods. 

- Formulation of prior information; selection of the prior distribution of 

parameter of interest 

- Generating data creating a statistical model, linking data to parameters using 

model 

- Combining the information from two sources using Bayes‟ theorem 

- Use of the posterior distribution to derive inferences about parameters  

 

 

Figure 3.1:  An Outline of Bayesian method (O‟Hagan, 2003) 
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3.2.4 Mathematical Notations and Foundation 

The probability of an event E given the set of possibilities with the sum total of data 

available, Ω, is denoted by  |EP  or simply  EP . Usually, Ω is used for 

unobservable random vectors, typically parameters. 

The probability of an unknown quantity (an observable random vector) i , 

k.,,.........2 ,1i  ; given the information available ‘H’ (the states of nature or 

hypothesis) is denoted by  HP i  or  iP  . Similarly, the probability of data (X) 

relevant to the values of unknown quantity under hypothesis ‘H’ is denoted by 

 HXP  or  XP ; where }.........,.........,{ 21 nxxxX  .  

 CP   stands for the general probability density of random vector   under 

condition „C‟ and  CxP  stands for the general probability density of random vector 

Xx  under condition „C‟. So that,   

    0CP    and  


1  dCP  

    0CxP   and    
X

dCxP 1   

Bayes’ formula: 

Let, the set of parameter of interest   with possible outcomes k ...,,........., 21 form      

a partition of parameter space , if  

 



k

i
i

1

 .  

If k ...,,........., 21 are mutually 

exclusive, and X is any other random 

event in  comes from the data X, then 

the events ,1 X ,2 X …… Xk ,  form a partition of data X; thus, 

  
k

i
i XX

1

  . 
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The probability of X is given by  

   



k

i
i XX

1

PrPr   

By multiplicative rule of probability,  

     iXiXi  PrPrPr   

Finally, if   0Pr i   for all i, then by the theorem of total probability 

      



k

i
ii XX

1

PrPrPr    

The update of the prior probability  iPr  to the posterior probability  XiPr  after 

observing data X  is   

   
 X

X
X i

i
Pr

Pr
Pr





   

or,    
   

   







k

i
ii

ii

i

X

X
X

1

PrPr

PrPr
Pr




 ,  

which is known as Bayes’ Formula. 

 Pr  is commonly known as the prior probability of a random vector   

 XiPr  is the posterior probability of i  given the data X. It represents the 

probability of observable random vector i  after the data  have been observed. 

 iX Pr  is the conditional probability of data given i . It summarizes the 

likelihood of X given i . 

   



k

i

ii X
1

PrPr   is the marginal probability of X. 
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Generalization of Bayes’ Formula : 

The posterior distribution function (well known as posterior density) of i  given 

data X, denoted by )|(  xp i , represents the probability of parameter i  after the data 

(X) have been observed. If g(x) denotes the marginal probability of X, the 

generalized Bayes‟ theorem to derive posterior distribution is 

  
   

 Xg

Xg
Xp

ii
i





 . 

Therefore, the posterior density is 

  
   

   







k

i
ii

ii

i

Xg

Xg
Xp

1

 




 , for the discrete model and 

  
   
   













dXg

Xg
Xp

ii

ii

i
  

, for the continuous data and all  . 

Here,  i  denotes the prior density (pmf for discrete and / or pdf for 

continuous  ). It summarizes one‟s belief about the probability of parameter i  

before data (D or X) have been observed. 

 iXg   denotes the conditional probability of X given i . It summarizes the 

likelihood of data X given i . 

 Xg  denotes the marginal probability of X (also called unconditional probability, 

occasionally). This is equal to the sum of the quantities in the numerator for all 

events k . It is also known as predictive distribution of X, since it represents our 

existing predictions of the value of X taking into account both the uncertainty about 

the value of   and the residual uncertainty about X when is known (Lee, 1997). 

Prior Distribution: 

Before starting an experiment and obtaining data, we assign the probability 

distribution to the possible value of the unknown quantity, known as the prior 

distribution. In principle, the prior is based on the investigator‟s personal knowledge 

of the quantities of interest or on expert‟s opinion. If absolutely nothing is known 
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about that quantity, something called a non-informative prior distribution is 

specified. In experiments undergoing fixed review, however, the prior distribution is 

usually based on data from relevant previous experiment.  

Posterior Distribution:  

After data gathering and making use of information about parameter of interest, the 

prior probabilities are mathematically updated according to Bayes‟ theorem. The 

updated probabilities, known as posterior probabilities, are the probabilities for the 

values of unknown quantity after data observed. This approach is a scientifically 

convincing way of combining previous information with current data. The approach 

regulates to changing levels of evidence: today’s posterior probabilities become 

tomorrow’s prior probabilities (ibid.).  

3.2.5 Likelihood Function and Bayes’ Theorem 

Let, X be the random vector such that X = (X1, X2, ………, Xn) and x be the numerical 

realization (observation vector) such that x = (x1, x2,…… … , xn). Let, the pdf (or 

pmf) of X as the realization of   is denoted by  xg  for all   and Sx . If we 

represent the prior distribution of   by   , then the posterior density function is   

  
   

 Xg

Xg
Xp




  
 . 

The joint probability distribution of the data (X) and the parameter of interest   is 

given by  ,Xg . For the data point  ixX  and given value  the joint probability 

is  ,ixg . The product of the densities   ,ixg  for all i = 1, 2,….,n, is said to be 

likelihood function and is given by 

   ,XL =   ;,,........., 21 nxxxL =       ,..........,  , 21 nxgxgxg   

     =  


n

i
ixg

1

, .  

The conditional probability of  ixX  for given value  is denoted by  ixg . The 

probability function    



n

i
ixgXg

1

  is the likelihood of   and written 



22 

 

as  L or  XL  . It gives the predictions at to what the data should look like if the 

parameter takes place the particular value  (ibid.). 

The posterior density  
   

 Xg

Xg
Xp




  
   can be written as  

  
 

    Xg
Xg

Xp 
1

 

 or,       LXp   

 or,    Likelihood      Prior      Posterior   

Taking log on both sides, 

          likelihoodlog     priorlog     posteriorlog   

The constant of proportionality is 
 Xg

1
 , known as normalizing constant.  

 Xg  is marginal (or unconditional)  distribution of data; in most of the cases it 

does not have the closed form, depends only on the data (X, and not on  ).  

This shows that, posterior density summarizes the total information after viewing the 

data and provides a base for posterior inference regarding . Consequently, to arrive 

at the probabilistic inference about the consistency of the model with the data the 

prior distribution and the likelihood are essential, which is the basis of the Bayesian 

analysis. 

 

3.2.6 Priors: An Overview 

The Bayesian approach to learning starts with some prior knowledge or assumptions 

about the model structure. This initial knowledge is represented in the form of a 

prior probability distribution over model structures. The probability of a hypothesis, 

unconditional, set before observing data, is the prior distribution of the parameter of 

interest. 

Bayesian inference relies on the marginal likelihood and prior. Prior specification is 

critical feature of any Bayesian study, the primary assignment, which reflects 
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knowledge about uncertainty.  If experimental data contains sufficient signal, a prior 

does not greatly influence the posterior. If the posterior is highly dependent on the 

likelihood function (data), it may not contain sufficient prior information. 

Priors are treated as an adaptive allocation device, governed by both soliciting expert 

opinions and by occurring efficacy data with some hypothesized statistical 

assumption. Different types of priors are specified for the Bayesian analysis.  

Three interpretations can be given to prior distributions: (i) as frequency 

distributions based perhaps on previous data, (ii) objective representations of what it 

is rationale to believe about a parameter, or (iii) a subjective measure of what a 

particular individual actually believes. Categorically, the priors cannot be sorted in 

exclusive partitions. In general, we outline priors in broad three classes: i) Objective 

priors, ii) Subjective priors, and iii) Empirical-Hierarchical priors (Beal, 2003).  

Objective Priors: 

The prior, which has negligible effect on the posterior, and if the results are entirely 

based on the data then, it is an objective prior. Objective Bayesians prefer such 

priors. They try to suggest as little information as possible in attempt to allow the 

data to carry as much as possible in the posterior distribution. Often it is called 

“letting the data speak themselves” or “prior ignorance”. Such priors generate non-

informative priors. Non-informative priors are a bit fast for the analysis even if they 

have no consistent information. Non-informative priors are commonly used if we  (i) 

do not want to influence the inference, in some particular direction, (ii) have a little 

expertise, (iii) have intricacy to elicit or translate expert opinions or counsels in 

mathematical form (iv) want the inference to be robust to misspecification of the 

prior. 

Suppose, we have the distribution of the parameter of interest before data have been 

observed is  θπ . If it does not favour one   value over another, then    is a non-

informative prior.  

Non-informative priors are well-known in different names such as; diffuse prior, 

vague prior, flat prior, default prior, improper objective prior, natural objective 
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prior, reference prior. In most of the cases, these priors are interchangeably used to 

denote prior distributions representing very weak prior. 

Diffuse prior / Vague prior / Flat prior 

When we have no clear and concentrated prior knowledge about the parameter of 

interest, so that we have no particular reason to believe that 1a  rather than 

2a , in the neighbourhood of „a‟, then, the prior that we choose is the diffuse 

prior or vague prior. The distribution of such prior is flat relative to the likelihood 

function, so they are also known as flat prior.  

Suppose, the prior distribution is from the uniform density defined as: 

       b,a  all for        ,
ab




  1 a and b are some constants, 

then,    is a non-informative flat prior. 

Uniform prior: 

When it is assumed that  has an unknown probability between 0 and 1, which is the 

case somewhat against „know nothing about  ‟, then the prior, which we select, is a 

uniform prior. Suppose,   constant, a  0 c    ,  c then    is a uniform prior. A 

uniform prior of the form, 

   


 


                  otherwise      0            

10for         1
    


   

is used as the completely ignorance of the prior.  It is sometimes known (criticized) 

as the Bayes‟ postulate, but different from Bayes‟ theorem. 

Default prior / Improper prior:  

Default priors or improper priors are the priors, which are not suitable for 

computing model posterior probabilities and inappropriate to analytical point of 

view. If the parameter of interest ‘ ’ is taken as the random variable, expresses an 

uncertainty, ranges over 0 to  or - to , then the flat prior does not exist, such a 

prior is called an improper prior (Carlin and Louis, 1996).  
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() is improper if 

   d   


)(  

Improper priors usually yield of non-informative priors but they are frequently used 

if they turn out to proper posterior distribution.  

Reference prior:   

If a prior distribution of the parameter of interest is not clearly recognized, and, one 

does not want to use a vague prior, then a prior relative to the data and having 

minimal effect on the posterior inference is referred, known as reference prior. 

Reference priors are non-informative; since they depend upon data and model with 

compared to prior beliefs, and they have trivial effect on the posterior. An essential 

element of the reference prior is that reference distribution only depends on the 

asymptotic behaviour of the assumed probability model (Bernardo, 2003).  

The reference priors are widely used in the conditions: (i) when no pertinent prior 

information is freely available, (ii) when information is subjective (just a belief) and 

analysis desires an objective one, (iii) when two or more values of an unknown 

parameter equally stronger but not agreed arguments on prior beliefs exist. In such 

cases, the reference prior, a neutral prior function, is used even if it is not a 

probability distribution. It is as the limiting form of the posterior, a technical device 

to obtain a proper posterior distribution (ibid.). Some times the reference prior is 

called indifference prior. The reference analysis is information theoretic concept to 

derive appropriate reference posterior, which is based on supposed model and 

observed data. 

Let, for some parameter of interest θ , )( Xg  is some probability mechanism 

that generates the data (X), and a real valued function )(gg    is the quantity of 

interest of the model parameter . To obtain posterior probability distribution of the 

quantity of interest ),( Xg  it is necessary to specify a joint prior   , ; 

where  , is a nuisance parameter vector. It is required to identify the form 

of   , , which has a minimum effect on the posterior distribution, so that 
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        dλθ,λπ  

Λ

θ,λXgXθp  , is a   reference prior. 

There are different types of reference priors suggested by various research experts 

such as: Haar prior, Haldan‟s prior (Lee, 1997), exchangeable prior, dilution prior, 

intrinsic prior, criteria based automatic prior, spike and slab prior, (Ghosh, 2006), 

Zellner prior (Zellner, 1971) and K-L divergence (Kullback and Leibler, 1968). A 

frequently used reference prior in most of the Bayesian articles is Jeffreys‟ prior 

(Jeffreys, 1961). 

Jeffreys’ prior:  

Jeffryes‟ prior is a form of reference prior, which offers an alternative way of prior 

computation that is invariant under transformation. The reference prior distribution 

of a real valued parameter that exhibit asymptotic normality in their posterior 

coincides with Jeffreys‟ prior. It is given by  

)()(  I , where  I  is the expected Fisher transformation in the 

model. 

   

















 


  xgEI x  log

2

2

 =  















 


 LEx  log

2

2

 

If we transform the unknown parameter   to    , then  

   








 











LxL loglog  

Jeffreys‟ prior is invariant to one to one transformation, 

i,e,       





d

d
II      

Hence, computing the Jeffreys‟ prior for   directly produces the same answer, 

instead in computing the Jeffreys‟ prior for   and subsequently performing the 

usual Jacobian transformation to the   scale. In the multi parameter case, the 

Jeffreys‟ prior is given by  

    I            and 
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Jeffreys has suggested that arbitrariness in the choice of parameters could have no 

difference in the result. Jeffreys priors are improper and non-informative, but the 

posterior distribution obtained using this priors are proper. 

Subjective Priors: 

The prior that is set up in the form of previous experimental data or expert 

knowledge is called a subjective prior. Such prior knowledge is described by an 

informative prior distribution, since it is based upon individual expose. Informative 

priors are the values of some parameters or the density of the parameters that follow. 

Informative priors are not dominated by likelihood and have an impact on the 

posterior distribution. The uses of informative priors can decrease the sample size in 

experiment and make ease the computation. Experiments conducted in abroad, old 

registries / records, experimental data on very similar products, and pilot studies are 

possible sources of such prior information.  The priors based on data from other 

studies are also known as Quantitative priors, which are easy to evaluate. The prior 

studies are expected to be similar to the current study in, as many as possible, the 

following aspects: procedure, parameters, objective, population, sites, and time-

frame.  There are some subjective believes, which are difficult to express in 

mathematical forms. In choosing a subjective prior, an analytical approach 

frequently used in the Bayesian inference is called the conjugate prior (Lee, 1997). 

Conjugate prior:  

For a family of distribution, a prior is said to be conjugate to the likelihood, if 

resulting posterior distribution is, as well, a family of that distribution. Suppose, the 

prior distribution is a member of distributional family D(); the likelihood or the 

distribution of experimental data f (y| ), and if the resulting posterior distribution 

)|( yf   is also a member of the same distributional family D(~ ), then the prior 

distribution is said to be a conjugate. 

     
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Definition: 

Let, the likelihood function is )|( xL   or simply )(L for experimental data, a 

class of prior distribution is said to from a conjugate family if the posterior 

density  

)(    )(     )(  Lxp    

is the class of   for all x whenever the prior density is  . 

To use conjugate prior, the prior is assumed as a member of some parametric family 

of distributions, and for the experimental data an appropriate member of the 

distributional family that resulting into posterior distribution of the family matching 

to prior distribution is identified. 

Bayesian analysis with conjugate prior distribution provides a simple convenient 

method for combining expert judgment with observation. Conjugate priors are used 

mostly for analytical tractability and for sequential use of previous posterior as the 

new prior to the next model (Bernardo and Smith 1994). The exponential families 

from which likelihood function of data have a conjugate is drawn. This approach is 

widely available in practice.                                                                                                                                  

Table 3.1 Some conjugate priors for common likelihood functions 

Likelihood (Family) Conjugate prior 

Binomial (n,)   Beta (a, b) 

Poisson ()   Gamma(, ) 

Normal (,2
), 2 

known   Normal (0,  0
2
) 

Normal (,2
),  

known 
  

1
2

 Gamma(0 , 0) 

Gamma (,),  known   Gamma(0 , 0) 

Beta (a, b), b known b  Gamma(0 , 0) 

Multinomial 

 unknown, V known 

 known, V unknown 

Dirichlet 

Multinomial Normal 

Inverse Dirichlet 
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Hierarchical Priors (Hyper-priors): 

A prior on the hyper-parameter is termed as hierarchical prior or hyper-prior. The 

Bayesian models with hierarchical priors can be expressed naturally using 

probabilistic model. Let,   be a random vector representing a parameter of 

interest, where,  n ,........,, 21 . If it is assumed that each  has been drawn 

from the same prior distribution, makes a logic in the Bayesian inference, then  is a 

hierarchical prior (Bernardo, 2003).   

Hierarchical parameters are useful, even, when applied only to single parameter 

often offering a more intuitive interpretation for the parameter‟s role. Hierarchical 

priors are often designed using conjugate prior both for analytical ease and in order 

that previous knowledge can be readily expressed. Hierarchical priors can be 

expressed naturally using probabilistic graphical model.  

Let, the prior density is in the form 

      














 dγp
K

k
k

pp   

1

 ,  

where,   represents the hyper-parameter, k is hyper-prior and  p  hierarchical 

prior.  

Each parameter k  is independent of given hyper-parameter, though they are 

dependent marginally. Empirical Bayes method refers the practice of optimizing 

hyper-parameter   of the priors so as to maximize the marginal likelihood of the 

set  xp , corresponding to the shape and scale of the prior. 
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3.2.7 Some useful Terminologies in Bayesian Analysis 

Kernel: 

Let, a function  Xg be a density function such that  Xg =  XkC  , for some C, 

which does not involve x, then  Xk  is said to be kernel of the function  Xg . The 

kernel of the conditional density function X given   is  ,Xk  if 

 Xg    XkθC  , for some  θC  which does not involve X. The purpose of 

 C  is to make the density function integrate to one. In deriving posterior density, 

by omitting the constants, the use of kernel makes computation much easier to 

follow. Direct computation is used if recognizing kernel is difficult. 

Sufficiency: 

An estimator is said to be sufficient for a parameter   when it contains all the 

information in the sample about the parameter. A sufficient estimator ensures that all 

information of sample can furnish with respect to the estimation of a parameter is 

being unlisted. If the likelihood function can be expressed as the product of two 

function such that one of them does not contain , then the estimator is said to be 

sufficient. 

Let ,x, , x xX n,....21  be a set of sample from family of distribution .:  G  

A statistics t(x)T   is sufficient for  or for the family of the distribution 

,:  G if and only if the conditional distribution X given t(x)T  does not 

depend on . 

Let, the likelihood function 

    



n

i
i ,θxgθL

1

  is possible to write in the form  

     ,...,.........,,;..........,........., 212121 nnn xxxL  tLxxxL      

where, the second function of the right hand side does not contain , then the 

estimator T = tn  is said to be sufficient for . T may be a real valued or a vector 

valued function. 
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In other form, if  

     txgtgxg      

then,  t is a sufficient statistics for  given x.   

The statistics )x(tt    is sufficient for  given x if there exist non-negative functions 

h and f such that the likelihood function may be factorized in the form 

     xfthxg   ,  .  

It follows that t is sufficient for  if and only if  

   tLxL     

whenever, )x(tt  and constant of proportionality does not depend on. 

In case of model fit in generalized exponential family, a sufficient statistics always 

exists (Lindley, 1970).     

The role of sufficiency is important in the Bayesian computation while conjugate 

prior distribution is used. If t is sufficient, the posterior distribution of  depends 

only on the data X through t(x), and may be directly computed in terms of  tp , so 

that, 

        θ pθt p  tθpxθp  .           

Maximum Likelihood Estimator: 

The maximum likelihood estimate (MLE) of the unknown parameter, ̂ , is the value 

of corresponding to the maximum of likelihood,  xl  , where x is a given vector 

of observation. MLE is the value of  that the „most likely‟ to produce the data x. 

The likelihood of  given x, denoted by  xl  , is equivalent to a function  xg . 

Some times, it is assumed that Bayesian analysis is natural extension of maximum 

likelihood (Carlin and Louis, 1996). Many of the desirable features of maximum 

likelihood are large sample properties, which Bayesian analysis is exact for small 

samples. In Bayesian analysis, the MLE is used as a point estimate. The mean of the 

posterior distribution is an estimator that, in classical terms, is equivalent to MLE. 
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The method of maximum likelihood is widely used for estimating and hypothesis 

testing. When the sample size is very large, the posterior distribution in Bayesian 

analysis will be concentrated around the MLE.  In case of large sample size and 

weak prior information, MLE can be used to approximate posterior mean. 

Exchangeability: 

Exchangeability is considered as a key idea in statistical inference, in general, but it 

is particularly important in the Bayesian approach. Two observations are 

exchangeable if they provide equivalent statistical information. Thus, two items 

randomly selected from a particular population can be considered exchangeable, if 

the items in a trial are exchangeable with the items in the population for which the 

device is intended. If the items are ready to act as exchangeable, then the trial can be 

used to make inferences about the entire population. Otherwise, the trial tells us very 

little about the larger population. The concept of a representative sample can thus be 

expressed in terms of exchangeability.  

Exchangeability may depend on the statistical model used. If for example, the 

undesirable event rate for a particular output depends on the any index then the 

outputs are exchangeable conditional on that index (Bernardo, 2003). That is, two 

items will provide equivalent statistical information, but only after, we account for 

differences in index. Therefore, any discussion of exchangeability should also 

include a discussion of the statistical models used.  

Exchangeability is also visualized in terms of trials. Two trials are exchangeable if 

they provide equivalent statistical information about some super-population. Again, 

the trials may be exchangeable, but only after the justification the other factors with 

the appropriate statistical model (ibid.).  

The use of Bayesian hierarchical models enables us to combine information from 

different sources that may be exchangeable on some levels but not on others. If trials 

are exchangeable, then Bayesian hierarchical models enable us to make full use of 

the information from all the trials (Bernardo & Smith 1994).  
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Predictive Distribution: 

The Bayesian approach is applied for the derivation of a special type of posterior 

probability; namely, the probability of future events given outcomes that have 

already been observed, called the predictive probability. The probability 

distributions for all possible values of future outcomes are called the predictive 

distribution. Predictive distributions have many uses such as: i) determining when to 

stop a trial, ii) helping a investigator make decisions by predicting the outcome, 

given the observed outcomes of past trial, iii) predicting an outcome from a 

validated substitute, iv) adjusting trial results for missing data and v) model 

checking (Lee, 1997).  

Predictive distribution is marginal likelihood for the next observation when posterior 

distribution is used to marginalize, elsewhere, . Let, Xx  xxxX in  },,,.........,{ 21  

be a set of exchangeable observation and it is desired to predict the value of a future 

observation Xxn 1 , generated by the same random mechanism that has generated 

the data; then   ;.,,.........11 nn xXxXxp  or simply  ,Xxp  is the predictive 

distribution describing uncertainty on the value that x will take, given the 

information provided by X and other knowledge  . 

 If   be a prior density on the value of  , the probability model (data) 

       xgXxg ,   

then, the predictive density of the future observation given the post observation is 

      


  dXpxgXxh     .  

Also,  

     






 dxp

n
xhx

n
xh     

1
 

1
  

is the predictive distribution for 1nx , which summarize the information concerning 

the new observation given the likelihood, the prior and the data. 
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Intrinsic Discrepancy: 

Intrinsic discrepancy is the very general measure of the divergence between the two 

probability distributions. It is practical to define the useful convergence property of 

the distributions. Intrinsic discrepancy is defined as the measures of fundamental 

inconsistency in between two model selected. In Bayesian analysis, the selection of 

model is considered as a creditable job as the selection of prior; and intrinsic 

discrepancy provides a measure the disagreement between the models (Bernando 

and Smith, 1994). A common measure of the intrinsic discrepancy between two 

density functions   xf1  and  xf2 for some data xX is defined as  

   
 
 
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  
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121 log,logmin,  

Let,      222111
  ,  and   ,   XhhXgg   

are two models given the family 1  and 2 respectively, then the intrinsic 

discrepancy between models hg  and    is given by                                 

       21

2211

,
,

min
, 


 xhxghg


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3.3 Computational Methods in Bayesian Paradigm 

3.3.1 Introduction 

Simulation is known as the technique to observing a real system in operation. It 

allows us to collect pertinent information about the behaviour of the system by 

exceeding a computerized method. Collected data are then used to design the system 

simulation. Simulation is not viewed only as an optimization procedure, rather, a 

technique for the estimation, and a measure of performance of the modelled system. 

The simulation methods, frequently used in Bayesian computations are Markov 

Chain Monte Carlo, Gibbs Sampler, Monte Carlo method, Kalman filter and 

Bootstrap and algorithms commonly used are Metropolis, and Metropolis-Hastings 

algorithms.  

3.3.2 Markov Chain Monte Carlo 

Markov Chain Monte Carlo (MCMC) is a general method for the simulation of 

stochastic processes. MCMC is a class of algorithm for sampling from probability 

distribution constructing Markov chain that has the desired distribution as its 

equilibrium distribution. Basic idea of Markov chain Monte Carlo is to construct a 

Markov chain that will converge to the target distribution, and draw samples from 

that chain. The simulated Markov chain is such, whose invariant state follows a 

given probability in a high dimensional state space. 

In MCMC method, samples are generated from posterior distribution to compute the 

desired estimates. MCMC method fits with the simulated annealing procedure and 

generates fair samples from probability. The generated samples are then used for 

system learning and verification, scientific computation and optimization, and 

Bayesian inference.  

The MCMC method developed all the way through Markov chain principle, Monte 

Carlo simulation, Metropolis algorithm, Metropolis-Hastings algorithm and Gibbs 

sampling. The essentials of the MCMC method are Metropolis, Metropolis-Hastings 

algorithms and Gibbs sampling. The most popular basic MCMC method is called 
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Gibbs sampling or successive substitution sampling. It is the easiest method for 

simulation and fundamental engine of the WinBUGS software. 

The foundation of the Markov chain Monte Carlo method is appeared in conjunction 

with the distinguished paper of Metropolis et al. (1953). In MCMC simulation, to 

draw the random samples from a specific probability distribution a Markov chain is 

designed whose long run equilibrium is that distribution. A computer language is 

written to simulate Markov chain and run it sufficiently enough to attain the 

approximate equilibrium. The state of the Markov chain is recorded and then an 

approximate draw from equilibrium is taken.  

Initially, Metropolis et al. (1953) used a symmetric Markov chain; later the 

developments by Hastings (1970) included an adaptation to the case of non-

symmetric Markov chains. The famous paper by Geman and Geman (1984) on 

image restoration and Gelfand and Smith (1990) on computation of marginal 

densities provided landmark to the statistics community showing that MCMC can be 

applied effectively to the Bayesian inferences. 

The MCMC using Metropolis-Hastings algorithm was commonly accepted as the 

general method for the simulation of stochastic processes having probability 

densities known up to a constant of proportionality (Geyer, 1992). In his article, 

Geyer proposed the way of estimating Monte Carlo error using standard non 

parametric method on one long run of the Markov chain. Chib and Greenberg (1995) 

provided a detail introductory exposition of the Metropolis- Hastings algorithm, a 

powerful Markov chain method to simulate multivariate distribution. They have 

proclaimed the Gibbs sampler as the special case of the Metropolis-Hastings 

algorithm (ibid.). Green (1995) worked on dimension varying problems and 

presented the use of reversible jump Markov chain Monte Carlo Method for the time 

series model. 

Chen and Shao (1998) developed an alternative simulation based Monte Carlo 

method for Bayesian analysis of constrained parameter problems to determine the 

properties of the desired posterior distribution and to solve the problems with 



37 

 

normalizing constants that naturally arises in hierarchical modelling. Chen and Shao 

(1999) described how to estimate credible and HPD intervals in Bayesian inference 

form the marginal densities using MCMC sampling algorithm. They also developed 

a method for HPD and credible interval estimation using importance sampling and 

used in Bayesian hierarchical model (ibid.).   

Liechty and Roberts (2001) developed MCMC methods for analyzing both Markov 

and non-Markov versions of continuous-time latent models or the state space models 

or the hidden Markov models.  

The Monte Carlo method of simulation and Metropolis-Hastings algorithm are 

found most attentively used for the Bayesian applications in Besag and Clifford 

(1989, 1991); Besag, York and Mollie (1991); Carlin and Gelfand (1991); Besag and 

Green (1993); Smith and Roberts (1993); Tierney (1994); Gilks, Richardson and 

Spiegelhalter (1996). 

The detailed discussion of the Gibbs sampler, MCMC and their applications in the 

Bayesian forecasting process are found in Gilks (1992), Gilks and Wild (1992), 

York (1992),  Casella and George (1992), Fishman (1995), Cowles and Carlin 

(1996), Carlin (1996), Tanner (1996), Gammerman (1997),  Drapper (2000), Robert 

and Casella (2004), Berg (2004). 

3.3.3 Monte Carlo Method 

Monte Carlo method is recognized as a method of statistical trials. It is based on 

simulating statistical experiments by means of computational techniques and 

recording numerical characteristics obtained from these experiments. It is used to 

find the simple way of higher integration concerning the marginal and joint 

distribution. Monte Carlo simulation refers to the use of random sample to estimate 

the output of an experiment. The error in this method is estimated by finding the 

standard deviation of the quantities being simulated. Monte Carlo method is 

regarded as the ancestor to the present day simulation. 
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Initially, the Monte Carlo Method was introduced by Metropolis and Ulam (1949) 

dealing with a class of problems in mathematical physics. They proposed it as a 

statistical approach to the study of the integro-differential equation. The 

mathematical description given for this method was the study of a flow, which 

consists of deterministic and stochastic processes. 

Metropolis et al. (1953) proposed a method of sampling (calculations) by fact 

computing machines used extensively for numerical problems in statistical 

mechanics. Hammersley and Handscomb (1964) presented the use of the proposed 

Metropolis method in statistical mechanics.  Hastings (1970) generalized the 

sampling method introduced by Metropolis et al. (1953), with an exposition of the 

relevant theory, techniques of application and Monte Carlo error estimation. Using 

Monte Carlo method, Shao (1989) studied the approximation of the Bayesian action 

and its posterior expected loss. He proposed two accuracy measures of the Monte 

Carlo approximation. 

Modern Monte Carlo method is the sampling scheme for distributions with large 

state spaces known up to a multiplicative constant. The theoretical overview of the 

method of Monte Carlo simulation is given in the Appendix C-1. Modern Monte 

Carlo method has two approaches:  Importance sampling and Gibbs sampling. 

 

3.3.4 Importance Sampling 

Importance Sampling is a general scheme for sampling from complex distributions. 

It is simple method for sampling from posterior distributions in some cases. It can be 

more efficient than simple Monte Carlo, particularly for tail probabilities. 

Importance sampling also provides a solution to the question of how one can update 

beliefs as data in particle filtering (Griffiths, Tenenbaum & Kemp 2008). 

Importance sampling is a perfect sampling in the context of Monte Carlo Sampling. 

Monte Carlo importance sampling has contributed to extending the Bayesian 

computational toolkit (Gelman & Rubin, 1992). The significance and method of 
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effective use of importance sampling is found in Owen and Zhou (2000). The 

method of importance sampling is given in the Appendix C-2. 

3.3.5 Gibbs Sampling  

Gibbs sampling is an algorithm to generate a sequence of samples from the joint 

probability distribution of two or more random variables. Such a sequence of 

samples is used to approximate the joint distribution or to compute complex integral. 

Gibbs sampling is a special case of Metropolis-Hasting algorithm, and thus an 

example of Markov chain Monte Carlo algorithm. The algorithm is named after the 

physicist J. W. Gibbs, in reference to an analogy between the sampling algorithm 

and statistical physics. The algorithm was formulated by Geman and Geman (1984), 

and called the Gibbs sampler.  

The roots of Gibbs sampler found in Metropolis et al. (1953), further developed by 

Hastings (1970). The Gibbs sampling is a Markovian updating scheme. Geman and 

Geman (1984) developed a systematic form of application of it. It is originally 

introduced in the context of image processing. With the paper of Geman and 

Geman(1984), Gibbs sampler started to gain popularity. By revealing its potentiality 

in wide variety of conventional statistical problem, Gelfand and Smith (1990) 

generated new interest in the Gibbs Sampler. They demonstrated its applicability to 

complex statistical modelling. 

Gilks et al. (1989) suggested its applications in Bayesian cluster analysis. Mack et 

al. (1990) used it for genetic linkage analysis.  Carlin, Gelfand and Smith (1991) 

appreciated it for change-point problems. Schervish and Carlin (1992) explored in 

detail the general convergence conditions needed for the Gibbs sampler and other 

algorithms and Roberts and Polson (1990) discussed the rates of convergence. 

Carlin, Polson and Stoffer (1992) applied it for model selection from non-normal 

scale mixture densities and non-linear state space modelling. 

The application of Gibbs sampling is found simple for fully-conjugate Bayesian 

models. Gelfand et al. (1990) illustrated its use in missing data, ordered means and 
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growth curve models, and Gelfand and Smith (1990) for hierarchical models, 

variance components and errors in variables. 

For the non-conjugate models, computational difficulties are found while using 

Gibbs sampler. For the estimation of generalized linear models with random effects, 

Zeger and Karim (1991) dealt with non-conjugacy by rejection sampling from a 

normal envelope centred at the mode of the sampling density.  

With many examples, Tanner (1991) presented the application of the Gibbs sampler 

in classical statistical inference. Gelfand, Smith and Lee (1992) illustrated the use of 

the Gibbs sampler for the complicated statistical calculation having impact on 

theory. Casella and George (1992) explained the computer-intensive algorithms of 

Gibbs sampler for simple and complicated cases, with examples, analytically. 

Gilks and Wild (1992) proposed adaptive rejection sampling, a method for rejection 

sampling from any univariate log-concave  probability density function, applying  to 

a Gibbs sampling analysis of monoclonal antibody reactivity. This technique was 

preferred to use in particular for application of Gibbs sampling to Bayesian models 

with non-conjugacy. 

Gelman and Rubin (1992) showed the iterative simulation methods like the Gibbs 

sampler and the Metropolis algorithm potentially helpful for the summarizing 

multivariate distributions.  They focused these methods for the application in 

inference of the Bayesian posterior distributions in real problems. They derived their 

results as normal theory approximation and illustrated on a random effects mixture 

model for clinical data. 

Thomas et al. (1992) initiated a program to perform Bayesian inference using Gibbs 

sampling called BUGS. Smith and Roberts (1993) reviewed the use of the Gibbs 

sampler for Bayesian computation and described the application of MCMC 

simulation methods in the sample-based approaches for the Bayesian inference.  

Tierney (1994) outlined the practical use of Markov chain methods in simulation 

methodology, especially for Gibbs samples and Metropolis algorithm, for the 
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variance reduction techniques, for the guidelines on the choice of sample size and 

allocation and in exploring posterior distribution. The method of Gibbs Sampling 

(briefly) is given in the Appendix C-3. 

3.3.6 The Metropolis Algorithm (MA) 

The Metropolis algorithm is an algorithm for the simulation by means of generating 

Markov chain. It creates a random walk in the space of , which converges to a 

target distribution. Given a target distribution, the Markov process converges to a 

stationary distribution p(x) that can be computed up to a normalizing constant.  

MA simulates a sequence of random points 1
, 2

, …….. ; whose distribution 

converges to the target distribution. Each sequence is considered a random walk 

whose stationary distribution is p(x). The expression of the Metropolis algorithm is 

given in the Appendix C-4. 

3.3.7 The Metropolis-Hastings Algorithm (MHA) 

The Metropolis-Hasting algorithm was widely used in physics and image restoration 

for the integration of complex function by random sampling. Its use in Statistics is 

exposed in 90‟s (Chib and Greenberg, 1995). Suppose,    has the density 

p(),we are interested to draw samples from the true joint posterior density p(|x)for 

parameter  . It is useful to construct Markov chain for the sample points with some 

state space and equilibrium distribution p(). Metropolis–Hasting algorithm 

constructs the transition probability from  t  to the next realized state 1t . 

Let, kgxp /)()|(   , where normalizing constant k may be known difficult to 

compute. The Metropolis algorithm generates a sequence of draws from distribution. 

In MA the simulated sequence ,........, 21   is a Markov chain with a unique 

distribution and the target distribution is equal to the stationary distribution (Chib 

and Greenberg, 1995). MHA generalizes MA and the jumping distribution need to 

be symmetric. For the correction a changed importance ratio is computed. The 

expression for the Metropolis-Hastings Algorithm is given in the Appendix C-5.  
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3.3.8 Computer Programs used for Analysis 

First Bayes: 

First Bayes is a simple program intended to help the beginners with teaching and 

learning elementary Bayesian Statistics.  It deals with quite simple and standard 

statistical models, with an emphasis on obtaining some understanding of how the 

Bayesian approach works.  It is not a package for doing serious statistical analysis of 

practical data. Tony O'Hagan is the author of it and it might be freely copied and 

distributed. It can be freely downloaded from http://www.shef.ac.uk/~st1ao/. First 

Bayes has its own website http://www.firstbayes.co.uk/, where all shorts of 

information about it are given. 

WinBUGS: 

WinBUGS, the acronym of the Widows version of Bayesian Analysis Using Gibbs 

Sampling, is a powerful computer package for carrying out MCMC computations. It 

is computing–language oriented software compatible with windows, in which the 

users only need to specify the structure of the model. WinBUGS uses the MCMC 

methods to generate samples from posterior distribution of the specified model. The 

development of WinBUGS had proved valuable for the implementation of Bayesian 

models in a wide variety of scientific discipline and it has become key factor in the 

growing popularity of Bayesian methods in science (Ntzoufras, 2009). It is in 

widespread use for serious Bayesian analysis and has been a major contributory 

factor to the growth of Bayesian applications (O‟Hagan, 2003). It can be freely 

downloaded from http://www.mrc-bsu.cam.ac.uk/bugs/ . 
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Chapter IV 

Methodology 

 

4.1 Bayesian Inference 

4.1.1    Preliminaries  

Statistical procedure are found to be used, generally, either to assist in infer some 

causal system or to reach effective decision. In inference, the processes are dealt for 

finding an approximate value of population parameter and testing hypothesis 

regarding the parameter observing random samples. In decision process, the 

appropriate course of action is selected, which has minimum loss or the risk in the 

preference selection.  

In quality control problems, the parameter of interest is often estimated as the 

process of drawing conclusions. Though, the accuracy of any particular 

approximation is not known precisely, probabilistic statements are constructed 

concerning the accuracy of such numbers as found over many experiments. 

In Bayesian data analysis and estimation methods, all the uncertain quantities are 

modelled in terms of their joint probability distribution. The key principle is found 

to be used to construct the joint posterior distribution for all the unknown quantities 

in a model given the data (sample). In parametric models, the posterior distribution 

contains all the relevant information on the parameters to be estimated. For the 

Bayesian inference procedures, Bayesian methods of point estimation, interval 

estimation and significance testing are found to be used. For the Bayesian decision 

theory Bayesian advancement in the use of utility function is found to be applied. 

In this chapter, some selected estimation procedures and testing techniques have 

been presented for drawing inference regarding the parameter of interest. 

Discussions have been made about how forecast is done on the predictive 

distribution and how the predictive distribution is used for model checking purpose. 
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4.1.2 Bayesian Estimation 

The statistical estimation procedure to Bayesian approach is such prime approach of 

inference, which incorporates reasonable expectations or prior judgments. The 

central idea of Bayesian estimation is to update prior information on the distribution 

of parameters by taking measured data into account. Bayesian estimation fully 

depends on the posterior distribution of the parameter of interest. Bernardo (2003) 

stated that the final outcome of a problem of inference about any unknown quantity 

is nothing but the corresponding posterior distribution. 

In most of the problems, a dilemma with Bayesian estimation is the computationally 

complicated form of the posterior distribution. The most complicated cases are 

parameterization, the probability distribution of the parameters and the conditional 

probability distribution of the measurements for given parameter values.  For the 

computational simplicity, MCMC method is used for generating sample from the 

posterior distribution to compute the desired estimates (Birkes and Dodge, 1993).  

Method of Bayesian Estimation: 

Given a random variable X with the probability density of the form  ,Xf , where 

  is an element of well-defined set, having nxxx ,,........., 21  a set of possible values 

of X and ,......)2,1(, ii , the possible values of .  

We assume, X have been generated by a conditional probability model  |Xf and 

the probability of the unknown but observable and random i  as .)p(θi   

The joint pdf of X and  is  

       θ|xf........θ|xfθ|xfθ;x,......,x,xg n21n21  . 

The joint marginal pdf of  given nXXX ,.....,, 21  is 

    


d  ;x,......,x,xgx,.....,x,xg n21n211  ;  and 

The conditional pdf of   given  nn2211 xX,........,xX,xX   is 

         
 
 n211

n21
n21

x,........,x,xg

;x,.......,x,xg
x,......,x,x|p


     

     
  





d  ;x,......,x,xg

|xf..........|xf|xf

n21

n21


 . 
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Use of Utility Function in Bayesian Estimation:    

In decision making, an unknown quantity  , subset of parameter space , is 

assumed as the states of nature, which affects the decision process. A function based 

on probability, called a utility function, is used to describe decision maker‟s 

preferences in decision making process. It is expected in maximizing the expected 

utility.  Another function, called loss function in the decision making process, is 

opposite of the utility function, which is desired to minimize statistically. In 

Bayesian decision procedure, sample information, prior information and the utility 

functions are commonly used for the decision.  

Let, „a’ be an action or a particular decision and „A’ the set of all possible actions. If, 

 turns out to be true the states of nature for the particular action a, then loss 

function ),( al   is sustained. The utility function is given by 

),(),( alaU    

The most widely used family of loss function is of the form 

 bacal ||),(   ,    where, 0, cb . 

When b =1, the loss function is proportional to the absolute error loss (AEL) and 

when b =2, it is proportional to squared error loss (SEL). Both of these loss 

functions increase as the distance between  and a increases. For large gap between 

 and a , square error loss gives more penalty relatively the absolute error loss. The 

decision rule is to know what function )(xa  is taken when nn xX   is observed, 

given that, for all possible set of decision rules, D: D  and  : .  

The quality of a decision rule is measured by the risk function known as expected 

loss, 

     


 dx)|x(f)x(,L)x(,LE),(R . 

For the prior distribution )( n and the observed value nn xX  , the method to order 

the possible decision rules, Bayes‟ risk is given by 

 nnnn dRREB   )(),()],([),( 


  
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Suppose, a decision rule   (called the Bayes‟ rule) which minimizes the Bayes‟ 

Risk with respect to the given prior is 

 ),(
inf

),( 


 B
D

B


  

For absolute error loss  

)]|([ xmedian    , i.e. ,m  

where m is such number which satisfies 





m

nnn dx
2

1
)|(  . 

For squared error loss, )|( xE    . It is convenient to use square error loss, 

because of its closed form and suitability of numerical computation (Ferguson, 

1973). 

Point Estimation: 

In the Bayesian inference, the process of point estimation is also treated as decision 

problem. A point estimate of   is some function,  X ˆ , which is assumed to be 

an appropriate value for unknown  . Estimation of   is a decision problem, and to 

solve this, a loss function )ˆ,( l is specified according to decision theory. The 

common choice for loss function called square loss, is given by )ˆ,( l  = 2)ˆ(   . 

The expected posterior loss function, if ̂  is estimated value of  , is a risk function  

associated with conjunction to ̂  is given by ),()]ˆ,([  RlE  .  

So,    XllER |ˆ)]ˆ,([),(    

              d |  ˆ,  Xpl


 ,  where,  Xp |  is posterior 

density of  given data X. 

The corresponding Bayes estimator *  is that function of data which minimizes risk   

function, such that ]|[)(** XEX   . 
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If the loss function )ˆ,( l is the square error loss, 2)ˆ(   , then the Bayes estimator 

(BE) of  , say ̂ , is the mean of the posterior density for   (Robert, 2004). For the 

large sample size, BE for parameter and Maximum Likelihood Estimator (MLE) of 

the same parameter are nearly equivalent. If sample results are inconsistent with 

prior, the BE may be considerably different from MLE. The precision function of a 

Bayesian approach is the multiplicative inverse of the posterior variance. The 

standard error (SE) of the estimator ̂  of   is the just standard deviation of ̂  , 

)ˆ( V . The precision of the estimator is considered more if the SE is the less. 

For the Bayesian estimation, the full estimator is the entire posterior density itself. 

The following are some point estimators based on the method of maximum 

likelihood related to posterior density. 

Mode of the distribution given posterior: )]|(max[ˆ Xp    

Expected value of   given posterior: 


  dXpXE   )|()|(ˆ  

Median of the posterior distribution: the point candidate is the median of the 

posterior distribution, where the estimator satisfies  

5.0)|ˆPr()|ˆPr(  xx   and hence, 














ˆ

ˆ

0.5  d  )|(  )|( xpdxp .  

Bayesian Interval Estimation: 

By Interval estimation of an unknown parameter  in the Bayesian viewpoint, mean 

to construct an interval that contains )%1(100   of the posterior probability for . 

The Bayesian interval estimation is also termed as Bayesian Confidence interval 

(Lindley, 1965) or Credible set (Edward et. al. 1963). Bayesian interpretation of a 

credible set C is natural; the probability of a parameter belonging to the set C is 1-. 

A formal definition is given below. 
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Definition: 

Assume, the set C is a subset of , then C is credible set with credibility (1-)100% 

if 

 
C

dxCIEC   1)|()()(P X|X|  

If the posterior is discrete, then the integral becomes sum (counting measure) and 





C

iX

i

xCP


  1)|()(| . 

This is the definition of (1- )100% credible set, and of course for a given posterior 

function such set is not unique. 

Highest Probability Density (HPD) Region: 

For a given credibility level (1-)100%, the shortest credible set /region is of 

interest. For minimized size of the region, it should correspond to the highest 

posterior probability (density) area.  

Definition:  

The (1 -)100% HPD credible set for parameter  is a set C, subset of  of the form 

)}(k)x|(|{C   , 

where k() is the largest constant for which 

  1)(| CP X . 

Geometrically, if the posterior density is cut by a horizontal line at the height k(), 

the set C is projection on the  axis of the part of line inside the density, i.e., the part 

that lies below the density. 

The HPD set C minimizes the size among all sets D for which  

   1)(| DP X  

Highest Probability Density (HPD) region is the minimum sized credible region 

where all the points in the region have larger probability density than all points 

outside. HPD regions are not invariant under re-parameterization (Bernardo, 2003). 

The method of intrinsic estimation and intrinsic credible region given by Bernardo 

(2003) are given in the Appendix C-6.  
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4.1.3 Hypothesis Testing and Bayes Factor 

Hypothesis Testing: 

In Bayesian approach, strictly speaking, hypothesis-testing procedure is not found to 

be applied in rigid accept/reject fashion. The posterior distributions are summarized 

for all parameters of interest to draw inferences. The probabilities of regions in the 

parameter space with respect to prior and posterior measures are evaluated and 

models are selected and compared.  

In statistical process control, it is expected to detect drifts of the parameter of 

interest when process sifts to out of control situation from in control situation. For 

the adjustment, a corrective action is made and the hypothesis 1H against 0H is 

tested, such that:  

 ],[:0 baH   

 ],[:1 baH   

In case, when 0H is not rejected the process continues to operate and if 0H   is 

rejected some action is taken. 

In Bayesian framework, the hypothesis testing is performed using the posterior 

distribution of nn X| . If the data nX  is available and c is pre-specified cut-off 

value, the posterior probability )|],[( nnn XbaPP   is calculated and the null 

hypothesis is accepted, if cPn   , otherwise rejected. 

Bayes Factor:  

The posterior distribution )|( xp   of the quantity of interest,  , conveys a full 

information on   (Lee, 1997). In Bayesian approach, the testing of the models under 

null and alternative hypothesis is done by using Bayes factor. Bayes factor is used as 

the correct way to carry out model comparison. It is the ratio of the prior predictive 

densities to under the compared model (Kass and Raftery, 1995). 

Assuming that a simple null hypothesis 00 :H   against the alternative 

hypothesis 11 :H   , then,    and   1010    obviously. 

Thus, 1)()( 10  HpHp . 



50 

 

In Bayesian framework 

 

  dxxp

dxp

  |)Pr(

    and      |)Pr(

1

0

0

110

0



















 

Let 10    and   pp denote the posterior probability that   is in the null and the 

alternative hypothesis sets, 

)|Pr( 

   and   )|Pr( 

11

00

xp

xp








  

for prior probabilities )Pr( 00   and )Pr( 11   . 

The prior odds of H0 verses H1 are 10 /  and the posterior odds are 10 / pp  

The ratio of posterior odds to the prior odds in favour H0 verses H1 is known as 

Bayes Factor (B0). 

1

1

0

0

10

10
0

p
   

/

/

p

pp
B




  

Since, 1       1 1010  andpp   

)1(

)1(p

00

00
0

p
B








  

The decision rule is to accept H0, if the Bayes factor is greater than 1. 

The Bayes factor B1 in favour of H1 verses H0 is the multiplicative inverse of B0, 

01 B/1B  .  

Bayes factors are used as the correct way to carry out model comparison. The 

important theorems related to Bayes factor are given in the Appendix C-7. 
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4.2 Bayesian Modelling  

4.2.1 Introduction to Statistical Models  

In statistical procedures, a series of decisions is summarized to take actions on the 

results of inferences of quantities what we expect to observe. There exists high 

degree of uncertainty because of wide range of variability. Uncertainty under 

consideration is dealt comfortably by the modelling approach. It is essential to 

construct parametric models for represent or for sufficiently approximate the true 

generating mechanism of a phenomenon under study. 

Models are the designed statements to predicting future events, capturing 

summarized trends and regularities in the observed data. A statistical model is 

considered as a collection of probabilistic statements that describes and interprets 

present behaviour or predicts future performance. Statistical models are cheaply 

used to describe real life problems under uncertainty (Ntzoufras, 2009). It consist of 

three components: the response variable Y, the explanatory variables X1, X2, ......., Xp, 

and a linking mechanism between the two sets of variables. The response variable Y 

is a stochastic part of the model because the outcome is uncertain before it is 

observed. The procedure is concentrated to a certain outcomes of Y and predicts a 

future outcome of Y. Since, Y is a stochastic variable, so,  

(Y| X1, X2, … … …, Xp) ~ D(), where D() is a distribution with parameter . 

The advantage of the models is that they impose to arrange and organize all 

information available in a logical way, which helps to define precisely the problem 

under study and facilitates exchange of knowledge. Models may be used for 

prediction when verified and validated, which may require data from both 

observation and experiments. 

To describe significant dependencies among variables dependency modelling is 

used, whereas, to describe the causal relations between determinant factors and 

performance measures causation models are used (Fayyad, Piatetsky and Smyth, 

1996). Probabilistic models require extensive datasets. Therefore, the strength of 

Bayesian approach is that they can make use of information that might not pertain 
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exactly to the issue at hand. The information can be weighted according to relevance 

or quality, and sensitivity analysis can be used to assess the priority to be given to 

collecting more directly relevant data. Bayesian variants of Monte Carlo integration 

procedures have been devised to address these objections using Gaussian process 

models (O‟Hagan, 1995; Rasmussen and Ghahramani, 2003). 

 

4.2.2 Modelling in Bayesian Paradigm 

If the underlying processes are not enough understood, models are designed based 

only on the observed data. Instead, models are constructed with existing expertise, 

by beginning with a flexible model specified by a set of parameters, and combined it 

with the statistical model of the generated data set. The former is the modelling 

technique in standard classical approach and the latter is the Bayesian modelling 

approach. Bayesian modelling is the method of parametric modelling of data with 

prior information. 

Let y be a random variable called response variable, which follows a probabilistic 

rule with density or probability function )|( yf  , where  is the parameter vector. 

If, the iid sample of size „n‟ of variable  ], …….,y, yyy= T
n21[ , then the joint 

distribution  

 



n

i
iyfyf

1

)|()|(   

is called the likelihood of the model and contains the available information provided 

by the observed sample. 

Usually, models are constructed in order to asses or interpret causal relationship 

between the response variable Y  and various characteristics expressed as a 

variable jX j , , called explanatory variables; j indicates a model term (or 

covariate) and , the set of all terms under consideration.  The explanatory variable 

is linked with the response variable via a deterministic function and a part of the 

original parameter vectors is substituted by an alternative set of the parameters 
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(denoted by  ) that usually summarizes the effect of each covariate on the response 

variable. 

In a Bayesian model selection task, the posterior distribution is obtained over a set of 

models given some a priori knowledge and some new observations (data). The 

knowledge is represented in the form of a prior over model structures P(M), and 

their parameters P(|M), which define the probabilistic dependencies between the 

variables in the model (Beal, 2003). 

By Bayes‟ rule, the posterior over models M observing data y is given by: 

)(

)|(  )(
)|(

yP

MyPMP
yMP   

The term )|( MyP  in the numerator is the marginal likelihood or evidence for a 

model M, which integrates over model parameters, and is the key quantity for 

Bayesian model selection. Also, 

  dMyPMPMyP  ),|(  )|()|(  

For model structure, the posterior distribution is computed over parameters as:

 
)|(

),|()|(
),|(

MyP

MyPMP
MyP


   

The predictive density of a new response y given the responses y = {y1, y2,……, yn}  

is obtained as 

    dMyyPMyPMyyP ),,|(),|(),|(  , or simply 

    dMyPMyPMyyP ),|(),|(),|(  

If y is conditionally independent of y|, posterior distribution of  x associated with 

the new response value y is obtained as 

    dMyxPMyPMyyxP ),|,(),|(),,|(  

The process of assembling information into a Bayesian model is a multi-stage one, 

using data and information of many types. It is important to note that, even though 

these models provide a structure into which the available data can be incorporated 
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and use expert opinion; where there are no data, this does not mean that the models 

are a substitute for experimental data. The greatest advantage of Bayesian models is 

that they can be used to facilitate decision analysis despite inadequate data; this is 

especially important as some types of data are not likely to be readily collected at all 

(ibid.). 

 

4.2.3  Graphical Models  

Graphical models are an intuitive tool for visualising conditional independency 

relationships between variables. A graphical model expresses a family of probability 

distributions on sets of variables in a model. Graphical models provide a backbone 

upon which it has been possible to derive efficient message-propagating algorithms 

for conditioning and marginalising variables in the model given observation (data), 

(Heckerman, 1996; Cowell et al., 1999; Jordan and Weiss, 2002). 

Each arc between two nodes in the graphical model represents a probabilistic 

connection between two variables. The terms „node‟ and „variable‟ are used 

interchangeably. Depending on the pattern of arcs in the graph and their type, 

different independence relations can be represented between variables. The pattern 

of arcs is commonly referred to as the structure of the model. 

The graphical model specification can be done via directed acyclic graphs (DAG) 

from the doodle menu of WinBUGS. To construct DAG from model, specification 

of the nodes is needed to represent the variables of the model and the edges to 

represent dependencies between the variables induced by the model. Node and 

variables are depicted by rectangular or oval boxes depending on their type, while 

edges are depicted using unidirectional arrows (Ntzoufras, 2009). 
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4.2.4 Normal Regression Model 

Normal regression models are most accepted models, in which the response variable 

Y is considered to be a continuous random variable distributed with the normal 

distribution with the parameters  (mean) and 
2
 (variance). The normal regression 

model is summarized as: 

  2
p21p21    ),X,.........X,X,( N~X,,.........X,X|Y   

with,  


p

1j
jj0p21 X)X,,.........X,X,(    

where, 2T
p10   and)..,,.........,(   are the regression parameters. 

An alternative formulation of the regression model is, representing response variable 

directly as a function of the explanatory variable plus a random normal error with 

mean 0 and variance 
2
 . 

 ),0(N~                ;   X..........XY
2

pp110   . 

Likelihood Specification in Normal Regression Model: 

To simplify computational notation, we denote the response variable given 

explanatory variable   p21 X.,,.........X,X|Y  simply by Y, and the expected value 

E(Y|X1, X2, ……,Xp) by E(Y) or . 

Let, ipii xxx ,,........., 21  be the values of the explanatory variable X1, X2,…..,Xp and 

with a sample size n corresponding response values T
nyyyy ),........,,( 21  for 

individuals   n,… 2, 1,=i ; then the model is expressed as  

  2,~ ii NY  

 ippii xx   ...............110    for i = 1, 2, ……,n. 

Independent Prior Specification:  

The basic way of assuming a priori regarding the parameters in the normal 

regression model is the use of independent distributions. 
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      2

0

2,  fff
p

j
j



  

  2
,~ jj j

N       for, j =0,1,……,p 

 )( gamma ~2 a, binv  

Most of the computational software for Bayesian analysis prefer to use precision () 

instead of variance 
2
. So, the specification is expressed as 

      fff
p

j
j




0

,  

and ),(~ bagamma  

Conjugate Prior specification: 

The normal distribution is assigned as conjugate prior for the |2 
and an

 
inverse 

gamma distribution for 
2 

for the normal regression model. The priori for the joint 

distribution of ],[ 2   follows normal-inverse gamma distribution. It is symbolized 

as 

  22
p

2 Vc  ,N~|     and   baIG ,~2  

where,  1T )XX(V   and  

c
2 

is a parameter controlling overall magnitude of the prior variance (Zellner 1986);  

the default choice of c
2 

= n (Kass and Washerman, 1995). 

 

4.2.5 Random Effect Model 

If Yij is the response variable for the jth individual of the ith goup,  is the general 

mean, ai is the effect of response variable when observed in the group i, then the 

model equation for Yij is 

ijiijY    Ninj i .,,.........2,1           ;...,,.........2,1   

Or, ijiiij aY    

where, ij is the residual and ai is the random variable, so the model is said to be 

random effect model. 
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In classical approach the model is written as,  

 ia are iid and  2
,0~ ai Na   and 

 ij are iid and  2
,0~  Nij   

where, the random variables ia and ij  are mutually independent. 

In Bayesian paradigm, the model is summarised as: 

 22
,~,|   iiij aNaY  

 22
,~,| aai Na   

The priors of the parameters 
22

   and      , a   are assumed as: 

 2
00 ,~  N  

 112
,~

1




agamma  

 222
,~

1



agamma

a

 

If we consider the following non-informative priors 

   1  

  
2

2 1





   

  
2

2 1

a

a


   

then, we have the classical random effect model. 

If we consider, 

  2  ,~ ijij NY  

 iij a   

 1)( ia ,  1)(   

 
2

2 1





  , 

then, we have the classical fixed effect model 
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4. 2.6 Generalized Linear Model 

Generalized Linear Model (GLM) is a wide class of model used for analysis of both 

quantitative and qualitative response variable (McCullagh & Nelder 1989). The 

GLM can be used to relate a discrete random variable to two continuous predictor 

variables and one categorical predictor variable (Richardson and Best, 2003). 

GLMs are regarded as the natural extension of the normal linear regression model. 

They are based on exponential family of distribution, which include the common 

distributions such as normal, binomial and Poisson. In many applications, in which 

response variable has a non normal distribution rather it is used to knowing how 

common probability functions can be expressed in exponential family form 

(Ntzoufras, 2009). 

The stochastic component of this model consists of response variable ).(~ DYi  

The systematic component is the function of the explanatory variables. The linear 

combination of the explanatory variables is used in GLM, so it is called a linear 

predictor. The linear function g() is the mathematical expression which connects 

the parameter of the response variable Y with linear predictor and the covariates. A 

location parameter is linked with the linear predictor. GLM is summarized in terms 

of stochastic component as: 

  ()(),(),,,  exp~ cbafY ii   

 ()(),(),,,  exp~ cbafY ii  denotes the exponential family with location parameter 

i , scale parameter   and ()(),(), cba are the functions needed to specify the 

structure of the specific distribution (Ntzoufras, 2009).  

Where, the systematic component j

n

1j
ij0ii xX  



 

a canonical distribution parameter  )(R ii    

a link function    iii
1

i )(g)(Rg)(g    
   and 

the model parameters    TT  ,m  . 
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4.2.7 Bayesian Models with Hierarchical Priors 

Naturally, Bayesian models are hierarchical in nature. The name hierarchical model 

derives from the hierarchy in which observations and parameters are structured. 

Bayesian hierarchical modelling is the methodology to combine prior results with a 

current study to obtain estimates of the parameters. This approach is known as the 

approach of borrowing strengths from other studies (FDA, 2006). 

If knowledge is insufficient to specify the parameters of interest, the Bayesian model 

with more than two levels is used, which is known as Bayesian hierarchical 

modelling. In Bayesian hierarchical modelling, the prior distribution )|( af   of a 

model parameter   with prior parameter a can be considered one level hierarchy. 

The likelihood as the final stage of Bayesian model is the final stage of the hierarchy 

(Ntzoufras, 2009). In some structures, the priors frequently use a series of 

conditional distribution called hierarchical stages of prior distribution. 

The posterior distribution is written as: 

       bafafyfyf ,   ,  ||    

       bafafyf |  |  |   

The prior distribution is characterized by two levels of hierarchy, )|( a  as the first 

level and )|( baf as the second level. The prior of the upper level of hierarchy is 

called the hyper-prior and its parameter as the hyper-parameter. In above 

hierarchical priors, )|( baf  is the hyper prior and b is the hyper parameter of the 

prior a. George et al. (1996) discussed Bayesian analysis of hierarchical models 

where the conjugate prior is adopted at first level.  

The following is an example of the hierarchical model, 

ijiij aY    

where, model effect ai are iid and  2
ai    ,0N~a   and  2

ij   ,0N~   

The above model can be alternatively written as:  2
ijij   ,N~Y    

with    iij a   and  2
ai   ,0N~a     i=1,2,…..,n and  j=1,2,…..m 

An example of Hierarchical modelling is given in the Appendix C-8.  
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4.2.8 Model Checking in Bayesian Paradigm 

There are several ways of checking model fit in Bayesian paradigm. Simply, the 

prediction within Bayesian framework is done with predictive distribution. The 

posterior predictive distributions are used for model evaluation and checking. For 

the model checking, chiefly, the following ways are adopted (Ntzoufras, 2009). 

i) Comparison of actual and predictive frequencies  for discrete data  

ii) Comparison of cumulative frequencies for actual and predictive values for 

continuous data  

iii) Comparison of ordered predictive and actual values for continuous data 

iv) Checking individual observation using residual 

v) Checking the goodness of fit for model 

Using WinBUGS software, the model checking is done with the computation of 

marginal likelihood. The evaluation of the model is done using posterior densities 

and the following methods. 

i) Posterior Bayes factor 

ii) BIC (Bayesian Information Criteria) 

iii) AIC (Akaike Information Criteria) 

iv) DIC (Deviance Information Criteria) 
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Chapter V 

An Application of Bayesian Method in Estimating the Weights of 

Packaged Food 

5.1 Introduction 

The processed dairy product, ghee, is filled in pouch (packet) using a very precise 

computer controlled machine.  The pouches are generally filled in with liquid ghee 

in a litre or a half litre pouch, using computerised filling machine. The weight of 

pouch is the consumer’s primary interest for the quality assurance and to measure 

consistency of the producer’s claim. The focus of this study is on drawing inference 

about the weight of pouched ghee, regarding the weights of 1 litre pouches. The 

details of the study using Bayesian method for predicting the mean weight of 

pouched ghee of a lot having known process variability is given in Khatiwada and 

Sthapit (2008).  

5.2  Model  

The distribution of the characteristics being measured is assumed to be distributed 

normally because of the well-mechanised production system and producing batches 

of thousand items. Let, X  be the weight of ghee in a packet, xij denotes the weight of 

j
th

 packet of i
th

 sample from a lot of size N; (i =1,2,……n) (j =1,2,……..ki). The total 

number of samples observed is ‘n’. The parameter of interest is mean weight () of 

the pouches. 

The Gaussian distribution is the model assumption for the data (X) with the 

parameters   and , specifically, 

 2   σθ,X~N   (5.1) 

 and  are the process mean and standard deviation.  The distribution of X for given  

 is the likelihood of . 

Also, the assumption for the prior distribution of  is Gaussian with mean 0 and 

standard deviation 0,i.e., 
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 2

00    σ,θθ~N  (5.2) 

Also, the posterior distribution of the parameter of interest (mean) given the data 

can be obtained as Gaussian (normal), the proof can be found in Lindley (1970), 

Berger (1985) and Lee (1997). 

  2
11 ,σθθ|X~N    (5.3) 

1 and 1
2
 are the posterior mean and variance, where 













 


22

0

02

11

ˆ

σ

θn

σ

θ
σθ  and 

1

22

0

2

1

1
















σ

n

σ
σ  

and, n is the total number of sample; θ̂  is the estimated value (from data) of . 

The predictive distribution of the new sample after obtaining the posterior density of 

the first n samples is given by   







2

, ~|1 ppNnXnX  . 

    )1,1N~nX|1nX
22   (     (5.4)   

 where, 222
1p,1p         and        

5.3 Sample and Data 

Random samples having equal number of the pouches have been taken from the 

finished product to measure the weights. The detail of the data is given in Appendix 

A-1. From the expert’s opinion, it is known that the mean weight of the pouch is 

assumed to be distributed normally with some target value of 930 gm with a 

variation scale of  30gm. The specified lower limit of the average weight is 

expected to be 920gm. Twenty five samples of size five have been selected in 

different time-period and the average weights measured.  

The data summary (weight in gm):  

900 905 914 913 927 915 900 918 908 916 

918 924 925 934 929 920 925 930 930 930 

924 930 934 922 934 
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5.4 Analyzing Data  

Initially, for the purpose of summarizing data the point estimates and the confidence 

interval for the estimates have been obtained using the classical method. From the 

mechanization of the industry, the target value (the average weight of the individual 

pouch) was set as 930g with tolerance limits of  30g from the target value. Thus, 

the process spread  3  has been kept as 930  30, where the assumed process 

standard deviation () for the weight of the individual pouch is found to be 10. The 

summary of the assumed model parameter and the actual values obtained from the 

data have been computed and depicted in the Table 5.1. 

Table 5.1 Summary of the parameters and confidence intervals using classical 

method 

Source Mean SD 
Confidence limits (for,  = 10) 

lower specification limit 

=  920 

Target value =930 

Q1, Q3 95% 3 P(X<920) P(X930) 

Model 

X|~N(930,100) 
930 

10 

(known) 

923.25, 

936.75 

910.4,   

949.6 

900.00, 

960.00 
0.1587 0.5 

Data, xi 

xi|~N(921,100) 
921 

10.169 

(computed) 

914.25, 

927.75 

901.4,   

940.6 

890.86, 

951.14 
0.4602 .184 

The  standard error of mean, SE(  )x = 10.169 (computed) 

 

5.5  Model Assessment 

5.5.1 Bayesian Inference with Informative Normal Prior    

To estimate the average weight of the pouch, the size of a sample (k) has been taken 

as 5. Thus, the variance of the sample average weight of the pouch is figured out as 

20, using k
x

/22   .  This information is assumed as the prior information, and the 

Bayesian framework is applied to obtain estimates and probabilities (Khatiwada and 

Sthapit, 2008).  
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Table  5.2 Summary of the prior density, likelihood and the posterior density with 

precisions 

Density of 

X 

Prior density 

() prior 

precision 

likelihood of data  

f(X|) 
 Data 

precision   

 

Posterior density 

p(|X)  Posterior  

precision   

X~N(,
2
) ~N(0,0

2
) ),ˆ(~|

2
 Nx  |X~N(1,1

2
) 

N(, 10
2
) N(930, 20) 0.05 

N(921.00, 100),  

n =25 
0.25 N(922.5, 3.333) 0.30 

 

 

Table  5.3  Summary of the posterior distribution 

Posterior density 

|X 
50% HDR 

95% credible 

interval 
3 limits for mean P )920(   P )930(    

N(922.5,  

3.3333) 

921.27,  

923.73 

918.92, 

926.08 
917.00,  928.00 0.0855 0.0000 

 

 

Table  5.4  Summary of the predictive distribution 

Predictive 

density Xi+1|Xi 
50% HDR  

95% credible 

interval  

3 limits for 

Xi+1 

P(X<920) P(X930) 1-P(900X960) 

N(922.5, 103.33) 
915.64,  

929.36 

902.57,  

942.43 

891.87,  

953.13 
0.4028 0.2303 0.0136 
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Plots using First Bayes: 

  

Figure 5.1 Plot of the posterior density of average weight () 

 

 

Figure 5.2 Triplot of the prior density (solid line), posterior density (dotted line) 

and likelihood (dashed line) 

. 

 

 

 

 

 

 

 

Figure 5.3  Plot of the predictive density of the weight (X) 
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The WinBUGS Result: 

The use of normal prior (informative) to the normal likelihood yields a Normal-

Normal Bayesian Model. The WinBUGS language for the Bayesian inference using 

normal (informative) prior is given in the Appendix B-1. The distribution of the 

posterior parameters using WinBUGS are presented in Table 5.5 and trace plot for 

the 5000 samples and 30000 samples from 30000 iterations discarding first 1000 

values is given in Figure 5.4.  

Table 5.5 Summary of the posterior density using normal informative prior  

node mean sd MC error 2.5% median 97.5% start sample 

theta 922.5 1.825 0.02374 918.9 922.5 926.1 1001 5000 

theta 922.5 1.816 0.00999 918.9 922.5 926.1 1001 30000 

        

Kernel density plots: 

 

Figure 5.4  Kernel density plots of the posterior distribution through MCMC 

using WinBUGS 

Trace: 

 

Figure 5.5 Trace of the posterior distribution through MCMC for last 500 

iterations in an updating 30000 iterations. 
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5.5.2 Bayesian Inference using Non-informative Prior 

Assuming that nothing is known about the prior distribution (it is our suspect on the 

information provided by the management) about the parameter of interest ( ), the 

model is updated by using a non-informative prior, such as  

 60.1  ,0~ EN .  

The WinBUGS language for the inference is given in the Appendix B-2. The results 

are summarized in Table 5.6. 

Table 5.6 Summary of the posterior density using non-informative prior 

node mean sd MC error 2.5% median 97.5% start sample 

theta 921.0 1.999 0.02600 917.1 921.0 924.9 1001 5000 

theta 921.0 1.989 0.01095 917.1 921.0 924.9 1001 30000 

 

 

Figure 5.6 The density plots of the posterior distribution for 5000 and 30000 

iterations 

 

 

Figure 5.7 The trace of the last 400 iteration of the posterior distribution (using 

non-informative prior) 
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5.6  Results and Summary  

Table 5.1 shows the estimated process mean (= 921) is less than the target value 

(930), with almost equal to the given process variance (100). The estimated 3 limit 

for mean is not found within the natural tolerance limits (900-960). A sample falling 

below the lower specification limit (920) is found to be 46 out of 100 chances. The 

95% classical confidence interval is obtained within the natural tolerance limit. The 

precision of the estimate is 0.25.  

The posterior mean and variance using an informative prior are 922.5 and 3.33 

respectively. The posterior precision (1/1
2
 = 0.3)

 
is equal to the sum of the prior 

precision and data precision (Table 5.2). The probability of occurring average 

weight beyond the lower specification (120) is 8.5 per 1000 (Table 5.3). No part of 

the average weight appears more than the target value (930). There is almost sure 

probability that the average weight occurring between 917 and 928 (Table 5.3). 

Table 5.4 shows the predictive distribution of the weight (X). Further, if a random 

sample is drawn, given the posterior distribution, the probability that the sample 

value will occur beyond the lower specification is 0.4028. The chance of being a 

newly drawn random sample above the lower specification is 0.5972. For all new 

draws, given the posterior distribution, the probability of occurring average weight 

exceeding 930 is 0.2303. Also, the predictive probability of the weight of a next 

sample drawn falling outside the natural tolerance limit, is 0.0136.  

The model  100  930 ),X~ N (  allowed that the chance of happening weight below 

920gm (lower specification) not to be more than 15.9%. Data information shows the 

part of the weight below specification is 46% (Table 5.1). Using Bayesian method, 

the probability of the average weight occurring below specification is found to be 

8.5% only. Moreover, if a new sample will be drawn, the chance that it will fall 

below specification is 40.3%. There is almost zero probability of occurring an 

average weight more than the target value (Table 5.3), and that of the newly drawn 

sample is 0.23 (Table 5.4). The capability index for the lower half (Mitra, 2001) for 

the posterior distribution is 0.25, that of the data is 0.1. 
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From the WinBUGS result using MCMC, it is observed that the mean of the 

distribution converges to 922.5 for a moderate and extended iteration with standard 

deviation 1.8. By the use of kernel density plot (Figure 5.4), it is shown that the 

convergence of the  posterior mean and its underlying distribution and the increasing 

smoothness of the curve as increase in iteration. The consistency in sample values 

for a cross section of MCMC iteration is shown by using trace plot (Figure 5.5). 

In case of updating the likelihood with a non-informative prior, the posterior 

estimate is found to be much closed to classical maximum likelihood estimate. The 

95% credible set is same as 95% classical confidence interval. Clearly, this indicates 

that the non-informative prior has the negligible impact on the model. Bayesian 

method works only as the process of strengthening the updated inference, in this 

case. The software WinBUGS facilitates in generating data from the posterior 

distribution using MCMC. As the iteration increases the posterior density for the 

parameter of the interest seems to be more precise (Figures 5.5 - 5.7).  

 

Remarks  

The area under discussion of this study is related with the consumer’s concern, 

whether the weights of the pouches are underweight. From the posterior distribution, 

using conjugate normal prior with known variance, it is observed that the target 

value is beyond the 3-sigma control limits and there is a chance of 0.085 being the 

sample average below specification limit. It can be concluded, therefore, that the 

process should be adjusted to the direction that can increase in the average weight of 

pouches. 
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Chapter VI 

Analysis of Beta Prior Distribution for an Acceptance Sampling 

Plan of Food Product 

6.1  Introduction 

In an instant noodle factory, ready to use (fairly-cooked) product is packed and 

shipped. In the process of cutting, cooking, spraying, de-metalling and packaging 

conditions, the crack, break or rupture (nonconforming item) in the product are 

occurred and such items are screened out before packaging. In this study, prior 

information about the proportion of items nonconforming produced has been taken 

from the past record of the noodle factory. For the modelling purpose of 

experimental data, the samples have been taken from online product flow. The prior 

distribution is elicited using past data. Initially, from sample data an acceptance 

sampling plan is developed using classical approach. Then, the likelihood of sample 

data and the prior distribution are combined together for updating the information. 

An analysis on beta prior is carried out and different sampling plan for the quality 

attribute are designed from the updated distribution. The new plan so developed is 

compared with the sampling plan prepared by classical method. 

 

6.2  Model 

Suppose, kxxx ..,........., 21  be the number of nonconforming items observed in the 

sample of size knnn ....,........., 21 respectively. The number of nonconforming items X, 

for a sample of size ni in the i
th

 lot, with a lot nonconforming proportion p, is 

distributed with binomial probability. The probability mass function of 

( pnxX ii  ) is given by 

iii xnx

i

i
i pp

x

n
xXP











 )1()(   ,  ii nx    ,.......,2,1,0 ; ii Nn ,   (6.1) 

Further, it is assumed that the prior distribution of the parameter of interest (p) 

follows the beta distribution, 
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  p  Beta (a, b)  

11 )1(
),(

1
)(   ba pp

baB
p ,  ,10  p   .0, ba   (6.2) 

The prior mean and variance are respectively 

 
ba

a
p


        (6.3) 

 
)1ba()ba(

ab
σ

2

2


      (6.4) 

The value of p  and 2 are estimated from past production records as the process 

average and spread respectively. In all situations of a factory account, it is difficult 

to obtain calculated 2 . In case of beta distribution, the size of sample previously 

observed, n , is taken as the sum of the parameters (Lee, 1997) i.e., 

  ban        (6.5) 

The method of prior selection and the details of deriving posterior distribution are 

found discussed in Khatiwada (2010). The posterior density is obtained as 

 
 

  1cbn1ca p-1 p   
cbn  ,caB

1
x|pπ




   (6.6) 

(where,  ixc  and inn  ) 

The posterior mean and variance are obtained as 

 
ban

ca
p







      (6.7) 

 
)1ban()ban(

)cbn)(ca(
σ

2

2








    (6.8) 

6.3 Sample and Data 

To observe the process of product control and to take sample (data) an inspection is 

made in online product flow. Fifty random samples of different sizes are taken from 

online product flow of different lots of same size as convenience. The sample 

proportion nonconforming items are calculated (presented in Appendix A-2) and 

plot of the nonconforming proportion is shown in Figure 6.1. 
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Figure 6.1  Distribution of sample nonconforming proportion 

6.4 Analyzing Data 

Sample mean nonconforming proportion is found to be 0.0617 with a standard 

deviation of 0.023. The minimum nonconforming proportion is obtained as 0.0278 

and maximum of the same as 0.125. The 95% confidence interval for mean 

nonconforming proportion is obtained (0.00 - 0.0957). The 90
th

 percentile value of 

the sample nonconforming proportion is obtained as 0.0928. 

In Khatiwada (2009), by taking limiting quality level (LQL) = 0.062 (the sample 

average point) and consumers’ risk,  =0.1, different alternative sampling plans have 

been proposed in conventional method using binomial distribution, as given in Table 

6.1. 

Table 6.1 Sampling plan for  = 0.1 using binomial cdf 

c 0 1 2 3 4 5 6 7 8 9 10 

n 36 62 85 106 127 148 168 188 208 227 246 
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6.5  Model Assessment 

6.5.1 Prior information and its model 

According to past record of the industry, the proportion nonconforming to packaging 

is found to be recorded as 0.05. The size of sample inspected for this purpose, is 

found to be 40. The past record has not been available for calculated process 

variation. For an average of 0.05 nonconforming proportion, using equation (6.3) 

and (6.5), the parameters of beta prior are fixed as 2a and 38b . The plot of prior 

distribution, Be (2, 38), is shown in the Figure 6.2. The statistical information 

obtained from the distribution beta (2, 38) is given in the Table 6.2. 

 

Figure 6.2  Plot of the prior distribution of average nonconforming proportion  

 

 

Table 6.2  Summary of the Beta (2, 38) prior distribution 

mean median mode s d )05.0Pr( p  

95% 

confidence interval 

10
th
 

Percentile 

90
th
 

Percentile 

99.99
th
 

Percentile 

0.05 0.0427 0.0263 0.0340 0.5871 0.0013 0.1166 0.0137 0.0961 0.2639 
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6.5.2 Combining Prior and Sample Data 

The prior information and sample data are combined to obtain posterior density 

(Khatiwada, 2010). Minimum sample size necessary and different maximum number 

of observed nonconforming items have been calculated, and presented in Table 6.3. 

The summary of the posterior distribution is given in Table 6.4. Plots of posterior 

density for four different ),( cbncaBe   are given in Figures 6.3[(i) – (iv)]. 

 

Table 6.3 Sampling plan for and  = 0.1 using posterior distribution 

c 0 1 2 3 4 5 6 7 8 9 10 

n 22 44 65 85 105 124 142 162 180 197 215 

Posterior 

Be (a+c, 

n+b-c) (2,60) (3,81) (4, 104) (5,120) (6, 139) (7,157) (8,174) (9,193) (10,210) (11, 226) (12, 234) 

 

 

Table 6.4 Summary of posterior distribution ),( cbncaBe    

Be(a+c, n+b-

c) mean median mode s d 

95%  

Credible 

Interval 

10
th

  

percentile 

90
th

  

percentile 

99.99
th
  

percentile 

Be(2,60) 0.0323 0.0274 0.0167 0.0223 0.0008 0.0758 0.0088 0.0623 0.1773 

Be( 3,81) 0.0357 0.0321 0.0244 0.0201 0.0038 0.0753 0.0134 0.0629 0.1571 

Be(4,101) 0.0381 0.0352 0.0291 0.0186 0.0071 0.0748 0.0169 0.0631 0.1442 

Be(5,120) 0.0400 0.0376 0.0325 0.0175 0.0100 0.0746 0.0197 0.0634 0.1356 

Be(6,139) 0.0414 0.0393 0.0350 0.0165 0.0125 0.0741 0.0220 0.0635 0.1288 

Be(7,157) 0.0427 0.0408 0.0370 0.0157 0.0148 0.0740 0.0241 0.0637 0.1241 

Be(8,174) 0.0440 0.4229 0.0389 0.0152 0.0168 0.0741 0.0259 0.0642 0.1207 

Be(9,193) 0.0446 0.0431 0.0400 0.0145 0.0184 0.0734 0.0272 0.0638 0.1166 

Be(10,210) 0.0455 0.0441 0.0413 0.0140 0.0200 0.0734 0.0286 0.0640 0.1141 

Be(11, 226) 0.0464 0.0451 0.0426 0.0136 0.0215 0.0736 0.0299 0.0645 0.1120 

Be(12, 234) 0.0488 0.0476 0.0451 0.0137 0.0236 0.0761 0.0322 0.0670 0.1144 
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Plots of posterior Distribution: 

 

Figure 6.3 Plots of posterior distribution 

 

6.6 Summary and Remarks 

Considering Table 6.3, it is observed that the necessary sample sizes, when using the 

beta prior, are slightly less than that required in the traditional sample based method 

(Table 6.1). The 95% credible intervals for proportion nonconforming for the 

posterior plans, ),( cbacaBe  are observed shorter than the 95% confidence 

interval of the sample nonconforming proportion as well as the prior distribution, 

),( caBe . All the 90
th

 percentile values of the nonconforming proportion for the 

posterior distribution are found to be less than that of the prior distribution and 

sample data.  

The result of this study shows that the sampling plans using Bayesian posterior 

estimation are sharper (Figure 6.3) than the plans from the sample information only. 

From this result, it can be concluded that the acceptance sampling plan derived using 

posterior distribution helps more for assurance of the consumer’s risk. 
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Chapter VII 

Modelling Failure to operation points for Canning process in a 

Fruit Juice Industry 

7.1  Introduction  

Canning is a process of preserving or packaging food or drink by putting it in sealed 

airtight container. It is mostly used to preserve extracted food materials in cans or 

jars for the use of extended time while the long-term use of the raw food or the 

product is not viable. The examination of the system failure in different units 

(points) of operation is the process of identification of critical control point (CCP) in 

HACCP. In this study, an attempt is made to model the failure rate in different 

operation points in a canning industry using Bayesian modelling approach. The 

effect of just in time is high in canning system, and so, data generated (collected) in 

the time basis that how many times it fails to operate properly is used for the 

modelling failure rate. 

7.2 Model 

7.2.1 Poisson-Gamma Hierarchical Model 

Carlin and Louis (1996) proposed to use gamma distribution as the conjugate prior 

for the Poisson data. In hierarchical models, George et al (1993) suggested to use 

gamma conjugate prior for the first level hyper-parameters. For the data of the 

failure at different operation points, the number of failures x(i)  is assumed to follow 

a Poisson distribution. 

  x(i)~ Poisson (i )   

where,  i = i   ti  and   i= 1,2,…..,10 

The parameter of interest i is the failure rate for operation points i and ti is the 

length of the operation time of  i
th

   operation point.  
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7.2.2 Specification of Hyper-parameter 

  The conjugate gamma prior is used for the failure rate i. 

 i ~ gamma (, ) 

 and  are the hyper-parameters and their specification are assumed as in George et 

al. (1993). 

  ~ exponential (1.0) 

  ~ gamma  (0.1, 1.0) 

which gives gamma posterior for  and a non standard posterior for . 

7.2.3 Graphical Model  

for(i  IN 1 : N)

lambda[i]

t[i ]

theta[i ]

betaalpha

x[i]

 

Figure 7.1 Graphic modelling of the parameters in failure to operation points 

 

7.3  Sample and Data 

An evaluation of failure in process of canning has been made in a fruit juice 

industry, Rijal Tasi Industry, Itahari, Sunsari. The sample evaluation has been 

designed for failure to operation in 10 different operation points of canning. The 

operation points / units considered are: (i) Raw material receiving station (ii) 
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Preparation of material (iii) Mixing ingredients (iv) Container cleaning (v) Closer 

parts (vi) Filling (vii) Sealing (viii) Retorting (ix) Cooling  and (x) Storage. 

The experimental data (given in Appendix A-3) have been adopted from the records 

of 720 hrs (45days16hrs per day) of inspection. ti is the length of the operation 

time, xi is the number of failure. The parameter of interest is the failure rate xi / ti for 

operation points.  

7.4  Analyzing Data 

Initially, the failure rates per operation point r(i) have been estimated, which are 

presented in the Table 7.1. In classical analysis, the point estimates, ri are found to 

be as the factual failure rate and s.e.(i) the standard errors of the estimates. 

Table 7.1 Calculation of Failure rate per operation units /points 

operation 

point (i) 1 2 3 4 5 6 7 8 9 10 

ri 0.1667 0.1250 0.0583 0.0417 0.0500 0.0611 0.0417 0.0521 0.0833 0.0926 

s.e. (ri) 0.1076 0.0675 0.0214 0.0167 0.0281 0.0179 0.0288 0.0227 0.0326 0.0279 

 

7.5 Model Assessment 

The WinBUGS software has been used for the graphical model, obtaining required 

posterior estimates of the proposed model and for the MCMC iteration. The 

WinBUGS code for the MCMC simulation is given in Appendix B-3. Starting from 

discarding first 1000 updates followed by a further 10000 updates gave the 

parameter estimates as given in Table 7.2. The density plots of posterior failure rates 

computed are given in the Figure 7.2. 
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Table 7.2  The posterior estimates of the parameters  

node  mean  sd  MC error 2.50% median 97.50% start sample 

alpha 0.6299 0.2316 0.00401 0.2707 0.5994 1.1670 1001 10000 

beta 3.2230 1.7310 0.02792 0.7026 2.9500 7.3490 1001 10000 

theta[1] 0.1742 0.1089 0.001117 0.0293 0.1521 0.4458 1001 10000 

theta[2] 0.1327 0.0705 6.44E-04 0.0329 0.1209 0.3028 1001 10000 

theta[3] 0.0618 0.0226 2.45E-04 0.0259 0.0591 0.1127 1001 10000 

theta[4] 0.0449 0.0174 1.91E-04 0.0176 0.0427 0.0850 1001 10000 

theta[5] 0.0579 0.0305 2.88E-04 0.0144 0.0525 0.1313 1001 10000 

theta[6] 0.0635 0.0187 1.71E-04 0.0324 0.0617 0.1049 1001 10000 

theta[7] 0.0514 0.0319 3.03E-04 0.0086 0.0450 0.1296 1001 10000 

theta[8] 0.0571 0.0239 2.66E-04 0.0204 0.0539 0.1130 1001 10000 

theta[9] 0.0873 0.0336 3.35E-04 0.0352 0.0827 0.1642 1001 10000 

theta[10] 0.2717 0.0839 8.28E-04 0.1316 0.2624 0.4600 1001 10000 

lambda[1] 2.0900 1.3070 0.0134 0.3512 1.8260 5.3490 1001 10000 

lambda[2] 3.1850 1.6920 0.0155 0.7899 2.9010 7.2670 1001 10000 

lambda[3] 7.4180 2.7110 0.0294 3.1090 7.0890 13.5300 1001 10000 

lambda[4] 6.4670 2.5080 0.0276 2.5290 6.1480 12.2400 1001 10000 

lambda[5] 3.4760 1.8290 0.0173 0.8637 3.1510 7.8790 1001 10000 

lambda[6] 11.4400 3.3640 0.0309 5.8280 11.1000 18.8900 1001 10000 

lambda[7] 2.4650 1.5320 0.0146 0.4115 2.1610 6.2190 1001 10000 

lambda[8] 5.4810 2.2930 0.0256 1.9550 5.1750 10.8500 1001 10000 

lambda[9] 6.2840 2.4200 0.0242 2.5330 5.9530 11.8200 1001 10000 

lambda[10] 9.7810 3.0220 0.0298 4.7390 9.4450 16.5600 1001 10000 

 

7.6 Summary 

From classical analysis, the raw estimates are found as the process average failure 

rate, just as a point estimate with the standard error. A complete posterior 

distribution of failure rate (i) for each operation point has been obtained from the 

Gibbs sampler using WinBUGS. It has been observed that the posterior updated 

failure rates are slightly greater than the classical estimates, distributed with the 

slightly greater standard errors than the classical method. This result is might be due 

to the use of hyper priors with large variance. The 95% credible region for the 

estimated parameters and the density curves for each parameter have been obtained 

for a burn in of 1000 updates followed by a further 10000 updates. For the model 

verification, graphs of the posterior estimates are drawn and presented in the Figures 

7.3 - 7.7. 
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Density plots: 

 

 

Figure 7.2 Kernel Density plots of the parameters in estimating failure to 

operation points 
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Box plots: 

 

Figure 7.3 Box plots of predictive alpha and beta  
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Figure 7.4 Box plots of posterior failure rate (theta|data) 
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Figure 7.5 Box plots of posterior average failure rate (lambda|theta, ti) 
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Scatter plot and Model fit 

 

Figure 7.6 Scatter plots of posterior failure rate (theta|data) 

 

Figure 7.7  Model fit summaries for the predicted failure rate (theta|data) 

Remarks:  

To identify the priority points of the failure in operation points has been the main 

concern of this study, which should be corrected for the removal of the high 

frequency of the failure rate.  From the posterior densities, it is observed that the 

failure rate (i|data) is highest for the storage point, and the second and third points 

are raw material receiving station and material preparation point respectively (Figure 

7.4). Highest average failure rate (|data) is obtained for the points of closer parts 

and consequently storage point and ingredient mixing point respectively are 

obtained as second and third points (Figure 7.5). The modelling approach using the 

Bayesian method found to be advanced for the identification and determination of 

the failure rate with more variability. This method seemed to be outstanding for the 

prediction and to check out the effecting points, which reduce performance of the 

process. This method of modelling is expected to be helpful in identification of 

critical control points (CCP) while applying HACCP. 
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Chapter VIII 

NIG Model for Predicting Porosity of a Rice Variety in terms of 

Moisture content and Bulk density 

8.1 Introduction  

Moisture content in grain is an indicator of its quality. It is usually expressed in 

proportion (or percent) of moisture present in the grain, which is measured either in 

wet basis or in dry basis. Bulk density is the density of a material when packed or 

stacked in bulk. Bulk density of particular solid is measured by allowing the sample 

to pour into a container of known dimensions. It is a volumetric analysis of quality 

measurement of the grain. Porosity is the property of some thing to which some 

thing is porous. Porosity is an important physical property characterizing the texture 

and the quality of dry and intermediate moisture foods. Porosity data is required in 

modelling and designing of various heat and mass transfer processes such as drying, 

frying, baking, heating, cooling, and extrusion. It is an important parameter in 

predicting diffusional properties of cellular foods (Sahin and Sumnu, 2006). Porosity 

is defined as the percentage of volume of intra-granular air space to the total volume 

of grain bulk. In this study, the porosity, bulk density, true density and moisture 

contents of a rice variety are obtained using the methods described in Sahin and 

Sumnu (2006) and  an attempt is made to model the porosity of rice in terms of bulk 

density and moisture content using the Bayesian modelling. 

 

8.2  Model 

Normal regression model with hierarchical priors is used for modelling the relations 

of the characteristics of the given rice data in the Bayesian approach. Assuming that, 

Yi  denotes the response variable ‘porosity’ and Xi1 and Xi2 denote the explanatory 

variables  ‘moisture content’   and ‘bulk density’ respectively, for i = 1, …….., n.  

The likelihood of the data is modelled as: 

 Porosity ~ N(i, 
2
)   

 i = 0 + 1xi1 + 2xi2   for  i = 1, ……,n. 
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In normal regression using MCMC with WinBUGS, the precision parameter   is 

used for 1/ 
2 

and j  for j=0,1,2 are defined separately by single scalar node.  

Prior Specification  

As suggested by Spiegelhalter et al. (2003), in case of no information available, the 

choice of the prior mean is made zero, which corresponds to the no effects of Xj on 

Y and the prior variances of the effect Bj is set equal to large values to represent the 

high uncertainty or to denote prior ignorance. For , equal low prior parameter 

values are used for setting in this way that its prior mean equal to one and high prior 

variance. Simply,  it is assumed as  

a = b=0 .01 for gamma (a, b), which gives E() =1 and V() = 100. 

       010010_~2 .,  .gammainv   as in Ntzoufras (2009) 

Or, )01.0  ,01.0(gamma~σ/1τ 2  and 

      001.0  ,0~ NB j  for j= 0, 1,2. 

An inverse gamma prior is specified for the parameters having normal data model, 

hence the modelling approach is called as NIG model. The WinBUGS code for the 

model specification is given in the Appendix B-4.  

8.3 Sample and Data 

The data set for modelling is adopted from the project work of a student of Food 

Technology. Random samples of Mansuli variety of rice have been drawn from four 

different local whole-seller rice mills of Dharan municipality. Seven replications are 

made for testing each characteristic. The moisture content, bulk-density, true density 

and porosity are taken as the test characteristics and calculated using the formula: 

100
density True

densityBulk  -density  True

density  true

density  void
 %Porosity    

The Table of data is given in the Appendix A-4. 
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8.4   Data Analysis  

Experimental data of the moisture content, bulk density, true density and porosity 

are analysed to obtain summary and descriptive statistics. The summary statistics 

obtained so are given in the Appendix A-5. The average of the moisture content, 

bulk density and the porosity between groups found to be significantly different, 

since classical p-value is observed less than 0.01(Appendix A-6). 

8.4.1  Scatter Plots, Correlation Coefficients and Regression Equations  

The information obtained regarding correlation coefficients, regression coefficients 

(- y intercept, - slope) are summarized in the Table 8.1. The results regarding the 

coefficients of partial correlation and zero order correlation by classical method are 

presented in the Table 8.2 and that of multiple correlation and the multiple 

regression are summarized in the Tables 8.3 and 8.4 respectively.  

The regression equation of bulk density (X2) on the moisture content (X1) is 

X2= 0.569+ 0.021X1, 

 The regression line of porosity (X3) on bulk density X2 is 

X3=35.171 -3.254 X2 

Table 8.1  Summary of the correlation and regression coefficients 

between r se(r)     R
2 

Bulk density
a
 & Moisture Content 0.645 0.0264 0.569 0.021 0.416 

Porosity
a
 & Bulk density -0.052 2.1811 35.171 -3.254 0.003 

a  Dependent variable 
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Figure 8.1 Scatter plots of moisture content vs bulk density 

 

 

Figure 8.2 The scatter plots of bulk density vs porosity 

 

8.4.2    Partial and Multiple Correlations and Generalized Regression Equation 

A significant partial correlation (= -0.546) is observed between bulk density and 

porosity controlling the effect of moisture content, and a significant partial 

correlation (= 0.680) is observed between moisture content and porosity controlling 

the effect of bulk density. The zero order correlation coefficients between bulk 

density and porosity is found to be -0.052 (insignificant), the same between porosity 

and moisture content 0.485 (significant) and between moisture content and bulk 

density 0.645 (significant). 
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Table 8.2  Summary of the simple and partial correlation coefficients regarding  

Porosity, Moisture content and Bulk density  

  Correlations coefficients 

Between 

  

Zero-order Partial control variable 

1 Moisture content & porosity 0.485 0.680 bulk density 

 2 Bulk density &  porosity -0.052 -0.546 moisture content 

3 Moisture content& Bulk density 0.645 - - 

 

Table 8.3 Summary of the multiple correlation on porosity with moisture 

content and bulk density 

Model Summary
a 

Model R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

1 .681(a) .463 .420 1.631919 

a  Predictors: (Constant), bulk density , Moisture content 

 

Table 8.4 Summary of the linear regression coefficients on porosity with 

moisture content and bulk density 

 Coefficients(a) 

Model  Un-standardized Coefficients Standardized Coefficients t Sig. 

  B Std. Error Beta   

1 (Contant) 41.208 8.031   5.131 .000 

  Moisture content 1.850 .399 .888 4.631 .000 

  Bulk density -39.428 12.111 -.624 -3.255 .003 

a  Dependent Variable: porosity 

 

The correlation coefficient of porosity and the joint effect of moisture content and 

bulk density Rp.bm is obtained 0.681 with the standard error of estimate 1.6319. The 

coefficient of determination (adjusted), R
2
,
 
is 0.42. The linear regression constant 

(0)= 41.208  with s.e. = 8.031. The regression coefficient for moisture content (1) 

= 1.850 with s. e. = 0.399. The regression coefficient for bulk density (2) = -39.428 

with s.e.= 12.111. Thus, the linear regression equation obtained in classical approach 

is 

Porosity = 41.208 + 1.850 moist. cont. - 39.428 bulk dens. 
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8.5  Model Assessment 

For the proposed model, the data have been analyzed using WinBUGS. The results 

of the posterior distribution so obtained are presented in the Table 8.5.  

Table 8.5  WinBUGS results for the parameters in NIG model 

node  mean  sd  MC error 2.5% median 97.5% start sample 

beta0 35.87 7.7240 0.1387 19.770 36.11 50.650 1001 4000 

beta1 1.71 0.4074 0.0067 0.901 1.71 2.492 1001 4000 

beta2 -31.00 11.4300 0.1955 -53.100 -31.25 -7.585 1001 4000 

s 1.70 0.2596 0.0053 1.302 1.66 2.282 1001 4000 

s2 2.95 0.9462 0.0192 1.695 2.77 5.206 1001 4000 

tau 0.37 0.1054 0.0021 0.193 0.36 0.590 1001 4000 

mu[1] 30.95 0.7976 0.0150 29.31 30.95 32.46 1001 4000 

mu[2] 31.35 0.6128 0.0116 30.12 31.36 32.50 1001 4000 

mu[3] 31.56 0.5270 0.0100 30.48 31.56 32.55 1001 4000 

mu[4] 31.60 0.4392 0.0081 30.73 31.60 32.46 1001 4000 

mu[5] 31.34 0.4117 0.0066 30.54 31.34 32.17 1001 4000 

mu[6] 31.08 0.5034 0.0073 30.11 31.07 32.10 1001 4000 

mu[7] 32.28 0.3957 0.0055 31.52 32.27 33.08 1001 4000 

mu[8] 31.26 0.4248 0.0068 30.43 31.25 32.10 1001 4000 

mu[9] 32.90 0.3433 0.0054 32.22 32.89 33.58 1001 4000 

mu[10] 32.91 0.3546 0.0054 32.21 32.91 33.62 1001 4000 

mu[11] 33.17 0.4176 0.0062 32.34 33.17 34.02 1001 4000 

mu[12] 33.60 0.4714 0.0072 32.66 33.59 34.55 1001 4000 

mu[13] 34.19 0.5786 0.0091 33.04 34.18 35.32 1001 4000 

mu[14] 35.54 0.8630 0.0140 33.83 35.54 37.22 1001 4000 

mu[15] 30.41 0.5987 0.0091 29.24 30.40 31.61 1001 4000 

mu[16] 30.69 0.5529 0.0083 29.60 30.68 31.79 1001 4000 

mu[17] 30.77 0.5490 0.0081 29.69 30.76 31.87 1001 4000 

mu[18] 31.03 0.5403 0.0079 29.99 31.03 32.13 1001 4000 

mu[19] 30.97 0.5586 0.0082 29.89 30.96 32.10 1001 4000 

mu[20] 31.80 0.4740 0.0067 30.87 31.79 32.75 1001 4000 

mu[21] 33.07 0.5014 0.0074 32.11 33.07 34.09 1001 4000 

mu[22] 33.14 0.7092 0.0137 31.68 33.16 34.49 1001 4000 

mu[23] 33.37 0.6558 0.0126 31.99 33.39 34.63 1001 4000 

mu[24] 32.97 0.5381 0.0105 31.84 32.97 34.00 1001 4000 

mu[25] 32.61 0.3623 0.0068 31.87 32.61 33.32 1001 4000 

mu[26] 33.66 0.4336 0.0073 32.78 33.66 34.52 1001 4000 

mu[27] 34.02 0.5140 0.0082 32.99 34.02 35.03 1001 4000 

mu[28] 34.48 0.6195 0.0099 33.27 34.48 35.69 1001 4000 

SSE   76.12   8.6300     0.1523    67.23    73.71   98.53 1001    4000 

MSE    2.72   0.3082     0.0054      2.40     2.63    3.52 1001    4000 

R2 0.4613 0.1974 0.003338 0.1447 0.4388 0.9087 1001    4000 

gainRE 0.3339 0.2136 0.004343 -0.1722 0.3754 0.6175 1001    4000 
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Plots: 

 

Figure 8.3   Scatter plot of the predicted values of porosity (mu) 

 

Figure 8.4  Plot of fitted model with credible region for predicted values of porosity  

 

Figure 8.5 Density plots of regression coefficients and precision 
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Figure 8.6  Box plots of the regression coefficients and precision 

 

Figure 8.7 Box plots of the predicted values of porosity 

 

 

Figure 8.8  Correlation plots of regression coefficients 
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Figure 8.9 Density plots of SSE, MSE, R-square and overall gain in relative 

efficiency of the fitted model 

 

8.5.4 Summary 

The posterior summaries and densities are presented in Table 8.5, after running 

MCMC algorithm for 5000 iterations and discarding initial 1000 ones. The analysis 

of the posterior distribution indicates a considerable improvement of the precision in 

the prediction of porosity when bulk density and the moisture content are taken as 

independents for the rice variety. The Bayesian analysis gives the linear regression 

model of porosity in terms of moisture content and bulk density as 

 Porosityb = 35.87 + 1.71 moist. Cont. – 31.0 bulk dens .  

This model has the regression coefficients smaller in comparison to classical model. 

The standard deviations of 0 and 2 in Bayesian estimation are smaller than that of 

the 0 and 2 in classical estimation.  The standard deviation of 1 is equivalent to 

that of the 1 for classical estimate. The gain in relative efficiencies for 0 and 2 are 

7.5% and 10.92% respectively. No gain in relative efficiency is observed on the 

parameter 1.  
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The Bayesian analysis gives complete information regarding the distributions of the 

estimates. The complete information concerning all uncertain mean values of the 

regression model is obtained in this approach. The overall gain in relative efficiency 

of the model is calculated and found to be 0.3339 with a sd of 0.2136. The 95% 

credible region for the gain in relative frequency is -0.1722 to 0.6175. The Bayesian 

version of Mean squared error (MSE) and R square (R
2
) are other common 

diagnostics for the regression model, the value of MSE is computed as 2.71 with sd 

0.3082 and that of R-square is 0.46 with sd 0.1974. The graphs for the model fitting 

are given in the Figures 8.3 to 8.7. The correlation plots of the regression 

coefficients of the fitted model are given in the Figure 8.8. The density plots of SSE, 

MSE, R-square and overall relative efficiency of the fitted model are given in the 

Figure 8.9. 

Remarks 

The main concern of this study has been to modelling porosity of the Mansuli rice in 

terms of moisture content and bulk density to improve the design of heat and mass 

transfer process for increasing the drying, frying and baking quality. The modelling 

by normal regression using Bayesian approach seemed to be more precise.  Thus, it 

is concluded that the results obtained from such modelling can help better in 

designing of heat and mass transfer process to increase the baking quality of rice. 
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Chapter IX 

Normal Regression Models with two different priors for Estimation 

of Gluten content relating to Protein content in a Variety of Wheat 

9.1 Introduction  

The protein content in flour is the most important characteristics of wheat because of 

its relation to baking quality. Proteins are surface active compounds and comparable 

with low molecular weight emulsifiers (surfactants). They result in lowering of 

interfacial tension of fluid interfaces. Proteins emulsify an oil phase in water and 

stabilize the emulsion (Sahin and Sumnu, 2006). Gluten is the main structure 

forming protein in wheat flour. It helps in increasing flavour and self- life of the 

product. It helps to make the product soft (ibid).  

In this study, two normal regression models are set up for modelling the percentage 

of gluten content in a variety of wheat in terms of gluten content. The proposed 

models are updated using the Bayesian method and the models are compared to  

show which model fits well.   

9.2  Models 

The gluten content in the wheat flour is expressed in terms of proportion 

(percentage), so the normal model is adopted for the samples drown from the lot of 

large size in same variety. For normal regression model, two different priors are 

selected and the posterior densities of the parameters are summarized. Based on 

Bayesian version of MSE and R-square the models are compared using WinBUGS. 

Model 1: Normal Regression Model with Uniform (a flat) Prior 

Likelihood: The proportion (percentage) of gluten content in a wheat variety,  

 Yi ~ N (i ,
2
), where, i =+xi   (xi is the proportion (or percentage) of 

protein content) 

 Priors:  ~ Uniform(0, 1),  ~ Uniform(0, 1) and 1/2 
=  ~ Gamma(0.1, 0.1) 
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Model 2: Normal Regression Model with Normal (noninformative /vague) Prior 

Likelihood: The proportion (percentage) of gluten content in a wheat variety,  

Yi ~ N (i , 
2
), where, i =  +  xi  (xi is the proportion (or percentage) of 

protein content) 

Priors:  ~Normal (0, 1000),  ~Normal (0, 1000) and  
~gamma (0.1, 0.1) 

The WinBUGS code for the computation for normal regression model with uniform 

prior is given in the Appendix B-5 and that for the normal regression model with 

non-informative normal prior is given in the Appendix B-6. 

9.3 Sample and Data  

Independent samples of size 20 were selected for a variety of wheat to study the 

relationship between protein and gluten presented in the Appendix A-7. The samples 

were drawn from the Mahalaxmi flour mill, Sonapur.  

9.4 Summarizing Data  

The summary statistics of protein and gluten content is computed and given in the 

Table 9.1. The summary of the correlation and regression coefficients between 

proportion (percentage) of protein content (x) and gluten content (y) with the 

standard errors of the estimates are calculated and presented in the Table 9.2. The 

regression equation of the gluten content in terms of protein content is obtained as   

Y=0.29+0.38X. 

Table  9.1 Summary statistics of the percentage protein and gluten content  

Content Mean S. D. S. E. of Mean Variance Min Max Range 

protein 13.3205 2.27762 .50929 5.188 9.11 16.67 7.56 

gluten 5.3600 .92653 .20718 .858 3.44 7.21 3.77 

 

Table 9.2 Summary of the correlation and regression coefficients between 

percentage of protein and gluten content 

Between r se (r) R
2
 

Regression 
coefficients y1 on x1 

se() se () 

(x1 , y1) 0 .935* 0.337 0.875 =.29,     = 0.38 0.458 0.034 

*significant correlation  
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9.5 Model Assessment 

9.5.1 Assessment of Model 1 

The posterior densities of the parameters of the first model are obtained using 

WinBUGS, as given in Table 9.3. The density plots and trace plots the distribution 

of alpha, beta and tau for the model 1 are given in the Figures 9.1-9.3. The box plots 

of alpha and beta are given in the Figure 9.4. Based on the posterior distribution of 

the values of the parameters, the fitted model1 is  

 XY 4955.04896.0ˆ   

Table 9.3 Summary of the posterior density of the parameters in model 1 

node  mean  sd  MC error 2.5% median 97.5% start sample 

alpha 0.4896 0.2905 0.004221 0.02324 0.4834 0.9729 1 5000 

beta 0.4955 0.2888 0.004459 0.02575 0.4931 0.9743 1 5000 

tau 0.9764 3.1250 0.041170 2.86E-16 0.0047 10.19 1 5000 

mu[1] 5.004 2.649 0.04046 0.64 4.982 9.43 1 5000 

mu[2] 6.713 3.641 0.05578 0.76 6.676 12.75 1 5000 

mu[3] 5.995 3.224 0.04934 0.70 5.962 11.35 1 5000 

mu[4] 7.620 4.168 0.06392 0.82 7.575 14.53 1 5000 

mu[5] 8.368 4.603 0.07064 0.85 8.319 16.00 1 5000 

mu[6] 6.228 3.359 0.05143 0.72 6.197 11.80 1 5000 

mu[7] 8.259 4.540 0.06966 0.85 8.215 15.79 1 5000 

mu[8] 8.165 4.485 0.06882 0.85 8.122 15.61 1 5000 

mu[9] 7.605 4.160 0.06379 0.82 7.560 14.50 1 5000 

mu[10] 5.514 2.945 0.04503 0.67 5.484 10.41 1 5000 

mu[11] 8.750 4.825 0.07407 0.87 8.695 16.75 1 5000 

mu[12] 6.124 3.299 0.05049 0.71 6.093 11.60 1 5000 

mu[13] 6.406 3.463 0.05303 0.73 6.371 12.15 1 5000 

mu[14] 7.774 4.258 0.06530 0.83 7.731 14.84 1 5000 

mu[15] 6.366 3.440 0.05267 0.72 6.332 12.07 1 5000 

mu[16] 6.332 3.420 0.05236 0.72 6.299 12.01 1 5000 

mu[17] 8.343 4.589 0.07042 0.85 8.296 15.95 1 5000 

mu[18] 6.114 3.293 0.05040 0.71 6.082 11.58 1 5000 

mu[19] 8.532 4.699 0.07211 0.86 8.480 16.32 1 5000 

mu[20] 7.590 4.151 0.06365 0.82 7.545 14.47 1 5000 
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Plots: 

 

Figure 9.1  Posterior density plots of alpha and beta in model 1 

 

Figure 9.2  Trace plots of alpha and beta for the 200 iterations in model 1 

 

Figure 9.3  The density plot and trace of the tau in model 1 

 

Figure 9.4  Box plots of alpha and beta for model 1 
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9.5.2 Assessment of Model 2 

The posterior densities for the second model obtained using WinBUGS are given in 

the Table 9.4. The density plots and trace plots of alpha, beta and tau are given in the 

Figures 9.5 – 9.7. The box plots of alpha and beta are given in the Figures 9.8. Based 

on the posterior distribution of the values of the parameters, the fitted model 2 is   

XY 4358.09193.0ˆ  . 

Table 9.4 Summary of the posterior density of the parameters in model 2 

node  mean  sd  MC error 2.5% median 97.5% start sample 

alpha -0.9193 31.77 0.4556 -63.07 -0.9823 60.66 501 5000 

beta 0.4358 31.73 0.5518 -60.56 0.1735 63.80 501 5000 

tau 0.9889 3.097 0.0418 2.39E-15 0.0049 9.57 501 5000 

mu[1] 3.051 291.40 5.0710 -558.90 1.171 587.60 501 5000 

mu[2] 4.554 400.40 6.9690 -772.80 0.966 808.70 501 5000 

mu[3] 3.922 354.60 6.1710 -681.10 0.316 717.00 501 5000 

mu[4] 5.352 458.30 7.9770 -883.50 1.401 925.20 501 5000 

mu[5] 6.010 506.10 8.8090 -973.40 1.282 1021.00 501 5000 

mu[6] 4.127 369.40 6.4300 -711.70 0.334 746.80 501 5000 

mu[7] 5.914 499.20 8.6880 -959.80 1.580 1008.00 501 5000 

mu[8] 5.831 493.20 8.5830 -948.10 1.516 995.50 501 5000 

mu[9] 5.339 457.40 7.9610 -881.80 1.476 923.40 501 5000 

mu[10] 3.500 324.00 5.6370 -620.70 0.930 654.80 501 5000 

mu[11] 6.345 530.50 9.2340 -1019.00 1.071 1069.00 501 5000 

mu[12] 4.036 362.80 6.3140 -698.00 0.125 733.50 501 5000 

mu[13] 4.284 380.80 6.6280 -734.20 0.818 769.50 501 5000 

mu[14] 5.487 468.20 8.1480 -900.90 1.344 944.30 501 5000 

mu[15] 4.249 378.30 6.5840 -729.30 0.711 764.50 501 5000 

mu[16] 4.219 376.10 6.5450 -724.90 0.576 760.00 501 5000 

mu[17] 5.988 504.60 8.7820 -970.30 1.401 1018.00 501 5000 

mu[18] 4.027 362.20 6.3030 -696.70 0.194 732.20 501 5000 

mu[19] 6.154 516.60 8.9910 -993.60 2.019 1042.00 501 5000 

mu[20] 5.326 456.40 7.9440 -880.10 1.550 921.50 501 5000 
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Density Plots 

 

 

Figure 9.5 Posterior density plots of alpha and beta in model 2 

 

Figure 9.6  Trace plots of alpha and beta for the 200 iterations in model 2 

 

Figure 9.7  The density plot and trace of the tau in model 2  

Box plots 

 

Figure 9.8 Box plots of alpha and beta for model 2 
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9.6.4 Model comparison and Summary 

For the model comparison, the Bayesian version of MSE and R-square are 

calculated, which are found to be 3.16 and 0.318 respectively for the first model and 

0.3419 and 0.903 for the second model respectively. 

From results, it can be concluded that the second model seems to be fitted better 

than the first model, since it has large R
2
 value and less mean square errors of the 

estimate than the first model.  The second model gives the predicted values very 

close to that obtained in classical regression due to the use of a non-informative 

normal prior with large variance. However, model 2 has heavy tail distribution 

because of the large values of standard deviations of the estimates. The first model 

can be considered fitted well in this grounds that it has the posterior density of the 

parameter sharper than the second model. Whatever, the values of MSE and R
2 

are 

obtained, it can predict the parameter with great precision than the second because 

of more consistency in the distribution.  For the further analysis, the Bayesian 

information criteria (BIC) and Akaike Information criteria (AIC) are calculated 

using WinBUGS for both the models. The BIC and AIC for model1 and model2 are 

obtained as  

Model BIC AIC 

model 1 236.3 232.3 

model 2 231.4 227.4 

 

According to Kontoleon and Yabe (2006), the model 2 is selected as best fitted 

model which has minimum BIC value than that of the model 1. The box plots of the 

predicted yi (i. e., mu) are given in the Figures 9.9 -9.10. The scatter plots and the 

fitted line for mu are given in the Figures 9.11-9.12 and 913- 9.14 respectively. 
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Plots for model comparison: 

 

Figure 9.9 Box plots of posterior mu in model 1 

 

Figure 9.10 Box plots of posterior mu in model 2 

 

Figure 9.11  Scatter plot of mu in model 1 

 

Figure 9.12  Scatter plot of mu in model 2 



101 

 

 

 

Figure 9.13 Plots of fitted model with 95% credible region for model 1 

 

 

Figure 9.14 Plots of fitted model with 95% credible region for model 2 

Remarks: 

The major question of this study has been to obtain the better model for 

determination of gluten content in terms of protein content in a variety of wheat 

flour to increase the self life and the flavour of the product. From the results of the 

study, it can be concluded that the modelling the gluten content in terms of protein 

content is better in normal regression model with normal non-informative prior.  
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Chapter X 

Conclusions and Recommendations 

10.1 Preliminary  

Bayesian statistical methods are quite unknown methods in Nepal; one may rarely 

meet these methods even in the scientific literature. Moreover, Bayesian method is 

being as an uninterested approach due to ignorance, lack of the computational skills, 

not including it in academic curriculum and misinformation about it. Applications of 

this method for quality control problems and industrial decisions are nonexistence. 

Consciously, knowing the challenges of using Bayesian methods, this study has 

been made deeply affected by emotionally inspired for its use. The most demeaned 

point in application of Bayesian approach was the word ‘prior’. More about priors 

and their uses have been discussed in chapter 3.  In most of the contributions, non-

informative priors have been used to mitigate the influence of priors on their results. 

However, other priors such as subjective/conjugate priors (as discussed in chapter 

3.2.6) are equally useful, in case the sources of the priors are based on the prior 

experimental results. The other main anxiety in application of Bayesian analysis is 

treating parameter as a random. Treating theta (parameter) as a random variable does 

not necessarily mean that theta is random; to a certain extent, it expresses ones 

uncertainty about theta. It is the quantity of interest.  
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10.2  Conclusions: 

In this study, different techniques of predicting the parameters with a complete 

probabilistic distribution have been introduced rather than building a complicated 

model to match every portion of the observed data or taking in unnecessarily 

collection of expensive test data. 

Graphic exploration and interactive discovery have been exposed, which can help in 

identifying patterns in the data that may be hidden by descriptive statistics alone. 

The techniques of modeling using Bayesian paradigm have been investigated and 

models have been built to help increase the accuracies of predictants. Further, it has 

been concluded and suggested that these procedures will be helpful for modelling 

product quality as consumer’s concern. 

It is commonly known to us that the classical statistical tools provide less precise 

support for decision making in presence of high uncertainty regarding parameter 

space and a small sized sample. In the Bayesian approaches, several techniques can 

be found set up that enable to handle these conditions in straightforward way. 

It has been exposed that the Bayesian decision model with appropriate adaptation of 

Gibbs sampler with the development of MCMC methods provides adequate tools for 

solving the quality concerned problems. Also, it has been made known that the 

Bayesian prediction model offers support for decision related to the designing and 

quality issues of the product. 

In the study, it is also exposed that the implementation of the hierarchical model can 

make the application of conjoint analysis possible, which is difficult in traditional 

approaches even when hierarchical set up exists in the concerned problems. 

Conclusively, it has been recommended that the application of the Bayesian 

procedures using MCMC technique via WinBUGS shows us the way to better 

inference, modelling and precise decision. 
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10.3 Recommendations for Further Areas of Research 

During this research it has been known that there is a good neighbouring area, 

related to this research, having high options for the applications of the Bayesian 

methods in prediction, decision making and modelling uncertainties are applicable. 

Some of them are: 

 Application of the suggested methods in plant based studies, usage of these 

methods in companies’ decision-making 

 The study of management aspects of quality (TQM) in a Bayesian approach 

 The study of the consumer behaviour, when questions about the 

characteristics of the consumers are available, by the use of the random 

coefficients model 

 The study of the investigation of conjoint models in quality control aspects 

 Application of Bayesian methods using MCMC technique to offline process 

control 

 The study of quality heterogeneity in food and food products using GLM 

based extensions 

 Adoption of Mixture models for the analysis of quality control problems and 

consumer preferences  

 Application of Bayesian methods using MCMC technique to a real process 

modelling 

 Application of Bayesian methods using MCMC technique to sampling 

inspection of the products 

 Bayesian approach to time series data in quality control and industrial sectors 

Broader application of the Bayesian methods is open for all in all branches of 

sciences and knowledge, where statistical procedures are applicable. 

 

 

 

 

 
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Summary 

The purpose of this research work is to devise appropriate methods that would lead 

us to monitor the quality of food statistically. The main concerns of the study are to 

formulate methods of inferences, develop prediction method and model the relations 

between the characteristics regarding some aspects of food production and quality, 

using Bayesian paradigm.  

Bayesian methods are used in this research, with the anticipation that it can motivate 

us to recognize new methods for inference in food production and quality concerns 

and to make the predictions in straightforward way. The two major challenges of 

this work were (i) to set up the prior and combine it to the likelihood in such a way 

that the posterior would be a proper probability distribution and (ii) to use MCMC 

via WinBUGS and interpret posterior density. 

This study focuses mainly on the functional aspects, which means it is looked at 

what the functions of Bayesian methods are, and how these functions can be used to 

prediction and modelling some aspects of food quality concerns. 

The definitions of functions of Bayesian methods have been reviewed from different 

literatures (Chapter III). The methodologies of drawing inference, prediction and 

modelling along with technical aspects of computation, simulations and modelling 

have been discussed in Chapter IV. The major contributions of the research work 

have been presented in chapters V - IX. 

In the main contributions (part II) of the thesis, the Bayesian methods are employed 

for analyzing data and predicting the relations of different variables related to food 

quality. Particular features have been emphasized for drawing inferences, 

formulating prediction equations and modelling the food quality characteristics 

using Bayesian paradigm. Further, the necessary development of model checking for 

the proposed models has also been worked out. 

In the following sections, the main features of each methodology implemented to the 

study are discussed briefly. 
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Normal Model with Normal Prior 

The normal-normal model is used for the purpose of estimating the weights of the 

packaged food (ghee). It is put forward to look into the consumers’ concern whether 

the weights of the pouches are underweight. 

Initially, an attempt has been made for drawing inference with full posterior normal 

density regarding the weights of the packaged food using an informative (conjugate) 

normal prior. The Gibbs sampler with MCMC method (using WinBUGS) has 

supported the belief that the success of this model is largely being able to predict 

accurately when prior information is available based on expert’s opinion. 

From the posterior distribution, using conjugate normal prior with known variance it 

is observed that the process fails to meet the specification.  Thus, a remark has been 

made that the process should be adjusted to the direction that could increase the 

average weight of the pouches. 

Further, the work is done for the same using a non-informative prior. Clearly, an 

indication is observed that the non-informative prior has the negligible impact on the 

model. It is also noticed that the Bayesian method works only as the process of 

strengthening the updated inference. The software used facilitates mainly in 

generating data from the posterior distribution. As the iteration increases, the 

posterior density of the parameter of the interest observed to be more precise. 

Beta Prior Distribution to Acceptance Sampling Plan 

This study is designed for the purpose of obtaining an acceptance sampling plan for 

the attributes of non-conformance of the packaging of a food product (instant 

noodle). Firstly, the acceptance sampling plan has been developed solely based upon 

data taken from online sample observations. Then, an analysis of the beta prior 

distribution has been done from the past factory records and combined together with 

experimental data to develop sampling plan using the Bayesian method. 

From the simulation, it is observed that when the Bayesian approach is used to 

defining parameters and to develop acceptance plan, there is substantial reduction in 

the number of samples needed for inspection. From the results, it is exposed that the 

sampling plans using posterior estimation are sharper than the plans from the sample 
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information alone. From this study, it has been remarked that the acceptance 

sampling plan derived using posterior distribution helps more for the assurance of 

the consumers’ risk. 

Use of Poisson-Gamma Hierarchical Model 

The Poisson-Gamma Hierarchical model is used for modelling failure to operation 

points for a canning process in a fruit juice industry. At first, estimates of the true 

failure rate with the standard errors per operation point have been estimated in 

classical point of view.  

In the Bayesian approach, a hierarchical model is developed and the data fitted with 

Poisson distribution. A directed acyclic graph (DAG) is developed and posterior 

estimates of the parameters of failures to operation points are obtained. From the 

Gibbs sampler using WinBUGS, a complete posterior distribution is obtained for the 

failure rate (i) for each operation point. 

The main concern of this study is to identify the priority points of the failure in 

operation points (CCPs) that should be corrected for the removal of high failure rate. 

From the result of the posterior densities, it is observed that the failure rate is highest 

for the storage and respectively raw material receiving station and material 

preparation point as second and third highest points. Average failure rate () is 

obtained highest at the points of closer parts and respectively second and third points 

are storage and ingredient mixing points. 

The application of the Bayesian method has been found to be superior for the 

identification and determination of the failure rate. It has been appeared advanced 

for the prediction and to check out with priority the effecting points that reduce 

performance of the process. 

Normal Inverse-Gamma Model for the Prediction 

The NIG model is used for predicting porosity of a rice variety in terms of moisture 

content and bulk density. The main concern of this study is to model the relations, 

which can be used for improving the design of heat and mass transfer process for the 

increase of the drying, frying and baking quality of rice. 
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At first, a regression model is obtained in classical approach. Secondly, the attempt 

is made to applying Bayesian NIG model. The posterior summaries and densities are 

obtained after running MCMC algorithm via WinBUGS. 

A considerable improvement of the precision in the prediction of porosity has been 

indicated by the analysis of the posterior distribution when bulk density and the 

moisture content are taken into account for a rice variety. The regression coefficients 

for this model have been observed smaller in comparison to classical model with 

less standard deviation to each estimate. 

In this approach, complete information has been obtained concerning the parameters 

of the regression model. The proposed model has been validated using graphical 

tools and found to be good fitted. The proposed NIG model has been put forward to 

use for the better designing of the concerned quality. 

Normal Regression Model with Two Different Priors 

This study is intended to obtain the better model for the determination of gluten 

content in terms of protein content in a variety of wheat flour, which the gluten, is 

important to increase the self life and the flavour of the product. Normal regression 

models with two different priors have been used for predicting proportion 

(percentage) of gluten content in terms of protein content. 

The two priors (i) uniform (a flat prior) and (ii) non-informative normal (a vague 

prior) are selected as prior distributions for the regression parameter. The posterior 

densities of the parameters are summarized for each model and the models are 

compared based on Bayesian versions of MSE and R-square. 

It is observed that the second model is fitted better, because of having large R
2
 value 

and less MSE of the estimate, than the first model. It is also observed that the second 

model gives the predicted values very close to that the classical regression gives. It 

might be observed due to the use of a non-informative prior with large variance. 

However, this model has heavy tail distribution because of the large values of 

standard deviations of the estimates. For the robust decision, BIC and AIC are 

computed for both the models and model 2 is selected as better fitted model which 

has minimum BIC value than that of the model 1. 
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From this study, it has been concluded that the modelling the gluten content in terms 

of protein content seems to be better in normal regression model with normal non-

informative prior in case of prior ignorance. 

Towards the end 

In this thesis, different techniques of predicting the parameters with a complete 

probabilistic distribution have been introduced rather than building a complicated 

model to match every portion of the observed data, or taking in unnecessarily 

collection of expensive test data. Graphic exploration and interactive discovery have 

been exposed, which can help in identifying patterns in the data that may be hidden 

by descriptive statistics alone. 

Obviously, in case of a small sized sample and in presence of high uncertainty 

regarding parameter space the existing statistical method based upon data alone 

provide less precise support for decision making. In the proposed Bayesian 

approaches, several techniques can be found that enable to handle these conditions 

in straightforward way. 

In this study, the techniques of modeling using Bayesian paradigm have been 

investigated and models have been built to help increase the accuracies of 

predictants. It is exposed that the implementation of the hierarchical model can make 

the application of conjoint analysis possible, which is difficult in classical 

approaches even when hierarchical set up exists in the concerned problems. 

From the study, it is also observed that the Bayesian estimation using MCMC 

technique via WinBUGS leads us to better inference and precise decision. Thus, it 

has been concluded and suggested that these procedures will be helpful for 

modelling product quality as consumer’s concern. 

At last, some recommendations have been made for the use of Bayesian methods to 

the area interrelated to this research, where the prediction, decision making and 

modelling uncertainties are applicable. 

 

*** 
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Appendix 

Appendix A: Data Tables 

Appendix A-1: 

      Table showing the observed weight of pouched ghee 
 

sample   obs.1    obs. 2 obs. 3 obs. 4 obs.5 

 

Sum Average Range 

1 900 902 900 898 900 

 

4500 900 4 

2 905 901 906 909 904 

 

4525 905 8 

3 915 911 918 916 910 

 

4570 914 8 

4 917 912 912 912 912 

 

4565 913 5 

5 928 926 925 926 930 

 

4635 927 5 

6 912 916 916 911 920 

 

4575 915 9 

7 902 903 895 897 903 

 

4500 900 8 

8 916 912 920 922 920 

 

4590 918 10 

9 909 911 907 906 907 

 

4540 908 5 

10 914 913 919 916 918 

 

4580 916 6 

11 915 920 922 911 922 

 

4590 918 11 

12 924 920 924 922 930 

 

4620 924 10 

13 925 926 928 922 924 

 

4625 925 6 

14 936 935 931 932 936 

 

4670 934 5 

15 929 930 930 931 925 

 

4645 929 6 

16 919 921 920 922 918 

 

4600 920 4 

17 921 923 925 929 927 

 

4625 925 8 

18 930 927 933 931 929 

 

4650 930 6 

19 925 929 930 934 932 

 

4650 930 9 

20 928 932 930 930 930 

 

4650 930 4 

21 924 924 926 926 920 

 

4620 924 6 

22 928 932 930 935 925 

 

4650 930 10 

23 932 933 938 935 932 

 

4670 934 6 

24 922 919 925 921 923 

 

4610 922 6 

25 935 934 931 935 935 

 

4670 934 4 

          average 

 

921 921 6.76 

std dev 
 

10.3277 
(for all data) 

10.1694 
 (sample means) 

2.1656 

 
Source: Experimental (Laboratory) Records, maintained by DDC, Balaju, March, 2008 
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Appendix A-2 

   Proportion of nonconforming items 

 

Source: Experimental data from Himalayan snacks, July 2009 
 
 
 
 
 
 
 

Appendix A-3 

Failures in different operation points in a time base 

Operation point Length of operation time (ti) in hrs Number of failures (xi) 

1  12 2 

2  24 3 

3 120 7 

4 144 6 

5   60 3 

6  180 11 

7   48 2 

8   96 5 

9   72 6 

10  108 10 

Source: Records obtained from seminar paper on ‘In Plant study 2008’ submitted to 

CCT, Dharan.  
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Appendix A-4 
 

The sample values of different characteristics of Mansuli rice 
 

Mill 
code 

Sub 
sample 

Moisture 
content 

(%) 
Bulk 

density 
True 

density Porosity 

Average 
moisture 
content 

Average 
Bulk 

density 
Average 
porosity 

 
As1 11.35 0.785 1.13 30.531 

   

 
As2 11.95 0.805 1.16 30.603 

   

 
As3 12.25 0.815 1.18 30.932 

   A As4 12.55 0.830 1.21 31.405 12.564 0.836 31.31 

 
As5 12.85 0.855 1.25 31.600 

   

 
As6 13.15 0.880 1.29 31.783 

   

 
As7 13.85 0.880 1.30 32.308 

   

 
Bs1 12.80 0.855 1.18 27.542 

   

 
Bs2 13.85 0.860 1.23 30.081 

   

 
Bs3 13.95 0.865 1.25 30.800 

   B Bs4 14.30 0.876 1.28 31.563 14.321 0.871 31.35 

 
Bs5 14.55 0.876 1.29 32.093 

   

 
Bs6 14.95 0.879 1.32 33.409 

   

 
Bs7 15.85 0.885 1.34 33.955 

   

 
Cs1 12.65 0.874 1.23 28.943 

   

 
Cs2 12.85 0.876 1.26 30.476 

   

 
Cs3 12.95 0.879 1.27 30.787 

   C Cs4 13.25 0.887 1.29 31.240 13.321 0.884 31.79 

 
Cs5 13.25 0.889 1.33 33.158 

   

 
Cs6 13.75 0.890 1.34 33.582 

   

 
Cs7 14.55 0.893 1.36 34.338 

   

 
Ds1 12.65 0.786 1.20 34.500 

   

 
Ds2 12.95 0.795 1.22 34.836 

   

 
Ds3 12.95 0.808 1.24 34.839 

   D Ds4 13.25 0.836 1.29 35.194 13.664 0.831 35.1 

 
Ds5 14.15 0.852 1.32 35.455 

   

 
Ds6 14.65 0.868 1.34 35.224 

   

 
Ds7 15.05 0.875 1.36 35.662 

   

Source: Data adopted from the paper presented by R. R Gautam and R. Baral in seminar 
organized by Food Technology Subject committee, CCT Dharan, January 2010. 
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Appendix A-5 

Summary statistics of the different characteristics of rice data 

Source of rice sample  Mean S. D Variance Minimum Maximum Range S E of 

mean 1. Moisture content 

Mill A  12.5643 .81941 .671 11.35 13.85 2.50 .30971 

Mill B  14.3214 .95388 .910 12.80 15.85 3.05 .36053 

Mill C  13.3214 .64734 .419 12.65 14.55 1.90 .24467 

Mill D  13.6643 .94415 .891 12.65 15.05 2.40 .35686 

Total 13.4679 1.02895 1.059 11.35 15.85 4.50 .19445 

2.  Bulk density 

Mill  A .83571 .037129 .001 .785 .880 .095 .014033 

Mill  B .87086 .010976 .000 .855 .885 .030 .004149 

Mill  C .88400 .007528 .000 .874 .893 .019 .002845 

Mill  D .83143 .035636 .001 .786 .875 .089 .013469 

Total .85550 .033932 .001 .785 .893 .108 .006413 

3. True density 

Mill  A 1.21714 .065247 .004 1.130 1.300 .170 .024661 

Mill  B 1.27000 .054772 .003 1.180 1.340 .160 .020702 

Mill  C 1.29714 .047509 .002 1.230 1.360 .130 .017957 

Mill  D 1.28143 .062297 .004 1.200 1.360 .160 .023546 

Total 1.26643 .062552 .004 1.130 1.360 .230 .011821 

4. Porosity 

Mill  A 31.30889 .653325 .427 30.531 32.308 1.777 .246934 

Mill  B 31.34907 2.161574 4.672 27.542 33.955 6.413 .816998 

Mill  C 31.78932 1.945704 3.786 28.943 34.338 5.395 .735407 

Mill  D 35.10125 .400697 .161 34.500 35.662 1.162 .151449 

Total 32.38713 2.143218 4.593 27.542 35.662 8.119 .405030 

 

 

 

 

 

 

 

 



114 

 

Appendix A-6 

 
  Classical ANOVA for the different characteristics of rice sample 

         source    Sum of 
Squares df 

Mean 
Square F Sig. 

       1.   Moisture content 

Between groups (Combined) 11.235 3 3.745 5.180 .007* 

Within Groups 17.351 24 .723     

Total 28.586 27       

2.   Bulk density  

Between groups (Combined) .014 3 .00471 6.669 .002* 

Within Groups .017 24 .00071     

Total .031 27       

3. True density    

Between groups (Combined) .025 3 .008 2.515 .082 

Within Groups .080 24 .003     

Total .106 27       

4. Porosity 

Between groups (Combined) 69.748 3 23.249 10.281 .000* 

Within Groups 54.273 24 2.261     

Total 124.021 27       

*significance at 1% level of significance 
 
 
 

Appendix A-7  
 

Percentage of protein content and gluten content in variety of wheat 
 

sample no. Protein  Gluten   sample no. 
 
Protein 

 
Gluten 

1 9.11 3.44  11 16.67 7.21 

2 12.56 5.48  12 11.37 4.22 

3 11.11 4.49  13 11.94 5.10 

4 14.39 5.74  14 14.70 5.75 

5 15.90 6.45  15 11.86 4.47 

6 11.58 4.35  16 11.79 5.15 

7 15.68 6.35  17 15.85 6.41 

8 15.49 5.76  18 11.35 4.68 

9 14.36 5.78  19 16.23 6.03 

10 10.14 4.77  20 14.33 5.57 

Source: Mahalaxmi Flour Mill, Sonapur 
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Appendix B: WinBUGS Code 

 

Appendix B-1  

WinBUGS code for Bayesian Inference with Informative Normal prior 
 
# Model 

{ 
for(i in 1:N)  
{ 
wt [i]~dnorm(theta, phai) 
} 
theta~dnorm(930, tau) 
phai<-1/pow(sigma,2) 
tau<-k/pow(sigma,2) 
sigma<-10 
k<-5 
} 

# Initial values 
list(theta=930) 

# Data 
list(wt=c(900,905,914,913,927,915,900,918,908,916,922,924,925,934,929,920,925,
930,930,930,924,930,934,922,934),N=25) 

 
 

 

 

 

Appendix B-2 

WinBUGS code for Bayesian inference using Non-informative Prior 
 
# Model 
 { 
 for(i in 1:N) 
 { 
 wt[i]~dnorm(theta, phai) 
 } 
 theta~dnorm(0, 0.000001) 
 phai<-1/pow(sigma, 2) 
 sigma<-10 
 } 
# Initial value 
 list(theta=0) 
# Data 

list(wt=c(900,905,914,913,927,915,900,918,908,916,922,924,925,934,929,920,925,
930,930,930,924,930,934,922,934),N=25) 
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Appendix B-3  
 

WinBUGS code for Poisson-gamma hierarchical Model 
 
#Model 

{ 
for(i in 1:N) 
{ 
theta[i] ~ dgamma(alpha, beta) 

 lambda[i] <- theta[i] * t[i] 
 x[i] ~ dpois(lambda[i]) 
 } 
 alpha ~ dexp(1) 
 beta ~ dgamma(0.1, 1.0) 
 } 
 #Data  
 list(t = c(12, 24, 120, 144, 60, 180, 48, 96, 72, 36), 
      x = c( 2,      3,      7,   6,      3,    11,      2,       5,    6,    10), N = 10) 
  
#initials 

list(alpha = 1, beta = 1) 
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Appendix B-4 

WinBUGS code for the NIG model specification in normal regression of the 

characteristics of rice data 

#likelihood  
model{ 

for(i in 1:n){ 
porosity[i]~dnorm(mu[i], tau) 
mu[i]<-beta0+beta1*mois[i]+beta2*bulkd[i] 
numerator[i]<-(mu[i]-mean(porosity[]))*(mu[i]-mean(porosity[])) 
denominator[i]<-(porosity[i]-mean(porosity[]))*(porosity[i]-mean(porosity[])) 
se[i]<-(mu[i]-porosity[i])*(mu[i]-porosity[i]) 

} 
#prior 

tau~dgamma(0.01, 0.01) 
beta0~dnorm(0.0, 1.0E-3) 
beta1~dnorm(0.0, 1.0E-3) 
beta2~dnorm(0.0, 1.0E-3) 
s2<-1/tau 
s<-sqrt(s2) 
R2<-sum(numerator[])/sum(denominator[]) 
SSE<-sum(se[]) 
MSE<-mean(se[]) 
gainRE<-1-((s2)/(sum(denominator[])/n)) 

} 
#initials 

list(tau=1, beta0=1, beta1=0, beta2=0) 

#Data 

list(n=28, 

porosity=c(30.531, 30.603, 30.932, 31.405, 31.600, 31.783, 32.308, 27.542, 30.081, 

30.800, 31.563, 32.093, 33.409, 33.955, 28.943, 30.476, 30.787, 31.240, 33.158, 

33.582, 34.338, 34.500, 34.836, 34.839, 35.194, 35.455, 35.224, 35.662), 

mois=c(11.35, 11.95, 12.25, 12.55, 12.85, 13.15, 13.85, 12.80, 13.85, 13.95, 14.30, 

14.55, 14.95, 15.85, 12.65, 12.85, 12.95, 13.25, 13.25, 13.75, 14.55, 12.65, 12.95, 

12.95, 13.25, 14.15, 14.65, 15.05), 

bulkd=c(.785, .805, .815, .830, .855, .880, .880, .855, .860, .865, .876, .876, .879, 

.885, .874, .876, .879, .887, .889, .890, .893, .786, .795, .808, .836, .852, .868, 

.875)) 
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Appendix B-5 

Normal regression model with uniform (a flat) prior 
 
# Model{  
for(i in 1:n){ 
glut[i]~dnorm(mu[i], tau) 

mu[i]<-*prot[i] 
log.like[i] <- -0.5*log(2*Pi)-0.5*log(s2)-0.5*(glut[i]-mu[i])*(glut[i]-mu[i])/s2 
like[i] <- exp( log.like[i] ) 
} 
Pi<-3.141593 
dm <- 2 + g[1] + g[2]  
  Deviance <- -2*sum(log.like[1:n]) 
  AIC <- Deviance + dm*2 
  BIC <- Deviance + dm*log(n) 
  L <- prod( like[1:n] ) 
# Prior 
tau~dgamma(0.1, 0.1) 

~dunif(0,1) 

~dunif(0, 1) 
s<-1/sqrt(tau) 
s2<-1/tau 
pi<-3.141593 
} 
#Data 
list(n=20, g=c(1,1),prot=c(9.11, 12.56, 11.11, 14.39, 15.90, 11.58, 15.68, 15.49, 14.36, 
10.14, 16.67, 11.37, 11.94, 14.70, 11.86, 11.79, 15.85, 11.35, 16.23, 14.33) 
glut=c(3.44, 5.48, 4.49, 5.74, 6.45, 4.35, 6.35, 5.76, 5.78, 4.77, 7.21, 4.22, 5.10, 5.75, 4.47, 
5.15, 6.41, 4.68, 6.03, 5.57)) 
# Initials 

list( tau=1,  
# use g to define the fitted model 
# m1 g=c(0,0) 
# m2 g=c(1,0) 
# m3 g=c(0,1) 
# m4 g=c(1,1) 
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Appendix B-6 

Normal regression model with non-informative prior 

 
# Model{  
for(i in 1:n){ 
glut[i]~dnorm(mu[i], tau) 

mu[i]<-*prot[i] 
log.like[i] <- -0.5*log(2*Pi)-0.5*log(s2)-0.5*(glut[i]-mu[i])*(glut[i]-mu[i])/s2 
like[i] <- exp( log.like[i] ) 
} 
Pi<-3.141593 
dm <- 2 + g[1] + g[2]  
  Deviance <- -2*sum(log.like[1:n]) 
  AIC <- Deviance + dm*2 
  BIC <- Deviance + dm*log(n) 
  L <- prod( like[1:n] ) 
# Prior 
tau~dgamma(0.1, 0.1) 

~dnorm(0.0,1.0E-3) 

~dnorm(0.0, 1.0E-3) 
s<-1/sqrt(tau) 
s2<-1/tau 
pi<-3.141593 
} 
#Data 
list(n=20, g=c(1,1),prot=c(9.11, 12.56, 11.11, 14.39, 15.90, 11.58, 15.68, 15.49, 14.36, 
10.14, 16.67, 11.37, 11.94, 14.70, 11.86, 11.79, 15.85, 11.35, 16.23, 14.33) 
glut=c(3.44, 5.48, 4.49, 5.74, 6.45, 4.35, 6.35, 5.76, 5.78, 4.77, 7.21, 4.22, 5.10, 5.75, 4.47, 
5.15, 6.41, 4.68, 6.03, 5.57)) 
# Initials 

list( tau=1, 
# use g to define the fitted model 

# m1 g=c(0,0) 

# m2 g=c(1,0) 

# m3 g=c(0,1) 

# m4 g=c(1,1) 
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Appendix C: Theoretical Methods for Computation 

 

Appendix C-1 

The overview of the method of Monte Carlo simulation 

Let, f(x) be a function and we have to compute a complex integral 


b

a

dxxfI   )(  

If we can decompose f(x) into production of a function g(x) and a probability density function 

p(x) defined over the interval (a, b), then we have 

  
b

a

b

a

xg
xp

EdxxpxgdxxfI )]( [
)( 

           )(   )(   )(  

)]( [)( xgE xp  is the expectation of g(x) over the density p(x). 

If we draw  nxxx ....,,........., 21  random variables, large n, from the density p(x) then  

  
b

a

b

a

xp xgEdxxpxgdxxfI )]( [            )(   )(    )( )( 
,  

It is known as Monte Carlo integration. 

In case of Bayesian analysis, Monte Carlo integration can be used to approximate marginal 

posterior distribution. 

Let, 

 dxxpxygyI    )(    ) ( )(  ,  

we approximate it as  


n

i
ixyg

n
yI ) ( 

1
)(ˆ ,  

xi’s are drawn from the density p(x). 

The standard error for the estimation in MC method is  


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2
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1

1
 

1
} )(ˆ {  

The up to date over view of this method is well available in Smith and Robert (1993). 
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Appendix C-2 

Method of Importance Sampling: 

Let, the density g(x) is the density of interest which is approximated roughly by p(x) then,  

  dxxp
xp

xq
xgdxxqxg   )(  

)( 

)( 
  )(     )(   )(     





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          







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)(  
  )(    )( 

xp

xq
xgE xp  

By using Monte Carlo integration, we can write 

  

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


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
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i
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i
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i
i

xg
n

dxxqxg ,  

where xi’s are drawn from the distribution given by p(x) [i.e., )]( ~ xpxi . It works well when 

sampling from proposal is easy and target is hard. It is the basis of Importance Sampling. 

The marginal density as a function of y is given by 





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
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An alternative form of the importance sampling (Carlin and Louis, 1996) is defined with 
weight function w, 





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where, the weight 
)(  

)( 

i

i
i

xp

xq
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It works well when q (x) is known up to a multiplicative constant. 

It has an associated Monte Carlo variance of  
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Appendix C-3 
 

Method of Gibbs sampling: 

Gibbs sampler can be thought of a stochastic analogue to be EM (Expectation and 

Maximization) approach used to obtain likelihood function when missing data are present. In 

the Gibbs sampler random sampling replaces the expectations and maximization step, 

(Walsh, 2004 ). 

Gibbs sampling is Markov Chain Monte Carlo (MCMC) method like Metropolis Hastings 

algorithm. It is a special case of Metropolis Hastings algorithm in which the random value 

1 , is always expected to be accepted. Gibbs sampler can be used to generate random 

sample (observation) from a joint distribution or marginal distribution, given all the 

associated complete conditional distribution.  

Let, 
n

k R      ),......,.........,(  ) ( 21  denote a joint density and  

nk1   ,.,.........2,1  ),|(  kiiji   

is the complete conditional density for each of components i .  

Besag (1974) confirmed under mild condition, these conditional distributions uniquely 

determine the full joint distribution  k ...,........., 21  and hence marginal 

distribution nii ,....2,1    )(   .  

Let,  

  .......,,.........,   
)0()0(

2

)0(

1

)0(

k   are arbitrary starting values.  

The successive random draws are made from full conditional distribution 

  kiijji ,.....2,1    ; ,|  , as follows.  

We draw,     ;   ..,..........,|     from 
)0()0(

3

)0(

21

)1(

1 k     

    ;  ..,..........,|     from 
)0()0(

3

)1(

12

)1(

2 k    

     ;  ..,..........,,|    from 
)0()0(

4

)1(

2

)1(

13

)1(

3 k  

   . .                 …..                                         ….. 

   ;  ...,,.........,|    from 
)1(

1

)1(

2

)1(

1

)1(

kkk   

This completes one iteration or a transition from. 

  ......,.........,   
)0()0(

2

)0(

1

)0(

k    to  

  ...,,.........,   
)1()1(

2

)1(

1

)1(

k  . 
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Iteration of such cycle of random variable generation from each of the full conditional 

distributions in turn produces a sequence t ,.....,,, 210 ; which is realization of Markov 

chain with transition probability from 1  to  tt  , given by  

     


 
k

j

t

j

t

j

t

i

tt ijforijforK
1

111       , |   ,  . 

The key features of Gibbs sampling algorithm is that the sample can be drawn only from full 

conditional distribution. Geman and Geman (1984) suggested that under mild condition for a 

large number of iteration (i.e., t   ) k-tuple converges to a random observation from joint 

density ) ....,........., ( 21 k . So for large t we simply write ) ....,........., ( 21 k  instead 

of ) ....,........., (
)1()1(

2

)1(

1 k . 

Drapper (2000) noted that the Gibbs sampler usually produces chains with smaller 

autocorrelation than the other MCMC samplers do. The auto correlation of order k is a 

measure of how correlated the k values apart are for series  kXXX .........., 21 . It is  

 
)var(

),cov(

X

XX ktt
k

  and sample correlation function is  
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The autocorrelation time is the time required the terms of the number of values apart, for the 

correlation to go to zero, (Goodman and Sokal, 1989). It is defined as 

 






1

21
t

t  

The estimation of   is given by 






3

1

21
t

tr  

The effective number of sample, which we want to make as larger as possible is given by 

time ationautocorrel

sample of number total
effn  

The standard error is calculated by 

effn

XVar
SE

)(
 , and 

 
2
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1
(X) Var 







n

j
XjX
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Different illustrations of the application of the Gibbs sampler and the procedural information 

are found in Sokal (1989), Besag et al. (1995) and Lee (1997).  
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Appendix C-4 
 

The Expressions of the Metropolis algorithm 

 

The algorithm continues as follows 

- Draw the starting Value ) (~ 0

0  p  

- For t = 1, 2,……….  

- Draw )|(~ 1** t

tJ  . The jumping distribution )|( 1* t

tJ   must be 

symmetric, i.e., )|( )|( kl

t

lk

t JJ    

- Calculate the importance ratio 
)|(  

)|(  
1

*

xp

xp
r

t





 

- Set * t  with probability r 

- The algorithm requires the ability to calculate r and to draw 
* 
from the jumping 

distribution Jt (
*
|) 
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Appendix C-5 

The expression for the Metropolis-Hastings Algorithm 

The M-H algorithm goes on as:  

- Draw the starting Value ) ( ~ 0

0  p  

-  For t = 1, 2,……….  

- Draw the jumping distribution )|( ~ 1** t

tJ  ;  jumping distribution 

need not to be symmetric )|( )|( kl

t

lk

t JJ    

- To correct the asymmetry the importance ratio changes to 

)|( /)|(  

)|( /)|(  
*11

1**
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





t

t

t

t

t

Jxp

Jxp
r  

- If  )|( )|( ** xpJ   for all  then r=1 and  
t 

are a sequence of 

independent draws from p ( | x) 

We start with initial value 0 , such that 0)( 0 g ; using current   values we sample a 

candidate point * . Let,  21, q  denote transition probability function or the jumping 

distribution, which is the probability of returning a value 2  given a process value 1 . It is 

also referred to as the proposal distribution or candidate generating distribution (Chib & 

Greenberg, 1995). The jump density in the Metropolis algorithm is symmetric i.e., 

   1221 ,  ,   qq  . 

For a candidate point *  , we define  

)(  
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1
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
tt g

g

p

p




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
  , 

  here )( p  is such that the normalizing constant k cancels out.  

If the jump increases the density  1 , accept the candidate point (set * t ) and  

repeat the process. If 1 , accept the candidate point with the probability , else it repeat 

again.  

We can summarize the metropolis sampling as first computing  


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and then accepting a candidate point with the probability of move   . 

This generates a Markov chain  ,...............,,.........,, 210 k as the transition 

probabilities from t  to 1t  depends only on t  and not on  1210 ........,,.........,, t . 

The chain approaches its stationary distribution in sufficient burn in period in the steps.  

Hasting (1970) generalized this algorithm using the equilibrium distribution of interest 

)( p . The distribution )( p  only enters ),( 1p through the ratio 
)( 

)( 1





p

p
. When 

)( p  is posterior distribution, the knowledge of proportionality of the distribution is 

sufficient for the implementation of the algorithm. 

Hasting (1970) generalized Metropolis algorithm using arbitrary probability, such 

) ( Pr), (  2121  q  and setting the acceptance probability for a candidate point as 

  













 1     ,   
),(    )(

),(    )(
min

*

11

1

**






tt

t

qf

qf
 

It is the Metropolis Hasting Algorithm. The originality of the Metropolis Algorithm is 

well again if the proposal distribution is symmetric (i.e., ),(),( xyqyx  ) (Bennett et al., 1995). 
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Appendix C-6 

Intrinsic Estimation: 

The conventional loss function focus on the distance between the estimate ̂  and the true 

value   rather than the distance between the probability model they level. The concept of 

Intrinsic Estimation is found in Bernardo (2003). Intrinsic loss is the function which focuses 

on the probability model and the intrinsic difference between the results they produce. 

Intrinsic losses try to focus on how the probability model ),|( Xp is as of its closest 

approximation within the family }),,ˆ|( { iiXp  and typically produce invariant 

solutions. The intrinsic loss )  ,ˆ(  is defined as )}ˆ| ( ),|ˆ ( min{) ,ˆ(  KK  

where    
 
 

dt
tP

tp
tpK

i

j

jJi    
| 

| 
log  |   | 







  and  )(Xtt  is any sufficient 

statistics. 

With some nuisance parameter ''  

    )  , ( ), ,ˆ (    
min

 ) , (,ˆ 


 i

i 
  and the posterior (expected) intrinsic 

discrepancy is    )  dθ  dλ|X,   p(θ,(θδ)|Xθ(d
Θ

   ) , ˆ     ˆ  


 . 

The intrinsic estimator ) ( ** X  is the corresponding Bayes estimator which minimizes 

the posterior expected loss ) |ˆ(    
ˆ

min  arg
)(* XdX 





  

Intrinsic Credible Region: 

For any loss function ) ,ˆ( l a q credible lowest expected loss (LEL) region may be 

defined as q credible qR*
 such that 

  qjqiji RRXlXl ** ,    )|( )|(    

where  dXplXl    )|(    ),ˆ( )|ˆ( 


 is the posterior expected loss from using ̂  

instead of using  . The loss function used is variant under parameterization (Bernardo, 

2003). The LEL credible region will also be invariant.     
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Appendix C-7 

#Theorem1: If the hypothesis is simple, the Bayes factor in favour H0 verses H1 is just the 

ratio of likelihood under H0 to that of the H1. ie,. 
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L
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Its proof is given as: 

Define a posterior density )|( )|( )( iiiii xpxppp   for i =1,2 
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# Theorem2: If the hypothesis is composite, prior distribution of  conditioned on H0 verses 

H1 is  2,1for     )or       
)( 

)(  i)  p(θπp(θ
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p ii
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
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0
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where )(p is the prior density of   and )(ip is the restriction of )(p  to i normalized to 

give a probability density over 0 and similarity for )(ip . 

Its proof is given as: 

    dxxpxp
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Thus, the Bayes factor in favour the null Hypothesis H0 is  
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which is a ratio of weighted likelihood of 10  and  .   
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Appendix C-8 

Poison- Gamma Hierarchical Modelling: 

For a Poisson –gamma hierarchical modelling we assume, 

 )(  ~| iii PoissonX   

  bagammabai , ~,|  

  BAgammaa , ~  

  DCgammab , ~  

 

The hierarchical modelling of Regression model is given by 

 2
   , ~  ijiiii XNY    

 2
  , ~   Ni  

 2

,    ~   Ni  

 BAgamma ,  ~
1

2


 

 2
   ,0 ~   N  

 2
  ,0 ~   N  

 112
D  ,~

1
Cgamma


 

 222
D  ,~

1
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