STUDY OF DELTA ENDOTOXIN IMMUNOCROSSREACTIVITY OF *BACILLUS THURINGIENSIS* ISOLATES FROM KHUMBU BASE CAMP OF THE EVEREST REGION

A Dissertation

Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of

Master of Science in Microbiology (Environmental Microbiology)

By UPENDRA THAPA SHRESTHA

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal 2006

RECOMMENDATION

This is to certify that Mr. Upendra Thapa Shrestha has completed this dissertation work entitled "STUDY OF DELTA ENDOTOXIN IMMUNO-CROSSREACTIVITY OF BACILLUS THURINGIENSIS ISOLATES FROM KHUMBU BASE CAMP OF THE EVEREST REGION" as a partial fulfillment of M. Sc. Degree in Microbiology under our supervision. To our knowledge this thesis work has not been for any other degree.

Prof. Dr. Vishwanath Prasad Agrawal PhD

Academician

Royal Nepal Academy of Science and Technology (RONAST) Kathmandu, Nepal

Director

Universal Science College Kathmandu, Nepal

Executive Director

Research Laboratory for Agricutural Biotechnology and Biochemistry (RLABB) Associate Prof. Dr. Anjana Singh,

Head of department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal

CERTIFICATE OF APPROVAL

On the recommendation of **Prof. Dr Vishwanath Prasad Agrawal** and **Associate Prof. Dr. Anjana Singh, PhD**, this dissertation work by **Mr. Upendra Thapa Shrestha**, entitled "**STUDY OF DELTA ENDOTOXIN IMMUNOCROSSREACTIVITY OF** *BACILLUS THURINGIENSIS* **ISOLATES FROM KHUMBU BASE CAMP OF THE EVEREST REGION**" has been approved for the examination and is submitted to the Tribhuvan University in partial fulfillment of the requirement for M. Sc. Degree in Microbiology.

Associate Prof. Dr. Anjana Singh,

PhD

Head of the Department Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu.

Date:-....

BOARD OF EXAMINERS

Recommended by:

Prof. Dr. Vishwanath Prasad Agrawal Supervisor

Associate Prof. Dr. Anjana Singh, PhD Supervisor

Approved by:

Associate Prof. Dr. Anjana Singh, PhD Head of Department

Examined by:

Prof. Dr. Jeevan Bahadur Sherchand External Examiner

Mr. Binod Lekhak Internal Examiner

ACKNOWLEDGEMENT

It gives me immense pleasure to express my heartfelt appreciation to all the people who helped me in one way or another to complete my research work.

Respectfully, I would like to express my sincere gratitude to my supervisors **Prof. Dr.** Vishwanath Prasad Agrawal, Academician, Royal Nepal Academy of Science and Technology (RONAST), Director, Universal Science College, Executive Director, Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB) for his scholastic inspiration, tremendous support, invaluable suggestions and continuous expert guidance throughout my research work.

I am indebted to my supervisor, Dr. Anjana Singh, Ph.D, Head of Department, Central Department of Microbiology, Tribhuvan University for his guidance and constant encouragement for the completion and accomplishment of this dissertation.

I am much obliged to honorable Prof. Dr. Shital Raj Basnyat, Mr. Binod Lekhak, Ms. Reshma Tuladhar, and all the teachers and staffs of Central Department of Microbiology, Tribhuvan University, all of whom have been very generous and motivating.

I am specially grateful to Mr. Yogan Khatry and Mr. Kiran Babu Tiwari for their sincere efforts, ever willing help, suggestions and continuous encouragement throughout my thesis work.

I am also thankful to Mr. Subarna Pokhrel, Mr. Dilip Shrestha, Mr. Vijendra Kumar Agrawal and all teachers and staffs of RLABB.

I wish to reaffirm my admiration and special thanks to all the friends of mine especially Gyan Sundar Shahukhal and Suman Thapa who assisted me with the completion of this work.

I wish to reiterate my acknowledgement to all my family members (Brothers, Sisters in law, and Cousins) for their insightful help to complete this thesis work.

Finally my special regards goes to my dear parents for their everlasting support.

Upendra Thapa Shrestha

Date:....

ABSTRACT

Bacillus thuringiensis strains were isolated from soil samples collected from Khumbu Base Camp of the Everest region and subsequently identified by standard microbiological techniques including colonial characteristics, morphological characteristics and biochemical characteristics. The stationary phase culture broth was tested for insect bioassay and delta-endotoxins (crystal protein) were extracted from the crystal endotoxin producing strains (46 from Phereche and 40 from Sagarmatha National Park). The crystal proteins were partially purified in alkaline solution and further purified by Native-PAGE. Among the ten randomly selected isolates, B. thuringiensis S₆ culture and its purified crystal protein showed the highest insecticidal activity. The endotoxin was found to contain five subunits with molecular weight 107KD, 83KD, 71KD, 58KD and 40KD as revealed by SDS-PAGE. A pair of New Zealand white rabbits were used to raise polyclonal antisera against purified S₆ endotoxin. The presence of polyclonal antibody was confirmed by Ouchterlony double diffusion method against S₁, S_{2a}, S₄, S₅, S₁₀, P₂, P₆ and P₁₀ antigens. Indirect ELISA was optimized using 6-8µg of the endotoxin coated microtitre plate per well. The optimal dilution of the polyclonal antibody was found to be 1000 folds corresponding to $OD_{450} = 0.045$ for colour observation. Of the total 86 endotoxin producing isolates, 31 (36.05%) corresponding endotoxins were 25-30% crossreactive with the polyclonal antisera. Similarly, 6 (6.97%) were 75-80% and 85-90% crossreactive each, and 4 (4.65%) were 80-85% crossreactive. Only 3 (3.49%) were more than 90% crossreactive. The Discriminatory Index (D) of the Indirect ELISA was found to be 0.92. The antibody raised against the crystal protein was finally confirmed by Western Blot.

TABLE OF CONTENTS

	Page No.
Title Page	i
Recommendation	ii
Certificates of approval	iii
Acknowledgement	V
Abstract	vi
Table of Contents	vii
Lists of Abbreviations	ix
List of Tables	Х
List of Figures	xi
List of Photographs	xii
List of Appendices	xiii
CHAPTER I: INTRODUCTION	1-3
CHAPTER II: OBJECTIVES	4
CHAPTER III: LITERATURE REVIEW	5-29
3.1 Bacillus thuringiensis	5
3.2 Ecology and Prevalence of <i>B. thuringiensis</i>	5
3.3 Morphology and Prevalence of <i>B. thuringiensis</i>	6
3.4 Historical Development of <i>B. thuringiensis</i>	7
3.5 Classification and Nomenclature of <i>B. thuringiensis</i>	8
3.6 The <i>B.thuringiensis</i> Genome	9
3.7 Toxin Structure	10
3.8 Mechanism of action of toxin (Insecticidal activity)	11
3.9 Development of resistance to <i>B. thuringiensis</i>	13
3.10 Mechanism of resistance	14
3.11 Protein Extraction	15
3.12 Protein purification	16
3.13 Protein Assay	16
3.13.1 CB dye-binding assay (Bradford assay)	16
3.14 Electrophoresis	17
3.14.1 Native-PAGE	18
3.14.2 SDS-PAGE	19
3.15 Immunology	21
3.16 Separation and preservation of serum or plasma	24
3.17 Immunodiffusion	24
3.18.1 Ouchterlony immunodiffusion test	25
3.18 ELISA	26
3.18.1 Indirect ELISA	26
3.19 Western Blot	27
3.20 Numerical Index of the Discriminatory Ability of Typing Method	28-29

CHAPTER IV: MATERIALS AND METHODOLOGY	
4.1 Materials	30
4.2 Methods	30
4.2.1 Sample collection and transport	30
4.2.2 Isolation of <i>B. thuringiensis</i>	30
4.2.3 Identification	31
4.2.4 Insect Bioassay	31
4.2.5 Production and purification of <i>B.thuringiensis</i> crystal protein	31
4.2.6 Protein Determination and Profiling	32
4.2.7 Laboratory animals	32
4.2.8 Immunization	32
4.2.9 Immunodiffusion test	33
4.2.10 Optimization of IND-ELISA	33
4.2.11 Western Blotting	33
CHAPTER V: RESULTS	34-51
5.1 Isolation and Identification of <i>B. thuringiensis</i>	34
5.2 Colony characteristics of the <i>B. thuringiensis</i> isolates	34
5.3 Morphological Characteristics	38
5.4 Insect bioassay	43
5.5 Protein determination	44
5.6 SDS-PAGE	45
5.7 Insect bioassay using purified crystal protein	45
5.8 Ouchterlony immunodiffusion test	46
5.9 ELISA Optimization	46
5.10 Immunocrossreactivity	47
5.11 Discriminatory index value (D)	50
5.12 Western Blotting	51
CHAPTER VI: DISCUSSION	52-57
CHAPTER VII: SUMMARY AND RECOMMENDATION	58-59
7.1 Summary	58
7.2 Recommendations	59
CHAPTER VIII: REFERENCES	60-77
CHAPTER IX: APPENDICES 7-XI	i-xxv

LISTS OF TABLES

Table 1 Colony Characteristics of the Phereche isolates Table 2 Colony characteristics of SNP isolates Table 3 Crystal staining of *B. thuringiensis* isolates Table 4 Biochemical tests of the crystal positive B. thuringiensis isolates. Table 5 Insecticidal activities of B. thuringiensis endotoxins using Stationary phase culture Table 6 Determination of crude Crystal Protein concentration from SNP and Phereche isolates Table 7 SDS-PAGE band profiles of crystal proteins from isolate S₆ Table 8 Insecticidal activity of purified endotoxins from *B. thuringiensis* S₆ Table 9 Optimization of polyclonal antisera against crystal protein^a and conjugate Table 10 Crossreactivity ^a of *B.thuringiensis* crystal proteins from SNP soil samples with polyclonal antiserum against S₆-crystal protein Crossreactivity ^a of *B.thuringiensis* crystal proteins from Phereche soil Table 11 samples with polyclonal antiserum against S₆-crystal protein Table 12 Percentage of B. thuringiensis endotoxins immunocrossreactive with that of S_6 Calculation of Discriminatory index value (D) Table 13

LIST OF FIGURES

- Figure 1 Three dimensional structures of Cry1A, Cry3A and Cry2A
- Figure 2 Polymerization and cross-linking of acrylamide
- Figure 3 Flow chart for the of B. thuringiensis isolation (Travers et al, 1987)
- Figure 4 Flow chart for immunization schedule (Khatri, 2002)
- Figure 5 Flow chart for delta endotoxins immunocrossreactivity of *B. thuringiensis* isolates by Ind-ELISA [Trottier et al., (1992) and Voller et al., (1979)]
- Figure 6 Flow chart for Western Blotting (Talwar and Gupta, 1997
- Figure 7 Colony Configuration of the Phereche isolates
- Figure 8 Colony Configuration of the SNP isolates
- Figure 9 Opacity (Phereche isolates)
- Figure 10 Opacity (SNP isolates)
- Figure 11 Consistency (Phereche isolates)
- Figure 12 Consistency (SNP isolates)
- Figure 13 Elevation (Phereche isolates)
- Figure 14 Elevation (SNP isolates)
- Figure 15 Color (Phereche isolates)
- Figure 16 Color (SNP isolates)
- Figure 17 Insect Bioassay of SNP and Phereche *B. thuringiensis* isolates
- Figure 18 Optimization of polyclonal antisera against crystal protein^a and conjugate
- Figure 19 Percentage of immunocrossreactive *B. thuringiensis* endotoxin frequencies

LIST OF PHOTOGRAPHS

Photograph 1	Colony Characteristics of SNP isolate (S_6)
Photograph 2	Colony Characteristics of Phereche isolate (P ₁₀)
Photograph 3	Crystal Staining of SNP B. thuriengiensis isolate
Photograph 4	Crystal Staining of Phereche B. thuriengiensis isolate
Photograph 5	Biochemical Tests (Negative control)
Photograph 6	Biochemical Tests (Positive control, S ₁)
Photograph 7	SDS-PAGE of the crystal protein of S ₆ B. thuirngiensis
Photograph 8	Ouchterlony immunodiffusion test with positive and
	negative controls
Photograph 9	Optimization of polyclonal antibody (microplate on ELISA
	Reader)
Photograph 10	Immunocrossreactivity of SNP B. thuriengiensis isolates
	with that of S6 polyclonal antibody
Photograph 11	Immmunocrossreactivity of Phereche B. thuriengiensis
	isolates with that of S6 polyclonal antibody

LIST OF ABBREVIATIONS

APS	Ammonium per sulphate
BHI	Brian Heart Infusion Agar media
CBB R-250	Coomasie Brilliant Blue R-250
CFA	Complete Freund's adjuvant
cry gene	Crystal protein producing gene
<i>cyt</i> gene	Cytolytic toxin producing gene
D value	Discriminatory value
DDT	Dichlorodiphenyl trichloroethane
DMSO	Dimethoxy sulphdoxide
D/W	Distilled Water
EDTA	Ethylenediaminetetraacetic acid
FAO	Food and Agricultural Organization
ICP	Insecticidal Crystal Protein
ID	Immunodiffusion
IFA	Incomplete Freund's adjuvant
Ind-ELISA	Indirect Enzyme Linked Immunosorbent Assay
LB	Lauria Broth
MR test	Methyl red test
NA	Nutrient Agar
PBS	Phosphate Buffer Saline
PBS/T _w	Phosphate Buffer Saline Tween-20
PVDF SDS-PAGE	Polyvinylidene Fluoride membrane Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis
SIM	Sulphide-Indole motility agar
Tn element	Transposable elements
TEMED	N, N, N'-tetramethylenediamine
TMB	Tetramethylbenzidine
VP test	Voges-Proskauer test
WHO	World Health Organization