
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

THESIS NO: 071/MSI/613

Dynamic Load Balancing in Software Defined Networking

by

Sadhu Ram Basnet

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND

COMPUTER ENGINEERING IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

INFORMATION AND COMMUNICATION ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

OCTOBER, 2016

Dynamic Load Balancing in Software Defined Networking

by

Sadhu Ram Basnet

071/MSI/613

Supervisor

Prof. Dr. Subarna Shakya

A thesis submitted in partial fulfillment of the requirement for the

Degree of Master of Science in Information and Communication

Engineering

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

October, 2016

iii

COPYRIGHT©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Central Campus, may make this thesis freely

available for inspection. Moreover, the author has agreed that the permission for

extensive copying of this thesis work for scholarly purpose may be granted by the

professor(s), who supervised the thesis work recorded herein or, in their absence, by the

Head of the Department, wherein this thesis was done. It is understood that the

recognition will be given to the author of this thesis and to the Department of

Electronics and Computer Engineering, Central Campus in any use of the material of

this thesis. Copying of publication or other use of this thesis for financial gain without

approval of the Department of Electronics and Computer Engineering, Institute of

Engineering, Central Campus and author’s written permission is prohibited.

Requested for permission to copy or to make any use of the material in this thesis in

whole or part should be addressed to:

Head

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

iv

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

The undersigned certify that they have read and recommended to the Institute of

Engineering for acceptance, a thesis entitled “Dynamic load balancing in Software

Defined Networking”, submitted by Sadhu Ram Basnet in partial fulfillment of the

requirement for the award of the degree of “Master of Science in Information and

Communication Engineering”.

Defense Date: 26th October 2016 (10th Kartik 2073)

Examination Committee

Prof. Dr. Subarna Shakya

Supervisor

Prof. Dr. Shashidhar Ram Joshi

Chairperson, Evaluation Committee

Prof. Dr. Dinesh Kumar Sharma

Member, Evaluation Committee

Dr. Surendra Shrestha

Program Coordinator

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

.....................................

External Examineer

v

DEPARTMENTAL ACCEPTANCE

The thesis entitled “Dynamic load balancing in Software Defined Networking”,

submitted by Sadhu Ram Basnet in partial fulfillment of the requirement for the award

of the degree of “Master of Science in Information and Communication Engineering”

has been accepted as a bonafide record of work independently carried out by him in the

department.

Dr. Dibakar Raj Pant

Head of the Department

Department of Electronics and Computer Engineering

IOE,Pulchowk Campus, Tribhuvan University, Nepal

vi

ABSTRACT

Networks need to handle a huge amount of traffic serving thousands of clients day by

day. A single standalone server to cater such a huge load is almost impossible. The

solution is to use multiple servers using load balancer at the front end. Traditional Load

balancer uses dedicated hardware which forwards the client requests to different servers

depending upon load balancing strategy. This sort of hardware is expensive and

inflexible. Network administrators cannot create their own algorithms since traditional

load balancer are vendor locked, non programmable.This thesis implements a dynamic

load balancer which can balance server loads as well as path loads of the network in

SDN environment. Moreover, the dynamic load balancer implements customized load

balancing strategy. SDN load balancer is programmable and allows to design and

implement own customized load balancing strategy. Other advantage of SDN load

balancer is that it does not need dedicated hardware. In this thesis, OpenFlow protocol is

used for communication in SDN environment. This better manages communication

between number of hosts in the network. The result of dynamic load balancer use in this

thesis shows that the server load as well as path load are better managed with a better

traffic scheduling performance of network. Compared with the traditional load

balancing method, this dynamic load balancing effectively improves the performance of

the load balancing in the network and reduce the complexity of implementation.

Keywords: Software Defined Networking, Open Flow, Load Balancer, SDN Controller

vii

ACKNOWLEDGEMENT

I am very thankful to the Department of Electronics and Computer Engineering,

Pulchowk Campus, IOE for providing me the opportunity to do the thesis entitled

“Dynamic Load Balancing in Software Defined Networking”.

I express my sincere gratitude to my thesis supervisor Prof. Dr. Subarna Shakya, for his

expert guidance, motivation, suggestions and encouragement. Without his guidance and

persistent help, this thesis progress would not have been possible.

I would like to express special thanks of gratitude to the Head of Department of

Electronics and Computer Engineering, IOE, Pulchowk Campus, Dr. Dibakar Raj Pant

and the Program Coordinator of Master of Science in Information and Communication

Engineering, Dr. Surendra Shrestha for their support.

I acknowledge my sincere gratitude to Prof. Dr. Sashidhar Ram Joshi, Prof. Dr. Dinesh

Kumar Sharma, Assistant Prof. Dr. Nanda Bikram Adhikari, and teachers Mr. Dinesh

Baniya, Mr. Dayasagar Baral, Mr. Baburam Dawadi and all the teachers of the

Department of Electronics and Computer Engineering, Pulchowk Campus, IOE who

have helped me. Finally, I would like to thank my family and friends for precious

encouragement and support.

viii

TABLE OF CONTENTS

COPYRIGHT ©..iii

DEPARTMENTAL ACCEPTANCE... v

ABSTRACT... vi

ACKNOWLEDGEMENT..vii

LIST OF FIGURES...x

LIST OF TABLES..xi

LIST OF ABBREVIATIONS..xiiii

CHAPTER 1: INTRODUCTION... 1

1.1 Background and Motivation...1

1.2 Problem Statement.. 1

1.3 Objectives.. 2

CHAPTER 2: LITERATURE REVIEW...3

CHAPTER 3: RELATED THEORY... 7

3.1 Software Defined Networking... 7

3.2 Load Balancing..8

CHAPTER 4: METHODOLOGY.. 9

4.1 System Design...9

4.2 Algorithm...10

4.2.1 New flow detection mechanism... 11

4.2.2 Rerouting flows mechanism... 13

4.3 Tools...15

4.3.1 Mininet... 15

4.3.2 SDN Controller..15

4.3.3 OpenFlow Switch.. 16

4.3.4 Wireshark ... 17

ix

4.3.5 IPERF ... 17

4.3.6 Java & Python Programming Language.. 17

4.3.7 Oracle VirtualBox..18

4.3.8 Gnome Conneciton Manager..18

CHAPTER 5: EXPERIMENTS AND OUTPUT... 19

5.1 SDN Network Topology setup...19

5.2 SDN Controller setup..19

5.3 Path selection before load balancing... 20

5.4 Path selection after load balancing.. 26

5.5 Server load balancing..33

CHAPTER 6: RESULTS ANLYSIS AND DISCUSSION....................................... 35

6.1 Bandwidth Test Analysis..35

6.2 Latency Test Analysis...44

CHAPTER 7: EPILOGUES.. 49

7.1 Conclusion... 49

7.2 Future Enhancements..49

REFERENCES...50

x

LIST OF FIGURES

Figure 1 : SDN Architecture..7

Figure 2 : Load Balancer... 8

Figure 3 : Network Architecture... 9

Figure 4 : Block diagram of Dynamic Load Balancing in SDN..10

Figure 5 : New flow routing..12

Figure 6 : Rerouting flow.. 14

Figure 7 : Mininet...15

Figure 8 : Matching a flow in OpenFlow...16

Figure 9 : SDN network topology creation using mininet..19

Figure 10 : SDN Floodlight controller startup...20

Figure 11 : Setting OpenFlow version V13... 20

Figure 12 : h1 ping h3..21

Figure 13 : h1 ping h4..21

Figure 14 : Wireshark capture in interface s1-eth4 for packets of 192.168.124.4........22

Figure 15 : Wireshark capture in interface s1-eth4 for packets of 192.168.124.3........22

Figure 16 : Wireshark capture in interface s1-eth3 for packets of 192.168.124.3........23

Figure 17 : Wireshark capture in interface s1-eth3 for packets of 192.168.124.4........23

Figure 18 : h3 ping h7..24

Figure 19 : h3 ping h8..24

Figure 20 : Wireshark capture in interface s2-eth3 for packets of 192.168.124.7........25

Figure 21 : Wireshark capture in interface s2-eth3 for packets of 192.168.124.8........25

Figure 22 : Wireshark capture in interface s2-eth4 for packets of 192.168.124.7........26

Figure 23 : Wireshark capture in interface s2-eth4 for packets of 192.168.124.8........26

Figure 24 : Initialization of dynamic load balancer for path h1 to h4............................27

Figure 25 : Output of dynamic load balancer showing shortest path for h1 to h4........27

xi

Figure 26 : Wireshark capture in interface s1-eth4 for packets of 192.168.124.4........28

Figure 27 : Wireshark capture in interface s1-eth4 for packets of 192.168.124.3........28

Figure 28 : Wireshark capture in interface s1-eth3 for packets of 192.168.124.3........29

Figure 29 : Wireshark capture in interface s1-eth3 for packets of 192.168.124.4........29

Figure 30 : Initializtion of dynamic load balancer for path h3 to h8............................. 30

Figure 31 : Output of dynamic load balancer showing shortest path for h3 to h8........30

Figure 32 : Wireshark capture in interface s2-eth3 for packets of 192.168.124.7........31

Figure 33 : Wireshark capture in interface s2-eth3 for packets of 192.168.124.8........31

Figure 34 : Wireshark capture in interface s2-eth4 for packets of 192.168.124.7........32

Figure 35 : Wireshark capture in interface s2-eth4 for packets of 192.168.124.8........32

Figure 36 : Output of Random Load Balancer...33

Figure 37 : Output of Weighted Round Robbin Load Balancer.....................................34

Figure 38 : Data transfer and bandwidth measurement in h4 iperf server.....................35

Figure 39 : Data transfer and bandwidth measurement in h1 iperf client......................35

Figure 40 : Data transfer and bandwidth measurement in h3 iperf client......................37

Figure 41 : Data transfer and bandwidth measurement in h8 iperf server.....................38

Figure 42 : Latency measurement of packets for h1 ping h4 before balancing............ 41

Figure 43 : Latency measurement of packets for h1 ping h4 after balancing............... 43

Figure 44 : Latency measurement of packets for h3 ping h8 before balancing............ 45

Figure 44 : Latency measurement of packets for h3 ping h8 after balancing............... 46

Figure 46 : Data transfer before load balancing and after load balancing in SDN....... 47

Figure 47 : Average latency before load balancing and after load balancing in SDN..47

Figure 48 : PI-Chart representation for average data trasnfer before and after load

balancing in SDN.. 48

Figure 49 : PI-Chart representation for average latency before and after load

balancing in SDN.. 47

xii

LIST OF TABLES

Table 1 : iPerf h1 to h4 before Load Balancing..36

Table 2 : iPerf h1 to h4 after Load Balancing...36

Table 3 : iPerf h3 to h8 before Load Balancing..38

Table 4 : iPerf h3 to h8 after Load Balancing...39

Table 5 : Ping h1 to h4 before Load Balancing (in ms)...42

Table 6 : Ping h1 to h4 after Load Balancing (in ms)..44

Table 7 : Ping h3 to h8 before Load Balancing (in ms)...45

Table 8 : Ping h3 to h8 after Load Balancing (in ms)..46

xiii

LIST OF ABBREVIATIONS

BW Bandwidth

CLI Command Line Interface

DALB Dynamic and Adaptive Load Balance

DLB Dynamic Load Balance

ECMP Equal Cost Multi Path

FC Free Capacity

GCM Gnome Connection Manager

JVM Java Virtual Machine

LFC Link Flows Collection

PC Paths Collection

RR Round Robin

RTT Round Trip Time

SDN Software Defined Networking

TCP Transmission Control Protocol

UB Used Bandwidth

UDP User Datagram Protocol

VM Virtual Machine

VLB Valiant Load Balance

WORA Write Once Run Anywhere

WRRA Weighted Round Robin Algorithm

1

CHAPTER 1: INTRODUCTION

1.1 Background

In recent years, with the rapid expansion of Internet business, using the load balancing

technology to deal with this challenge has become a back-end server necessary measure.

The load balancer is a bridge between the network and server, load balancer usually

need to learn the health status of the server, also don't need to be able to set up the

network protocol, packet content information to modify or read. Traditional load

balancing device are considered in the design of the operation condition of the server

computer equipment (such as CPU utilization) to make a decision, but considering the

network traffic is less load of network equipment, the lack of fine grained monitoring

and scheduling, the main reason is that the current network system is a relatively closed

system. Although the traditional router can allocate bandwidth between different paths,

but only a thick line of control. In general, professional load balancing server needs to

be done from two to seven layers of data processing, so it is easy to become the

bottleneck of the whole service system [1].

With the emergence of Software Defined Networking (SDN) technology, network

openness was the largest. Thus far, OpenFlow protocol which is the most widely used in

a south interface protocol is the concrete embodiment of the concept of SDN. OpenFlow

offers another kind of design method of load balancing, the server load balance based

on SDN compared with the traditional load balancing method. It has a simple

implementation and high performance characteristics.

1.2 Problem Statement

Data center networks are designed for satisfying the data transmission demand of

densely interconnected hosts in the data center. The network topology and

switching/routing mechanism can affect the performance and latency significantly.

Nowadays, the fat-tree network is one of the most widely used typologies for data

center networks. Network engineers also adopt load balancing methods in the design of

switching and routing algorithms. However, the requirement of load balancing in

fat-tree networks cannot be fully satisfied by traditional approaches. The main reason is

the lack of efficient ways to obtain network traffic statistics from network devices. This

degrades of quality of service of the network.

2

1.3 Objectives

The main objectives of this thesis are

- To implement a dynamic path load balancer in SDN.

- To implement a dynamic server load balancer in SDN data center.

3

CHAPTER 2: LITERATURE REVIEW

Many researches have been proposed on load balance in traditional multipath network.

Two load balance strategies have been widely used in multipath network at present:

Equal-Cost Multipath (ECMP) [2] and Valiant Load Balance (VLB). The core idea of

ECMP is to evenly distribute data-flow to next-hop switches, and VLB distributes

traffic among all available paths and randomly picks the next-hop switch. These two

strategies both use fixed methods and cannot pick transmission path adaptively to the

path load condition.

In SDN architecture, limited researches have been proposed on network load balance. A

number of load balance system have been proposed in [3]-[5]. In these systems,

controller is used to analyze replying information from OpenFlow switches and modify

the flow-Tables by specific load balance strategy, so as to efficiently plan data

transmission path and achieve load balance in SDN. But these strategies belong to static

load balance method which cannot make dynamic routing plan according to real-time

network load condition. Besides, these several methods take little advantages of SDN to

make a better load balance design. A dynamic load balance algorithm, known as

Dynamic Load Balance (DLB), has been proposed in [6]. The DLB algorithm simply

applies greedy selection strategy to pick next-hop link which transmits least data load.

Although these algorithm implements load balance on multipath SDN, this routing

strategy is only decided by link load of every next-hop without combining the

superiority of global network view in SDN. Hence, this routing strategy may not find

the best transmission path in global view so that may not achieve the best load balance

effect.

S. Bhandarkar, et. al. [7], describes how the best calculated path is obtained using the

dynamic load balancer to reduce the collision and information loss, when the load on

the link will be greater than the bandwidth of the link. The experiment results that it can

handle more packets and having greater efficiency than round-robin load balancer in

both the modes. Y. Zhou, et. al. [8], describes a load balancing strategy named Dynamic

and Adaptive Load Balance (DALB) for SDN controller based on distributed decision.

But there is not much focused attention on testing the algorithms in more detail.

I. Keslassy, et. al. [8-9], follows the two ideas of DIFANE. The network administrator

has the authority to specify the policies which defines how the switches can forward,

4

drop, modify and measure the traffic. It is an efficient solution which keeps the traffic in

the data plane and forwards the packets through intermediate switches having necessary

rules and the controller partition rules over the switches.

G Shou, et.al. [10], has introduced R-SDN. It has a vertically distributed control plane.

Number of network/forwarding devices on each layer increases according to the

Fibonacci series as the idea keep in mind that series increase like branches of a tree

(spanning tree) with no loop. They manages the network by using Fibonacci heap

ordered tree for load balancing and routing. The algorithm is solvable in polynomial

time and gives less response time as compared to the traditional network.

Shi, et.al. [11], introduced the concept of Flow Slice (FS). It was used to divide each

traffic flow into several flow slices and balance the load through various paths in a

network. The paper claimed that if the setting of a slicing threshold was 1 to 4

milliseconds, the FS strategy could obtain nearly optimal performance. Based on the

measurement, the paper presented various slice thresholds with other variables, such as

Flow-Slice packet count, Flow Slice size, and Flow-Slice number, to find the impact.

Finally, the paper measured delay, packet loss rate, and out-of-order packet value to

determine the performance of the FS scheme.

F. Farina, et. al. [12], suggested author configuring a mesh Ethernet network using SDN

topology showing L2 essential/necessary features e.g. creation of spanning tree is still

missing in the SDN creation. They focus on typical computing centers of cloud where

both loop free network topologies and their energy efficiency. GreenMST is the

proposed prototype fulfills the basic requirements of loop free L2 network topology

which is suitable or fit for various production and experimental network production.

This prototype avoids the drawback of traditional non-openflow solutions like STP

protocol by providing network applications to specify the metric dynamically, which is

used by the controller for preparing the spanning tree. It reduces the energy

consumption by switching off inactive ports. The future work focuses on providing the

solutions on current prototype i.e. introducing the cache with the list of deactivate

interfaces.

In SDN, distributed controllers [13] have been proposed to solve the scalability issues

and reliability issues of network control plane. There is a limitation of distributed

controllers, the mapping of switch and controller is configured statically due to which

5

the load distributed among various controllers is not even. To solve this problem, this

architecture is proposed in which the pool of controllers is shrink and grow dynamically

according to the traffic on the link and load on each link is dynamically shifted across

all controllers.

In Coronett, et. al.[14], the scalability of SDN is improved as compared to standard

approach of SDN. VLAN reduces the number of packets forwarding rules and packet

forwarding. It only specifies logical paths rather than physical paths. There are various

openflow applications exists which directly control the packets path, these applications

can be rewritten using CORONET architecture. In future work, author plan to evaluate

the generality of CORONET to support common SDN applications and build a general

framework which allows seamless integration with any SDN application. For the control

plane, they check feasibility using traditional distributed mechanisms of the network

like spanning tree protocol, and compare with a approach in which the controller

reconfigures the control plane when faults are detected.

Yao Shen, et. al. [15], introduces a new algorithm focuses on the issue of load balancing

and strategies of routing in SDN. Although there are various algorithms present on this

issue but they are not suitable for the large flow distributed network because they don't

consider load collision on the middle of the transmission of packets. They proposed an

efficient algorithm for path switching to balance the uneven load exists on the network.

The experimental results show that this algorithm gives better performance than the

other one.

Hata, et. al. [16], assumed that openflow switch in SDN deals with multi-protocol

packet header in various packets like Ethernet, HTTP, and SIP etc. He discussed

architecture and requirements of a openflow switch to work with multi-protocol packet

header. For this, more intelligent and programmable switch function is required.

Therefore, he developed architecture by combining active network technology and SDN.

It’s done with virtual CPU and memory called packet processor and a user program is

loaded in it which is invoked packet by packet. All packet processing shouldn't do by

this this user program. Several system calls, library functions and utility functions are

provided by this platform to the user program. A component named transfer engine are

programmed to support lower layer protocols.

Since, the user program handles various protocols. They prepare various transfer

6

engines according to the platform. The controller has the responsibility to send the user

program to the openflow switch and notifies what kind of transfer engine is invoked for

that program. They proposed various load balancing servers (proxy) for HTTP using

this platform.

7

Control Layer

Applications
Applications

CHAPTER 3: RELATED THEORY

3.1 Software Defined Networking

Software defined network [17] is a new emerging technology in the field of networking

in which programs written in high-level languages like C, java, ruby, Perl etc for control

plane by the network administrator is used to control the behavior of whole network. It

deals with splitting of infrastructure layer from control layer which enhances the

programming capability, flexibility, malleability and manageability of the network. In

spite of having lots of benefits over traditional network availability of SDN, it is not

friendly with the growing organizational network.

API

OpenFlow

Figure 1: SDN Architecture

The architecture of SDN is clearly shown in the Figure 1. SDN is commonly associated with

OpenFlow protocol.

Application Layer

Infrastructure Layer

Applications

SDN
Control
Software Network Services

Network Device Network Device

Network Device

8

3.2 Load Balancing

Load balancing is a methodology to distribute workload across multiple computers to

achieve optimal resource utilization, maximize throughput, minimize response time and

avoid overload [18].

Load balancer acts as the “traffic cop” sitting in front of your servers and routing client

requests across all servers capable of fulfilling those requests in a manner that

maximizes speed and capacity utilization and ensures that no one server is overworked,

which could degrade performance. If a single server goes down, the load balancer

redirects traffic to the remaining online servers. When a new server is added to the

server group, the load balancer automatically starts to send requests to it .

In this manner, a load balancer performs the following functions:

- Distributes client requests or network load efficiently across multiple servers

- Ensures high availability and reliability by sending requests only to servers

that are online

- Provides the flexibility to add or subtract servers as demand dictates

For the purpose of choosing real-time least loaded path, load balancer immediately

calculate the integrated load condition of multiple path and as well as server when

receiving the path information transmitted from SDN controller.

Figure 2: Load Balancer

9

CHAPTER 4: METHODOLOGY

4.1 System Design

SDN controller obtains the ability to show the global view of network at the beginning

of network construction. By updating topology information of global network, SDN

controller can discover all paths between each source node to each destination node.

Network architecture for SDN load balance is shown in Figure 3. The architecture

employs a dedicated load balance in each path. Hence, in the design, controller

periodically transmits the load information of each path to load balancer as well as the

load information of each server to the load balancer. And when the SDN controller need

to process the load balance function, the load balancer return a least loaded path back to

controller according to the calculated load condition of each path. After SDN controller

receives the chosen path for transmission, it will allocate flow-Tables for OpenFlow

switches to achieve the plan of data-flow transmission.

Figure 3: Network Architecture

In dynamic load balancing, the work load is calculated and distributed among the

servers at runtime. The controller assigns new requests to the servers based on the load

information collected. As shown in Figure 3, a set of clients and servers are connected

to a network. The controller connected to the network communicates via the OpenFlow

protocol and has a set of defined load balancing algorithms.

10

4.2 Algorithm

The block diagram of dynamic load balancing in SDN is shown in Figure 4. The aim of

the algorithm is to balance dynamically the loads depending on traffic conditions in

order to achieve the best resource profit possible. In pursuance of such goal, is essential

to keep track of the current state of the network in terms of traffic. In pursuance of such

goal, is essential to keep track of the current state of the network in terms of traffic.

Figure 4: Block diagram of Dynamic Load Balancing in SDN

The procedure of control data in proposed dynamic load balancing in SDN system is

as :

1. When a new data-flow transmitted into SDN domain, OpenFlow switches process

the matching between packet head information and flow-Tables. If the flow-Table

matches the packet head information, this data-flow will be transmitted by the

Action field in flow-Table. And if there is no flow-Table to match this packet,

OpenFlow switches will transmit this packets head information to SDN controller

to decide the transmission path.

2. When finding only one path for data transmission, the SDN controller will create

new flow-Tables and allocate them to OpenFlow switches to active data

transmission.

3. When finding multiple paths for data transmission, the SDN controller will transmit

multiple path load information to the load balancer.

4. The load balancer calculates the integrated load for every path and chooses one

least loaded path as the result to return back to SDN controller.

5. SDN Controller receives the chosen path from load balancer and creates

Source Host OpenFlow
Switch

SDN
Controller

Load
Balancer

OpenFlow
Switch

Destination
Host

11

flow-Tables to allocate to OpenFlow switches.

4.2.1 New flow detection mechanism

The first step is detecting a new flow event. This is done when a packet arrives to a

switch in the network, and the header of that packet doesn’t matches with any of the

rules that the switch has, which will trigger the load balancer.

The next step is to find if all the possible paths between the to points have been

computed already, thus avoid to recalculate the possible paths in case that have been

computed already. This is useful due the possibility that different flows can have the

same ingress and egress switches (e.g flows from the same source host to the same

destination but with different ports, or hosts attached to the same switch). In the case

that the paths between the ingress and egress switches have not been computed yet, a

function to calculated it is triggered. The way to find all the possible paths is by using a

Dijkstra algorithm. For each new path discovered, a new Path is stored into the

PathCollection, having as a unique identifier a string with all the nodes which the path

goes through.

Once all the possible paths are found, it is needed to, first, select a route, and second,

write the rules in the flow Tables of each switch within the selected route. To select the

route, the algorithm looks for the Path with bigger FreeCapacity value. Since when the

flow starts there is no information about the traffic that it will bear and this way we

guarantee that the flow will use the route where there is more capacity available.

After the route is selected, and using the Hops and Links of the specific Path, it is

needed to send the appropriated messages to the switches to forward the packets

through that path.

With that, every switch within the selected route will have the necessary flow entries to

carry out the communication between the two end points.

The main objective of new flow detection mechanism is to find out whether there exists

a flow rule added in the OpenFlow switch or not. If the new flow routing path does not

exist, then all parallel paths between source and destination are searched and the best

optimal path is selected for routing.

The block diagram of new flow detection mechanism in dynamic load balancing in

software defined networking is shown in the Figure 5.

12

NO

YES

Figure 5 : New flow routing

After the addition of new flows entries into the path collection entries and in the

openflow switches, then the controller needs to go for rerouting flows in order to

balance the load in the network.

New Traffic Flow

Get header of the first
Packet to identify the

flow

Get Ingress and
Egress nodes
(EndPoints)

PC
contains
endPoints

?

Search all parallel
paths between End

Points

Add paths to PC

Select path with
highest FreeCapacity

on PC

Add corresponding
flow entries in each of

the switches

PC: Path Collection
EndPoints: Connections
edge switches
FreeCapacity: Capacity
available in a path

13

4.2.2 Rerouting flows mechanism

After the flow has initiated its communication between the two hosts, and starts to

transmit traffic, the algorithm starts to capture information about the network state in

order to adapt to the conditions of every single moment. Once congestion is detected at

any link, appears the need of rerouting some of the current flows. To accomplish the

best accommodation of resources possible, this algorithm is focused on reroute the

flows with lowest traffic.

The process conducted is explained in two parts. The first one, illustrated in Figure 6,

explains the first step, where the link which is overcrowded is detected and, afterwards,

a FlowsCollection is established (LFC), containing all the flows that are using that link.

Subsequently it selects the flow with lowest bandwidth usage (assigning it to the

variable PendingFlow), and checks out if there is any other parallel route for this flow

with enough free capacity to carry its traffic. In the case that there is another possible

path with sufficient capacity, the flow will be routed through that route, sending the

corresponding flow entries to each of the OpenFlow switches.

Once the flow with the lowest bandwidth usage have been routed across another path,

the process starts again, and, in the case that the congestion still exists, the same

procedure will be followed, moving the lightest flows along another routes.

After congestion is detected, no route with enough free capacity have been found to

reroute any of the flows. In this case the different flows is analyzed to Figure out which

is the best way to allocate them. Afterwards, the algorithm iterate for every flow and

analyzing if the CB (Contributed Bandwidth) of the selected flow is higher than the

bandwidth than the flow that the controller is trying to allocate. Inquiring the free

resources from the controller, the available in the Path if the selected flow is moved

along another route and see if that will be enough to carry the bandwidth the flow needs.

The main objectives of two mechanism new flow detection and rerouting the flow are to

move the traffic flows with lower used bandwidth to the paths with lowest capacity.

Thus, assuring that the heaviest flows are allocated to the highest-capacity paths. The

algorithm takes into account the network topology character and traffic bandwidth

request.

Rerouting flow mechanism is shown in the Figure 6. It starts with free capacity check ,

link congestion check and finally rerouting pending flow through the path.

14

NO

YES

NO

YES

Figure 6: Rerouting flow

With the rerouting flow mechanism employed in the SDN controller, QoS is achieved.

Check FC of each Link

Establish LFC

Link
congested

?

PC
contains
endPoints

?

Assign flow with
smaller UB to Pending

Flow

Establish PC for
Pending Flow

Select path with larger
FC in PC

Reroute Pending Flow
through this path

Coming
from
B

Go to
A

FC: Free Capacity
LFC: Link Flows
Collection
FreeCapacity: Capacity
available in a path
BW: Bandwidth

15

4.3 Tools

Different tools and languages to be used for completion of this thesis are discussed in

this section.

4.3.1 Mininet

Mininet creates a realistic virtual network, running real kernel, switch and application

code, on a single machine (VM, cloud or native), in seconds, with a single command.

Programmer can easily interact with your network using the Mininet CLI (and API),

customize it, share it with others, or deploy it on real hardware. Mininet is useful for

development, teaching, and research. Mininet is also a great way to develop, share, and

experiment with OpenFlow and Software-Defined Networking systems.

Veth-pair Veth-pair

TCP/SSL

Connection

Figure 7 : Mininet

4.4.2 SDN Controller

An SDN controller is an application in SDN that manages flow control to enable

intelligent networking. SDN controllers are based on protocols, such as OpenFlow, that

allow servers to tell switches where to send packets.

The controller is the core of an SDN network. It lies between network devices at one

end and applications at the other end. Any communications between applications and

root namespace

unix/socket
/tmp/s1 raw raw

Socket Socket Pipe Pipe

ofprotocol ofprotocol mn

eth0 s1-eth1 s1-eth1

host 2 namespacehost 1 namespace

/bin/bash

h1-eth0
0

h1-eth0

/bin/bash

Controller

16

Parse
Header
Fields

Send to
Controller

Match
Table
n?

devices have to go through the controller. The controller also uses protocols such as

OpenFlow to cofigure network devices and choose the optimal network path.

4.3.3 OpenFlow Switch

OpenFlow provides a mechanism for SDN. When a packet from a client arrives at an

OpenFlow switch, packet header information is compared with flow Table entries of the

switch. Each flow entry consists of a set of flow rules, defined on basis of packet header

fields for packet matching, an action to be performed on the packets matching the flow

rules, & flow statistics. A packet header includes Port id, VLAN tag, Ethernet type,

source & destination address, IP protocol type, User Datagram Protocol/Transmission

Control Protocol (UDP/TCP) source & destination port.

Figure 8 : Matching a flow in OpenFlow

Open vSwitch uses different kinds of flows for different purposes. OpenFlow Controller

uses OpenFlow flows to define a switch’s policy. In a conventional switch, packet

forwarding (data plane) and high level routing (control plane) occur on the same device.

In SDN, the data plane is decoupled from the control plane.

Parse
Header
Fields

Packet in
from the
network

Match
Table
0?

17

4.3.4 Wireshark

Wireshark is a Free and open source packet analyzer. It is used for network

troubleshooting, analysis, software and communications protocol development, and

education. Wireshark lets the user put network interface controllers that support

promiscuous mode into that mode, so they can see all traffic visible on that interface,

not just traffic addressed to one of the interface's configured addresses and

broadcast/multicast traffic. However, when capturing with a packet analyzer in

promiscuous mode on a port on a network switch, not all traffic through the switch is

necessarily sent to the port where the capture is done, so capturing in promiscuous mode

is not necessarily sufficient to see all network traffic. Port mirroring or various network

taps extend capture to any point on the network[19].

4.3.5 IPERF

IPERF is a commonly used network testing tool that can create Transmission Control

protocol (TCP) and User Datagram Protocol (UDP) data streams and measure the

throughput of a network that is carrying them. Iperf allows the user to set various

parameters that can be used for testing a network, or alternatively for optimizing or

tuning a network. Iperf has a client and server functionality, and can measure the

throughput between the two ends [20].

4.3.6 Java & Python Programming Language

Java is a general-purpose computer programming language that is concurrent,

class-based, object-oriented, and specifically designed to have as few implementation

dependencies as possible. It is intended to let application developers "write once, run

anywhere" (WORA), meaning that compiled Java code can run on all platforms that

support Java without the need for recompilation. Java applications are typically

compiled to bytecode that can run on any Java virtual machine (JVM) regardless of

computer architecture[21].

Python is a widely used high-level, general-purpose, interpreted, dynamic programming

language. Its design philosophy emphasizes code readability, and its syntax allows

programmers to express concepts in fewer lines of code than possible in languages such

as C++ or Java. Python supports multiple programming paradigms, including

object-oriented. For any experienced programmer in any programming language,

python can be easy to use and learn[22].

18

4.3.7 Oracle Virtual Box

VirtualBox is a cross-platform virtualization application. It extends the capabilities of

existing computer so that it can run multiple operating systems (inside multiple virtual

machines) at the same time. It allows to run more than one operating system at a time.

Virtual machine (VM) is the special environment that VirtualBox creates for guest

operating system while it is running. The key features of oracle virtual box are

portability, no hardware virtualization required and guest additions.

4.3.8 Gnome Connection Manager

Gnome connection manager (GCM) is very useful when connecting multiple remote

machine over ssh. It is a GUI for remote management. Remote activity is something that

usually done by a system administrator. The remote protocol that might be used is SSH

and/or telnet. It is a tabbed SSH Connection for gtk+ environment. With this, remote

screens can be manage to make the administrator easier to operate them. It can store

passwords for easy access to hosts. It supports multiple ssh tunnels for each host. It can

connect to multiple hosts with just one click. It’s free and the source is included in the

download.

19

CHAPTER 5: EXPERIMENTS AND OUTPUTS

5.1 SDN Network Topology setup

The SDN network topology is created using mininet. Eight hosts are created with ten

OpenFlow switches. The remote floodlight controller [IP=192.168.124.5, port=6653] is

connected to the SDN network topology. The Figure 9 shows SDN network topology

creation using mininet.

Figure 9 : SDN network topology creation using mininet

5.2 SDN Controller setup

Floodlight is an OpenFlow controller altogether with a collection of applications built

on its top. The controller by itself contains a bunch of interfaces which keep track of the

state of the network. It also provides a set of services which can be used from the

extensible modules. The controller core has a Java Application Programming Interface

(API) to expose the controller functionalities, consenting the expansion of the controller

functionalities. Thus, the network manager can adapt the behavior of the network by

writing a custom module. Furthermore the Java API, Floodlight also provides a REST

API, therefore any REST applications, written in any language, can retrieve information

and invoke services by sending http REST commands to the controller REST port.

20

Once the floodlight controller is started, HTTP will be enabled. All flow Tables on

initial handmaster will be cleared. OpenFlow port to 6653 is set. The controller role is

set to ACTIVE.

Figure 10 : SDN Floodlight controller startup

After the SDN floodlight controller and SDN topology are created, then SDN switches

need to be set with OpenFlow version V13 in order to get full operability. The following

Figure shows the successful setting of OpenFlow version V13 all SDN switches after

calling the script by ./setOpenFlow13.sh.

Figure 11 : Setting OpenFlow version V13

The calling of user defined script setOpenFlow13.sh will install protocols=OpenFlow13

in all SDN switches that are created by mininet emulator.

5.3 Path selection before Load Balancing

A load balancer selects the appropriate least cost effective link between the source and

destination. If the network is without a load balancer, then the link utilization factor of

that network is poor.

Before the implementation of load balancer in the customized SDN network topology,

21

two things are observed. The first thing is, bandwidth utilization of link between source

host and destination host. The second thing is latency of packets to reach destination.

From the first console of host h1, host h3 (192.168.124.3) is made. Also from the

second console of host h1, host h4 192.168.124.4 is pinged. They are shown in the

Figure 12 and Figure 13 respectively.

Figure 12 : h1 ping h3

Figure 13 : h1 ping h4

In the custom topology, the path from h1 to h3 and the path from h1 to h4 can be same .

The paths may be s1-s21-s2 or s1-s10-s2. When h1 first pings h3, the path s1-s10-s2 is

selected. After h1 pinging h3, h1 to ping h4 is made. Again, the same path s1-s10-s2 is

chosen even though s1-s10-s2 is unused. This situation can be observed from the

wire-shark. The process to analyze the packets in wire-shark is as follows.

- Go to capture

- Select Interfaces

- Select “s1-eth4”

- Start the capture

In the filter section of wireshark, ip.addr=192.168.124.4 packets are filtered. The

packets of 192.168.124.4 can be observed in the interface s1-eth4.

22

Figure 14 : Wire-shark capture in interface s1-eth4 for packets of 192.168.124.4

Again, same process is done to check the packets of 192.168.124.3 in the interface

s1-eth4. Also the packets of 192.168.124.3 can be observed in the same interface

s1-eth4. This is shown in the Figure 15. But there is no ping packets of 192.168.124.3

and 192.168.124.4 in the interface 192.168.124.3. This means that unused path is not

properly utilized.

Figure 15 : Wireshark capture in interface s1-eth4 for packets of 192.168.124.3

From Figure 15, it is observed that ping packets for node h3 [ip=192.168.124.3] is not

23

observed in the interface s1-eth3 before load balancing.

Figure 16 : Wireshark capture in interface s1-eth3 for packets of 192.168.124.3

From Figure 16, it is also observed that ping packets for node h4 [ip=192.168.124.4] is

not observed in the interface s1-eth3 before load balancing. This means that, interface

s1-eth3 is not used even it is free before the implementation of load balancer in software

defined networking.

Figure 17 : Wireshark capture in interface s1-eth3 for packets of 192.168.124.4

Now, another situation that is considered for observation is that from the first console of

host h3, ping 192.168.124.7 (host h7) is done. In addition, from the second console of

host h3, ping 192.168.124.8 is made. They are shown in the Figure 18 and Figure 19

respectively.

24

Figure 18 : h3 ping h7

Figure 19 : h3 ping h8

In the custom topology, the path from h3 to h7 and the path from h3 to h8 can be same.

The Figure 18 and the Figure 19 show pinging of node h7 (ip address 192.168.124.7)

and node h8 (ip address 192.168.124.8) respectively from the node h3 (ip address

192.168.124.3) in the custom topology. The path may be s2-s10-ss18-s22-s4 or

s2-s21-s17-s11-s4. When h3 first pings h7, the path s2-s21-s17-s11-s4 is selected. After

h3 pinging h7, h3 to ping h8 is made. Again, the same path s2-s21-s17-s11-s4 is chosen

even though s2-s10-ss18-s22-s4 path does not bear any network traffic or traffic with

less congestion. This condition is undesirable.

When node h3 pings nodes h7, the packets of 192.168.124.7 can be observed in the

interface s2-eth3 before load balancing which is shown in the Figure 20. In other words,

the wireshark capture filter of ip address 192.168.124.7 at the interface s2-eth3 can be

observed. In the Internet Protocol Version 4 field of wireshark for ip.addr filter, current

source and destination ip addresses are listed.

25

Figure 20 : Wireshark capture in interface s2-eth3 for packets of 192.168.124.7

The packets of 192.168.124.8 can be observed in the interface s2-eth3 before load

balancing when h3 pings h8 which is shown in the Figure 21.

Figure 21 : Wireshark capture in interface s2-eth3 for packets of 192.168.124.8

When node h3 pings node h7, the packets of 192.168.124.7 can not be observed in the

interface s2-eth4 before load balancing which is shown in the Figure 22. In other words,

the wireshark capture filter of ip address 192.168.124.7 at the interface s2-eth4 cannot

be observed before load balancing in SDN.

26

Figure 22 : Wireshark capture in interface s2-eth3 for packets of 192.168.124.8

The packets of 192.168.124.8 can not be observed in the interface s2-eth4 before load

balancing when h3 pings h8 which is shown in the Figure 23.

Figure 23 : Wireshark capture in interface s2-eth4 for packets of 192.168.124.8

This shows that network paths are not properly utilized before load balancing.

5.4 Path selection after Load Balancing

The REST APIs Dynamic load balancer is used to collect operation information of the

topology and its devices. It enables statistics collection in case of Floodlight (TX i.e.

Transmission Rate, RX i.e. Receiving Rate, etc). It finds information about hosts n

dynamic load balancing, the work load is calculated and distributed among the servers

at runtime. The controller assigns new requests to the servers based on the load

information collected. As shown in figure 3, a set of clients and servers are connected to

a network. The controller connected to the network communicates via the OpenFlow

27

protocol and has a set of defined load balancing algorithms.

connected such as their IP, Switch to which they are connected, MAC Addresses, Port

mapping, etc 3. It obtains path/route information from source Host to destination

Host i..e. the hosts between load balancing has to be performed. It finds total link cost

for all these paths between source Host 1 and destination Host 2. The flows are created

depending on the minimum transmission cost of the links at the given time. Based on

the cost, the best path is decided and static flows are pushed into each switch in the

current best path. Information such as In-Port, Out-Port, Source IP, Destination IP,

Source MAC, Destination MAC is fed to the flows. The program continues to update

this information every 1 second thereby making it dynamic.

The Figure 24 shows dynamic load balancer initialization and its output to find the

shortest possible path exists between source and destination node.

Figure 24: Initialization of dynamic load balancer

Figure 25 : Output of dynamic load balancer showing shortest path for h1 to h4

28

After the dynamic load balancer is invoked, all the paths that exist between source node

and destination nodes are determined. The load balancer then lists paths from source to

destination along with the link ports connections. Finally, link costs between each path

is calculated and listed. Ultimately, the shortest path between source and destination is

chosen.

Here in the Figure 26, the paths between node h1 and node h4 are 02::15::01 and

02::0a::01. Between these 2 paths, the path 02::15:01 is chosen as its path cost is 0. The

packets of 192.168.124.4 can not be observed in the interface s1-eth4 after load

balancing when h1 pings h4 which is shown in the Figure 26.

Figure 26 : Wireshark capture in interface s1-eth4 for packets of 192.168.124.4

Figure 27 : Wireshark capture in interface s1-eth4 for packets of 192.168.124.3

29

The packets of 192.168.124.3 can not be observed in the interface s1-eth3 after load

balancing when h1 pings h3 which is shown in the Figure 28.

Figure 28 : Wireshark capture in interface s1-eth3 for packets of 192.168.124.3

But, the packets of 192.168.124.4 can be observed in the interface s1-eth3 after load

balancing when h1 pings h4 which is shown in the Figure 29. In other words, the

wireshark capture filter of ip address 192.168.124.4 at the interface s1-eth3 can be

observed after load balancing in SDN.

Figure 29 : Wireshark capture in interface s1-eth3 for packets of 192.168.124.4

This shows that network path between host h1 to host h3 is properly utilized after the

implementation of dynamic load balancer in SDN network.

30

Figure 30 : Initialization of dynamic load balancer for path h3 to h8

Figure 31 : Output of dynamic load balancer showing shortest path for h3 and h8

Once the dynamic load balancer is invoked, all the paths that exist between source node

h3 and destination node h8 are determined. The load balancer then lists paths from

source h3 to destination h8 along with the link ports connections. Finally, link costs

between each path is calculated and listed. Ultimately, the shortest path between source

h3 and destination h8 is chosen. Through that path, the communication between source

and destination takes place.

The Figure 31 shows that there exists 2 paths between node h3 and node h8. They are

represented as 04::16::12::0a::02 and 04::0b::11::15::02. Out of these available 2 paths,

the path 04::16::12::0a::02 is chosen as its path cost is 339 which is lesser than the path

cost of 04::0b::11::15::02. In this way, the shortest path is chosen wisely by the load

balancer which improves the quality of service in the network. This is the sole objective

of implementing the dynamic load balancer in SDN.

31

Packets of 192.168.124.7 can be observed in the interface s1-eth3 after load balancing

when h3 pings h7 which is shown in the Figure 32. In other words, the wireshark

capture filter of ip address 192.168.124.7 at the interface s2-eth4 can be observed after

load balancing in SDN.

Figure 32: Wire-shark capture in the interface s2-eth3 for packets of 192.168.124.7

Packets of 192.168.124.8 can not be observed in the interface s1-eth3 after load

balancing when h3 pings h8 which is shown in the Figure 33.

Figure 33: Wire-shark capture in the interface s2-eth3 for packets of 192.168.124.8

Packets of 192.168.124.7 can not be observed in the interface s1-eth4 after load

balancing when h3 pings h7 which is shown in the Figure 34.

32

Figure 34 : Wire-shark capture in the interface s2-eth4 for packets of 192.168.124.7

When h3 pings h8, packets of 192.168.124.8 can be observed in the interface s1-eth4

after load balancing. This is shown in the Figure 35.

Figure 35: Wire-shark capture in the interface s2-eth4 for packets of 192.168.124.8

To sum up, when node h3 pings node 8, ping packets of 192.168.124.8 go through the

interface of s2-eth4 and when node h3 pings node 7, ping packets of 192.168.124.7 go

through the interface of s2-eth3. Though there exists the common path between node h3

to node h8 and node h3 to node7, the link which is less utilized is chosen while going

packets from node h3 to node h7 or node h8. This is achieved by the implementation of

the customized dynamic load balancer in the SDN. The network path is selected

appropriately after the implementation of the dynamic load balancer in the SDN.

33

5.5 Server Load Balancing

Clients request access for web-server after which random load balancing mechanism

configured in POX controller gives random server selection.

The core methods used for POX controller are _init_(self,ip,mac,port),

init(self,connection), get_next_server(self) and handle_arp(self,packet,in_port). A

function _init_(self,ip,mac,port) sets IP,MAC of load balancer as 10.0.0.254 and

00:00:00:00:00:FE.

Figure 36 : Output of Random Load Balancer

Initially, random load balancer controller is attached with 00-00-00-00-00-01 MAC

address with IP address 10.0.0.254. When clients demands for access to the web server

HTTP, then it receives an ARP request. In the Figure 36; 10.0.0.4 station demands the

request. Then POX controller installs 10.0.0.4 with 10.0.0.1 web HTTP server at port 80

using random selection logic. Consider second case in the Figure 36, 10.0.0.5 station

demands the request. Then POX controller installs 10.0.0.5 with 10.0.0.3 web HTTP

server at port 80 using random selection logic. In third case, 10.0.0.6 station demands

the request. Then POX controller installs 10.0.0.6 with 10.0.0.1 web HTTP server at

port 80 using random selection logic. This shows that there is random selection of

server without recognizing the server load demand load weight.

34

Weighted Round-Robin load balancing provides greater efficiency compared to random

load balancing.

Figure 37 : Output of Weighted Round Robin Load Balancer

Weighted Random load balancer controller is attached with 00-00-00-00-00-01 MAC

address with IP address 10.0.0.254. When clients demands for access to the web server

HTTP, then it receives an ARP request. In the Figure 37, 10.0.0.4 station demands the

request. Then POX controller installs 10.0.0.4 with 10.0.0.3 web HTTP server at port 80

using weighted round robin selection logic. Consider second case in the Figure 37,

10.0.0.5 station demands the request. Then POX controller installs 10.0.0.5 with

10.0.0.1 web HTTP server at port 80. In third case, 10.0.0.6 station demands the request.

Then 10.0.0.6 client is served with 10.0.0.2 web HTTP server at port 80 . There is

appropriate distribution of load. With weighted round robin load balancing, the network

will be stable when the demand of load from clients is huge as there is balancing of load

on demand.

35

CHAPTER 6: RESULTS ANALYSIS AND DISCUSSION

The implementation of dynamic load balancer results decrease in latency of packets to reach

from source to destination. It is due to the proper path selection for packets to travel from source

to destination. The data transfer and bandwidth measurement of the network path is done before

and after load balancing. Along with that, ping test is done before and after load balancing to

find latency improvement in the SDN network.

6.1 Bandwidth Test Analysis

Iperf test provides amount of data transfer and bandwidth between source and

destination nodes. Individual 25 iperf tests have been performed before and after load

balancing. Table 1 and Table 2 show data populated with amount of data transfer and

bandwidth between the node h1 and h4 before and after load balancing successively.

Consider the situation in which node h1 pings node h4 before using load balancer. Then

the data transfer and bandwidth measurement between node h1 and node h4 is shown in

the Figure 38 and Figure 39.

Figure 38: Data transfer and bandwidth measurement in h4 IPERF server

Figure 39 : Data transfer and bandwidth measurement in h1 IPERF client

For observation, node h4 is set to iperf server and node h1 is iperf client. In the same

way node h8 is set ot iperf server and node h3 is set to iperf client.

36

The Table 1 and Table 2 are populated with the iperf tests for ping between h1 and h4.

Table 1: iPerf h1 to h4 before Load Balancing

No. Of Observations Transfer (Gbytes) B/W(Gbits/s)

1 27.8 23.8
2 27.11 23.31
3 27.23 23.5
4 26.92 22
5 26.82 24.12
6 27.11 22.11
7 27.34 23.34
8 26.89 22.34
9 26.97 21.21
10 27.43 23.45
11 26.87 22.23
12 27 23.21
13 27 22.42
14 27.32 23.95
15 26.34 23.67
16 26 23.76
17 26.9 22.95
18 29.45 23.19
19 28 24.12
20 26 22.11
21 26.32 23.34
22 27.9 23.34
23 27.8 23.89
24 28.9 22.89
25 27.9 23.11

Average: 27.25 Average: 23.09

Table 2: iPerf h1 to h4 after Load Balancing

No. Of Observations Transfer (Gbytes) B/W(Gbits/s)

1 54.11 46.23
2 53.91 45.54
3 53.78 46.5
4 54.11 46.12
5 54.23 46.71
6 53.98 45.76

7 54.12 45.65

8 53.76 45.98

9 53.87 46.45

37

46

10 54.23 46.67

11 53.56 45.78

12 54.26 46.23

13 53.22 46.23

14 54.13 45.65

15 54.78 45.67

16 53.25 46.61

17 54.89 45.98

18 54.23 46.21

19 54.89 45.55

20 53.23 46.23

21 53.56 45.11

22 53.19 46.81

23 53.29 45.23

24 54.12 46.34

25 53.89 46.12

Average: 53.94 Average: 46.05

The Table 1 shows iperf tests between node h1 and h4 for 25 observations before the

implementation of load balancer in software defined network. The Table 1 consists of

average transfer of 27.25 GBytes for packets and 23.09 Gbits/s bandwidth utilization of

the links in the network before the implementation of customized load balancer in the

SDN. The Table 2 shows average transfer of 53.94 GBytes for packets and 46.05

Gbits/s bandwidth utilization after the implementation of load balancer.

Figure 40: Data transfer and bandwidth measurement in h3 IPERF client

38

Figure 41: Data transfer and bandwidth measurement in h8 IPERF server

The Table 3 and Table 4 are populated with the iperf tests for ping between h3 and h8.

Table 3: iPerf h3 to h8 before Load Balancing

No. Of Observations Transfer (Gbytes) B/W(Gbits/s)

1 15.6 13.4

2 15.41 12.98

3 15.31 13.3

4 15.7 12.8

5 15.2 13.32

6 15.8 12.98

7 15.23 12.76

8 15.11 13.87

9 15.46 12.67

10 15.76 12.98

11 15.34 13.45

12 15.34 13.56

13 15.11 13.54

14 14.99 13.78

15 14.67 13.82

16 16.11 12.67

17 15.23 12.87

18 15.14 13.11

19 16.12 13.56

20 15.12 14.02

21 16.23 13.82

39

No. Of Observations Transfer (Gbytes) B/W(Gbits/s)

22 15.24 13.39

23 15.76 12.88

24 15.87 12.72

25 15.98 13.62

Average: 15.47 Average: 13.62

Table 3 and Table 4 show data populated with amount of data transfer and bandwidth

between the node h3 and h8 before and after load balancing successively. iPerf enables

to check the amount of bytes transferred and the rate i.e. Bandwidth. It shows how the

average transferred data increases after load balancing. The average transfer for node h3

to h8 before load balancing is 15.47 Gbytes and average bandwidth utilization is 13.62

Gbits/s. After load balancing average transfer for node h3 to h8 is 15.47 Gbytes and

average bandwidth utilization is 13.62 Gbits/s.

Table 4: iPerf h3 to h8 after Load Balancing

No. Of Observations Transfer (Gbytes) B/W(Gbits/s)

1 31.12 25.7

2 30.46 26.3

3 30.34 24.52

4 31.6 26.12

5 31.78 26.31

6 30.35 25.89

7 31.7 24.78

8 32.56 26.23

9 32.11 26.65

10 29.45 25.27

11 29.99 25.82

12 30.25 25.82

13 31.02 25.39

14 31.76 25.95

15 31.89 24.98

16 29.03 24.78

17 31.89 24.95

40

No. Of Observations Transfer (Gbytes) B/W(Gbits/s)

18 31.65 24.39

19 31.23 26.02

20 30.78 26.08

21 31.78 26.11

22 31.56 26.38

23 31.67 26.51

24 31.89 .25.17

25 31.67 25.48

Average: 31.18 Average: 25.68

From the Table 1, Table 2, Table 3 and Table 4, it is observed that data transfer rate as

well as bandwidth utilization of links increased after the implementation of path load

balancer in software defined networking compared with the no path load balancing.

The results show that use of path load balancer effectively utilize the links in SDN.

6.2 Latency Test Analysis

Latency test gives 4 parameters of ping statistics. They are rtt minimum, rtt average, rtt

maximum and rtt mdev. It determines the quality of the links. Streaming media, voice,

video communications and online gaming require more than just raw speed. There is

difference between bandwidth test analysis and latency test analysis. Bandwidth is the

total amount of data that can flow through the channel in a given period of time. On the

other hand, latency is the amount of time it takes for the data that enters the channel or

links at one end to exit at the other. If the link is short and not so congested, then the

packets exits the bottom of the link almost as quickly. This means latency of packet in

that particular link will be minimum.

Most operating systems contain a utility called “ping”. The time in milliseconds is the

ping rate between source host and the destination host or the server. In the majority of

cases, the ping rate is equivalent to the effective latency between the effective latency

between the source and the destination host.

The latency measurement of packets from node h1 to node h4 before dynamic load

balancer implementation is shown in Figure 42. The ping statistics of node h4 from

node h1 are observed and for the first observation in our case, it is found to be as

rtt min/avg/max/mdev =0.057/0.454/9.745/1.895 ms.

41

Figure 42: Latency measurement of packets for h1ping h4 before balancing

25 Ping tests have been performed on 25 packets/each test from h1 to h4 before load

balancing. For the first observation , 25 packets are sent from node h1 to node h4. A

ping test is simply a way for source to send a small packet to the destination and to

measure the amount of time it takes to get there. The time = 23999 ms at the end of each

ping reply is the measured time that last packet took to get to the destination. In this

case 23999 ms. Similarly for the second observation, 25 packets are sent from node h1

to node h4. Ping statistics is found to be as rtt min / avg / max / mdev = 0.057 / 0.454 /

9.745 / 1.895 ms. This is recorded in Table 5. Rest 23 observations are performed

similar to observation 1 and their results are recorded accordingly in the Table 5.

The average rtt min/avg/max/mdev for ping from h1 to h4 before load balancing in SDN

is given by 0.0423/0.445/9.332/1.424 ms where each observation includes 25 packets

sent from source h1 to destination h4.

42

Table 5 : Ping h1 to h4 before Load Balancing (in ms)

Observation Min Avg Max Mdev

1 0.057 0.454 9.745 1.896

2 0.052 0.4224 9.033 1.645

3 0.037 0.4061 9.098 1.019

4 0.052 0.487 9.89 1.957

5 0.042 0.398 9.078 1.579

6 0.036 0.453 9.01 1.02

7 0.038 0.4456 9.34 1.34

8 0.043 0.489 9.34 1.45

9 0.042 0.432 9.21 1.43

10 0.047 0.435 9.891 1.56

11 0.037 0.345 9.034 1.03

12 0.041 0.543 9.45 1.33

13 0.046 0.435 9.045 1.35

14 0.041 0.467 9.034 1.54

15 0.039 0.467 9.32 1.34

16 0.047 0.478 9.45 1.09

17 0.037 0.432 9.13 1.43

18 0.041 0.478 9.89 1.36

19 0.042 0.489 9.34 1.51

20 0.036 0.399 9.24 1.78

21 0.038 0.411 9.891 1.67

22 0.042 0.478 9.034 1.35

23 0.047 0.378 9.45 1.54

24 0.037 0.478 9.045 1.34

25 0.041 0.437 9.32 1.09

Average: 0.042 Average: 0.445 Average:9.33 Average:1.42

The latency measurement of packets from node h1 to node h4 before dynamic load

balancer implementation must be improved after the implementation of the load

balancer in SDN which is the main objective of this thesis. The latency measurement of

packets after dynamic load balancer implementation is shown in the Figure 41.

43

Figure 43: Latency measurement of packets for h1ping h4 after balancing

25 Ping tests have been performed on 25 packets/each test from h1 to h4 after load

balancing. For the first observation , 25 packets are sent from node h1 to node h4. A

ping test is simply a way for source to send a small packet to the destination and to

measure the amount of time it takes to get there. The time = 23999 ms at the end of each

ping reply is the measured time that last packet took to get to the destination. In this

case 23999 ms. Similarly for the second observation, 25 packets are sent from node h1

to node h4. Ping statistics is found to be as rtt min / avg / max / mdev = 0.047 / 0.071 /

0.111 / 0.014 ms. This is recorded in Table 6. Rest 23 observations are performed

similar to observation 1 and their results are recorded accordingly in the Table 6.

The average rtt min/avg/max/mdev for ping from h1 to h4 after load balancing in SDN

is given by 0.04282/0.07472/0.21284/0.03364 ms where each observation includes 25

packets sent from source h1 to destination h4.

44

Table 6 : Ping h1 to h4 after Load Balancing (in ms)

Observation Min Avg Max Mdev

1 0.047 0.081 0.320 0.053

2 0.047 0.071 0.111 0.014

3 0.049 0.072 0.095 0.009

4 0.045 0.082 0.278 0.071

5 0.050 0.067 0.152 0.018

6 0.046 0.073 0.217 0.019

7 0.046 0.074 0.067 0.023

8 0.034 0.076 0.153 0.013

9 0.034 0.071 0.276 0.071

10 0.047 0.072 0.251 0.081

11 0.043 0.073 0.155 0.021

12 0.044 0.077 0.251 0.009

13 0.047 0.078 0.257 0.071

14 0.043 0.073 0.218 0.018

15 0.037 0.076 0.267 0.013

16 0.038 0.075 0.289 0.071

17 0.037 0.079 0.167 0.021

18 0.039 0.077 0.199 0.027

19 0.034 0.072 0.201 0.028

20 0.041 0.073 0.221 0.001

21 0.044 0.077 0.205 0.037

22 0.047 0.078 0.276 0.049

23 0.043 0.072 0.251 0.019

24 0.044 0.082 0.155 0.013

25 0.047 0.067 0.289 0.071

Average: 0.042 Average: 0.074 Average:0.21 Average:0.03

Again, consider the situation to ping node h8 [ip=192.168.124.8] from node h3

[ip=192.168.124.3]. The path from node h3 to node h8 is longer than the path from node

h1 to h4. This example is considered in order to validate the result of dynamic load

balancer for the improvement of latency of packets in the overall SDN network.

45

Figure 44: Latency measurement of packets for h3 ping h8 before balancing

Ping statistics from node h3 to h8 before load balancing in shown in Figure 44.

Table 7 : Ping h3 to h8 before Load Balancing (in ms)

Min Avg Max Mdev

0.072 0.620 8.233 1.877

0.052 0.624 8.033 1.645

0.037 0.661 8.098 1.019

0.052 0.534 7.89 1.956

0.042 0.687 8.078 1.579

Average:0.051 Average:0.6252 Average:8.0664 Average:1.6152

The latency measurement of packets from node h8 to node h8 after dynamic load

balancer implementation is shown in Figure 45.

46

Figure 45: Latency measurement of packets for h3 ping h8 before balancing

The Table 8 shows decrease in packets transmission latency after load balancing.

Table 8: Ping h3 to h8 after Load Balancing (in ms)

Min Avg Max Mdev

0.051 0.131 0.339 0.117

0.047 0.171 0.311 0.114

0.049 0.172 0.395 0.109

0.045 0.166 0.381 0.111

0.050 0.167 0.352 0.118

Average: 0.0484 Average: 0.1614 Average: 0.3556 Average: 0.1138

The Figure 46 and Figure 47 show data transfer load balancing and after load balancing

in SDN and average latency before load balancing and after load balancing in SDN.

47

Figure 46: Data transfer before load balancing and after load balancing in SDN

Figure 47: Average latency before load balancing and after load balancing in SDN

48

Figure 48: PI-Chart Representation for average data transfer before and after load balancing in

SDN

The average data transfer before the implementation of load balancer is 27.25 Gbps.

After the implementation of dynamic load balancer, average data transfer is 53.94 which

is shown in Figure 48.

The average latency before the implementation of load balancer is 0.074 ms. After the

implementation of dynamic load balancer, average latency is 0.445 ms which is shown

in Figure 49.

Figure 49: PI-Chart Representation for average latency before and after load balancing in SDN

The Figure 48 and Figure 49 show the effectiveness of implementing the load balancer.

49

CHAPTER 7: EPILOGUES

7.1 Conclusion

The dynamic load balancer which can balance server load as well as network path loads

using SDN controller is successfully implemented. The implementation of the dynamic

load balancer in SDN efficiently utilizes available link’s load as well as server’s load.

7.2 Future Enhancements

The thesis work can further be extended by investigating machine learning approach for

load balancing. Also in future, load balancing can be evaluated by considering more

parameters like response time of server and high availability of computing system.

50

REFERENCES

1. N. Mckeown, S. Shenker, T. Anderson, L. Peterson, J. Turner, H. Balakrishnan, J.

Re. "Openflow: Enabling Innovation In Campus Networks.", Acm Sigcomm

Computer Communication Review38.2, (2008), pp. 69-74.

2. T. Wing Chim, and Y. K.L. "Traffic distribution over equal-cost-multi-paths.",

IEEE International Conference on Communications IEEE, (2004), pp. 465–475.

3. H. Nikhil, et al. "Plug-n-Serve: Load-Balancing Web Traffic using OpenFlow."

Acm Sigcomm Demo (2009).

4. R. Wang, D. Butnariu, and J. Rexford. "OpenFlow-based server load balancing

gone wild", Proceedings of the 11th USENIX conference on Hot topics in

management of internet, cloud, and enterprise networks and services USENIX

Association, (2011), pp. 12-12.

5. Y. Hu, W. Wang, X. Gong, X. Que, & S. Cheng, "BalanceFlow: Controller load

balancing for OpenFlow networks.", Cloud Computing and Intelligent Systems

(CCIS), 2012 IEEE 2nd International Conference on IEEE, (2012), pp. 780-785.

6. Y. Li, D. Pan. "OpenFlow based load balancing for Fat-Tree networks with

multipath support", Proc.12th IEEE International Conference on Communications

(ICC’13), Budapest, Hungary. (2013), pp. 1-5.

7. S. Bhandarkar, K. Khan, “Load Balancing in Software Defined Network Based on

Traffic Volume.”, Advances in Computer Science and Information Technology

(ACSIT), (2015), pp. 72-76.

8. Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing Tables in

software-defined networks,” Technion, Tech. Rep. TR12-05, 2012.

9. Yossi Kanizo, David Hay, and Isaac Keslassy. Palette: Distributing Tables in

software-defined networks. In INFOCOM, pages 545–549,2013.

10. DAI, Wei, Guochu SHOU, Yihong HU, and Zhigang GUO. "R-SDN: A

RECUSIVE APPROACH FOR SCALING SDN."

11. Shi, Lei, Bin Liu, Changhua Sun, Zhengyu Yin, Laxmi Bhuyan, and H. Jonathan

Chao. "Load-balancing multipath switching system with flow slice." Computers,

51

IEEE Transactions on 61,no. 3 (2012): 350-365.

12. Prete, Luca, Fabio Farina, Mauro Campanella, and Andrea Biancini. "Energy

efficient minimum spanning tree in OpenFlow networks." In Software Defined

Networking (EWSDN), 2012 European Workshop on, pp. 36-41. IEEE, 2012.

13. Dixit, Advait, Fang Hao, Sarit Mukherjee, T. V. Lakshman, and Ramana Kompella.

"Towards an elastic distributed SDN controller." In ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4, pp. 7-12. ACM, 2013.

14. Kim, Hyojoon, J. R. Santos, Y. Turner, M. Schlansker, J.Tourrilhes, and Nick

Feamster. "Coronet: Fault tolerance for software defined networks." In Network

Protocols (ICNP), 2012 20th IEEE International Conference on, pp. 1-2. IEEE,

2012.

15. Long, Hui, Yao Shen, Minyi Guo, and Feilong Tang."LABERIO: Dynamic

load-balanced routing in OpenFlow-enabled networks." In Advanced Information

Networking and Applications (AINA), 2013 IEEE 27th International Conference on,

pp. 290-297. IEEE, 2013.

16. Hata, Hiroaki. "A study of requirements for sdn switch platform." In Intelligent

Signal Processing and Communications Systems (ISPACS), 2013 International

Symposium on, pp. 79-84.IEEE, 2013.

17. Y. Zhou, M. Zhu, L. Xiao, Li Ruan, W. Duan, D. Li, R. Liu, “A Load Balancing

Strategy for SDN Controller based on Distributed Decision.”, IEEE 13th

International Conference on Trust, Security and Privacy in Computing and

Communications, (2014).

18. J. Li, X. Chang, Y. Ren, Z. Zhang, & G. Wang, "An Effective Path Load Balancing

Mechanism Based on SDN." Trust, Security and Privacy in Computing and

Communications (TrustCom), 2014 IEEE 13th International Conference on IEEE,

(2014), pp. 527-533.

19. https://www.wireshark.org/ (22nd August, 2016)

20. https://iperf.fr/ (27th August, 2016)

21. https://www.java.com/ (27th August,2016)

22. https://www.python.org/ (29th August,2016)

	Dynamic Load Balancing in Software Defined Network
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	CHAPTER 2: LITERATURE REVIEW
	3.2 Load Balancing
	CHAPTER 4: METHODOLOGY
	4.1 System Design
	4.3.1 Mininet
	4.4.2 SDN Controller
	4.3.3 OpenFlow Switch
	4.3.6 Java & Python Programming Language
	REFERENCES

