
TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

PULCHOWK CAMPUS

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

THESIS NO.: 070/MSI/615

HANDWRITTEN DEVANAGARI CHARACTER RECOGNITION USING

HYBRID CONVOLUTIONAL NEURAL NETWORK

By

Sudarshan Sharma

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING AS A PARTIAL FULFILLMENT OF THE REQUIREMENT

FOR THE MASTER’S DEGREE IN INFORMATION AND COMMUNICATION

ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING

LALITPUR, NEPAL

JANUARY, 2020

HANDWRITTEN DEVANAGARI CHARACTER RECOGNITION USING

HYBRID CONVOLUTIONAL NEURAL NETWORK

By

Sudarshan Sharma

Thesis Supervisor

Dr. Basanta Joshi

A thesis submitted in partial fulfillment of the requirements for the degree of Master

of Science in Information and Communication Engineering

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Tribhuvan University

Lalitpur, Nepal

January, 2020

COPYRIGHT ©

The author has agreed that the library, Department of Electronics and Computer

Engineering, Institute of Engineering, Pulchowk Campus, may make this thesis freely

available for inspection. Moreover, the author has agreed that the permission for extensive

copying of this thesis work for scholarly purpose may be granted by the professor(s), who

supervised the thesis work recorded herein or, in their absence, by the Head of the

Department, wherein this thesis was done. It is understood that the recognition will be

given to the author of this thesis and to the Department of Electronics and Computer

Engineering, Pulchowk Campus in any use of the material of this thesis. Copying of

publication or other use of this thesis for financial gain without approval of the

Department of Electronics and Computer Engineering, Institute of Engineering, Pulchowk

Campus and author’s written permission is prohibited.

Request for permission to copy or to make any use of the material in this thesis in whole

or part should be addressed to:

Head

Department of Electronics and Computer Engineering

Institute of Engineering, Pulchowk Campus

Pulchowk, Lalitpur, Nepal

RECOMMENDATION

The undersigned certify that they have read, and recommended to the Institute of

Engineering for acceptance, a thesis report entitled “Handwritten Devanagari

Character Recognition using Hybrid Convolutional Neural Network” submitted by

Sudarshan Sharma in partial fulfillment of the requirements for the degree of “Master

of Science in Information and Communication Engineering”.

Dr. Basanta Joshi

Supervisor

Department of Electronics and Computer Engineering

Pulchowk Campus, Institute of Engineering

Tribhuvan University

Er. Manoj Ghimire

External Examiner

DEPARTMENTAL ACCEPTANCE

The thesis entitled “HANDWRITTEN DEVANAGARI CHARACTER

RECOGNITION USING HYBRID CONVOLUTIONAL NEURAL NETWORK”,

submitted by Sandeep Sigdel in partial fulfillment of the requirement for the award of the

degree of “Master of Science in Information and Communication Engineering” has

been accepted as a bonafide record of work independently carried out by him in the

department.

Dr. Surendra Shrestha

Head of the Department

Department of Electronics and Computer Engineering,

Pulchowk Campus,

Institute of Engineering,

Tribhuvan University,

Nepal.

ACKNOWLEDGEMENT

I am grateful to my Thesis supervisor Dr. Basanta Joshi for his incessant cooperative support,

guidance and suggestion at various stages of the Thesis. I deeply value his work as my mentor by

providing me with constant counseling and precious feedbacks on Thesis progress.

I would like to express my special thanks of gratitude to the Department of Electronics and

Computer Engineering (DOECE) and to our Head of Department Dr. Surendra Shrestha for

providing us with the golden opportunity to explore our interest and ideas in the field of engineering

through this thesis. I would like to provide my sincere gratitude to our MSCSKE Coordinator Dr.

Aman Shakya for providing us with necessary details and ideas for preparing the mid-term report

of Thesis. I would also like to thank Prof. Dr. Shashidhar Ram Joshi, Prof. Dr. Subarna

Shakya, Dr. Diwakar Raj Pant, Dr. Sanjeep Prasad Pandey and many other staffs from this

DOECE for their constant support and encouragement on research activity during master’s

program.

I am really thankful to my friends Er. Sabin Devkota, Er. Manoj Acharya, Er. Everest KC and

Er. Dharma KC, who helped and encouraged me to this level of accomplishment from abroad and

with the presence.

Finally, I would like to thank all our teachers and friends who have helped me directly or indirectly

for encouraging me with this thesis topic and research decision.

ABSTRACT

Handwritten character recognition is very popular field of research work in modern technology as

information are stored and used as written script in different languages since long ago. This research

work mainly focuses to recognize handwritten Devanagari character through preprocessing the

image data and deep learning techniques.

The handwritten character is collected and processed to fit into popularly used neural networks for

classification of those images into their related label of character. Collected image data are clipped,

normalized and processed and then converted into numpy dataset to feed into the neural network

that we adopted and developed.

The data is trained through the managed sequence of convolutional and fully connected layers of

network and proper activation and pooling is done in between to optimize and speed up the training

process. Here we have used ReLU as activation function and maxpooling as pooling function. We

have used two convolution layer and each Convolution Layer are followed by activation and

pooling functions. These layers are then followed by three fully connected layer to produce better

neural network.

12051 images of handwritten Devanagari character are fed into this neural network and the trained

to produce a neural network and the accuracy of this produced neural network is tested upon the

different set of 290 validation images test set.

The validation of this model is observed through the confusion matrix and seems to work good.

TABLE OF CONTENT
COPYRIGHT© ...III

RECOMMENDATION..IV

DEPARTMENTAL ACCEPTANCE..V

ACKNOWLEDGEMENT..VI

ABSTRACT..VII

LIST OF FIGURES...VIII

LIST OF ABBREVIATIONS..IX

1. INTRODUCTION..1

1.1 Background...1
1.2 Problem Definition..2
1.3 Objective...2
1.4 Scope...3

2. LITERATURE REVIEW...4
2.1 Neural Networks...4
2.2 Convolutional Neural Networks...6
2.3 Deep Learning...8
2.4 Deep Convolutional Neural Networks..10
2.5 Related works..11

3. METHODOLOGY..12
3.1 Data preparation..12
3.2 Data preprocessing..15
3.3 Classification using CNN..15

3.3.1 Structure of Network and forward pass..17
3.3.2 Loss Calculation..20
3.3.3 Optimization of parameters..20

3.4 Validation of the output..21
3.5 System Block Diagram...22
3.6 Tools Used..23

4. EXPERIMENTS AND OUTPUTS..24
5. EPILOGUE...38
6. REFERENCES..39

LIST OF FIGURES

Figure 2.1: Sample artificial neural network..5
Figure 2.2 Neural network training mechanism..6
Figure 2.3: Difference of convolutional network with MLP..8
Figure 2.4: Deep neural network vs rule based or intuition-based approach........................9
Figure 2.5: Deep learning compared with other techniques...10

Figure 2.6: Example of CNN architecture. ..11

Figure 3.1: Previously assumed probable Convolutional Neural Network........................16

Figure 3.2: Detailed structure of the customized network..19

Figure 3.3 System block diagram...22

Figure 4.1:Sample of collected image data ..24

Figure 4.2 Screenshot of one batch of data fed into network...24

Figure 4.3 Screenshot of display of details of network ..24

Figure 4.4: Screenshot of progress on last 10 Training epochs..25

Figure 4.5 : Top-1 Accuracy vs epochs of Experiment_1..27

Figure 4.6: Loss vs Epochs of Experiment_1...27

Figure 4.7: Top-1 Accuracy vs epochs of Experiment_2...28

Figure 4.8: Loss vs Epochs of Experiment_2...28

Figure 4.9: Top-1 Accuracy vs epochs of Experiment_3...29

Figure 4.10: Loss vs Epochs of Experiment_3...29

Figure 4.11: Top-1 Accuracy vs epochs of Experiment_4...30

Figure 4.12: Loss vs Epochs of Experiment_4...30

Figure 4.13: Top-1 Accuracy vs epochs of Experiment_5...31

Figure 4.14: Loss vs Epochs of Experiment_5...31

Figure 4.15: Top-1 Accuracy vs epochs of Experiment_6...32

Figure 4.16: Loss vs Epochs of Experiment_6...32

Figure 4.17: Top-1 Accuracy vs epochs of Experiment_7...33

Figure 4.18: Loss vs Epochs of Experiment_7...33

Figure 4.19: Top-1 Accuracy vs epochs of Experiment_8...34

Figure 4.20: Loss vs Epochs of Experiment_8...34

Figure 4.21: Top-1 Accuracy vs epochs of Experiment_9...35

Figure 4.22: Loss vs Epochs of Experiment_9...35

Figure 4.21: Losses of different folds...36

Figure 4.22: Top-1 accuracy of different folds over train data...36

Figure 4.23: Top-5 accuracy of different folds over train data...35

Figure 4.24: Top-1 accuracy of different folds over validation data..................................36

Figure 4.26: Confusion Matrix of the classifier without class name..................................37

LIST OF ABBREVATIONS

CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
DHCR Devanagari Handwritten Character Recognition
GPU Graphical Processing Unit
MLP Multilayer Perceptron
SVM Support Vector Machine

1. INTRODUCTION

1.1 Background
So many generations of our ancestor contributed to the development of scripts and

languages, we are now in right state of use of languages and scripts to transfer, translate,

transmit and store knowledge.

Development of modern technologies forced the medium of knowledge transmission to

adopt the computer related platforms and technologies. Hence its is now mandatory to

translate the languages and knowledge we had already into digitally readable data format.

For this purpose we need to translate the scripts and literature written in different language

into digital data. And this process requires system to correctly recognize the written data

by the computer and this process is known as character recognition process.

As a rich source of knowledge and history devanagari script is widely used by so many

languages majorly in South Asian region. In oldest known civilization of Hindu

Philosophy the knowledge is transferred through Sanskrit language and this Sanskrit

language also scripted in Devanagari script. Many languages such as Hindi, Nepali,

Maithili etc. have their rich literature and scriptures in Devanagari scripts and near about

15% of world still use Devanagari script in their daily life officially or unofficially[1].

Character can be written by hand in own style or can be printed with the machine with the

standard format.

Image classification has been researched very intensely as so many field of its application

is very useful in daily life. Since most of the information used in daily life are closely

associated with the visual information, image processing and classification is a

pronounced field of study in modern technological development.

As mentioned above this field of study is applied for the classification of character

recognition widely[2]. And in the recent years a huge part of image classification is

accomplished by the deep learning algorithms.

These days deep learning has been very pronounced field of scientific vision and image

processing. Being a sub field of machine learning, deep learning uses application of

artificial intelligence mimicking the process of learning by human brain. In the field of

1

image processing and image recognition deep learning has given very satisfying results

with outstanding performance over previous approaches.

Optical character recognition is a process of recognizing the character from its image.

Many approaches have been adopted to optically recognize the character by computer.

But these days deep learning outperformed almost all other approaches. Written scripts

were very tough to read by computer before the techniques developed to optically read by

computer. But nowadays written scripts are very efficiently recognized by computer using

different techniques. But reading Devanagari scripts by computer is still a bit more

challenging job in this field. Despite being the scripts used by very dense population in

south Asian region as well as being scripts used in very rich Sanskrit literature Devanagari

character recognition is very important task to be done more efficiently.

1.2 Problem definition

With the increased usage of computer vision, efficiency and performance in wider range

of scripts becomes more important. So developing better approaches of recognizing

Devanagari characters is really important task. It will make computer vision more

versatile as well as lead to a wide area of exploring many of the ancient literature written

in Sanskrit literature. Previously many efforts have been adopted in this field as well.

Furthermore it is more important to develop better algorithm to recognize handwritten

characters to make it more versatile. Very huge mass of people of this century depend

upon Devanagari scripts in their daily life practice and also in commercial field, because

Nepali, Hindi, Sanskrit and many more languages use same Devanagari scripts in their

written form. Therefore to address such important field of application using newer

technology it is important to develop a better approach to recognize handwritten

Devanagari character using recent artificial intelligence to support machine learning.

1.3 Objective

The objective of the thesis is to develop the customized Hybrid algorithm to recognize

handwritten Devanagari characters using Convolutional Neural Network.

2

1.4 Scope

The scope of this research work is to develop a hybrid algorithm to recognize handwritten

Devanagari character using CNN. In addition to this, the performance in terms of

accuracy and computational complexity of different parameters will be compared.

3

2. LITERATURE REVIEW

2.1 Neural Networks
Being inspired from biological neurons a neural network is a network of artificial neuron

that learn from input examples. Different layer of neural networks are interconnected to

each other to learn in a coherent manner. A neural network may consist from one to

several layer as per the complexity of the learning process and every layer can consist

many neurons. Every link and neurons have their own weight as well as biases to calculate

the weight of the effect from input to the output. The output from the neural network for

the given set of input data is matched with the expected output and the difference between

them gives the error of the network. This error value is used to update the weights and

biases of the network. Hence this error value is used to optimize the network in repeated

manner with this process. Neural networks optimizes errors and updates the weights from

the set of input data and expected output one by one, unlike batch methods, such as

SVMs.

 Neural network have more significant progress in the field of computer vision, natural

language processing and speech processing during late 2000s. But the history of neural

network goes back to 1940’s, when McCulloch and Pitts in 1943 proposed a

computational model for biological neural networks called threshold logic based on

mathematics and algorithms. Minski and Papert pointed out two major flaws of slow

speed evolution of neural net at that time in 1969. Firstly the simple perceptron model was

incapable of learning exclusive-OR function, secondly the lack of high processing power

calculation to train neural networks at that time.

Neural networks again gained popularity when the backpropagation algorithm solved the

problem of exclusive-OR (Werbos, 1974). But although the problem of exclusive-or was

solved, due to the continued lack of availability of machines with enough processing

power, neural networks did not make much progress. Despite the rediscovery of

backpropragation for multilayer perceptrons by McClelland, Rumelhart, and Hinton

(1986), and a host of new applications, SVMs and simple linear classifiers seemed to rule

the field by the mid to late 90s. Similarly, lack of a high amount of data needed to train

neural network delayed progress.

4

With the evolution of powerful graphics processing units (GPUs) capable of general

purpose computing, parallel processing in these GPUs has recently become the standard

method for training neural networks. As GPUs have an an architecture built for parallel

processing, training with GPUs leads to shorter training times for neural network

algorithms. So advancement in powerful parallel processing GPU units along with

availability of more training data for these neural networks to learn, has enabled

advancements in the fields of machine vision, natural language processing, and speech

recognition.

A simple artificial neural network is shown in Figure 2.1.

Figure 2.1: Sample artificial neural network. Reprinted from Samer, Rishi, and Rowen

(2015)

Training a neural network requires a paired set of input data (Xi) and input labels (Yi) as

shown in figure 5.2. Weights (W) of neural networks are randomly initialized and trained

with the set of input output pairs. This process repeatedly improves the weights and biases

5

of the neural networks by minimizing the error with the comparison of the predicted and

expected output labels.

Figure 2.2 Neural network training mechanism.

2.2 Convolutional Neural Networks

The evolution of neural network research led to the development of special algorithms to

implement perceptrons. The perceptron learning rule was a supervised learning algorithm

for linear classification. As single-layer perceptrons did not show good results for

multiclass nonlinear classification, a new method was developed called the multilayer

perceptron (MLP). The evolution of the MLP and the backpropagation algorithm used to

train it led to the first “convolutional” neural networks back in the 1990s. The structures

and advances made in the 1990s can be summarized from the works of a pioneer in the

field of machine learning, Yann LeCun.

Becker and Le Cun (1988) shows improvements in the slow convergence rule of

backpropagation by simple approximation of second derivative terms with a slight

increase in complexity. One of the hard parts of neural network is choosing efficient

hyperparameters such as the step size (learning rate). LeCun, Simard, and Pearlmutter

(1993) proposed a method for automatically calculating and adjusting learning rates of

multilayer neural networks.

Although multilayer perceptrons were being used for image recognition, due to the full

connectivity of neurons, i.e., all neurons of one layer being connected to all the neurons of

6

the previous layer, they suffer from the problem of increased dimensionality and

correspondingly increases in computational requirements. For example, if we take an

input image of 256 × 256 × 3 (256 pixels wide, 256 pixels height, 3 color channels), a

fully connected neuron in the first hidden layer will have 256 × 256 × 3 = 196, 608

weights. The fully connected architecture doesn’t take into account of the spatial structure

of data; it treats input pixels that are far and close to each othre on the same basis. Taking

spatial structure into account for image recognition, full connection seems to be wasteful

at best, and at worst, the large number of parameters leads to a problem called overfitting.

A new neural network architecture was designed for image recognition that takes the

spatial structure of data into an account. It was called convolutional neural network.

Convolutional neural networks, inspired by the structure of visual cortex in the brain, has

following properties.

• 3D volume of neurons: A CNN contains neurons arranged in three dimensions: width,

height, and depth. A neuron in one layer is connected to only some of the neurons in the

previous layer, i.e., based on the fact that pixels in this layer are more affected by pixels

from the previous layer. A CNN architecture consists of a stack of locally connected

neurons and fully connected neurons.

• Local connectivity: CNN takes into account of the spatial structure of the data by local

connection between neurons of adjacent layers. This will eventually decrease the number

of parameters and the cost of computation and increases the accuracy. Stacking many such

layers makes the filter global, i.e., is responsive to a larger region of pixels.

• Shared weights: CNN filters are replicated across the entire visual field, so that they

consist of shared weights, which will lead to a lower total number of independent

parameters. Repeating filters give the ability to detect certain features in an image

irrespective of their location, giving the ability of translation invariance.

Figure 5.3 shows these representations schematically.

7

Figure 2.3: Difference of convolutional network with MLP. Reprinted from Standford

course on CNN.

LeCun et al. (1989) shows the improvement in neural networks for image recognition with

local connection and shared weights. The authors compare their results with the

performance of single-layer, fully-connected networks, two layer network (12 hidden

units fully connected), locally connected networks (2 hidden layers locally connected),

constrained network 1 (two hidden layers with constraints) and constrained network 2 (2

hidden layers with local connection and constraints) for small digit recognition problem.

2.3 Deep Learning

According to Deng and Yu [3], deep learning can be defined as:

A sub-field of machine learning that is based on learning several levels of representations,

corresponding to a hierarchy of features or factors or concepts, where higher-level

concepts are defined from lower-level ones, and the same lower- level concepts can help

to define many higher-level concepts. Deep learning is part of a broader family of

machine learning methods based on learning representations. An observation (e.g., an

image) can be represented in many ways (e.g., a vector of pixels), but some

representations make it easier to learn tasks of interest (e.g., is this the image of a human

face?) from examples, and research in this area attempts to define what makes better

representations and how to learn them.

8

Figure 2.4: Deep neural network vs rule based or intuition-based approach.

Figure 2.4 describes how deep learning differs from traditional recognition strategies. In

the traditional recognition approach, we extract hand-designed features from the input

image/speech or video pixels and we use trainable classifiers such as SVMs for the

classification task. But in the deep learning approach, we pass the input image/speech or

video to input layer, and this input goes through a series of hidden layers (so called deep)

to give a certain label.

Then we calculate the derivative of difference between this output label and actual label

with respect to input (known as gradient) and back propagate it to the previous layers

from the output and use it to adjust the weights of the neural network. So our network

learns the parameters and uses them for feature extraction, unlike traditional systems, in

which we provide a set of parameters for feature extraction. This is how the deep learning

approaches are able to learn more complex features than traditional rule-based systems.

Figure 5.5. describes the difference of Deep learning methods with other methods.

9

Figure 2.5: Deep learning compared with other techniques. Reprinted from Ian

Goodfellow and Courville (2016).

2.4 Deep Convolutional Neural Networks

Deep convolutional neural networks (DCNNs) represent a deep learning mechanism

inspired by the working of neurons in our visual cortex. A DCNN consists of multiple

layers, with each layer consisting of many neurons. The lower layers, i.e., the layers near

the input layer learn basic fundamental features such as edges, and the higher layers learn

higher layer features such as structure and relative position of these structures as is

10

apparently done in our visual cortex, which is also a layered architecture in which the

simple cells first learns basic features and complex cells learn object-specific features.

Here the CNN learns the weights by itself, so we do not need to provide features for our

network. This is the main advantage of DCNNs, which learn object-specific features

during training. The drawback of DCNNs compared to existing methods is that they

require powerful processing power, but this problem is has been solved to some extent

using the parallel processing of powerful GPUs. A convolutional neural network consists

of following layers.

• Convolutional layer

• Pooling Layer

• Non-linear Layer

• Fully Connected Layer

• Loss Layer

Figure 2.6: Example of CNN architecture. Reprinted from Samer et al. (2015).

2.5 Related Work

So many work have been done in the field of handwritten Nepali character recognition.

Recently Acharya, Shailesh & Pant, Ashok & Gyawali, Prashnna proposed a model for

recognizing handwritten character of Devanagari script [4][5]. They have purposed

DCNN model for this purpose and limited to the character set of language only.

But previous approach of similar work on any other language or script still supports the

way towards Devanagari scripts. Hence this field has been widely explored field but still

lacks some better approach in Devanagari scripts.

11

3. METHODOLOGY

An approach to recognizing handwritten character using CNN will require huge set of

database and higher computational power as well. This section explains applied

methodology for Devanagari Handwritten Character recognition.

3.1 Data set preparation

Although Devanagari script is widely used by varieties of languages such as Nepali, Hindi

etc., I will be focused in the data set used in Nepali language. We have prepared a

moderately large handwritten data set for 58 Devanagari isolated characters, which

contains 36 consonants, 12 vowels and 10 numbers. For handwritten character scripts, we

will consider the handwriting of various individuals from different ages and education

levels. These scanned images are then This data set contains wide variation of distinct

characters because of different peoples’ writing styles. Some of these character images

may be very complex shaped and may also closely correlated with others. List of

characters, numbers and their corresponding English phoneme and sample handwritten

images are shown in table 6.1.

Preprocessing cleans the arbitrary images into common shape or form that makes

appropriate to feed into classifiers. At first handwritten characters will be scanned and

produces gray scale image files. In a grayscale image, each pixel value is a single integer

number (from 0 to 255) that represents the brightness of the pixel. Typically white pixel

has value 255 whereas black pixel has value 0. The image files even for a character are

often found different sizes for different persons. The arbitrary images will be resized into

dimension to maintain appropriate and equal inputs for all the characters. Since we

consider black color for writing on white paper (background), the grayscale image files

contain more white pixels than black for writing.

Scanned images are filtered and clipped to 28*28 pixel gray-scale .jpg images. Our

prepared data set size is differentiated into two different set of training set and test set.

Train set consists of array of 12051 images of 58 handwritten characters and test set

contains array of 290 images of same 58 characters having nearly equal samples for each

character. Each train, and test folder is made as a collection of folders with 58 classes of

images and then are named with the integer from 1-58.

12

SN 1 2 3 4 5 6 7 8 9 10

Devanagari

character

क ख ग घ ङ च छ ज झ ञ

English Ka Kha Ga Gha Nga Cha Chha Ja Jha Nya

Handwritten

Images

SN 11 12 13 14 15 16 17 18 19 20

Devanagari

character

ट ठ ड ढ ण त थ द ध न

English TTa TTha Dda Ddha Nna Ta Tha Da Dha na

Handwritten

Images

SN 21 22 23 24 25 26 27 28 29 30

Devanagari

character

प फ ब भ म य र ल व श

English Pa Pha Ba Bha Ma Ya Ra La Va/

Wa

Sha

Handwritten

Images

13

SN 31 32 33 34 35 36 37 38 39 40

Devanagari

character

ष स ह क्ष त्र ज्ञ अ आ इ ई

English Sha Sa Ha Ksha Tra Jnya A Aa I Ee/ii

Handwritten

Images

SN 41 42 43 44 45 46 47 48 49 50

Devanagari

character

उ ऊ ए ऐ ओ औ अं अ: ० १

English U Uu/

Oo

E Ai O Au Am Aha 0 1

Handwritten

Images

SN 51 52 53 54 55 56 57 58

Devanagari

character

२ ३ ४ ५ ६ ७ ८ ९

English 2 3 4 5 6 7 8 9

Handwritten

Images

Table 3.1 List of Devanagari characters and numbers, corresponding English phoneme

and sample handwritten images.

14

3.2 Data preprocessing

These set of images are not so easy to handle with the network. So we have to make them

appropriate to fed into the network. Hence we prepared a numpy array of each train and

test dataset each consisting the array of image data provided with the corresponding image

label. Images are loaded using Image() function from PIL library and converted into

numpy array and the stored as a higher dimensional array in the big data set. These images

are provided with the corresponding labels sidewise. Furthermore the information content

of the picture are more variant in the black pixel, which are of lower value of the pixel.

Hence after realization of the situation as the net will do its better work when higher

values carry more distinctive information among the images, we have inverted the black

and white color. Now onward higher values or white pixels are presented as the

handwriting in the black backgound.

This arrays are then zipped into npz file to feed into the net work. This npz file also

provided with the array of labels of the image which consists of the corresponding labels

of the image in train and test image data with matched indexes.This image data are loaded

to the iterator using numpy array. So all this image data from different folders are loaded

through PIL library and converted to numpy array to fit for feeding into neural net.

3.3 Clsasification using CNN

Handwritten character classification is a high- dimensional complex task and traditional

MLP require much computation to work with grayscale image. Therefore, a number of

traditional methods first extract features from the input image and then use MLP

based methods for classification task. On the other hand, CNN itself extract features from

the input image or speech signals through its convolution operation [6]. Moreover, CNN

has ability to perform right operation on invariance to scaling, rotation and other

distortions. Therefore, CNN is considered for classification for Devanagari handwritten

character in this study as it is found to perform well for English. CNN automatically

obtains the relevant features like invariance to translation, rotation by forcing the

replication of weight configurations of one layer to a local receptive field in the previous

layer. Thus, a feature map is obtained in the next layer. By reducing the spatial resolution

of the feature map, a certain degree of shift and distortion invariance is also achieved.

Also, the number of free parameters is significantly decreased by using the same set of

weights for all features in the feature map. Figure 3.1 shows probable reference of CNN

structure of this study for classification Devanagari handwritten characters that holds two

15

convolutional layers with 5×5 receptive fields (i.e., kernel) and two subsampling layers

with 2×2 averaging area with input and output layers. Input layer contains 784 nodes for

28×28 pixels image. 1 st convolutional operation produces first level six feature maps.

Distinct kernel having different weights and biases from other kernels are used to produce

a 1 st level feature map so that it can extract different types of local features. Where the

output nodes will be updated for 58 number of nodes.

Figure 3.1: Previously assumed probable Convolutional Neural Network

Convolution operation with kernel spatial dimension 5 converts 28 spatial dimension to 24

(i.e., 28-5+1) spatial dimension [7]. Therefore, each 1 st level feature map size is 24×24.

This local receptive field can extract the visual features such as oriented edges, end-

points, corners of the images. Higher order features are obtained by combining those

extracted features.

In first subsampling layer, the first level feature maps will be down-sampled from 24×24

into 12×12 feature maps by applying a local averaging with 2×2 area, multiplying by a

coefficient, adding a bias and passing through an activation function.

Second convolution and second subsampling operations are similar to first convolution

and first subsampling operations, respectively. second convolutional operation produces

12 distinct feature maps; a receptive field size of 5×5 produces a feature map size of

12×12 into 8×8. Then second subsampling operation resizes each feature map to size of

4×4. These 16 features map values are considered as 192 (=12*4* 4) distinct nodes those

will be fully connected to 58 feature maps (the output nodes) for character set. For total 58

character set, each output node represents a particular character and the desired value of

the node was defined as 1 (and other 57 desired output nodes value as 0) for the input set

of the pattern. These image data is fed into the developed network and trained

16

continuously in loop to optimize a better values of weights and biases to produce a best

weighted network.

3.3.1 Structure of network and forward pass

As we mentioned already we are using a CNN to classify these handwritten Devanagari

character images, we have to make it with the composition of various components of

CNN. Some building blocks of our network are briefly discussed below.

 A) First convolutional layer (net.conv1)

First convolutional layer is provides with the input of one channel image array of 28*28=

784 pixels. This layer is constructed with the help of predefined module torch.nn.Conv2d

defined by pytorch library which has following function prototype

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,

dilation=1, groups=1, bias=True, padding_mode='zeros')

This layer is provided with the input of single channel image (in_channels=1) to produce

6 output feature maps (out_channels=6) which are obtained through 5*5 kernal map

(kernel_size=5) and moving one stride in each move and without adding any pixels to its

end (ie. setting remaining arguments default).

As per the document provided with the pytorch library this function in general applies a

2D convolution over an input signal composed of several input planes[8].

In the simplest case, the output value of the layer with input size (N,Cin,H,W) and output
(Ni,Cout,Hout ,Wout) can be precisely described as:

where is the valid 2D ⋆ cross-correlation operator, N is a batch size, C denotes a number
of channels, H is a height of input planes in pixels, and W is width in pixels.

B) Second convolution layer (net.conv2)

Second convolutional layer is also similar to the first convolutional layer but with
different input and output attributes. The second convolutional layer is applied only after
the data goes through first convolutional layer, activation function and pooling layer.
Hence the this layer is provided to produce 12 output feature maps from those 6 channels
obtained from first layer and with the help of same sized kernel as before.

17

https://en.wikipedia.org/wiki/Cross-correlation

C) Fully connected layer

After certain level of convolutional operation on those images some of fully connected
linear layer are added to this network for better result. Here we have used three fully
connected layers which are linear layer and applied after the application of two of above
Convolutional layer. These three layer transform the input to out put 12*4*4 to 192, 192
to 96 and from 96 to our final required number of classes, ie. 58.

C) Activation functions

The activation function we used here is a very popular function known as Rectified Linear

Unit function which nowadays outperforms in many of the neural networks and this is a

functional application that holds the activation as high as the value is positively high and

remains neutral as the value remains negative. This is also applied with the functional

library of pytorch, torch.nn.functional .

D) Pooling Layer

Pooling layers provide an approach to down sampling feature maps by summarizing the

presence of features in patches of the feature map. Here in this research we have used max

pooling techniques with the window of size 2*2 and stride movement of two pixels. This

process of pooling reduces the spatial dimensions without decreasing the depth of the

image. This is also defined through pytorch library as two dimensional 2*2 pooling

window which samples the maximum pixel value included by the window. This action is

carried out by nn.MaxPool2d(2,2) function.

E) Dropout layer

During training process of the network the waits and biases are adjusted based upon the

error generated by the network. Hence they are adjusted in every run of the epoch. But

while doing so there exits a probability of network overfitting due to similar pattern of

adjustment in each run. So we need to make some of the attributes to become silent during

the adjustment phase. This goal is achieved through the process of dropout layer. Here we

have used 20% of the weights to dropout while optimizing those values. Which is applied

through the nn.Dropout(0.2) layer.

After defining those layers mentioned above we have merged them to form a standard

pattern of network. The sequence of network is mentioned below figure.

18

Figure 3.2: Detailed structure of the customized network

As shown in figure the 28*28 image is applied with the first convolutional layer to

produce 6 feature maps each of containing 24*24 features. Then this features are applied

with the ReLU functional operation and then they are applied with the pooling layer

which we selected to be a max pooling with 2*2 windows and with 2 stride move. Hence

this layer downsizes the spatial features to half of its value. So the output from this layer

becomes 6 feature maps of 12*12 features. Then again second convolutional layer is

applied and then similarly applied with the max pooling to produce 12, 4*4 feature maps.

This output is then sent through three fully connected layers to produce 192, 96 and 58

19

28*28
image

6@24*24
depth image
after
applying
nn.conv1

6@12*12
image after
applying
nn.MaxPool(
2,2)

12@ 8*8
image after
applying
nn.conv2

58 Final
outputs
after third
fully
connected
layer

12@4*4
image after
applying
nn.MaxPool(
2,2)

192 feature
after first
fully
connected
layer

96 feature
after second
fully
connected
layer

output respectively, the final output number is matched to produce probability of the

resemblance with the 58 character classes.

Hence in each forward pass, array of image produces different probability levels of the 58

output classes, indicating the probability of the matching of input image to the output

classes with the value provided by the forward pass of network.

The overall definition of the network is as given below

Net(

 (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
 (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1,
ceil_mode=False)
 (conv2): Conv2d(6, 12, kernel_size=(5, 5), stride=(1, 1))
 (fc1): Linear(in_features=192, out_features=192, bias=True)
 (fc2): Linear(in_features=192, out_features=96, bias=True)
 (fc3): Linear(in_features=96, out_features=58, bias=True)
 (dropout): Dropout(p=0.2, inplace=False)
)

3.3.2 Loss calculation

The output of the network is not exactly resembles with the labels of the classes provided

in the input. Hence this output from the network is compared with the input labels. Which

produces certain error in every pass. There are so many functions to calculate these errors.

Here we applied nn.CrossEntropyLoss() function to calculate this loss. This process uses

negative log loss of the output compared with the input, after each forward pass.

3.3.3 Optimization of parameters

After calculating the loss we update the parameters of the network by calculating the

contribution of each parameter to the error obtained in forward pass. This process involves

very cleaver approach of calculating gradient of the parameters over the loss and

optimizes the parameters as per the direction indicated by the gradient. So many optimizer

are being researched to speed up the right convergence of the network since long ago.

Here in our research we have used a very popular approach among them namely Adam

Optimizer. This optimizer is loaded from torch.optim.Adam() and applied through all of

the network parameters at the given learning rate initially as lr=0.001 and updated in

every 30 epochs.

In every run of the training batch the accuracy and the loss are calculated and recorded

and displayed. Due to lack of the resource available to me this process is done on Google

colab and the recorded outputs are stored to analyze the direction of progress. After

completing the training and optimization up to 50 epochs this net is applied to the test

dataset to validate the accuracy. The accuracy of the network are differently calculate as

20

top_k accuracy model to calculate the accuracy of network as top-1 and top-5 accuracy.

Which defines the confidence of the network to classify the image with topmost

probability and the probability of being the right class within the top 5 highest

probabilities respectively.

Further more we have changed the network by changing different hyper parameters of the

network in different Experiments. We particularly varied learning rate, drop out and Batch

size.

Firstly we have done different experiments with variation of first two hyper parameter ie .

Learning rate and drop out with the constant batch size of 64. The table containing

different experiments by varying different hyper parameter is shown below.

Experiment Name Learning Rate Dropout Number of
epochs

Experiment_1 0.01 20% 50

Experiment_2 0.001 20% 50

Experiment_3 0.0001 20% 50

Experiment_4 0.01 30% 50

Experiment_5 0.001 30% 50

Experiment-6 0.0001 30% 50

Experiment_7 0.01 50% 50

Experiment_8 0.001 50% 50

Experiment_9 0.0001 50% 50

After analyzing the output from these nine experiments, the model with the best accuracy

is again tested over different batch size of 32, 64 and 128.

3.4 Cross Validation

Best performing network is trained for 40 epochs running through each of the image in

every epoch and resulted an optimized neural network. But this network is again tested

over different splits of data set to give validation to the obtained output. Train data is

divided into 10 equal sets and 10 fold cross validation is applied. In every run one among

10 set is taken as validation data set and other 90% data is used to train the model. The

average of those 10 data pair is taken as valid accuracy of network. Again this network is

applied over the test data set to view its accuracy over external wold problems. Test of the

network is also viewed with the help of confusion matrix showing miss interpretation of

the classes of the inputs.

21

3.5 System Block Diagram

22

Collect Images

Process Images

Split the data into Train set and test set

Train set Train set

Architecture and
Parameter list of

different Experiments Set the Network Architecture
And hyper parameters

Up to n
epochs

False

True

Forward pass through the net

Calculate the loss

Optimize and record
The network parameters

Validate the network
And display confusion matrix

3.6 Tools used

1. Jupyter notebook

2. Google colab

3. Python

4. Shutter

5. Image viewer

23

4. EXPERIMENTS AND OUTPUTS

a) Collected image data

Raw image of a character obtained after cropping 28*28 image size:

Figure 4.1:Sample of collected image data

The process of collection is found to be so problematic and hectic during data collection.

b) Batch of input data

This set of data is input to the network as 32, 64 and 128 image per batch as per the

defined architecture. A sample of representation of a batch of data as torch of size

[32,28,28], images and true label of first 4 image is obtained as shown below for the case

of Experiment_3.

Figure 4.2 Screenshot of one batch of data fed into network

c) Network displayed after we define it through pytorch library

As we define the Convolutional neural network, this is displayed in detail as below for the

case of Experiment_3.

24

Figure 4.3 Screenshot of display of details of network

d) Experiments over different values of learning rates and drop outs.

Learning rates are varied as 0.01, 0.001 and 0.0001 and the dropout values is varied as

0.2, 0.3 and 0.25 respectively. Results of these variation over those hyper parameters are

tabulated as below.

Learning Rate> 0.01 0.001 0.0001

Dropout

20% Experiment_1
Accuracy=64.92%
Loss=1.11

Experiment_2
Accuracy=90.59%
Loss=0.355

Experiment_3
Accuracy=67.35%
Loss=1.14

30% Experiment_4
Accuracy=56.03%
Loss=1.52

Experiment_5
Accuracy=85.04%
Loss=0.47

Experiment_6
Accuracy=61.33%
Loss=1.37

25% Experiment_7
Accuracy=55.27%
Loss=1.52

Experiment_8
Accuracy=88.72%
Loss=0.46

Experiment_9
Accuracy=65.145
Loss=1.22

Hence by analyzing these results we can conclude that the hyper parameters set of

Experiment_2 are appropriate for the network.

e) Experiments over different Batch sizes

After finding appropriate learning rate and dropout this network is applied over different

batch size of input data to find optimal batch size. Results over different batch size of

input data in model as in Experiment_2 with learning rate of 0.001 and dropout of 0.2 is

as shown below.

Batch Size

32 64 128

Accuracy=90.12%
Loss=0.36

Accuracy=90.59%
Loss=0.355

Accuracy=87.56%
Loss=0.374

25

f) 10 fold cross validation

After obtaining adjusted hyper parameters, the optimized network with the learning

rate=0.001, dropout = 0.2 and batch size=64 is subjected to K-fold cross validation

method. Here we applied 10 fold of split data to validate the output. Results of the

validation over 10 different sets of data are as shown below.

Folds Training loss Training
Accuracy %
(Top-1)

Training
Accuracy %
(Top-5)

Validation
Accuracy %
(Top-1)

0 0.30 91.07 99.59 80.95

1 0.31 89.84 99.64 80.70

2 0.31 90.57 99.54 82

3 0.32 89.44 99.52 81.7

4 0.35 88.80 99.47 80.62

5 0.34 87.91 99.58 79.93

6 0.28 91.14 99.69 82.41

7 0.32 90.23 99.67 82.41

8 0.33 89.56 99.55 80.99

9 0.28 91.01 99.56 81.66

Average 0.314 89.96 99.581 81.34

26

g) Results and plots of different Experiments

1. Experiment_1

Training loss = 1.11
Training accuracy (Top1) =64.92%
Training accuracy(Top5)= 93.44%
Validation accuracy(Top1)= 59.87%

Figure 4.5 Top-1 Accuracy vs epochs of Experiment_1

Figure 4.6: Loss vs Epochs of Experiment_1

27

2. Experiment_2

Training loss = 0.355
Training accuracy (Top1) =90.59%
Training accuracy (Top5)= 99.77%
Validation accuracy(Top1)= 81.59%

Figure 4.7 Top-1 Accuracy vs epochs of Experiment_2

Figure 4.8: Loss vs epochs of Experiment_2

28

3. Experiment_3
Training loss = 1.14
Training Accuracy (Top-1) =67.35%
Training Accuracy (Top-5)= 92.87%
Validation accuracy(top1)= 65.34%

Figure 4.9: Top-1 Accuracy vs epochs of Experiment_3

Figure 4.10: Loss vs epochs of Experiment_3

29

4. Experiment_4

Training loss = 1.52
Training Accuracy (Top-1) =56.03%
Training Accuracy (Top-5)= 87.86%
Validation accuracy(top1)= 53.07%

Figure 4.11 Top-1 Accuracy vs epochs of Experiment_4

Figure 4.12: Loss vs epochs of Experiment_4

30

5. Experiment_5
Training loss = 0.47
Training Accuracy (Top-1) =85.04%
Training Accuracy (Top-5)= 98.87%
Validation accuracy(top1)= 77.99%

Figure 4.13: Top-1 accuracy vs epochs of Experiment_5

Figure 4.14: Loss vs epochs of Experiment_5

31

6. Experiment_6

Training loss = 1.37
Training Accuracy (Top-1) =61.33%
Training Accuracy (Top-5)= 89.44%
Validation accuracy(top1)= 58.04%

Figure 4.15: Top-1 Accuracy vs epochs of Experiment_6

Figure 4.16: Loss vs epochs of Experiment_6

32

7. Experiment_7

Training loss = 1.52
Training Accuracy(Top-1) =55.27%
Training Accuracy(Top-5)= 87.54%
Validation accuracy(top1)= 51.87%

Figure 4.17: Top-1 Accuracy vs epochs of Experiment_7

Figure 4.18: Loss vs epochs of Experiment_7

33

8. Experiment_8

Training loss = 0.4624
Training accuracy(Top-1) =88.72%
Training accuracy(Top-5)= 99.24%
Validation accuracy(top1)= 80.31%

Figure 4.19: Top-1 Accuracy vs epochs of Experiment_8

Figure 4.20: Loss vs epochs of Experiment_8

34

9. Experiment_9

Training loss=1.22
Training accuracy(Top-1) =65.14%
Training accuracy(Top-5)= 91.24%
Validation accuracy(top1)= 62.35%

Figure 4.21: Top-1 Accuracy vs epochs of Experiment_9

Figure 4.22: Loss vs epochs of Experiment_9

35

Figure 4.23: Losses of different folds of data

Figure 4.24: Top-1 accuracy of different folds over train data

36

Fold-0 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-6 Fold-7 Fold-8 Fold-9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Training loss of different Folds

Fold

L
os

s

Fold-0 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-6 Fold-7 Fold-8 Fold-9
86

87

88

89

90

91

92

Training Accuracy (top-1)

Fold

A
cc

u
ra

cy

Figure 4.25: Top-5 accuracy of different folds over train data

Figure 4.26: Top-1 accuracy of different folds over validation data

37

Fold-0 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-6 Fold-7 Fold-8 Fold-9
78.5

79

79.5

80

80.5

81

81.5

82

82.5

83

Validation Accuracy

Folds

A
cc

ur
a

cy

Fold-0 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Fold-6 Fold-7 Fold-8 Fold-9
99.35

99.4

99.45

99.5

99.55

99.6

99.65

99.7

99.75

Training Accuracies (top-5)

Folds

A
cc

u
ra

cy

h) Confusion matrix

Predicted and actual image classes are plotted to visualize the accuracy through confusion

matrix, and seen as below.

38

5. EPILOGUE

5.1 CONCLUSION

Hence from this research work we have developed a hybrid Convolutional neural network

to classify Devanagari Handwritten characters. This can be used to recognize handwritten

scripts and documents to digitize various works. This network performs over handwritten

data with valid accuracy of 81.34% and this can be implemented with any hand written

characters in Devanagari.

5.2 LIMITATIONS

In regard of recent developments on deep learning this percentage of accuracy is not still

good for implementation. Hence there exist so many limitation of this work. This model

can not be implemented with good level of confidence. These data are from only few

personals. Hence the accuracy can be increased with the help of more data sets.

Further more this model is developed for image set of individual characters, but in

Devenagari writing they are not alone and they are in connected way and this work can be

further developed to work on it.

39

6. REFERENCES

1. https://www.worldstandards.eu/alphabets/*
2. http://neuralnetworksanddeeplearning.com/*
3. Deng, L., & Yu, D. (2013). Deep learning: Methods and applications. Foundations

and Trends in Signal Processing, 7(3–4), 197–387.
4. Acharya, Shailesh & Pant, Ashok & Gyawali, Prashnna. (2015). Deep learning

based large scale handwritten Devanagari character recognition. 1-6.
10.1109/SKIMA.2015.7400041.

5. Rahman, M. M., Akhand, M. A. H., Islam, S., Chandra Shill, P., & Hafizur
Rahman, M. M. (2015). Bangla Handwritten Character Recognition using
Convolutional Neural Network. International Journal of Image, Graphics and
Signal Processing, 7(8), 42–49. doi:10.5815/ijigsp.2015.08.05

6. Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied
to document Recognition, in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, November 1998.

7. Feature extraction using convolution.
Available:http://deeplearning.stanford.edu/wiki/index.php/

8. https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv2d

40

https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv2d

	COPYRIGHT ©
	RECOMMENDATION
	DEPARTMENTAL ACCEPTANCE
	ACKNOWLEDGEMENT
	ABSTRACT
	List OF FIGURES
	LIst of abbrevations
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. METHODOLOGY
	4. EXPERIMENTS AND OUTPUTS
	5. EPILOGUE
	6. REFERENCES

