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ABSTRACT 

The Reliability Based Algorithm for linear block codes is investigated. The decoding 

complexity is increased when the length of information bits of linear block codes is 

increased. A Simplified statistical approach to evaluate the error performance bound of 

Reliability Based Algorithm of Linear Block Codes is investigated. First, one novel 

statistic is proposed which depicts the number of error contain in the ordered received 

noisy codewords. Also, another new statistic is proposed which compare the hamming 

distance between the permuted received word and the reprocessing codeword only on 

the parity check section. Then, the Probability Density Function (PDF) and the 

Cumulative Distribution Function (CDF) for each statistics are derived. Also, the new 

Probabilistic Threshold Test in combination with basic order-I reprocessing is 

proposed which compare the decision statistic evaluated only on the parity check 

section for all reprocessing codeword corresponding to TEP of any permissible order. 

Finally, with proposed approach, reduction of the number of Test Error Patterns 

(TEPs) is obtained to calculate the required codeword which reduces the decoding 

complexity.  

 

Keywords: Reliability Based Algorithm, Linear Block codes, Probabilistic Threshold 

Test 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

Coding theory is deals with reliability of communication over noisy channel. The main 

purpose of coding theory is to improve the reliability of digital communication by 

detecting and correcting the error in the received bit during the digital transmission. In 

the digital communication, transmission is not 100% reliable in practice because of the 

presence of noise which distorts the information bit. There are two techniques which is 

used to reduce the error in digital transmission 1) Automatic Repeat request (ARQ) 2) 

Forward error correction (FEC).  

 

 

ARQ is the process which detects the presence of error in the received data and if 

errors are found then receiver notifies the presence of error to the transmitter. Finally, 

transmitter resends the data until they are correctly received. In forward error 

correction, receiver not only detects the error but also corrects the error, so there is no 

need of retransmission of data. Sometimes retransmission of any data is impossible or 

not feasible so that forward error correction is better solution. A special type of code is 

used for forward error correction which is called as error correcting codes or error 

control codes. The techniques in error correcting codes is add redundancy to original 

message in such a way that receiver have ability to detect the error and correct it [1]. 

A communication channel is illustrated in figure 1.1. x represents message at the 

source. If there is no modification in message x and transmitted over a communication 

channel, the message is distorted due to the presence of noise and receiver cannot 

Message 

Source 
Channel Encoder 

 
Decoder Receiver 

x = x1…. xk 

message 

c = c1…..cn 

codeword 

y =c+e 

received 

vector 

x̑ 

estimate of 

message 

e =e1…..en 

error from noise 

Figure 1.1: Communication channel 
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recover the original message. The key concept of channel encoding is adding 

redundancy to the message to be sent. Channel encoder add the redundancy bit in 

original message bit and form the codeword c. Noise is in the form of error vector e 

and distorts the message and produce the output y be decoded where errors are remove 

by help of redundancy bit [1]. 

Error correcting codes can be divided into two classes on the basis of redundancy: 

Block code and Convolutional code. Block coding encodes and decodes data on a 

block by block basis, treating each block of information bits independently from 

others. Encoding and decoding operation of convolutional code depend not only on the 

current data but also on the previous data. 

The use of redundancy act as overhead or cost in terms of channel bandwidth, or 

transmission power in the digital transmission. Coding rate R give the quantitative 

measure of redundancy and is defined as the ratio of message length to the codeword 

length. 

R=K/N…………………………………………………………………………….. (1.1) 

The capability of error correction is increased when the redundancy is increased but 

coding rate is decreased. A sequence of digital symbols is obtained after the error 

control encoding. Digital modulation is needed to convert symbols into analog 

symbols for transmit over transmission channel. Binary phase shift keying (BPSK) is 

one of the modulation technique. BPSK assigns to the carrier 180 phase shifts when 

the bit is 0 and π.  

Channel coding is used in digital communication system to protect the digital 

information from noise and interference. Channel coding is mostly accomplished by 

selectively introducing redundant bits into transmitted information stream. These 

additional bits will allow detection and correction of bit errors in the received data 

stream and provide more reliable information transmission [3]. 

1.2 Linear Block Code 

The output of an information source consist of binary digits “0” or “1”. In block code, 

the sequence of binary digits segmented into message blocks of fixed length, say k. 
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Each message block is mapped into codeword by using redundancy bit. For k bits, 2k 

are the possible codewords. Linear block is represented by (n, k) where n is the length 

of codeword and k is the length of message. Codeword consists of n-k bits are the 

parity check bits or redundancy check bits.  

k information digits n encoded digits 

 k    Rate R = k/n   n-k 

 

 

 n digit codeword 

The linear block code is possess a systematic structure of codeword which is called as 

systematic linear block code which is shown in figure 1.2. Codeword is divided into 

two part. The first parts of codeword is message and the second part is redundant 

checking part. The message part consists of k information digits and the redundant 

checking part consist of n-k parity check digits which are linear sum of information 

digits. 

Linear block code can be describes by generator matrix and parity check matrix. 

Generator matrix is used in the encoding operation at the transmitter. 

Let us consider the Generator matrix is denoted by 

𝑮 =
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Where 𝒈𝒊 = ( 𝑔0, 𝑔1, … , 𝑔𝑘−1) for 0 ≤ 𝑖 ≤ 𝑘 and 𝒖 = (𝑢0, 𝑢1, … 𝑢𝑘−1) be the message 

to be encoded.  

𝒗 = 𝒖.𝑮 …………………………………………………………………………... (1.2) 

Information digits     Parity digits 

Figure 1.2: Codeword of linear block code 
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= (𝑢0, 𝑢1, … , 𝑢𝑘−1)

[
 
 
 
 

𝑔0

𝑔1.
..

𝑔𝑘−1]
 
 
 
 

 ……………………………………………………...... (1.3) 

= 𝑢0𝑔0 + 𝑢1𝑔1 + ⋯+ 𝑢𝑘−1𝑔𝑘−1……………………………………….………... (1.4) 

The rows of 𝑮 generate the (n, k) linear code 𝒄 so that matrix 𝑮 is called the generator 

matrix. 

A linear systematic (n, k) code is completely specified by a 𝑘 × 𝑛 matrix of 𝑮 of the 

following form 

𝐺 =  [

𝑔0

𝑔1...
𝑔𝑘−1

] =

[
 
 
 
 
 
 
 
 
 

1...000...

.............

.............

.............

0...100......
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]
 
 
 
 
 
 
 
 
 

 

Where 𝑝𝑖𝑗 = 0 or 1 and let 𝐼𝑘 denoted the 𝑘 × 𝑘 identity matrix. Then𝐺 = [𝑝 𝐼𝑘]. Also 

for any 𝑘 × 𝑛 matrix 𝐺 with k linearly independent rows there exist a (𝑛 − 𝑘) × 𝑛 

matrix. The matrix 𝑯 is called parity check matrix of the code. The code generated 

by𝑮 is codeword if and only if 𝒗. 𝑯𝑻 = 𝟎 . 

𝑯 = [𝑰𝒏−𝒌 𝒑
𝑻] …………………….....……………………..…………………….. (1.4) 







































ppp

ppp

ppp

ppp

knkknkn

k

k

k

1,11,11,0

2,11202

1,11101

0,11000

...1...000

.............

.............

.............

...0...100

...0...010

...0...001

 



 

 

5 

 

1.3 Hard and Soft Decision Decoding 

The received codeword is compared with all codewords in hard decision decoding and 

the codeword which gives the minimum hamming distance is selected. The hamming 

(7 4 3) code have three redundancy bit which is add with four information bits to make 

a codeword. There are 16 possible codewords. The transmitted codeword is modulated 

by BPSK signal. Modulated signal is transmitted through channel. Due to the presence 

of noise, let the received symbol is (-0.8 -1.1 +0. 3 +0.5 +1.8 +0.2 -0.1 -0.4). Hard 

decision decoder decodes the symbol into bit by taking a reference (Threshold 

detector). The positive symbol taken as 1 and the negative symbol taken as 0. The 

output codeword after the hard decision decoding is “00111100”. The codeword is 

declared as required codeword which gives the minimum hamming distance [3].  

Soft decision decoding can calculate the Euclidean distance between the received 

symbols and all possible codewords in the form of modulated symbols in Euclidean 

space and calculate the each Euclidean distance. The codeword is selected which gives 

the minimum Euclidean distance. Thus the soft decision decoding improves the 

decision making process by supplying additional reliability information (calculated 

Euclidean distance). Soft decision decoder uses all of the information in the process of 

decision whereas the hard decision decoder does not fully utilize the information 

available in the received signal [3]. 

1.4 Problem Definition 

The Reliability based algorithm gives an excellent trade-off between the performance 

and complexity for the decoding of linear block codes of length even greater than 128. 

However, when it comes to achieving the Maximum Likelihood performance, the 

number of TEP to be tested is increase exponentially with the increase in length of 

information bits. Thus, if the length of information bits is increased, it is clear that 

number of TEP is quite large for practical implementation and increased in complexity 

of soft decision decoding of linear block code. According the Reliability Based 

Decoding, for k/n≥0.5, 𝑑𝑚𝑖𝑛/4 reprocessing order is sufficient to obtain the required 

codeword, but at each reprocessing order, the number of TEP to be checked is 

increased exponentially. 
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1.5 Research Questions 

 What happens if the length of the information bits is increased in the soft decision 

decoding of linear block codes based on ordered statistics? 

 How to reduce the complexity of Reliability Based Decoding of linear block code 

at each reprocessing order. 

1.6 Objectives 

The main objective of this work is reducing the decoding complexity of soft decision 

decoding of linear systematic block code based on most reliable basis.  
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CHAPTER TWO: LITERATURE REVIEW 

Channel coding is an important study which attempts to minimize data loss, due to 

errors introduced in transmission due to imperfect channels, by adding redundancy to 

the data during data transmission. Among the two important class of error control 

coding: block and convolutional, linear block codes come under a block category with 

a linearity property which is mainly used for Forward Error Correction (FEC) [4]. For 

a linear block code defined with 𝐶(𝑛, 𝑘, 𝑑𝑚𝑖𝑛): 𝑛 a codeword length, k information 

word length and 𝑑𝑚𝑖𝑛 the minimum hamming distance to find the Maximum 

Likelihood (ML) best codeword at minimum euclidean distance, exhaustive decoding 

comparing the noisy codeword against all codeword (2k) is obviously impossible for 

non-trivial codes. Many decoding algorithms have been proposed including highly 

efficient viterbi decoding [4]. Although all the linear block codes possess the trellis 

structure which is the backbone of viterbi decoding, the number of states becomes too 

large to practically implement for long codes. Forney presents a new iterative a new 

distance measure which enable likelihood information to be used in algebraic 

minimum distance decoding techniques [5]. Forney uses an algebraic decoder to 

generate a list of codeword candidates is determined from the reliability measures of 

the symbols within each received block. Each candidate codeword is test and most 

likely candidate is chosen as decoded codeword. Chase introduced an algorithm where 

a fixed number of the error patterns are systematically searched [6]. Tested position 

can be chosen according to the reliabilities less than a predetermined threshold.  

The error performance depends on the choice of threshold and maximum number of 

computation depends on choice of threshold as well as signal-to-noise ratio (SNR) for 

the given set of tested position. The complexity of this algorithm increased 

exponentially with dimension of code. 

There has been interest in algorithm which perform soft decision decoding of linear 

block code on the basis of “most reliable basis”. These decoding algorithms are called 

as MRIP-reprocessing decoding algorithm. GMD and Chase type algorithm take only 

a partial ordering of the reliability values of the received symbol for identification of 

the LRPs of received sequence. In the decoding process, MRIPs required complete 

ordering of the received sequence as well as determination of K MRIPs. The first k 
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bits are obtained according to the MRB and permuting the column of generator matrix 

based on this ordering. Soft decision decoding for binary linear code is the method to 

obtain required error performance progressively in a number of stages.  

Soft decision decoding based on ordered statistics have long been investigated 

extensively [7]-[22], since Fossorier and Lin, in their original contribution  presented 

a novel scheme for soft decision decoding of linear block codes based on ordered 

statistic of the received noisy samples [8]. An efficient near optimum ML decoding 

algorithm for a binary linear block code has been proposed. Algorithm was basically 

implement into two stages, A) determining the Most Reliable Independent (MRI) bits 

from Most Reliable Basis (MRB) of the code and B) order 𝐼 − reprocessing on MRI 

using most likely Test Error Patterns (TEPs). Order 𝐼 − reprocessing is designed to 

improve the hard decision decoded codeword progressively until either practically 

optimum or a desired error performance is achieved. 

The approach of ML resource test based on the cost function calculated from the soft 

valued samples of the permuted received sequence is introduced as a stopping criterion 

after each stage 𝑗, 0 ≤ 𝑗 ≤ 𝐼 of order −𝐼 reprocessing which indeed proved excellent in 

reducing the average number of computation. The major weak point of this algorithm 

is no instant stopping criterion can be achieved between that order−𝑗 and order −(𝑗 −

1) reprocessing stages. Combination (
𝑘
𝑙
) increases for increasing 𝑖 which means most 

of the candidate codewords are processed at phase−𝐼 of order−𝐼 reprocessing. This is 

the reason that, the stopping criteria presented in [8] for each stage−𝐼 still proves 

inefficient in reducing the average number of computation to an optimum value. 

Number of techniques with minimized complexities is TEP list optimization and 

reprocessing strategy optimization. In the context OSD order−𝐼 reprocessing the 

arrangement of TEPs in the list is quite important. The probability of finding the 

correct codeword corresponding to any TEP clearly depends on the priori likelihood 

could be hamming weight [7]. Improved a priori likelihood function like punctured 

correlation discrepancy [12], a priori weight based on the mean bit reliability [22] and 

the error probability in TEP position [11] proving to be efficient in reducing the worst 

case computation to a certain level. A method based on some redundant information 

provided to the decoder which is used to reduce the TEP list size in addition to OSD 

[14]. The upper union bound of maximum likelihood decoding for linear block code is 
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presented [23]. Order statistics decoding also used in decoding of LDPC and 

convolution codes where a reliability measure of received symbol has been used to 

reduce search space and find the most likely codewords [24]. 

A next approach which is based on the probabilistic Threshold Test (PTT) is one of 

the very few which actually proved to reduce the average number of computation in an 

order−𝐼 reprocessing [11]. It is assumed that under sufficiently high Signal-to-Noise 

Ratio (SNR), the order-0 reprocessing codeword gives the correct codeword with high 

probability, thus it suggests to compare the Hamming distance between the hard 

decided permuted received vector and order−0 reprocessing codeword with certain 

threshold to decide to go for reprocessing. The reduction in computational cost using 

this approach is quite impressive but not sufficient.  

The first contribution of the thesis present some new statistics of the ordered vector 

components in addition to [7], [8]. Simplified expression for the Probability Density 

Function (pdf) and Cumulative Distribution Function (cdf) for each statistics is 

derived. The properties of these new statistics is incorporated to derive the simplified 

error performance bound for OSD. The next contribution is extension to the concept of 

PTT [11] named as Generalized Probabilistic Threshold Test (GPTT) in combination 

with basic order−𝐼 reprocessing is proposed which has the property of instant stopping 

criterion.  
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CHAPTER THREE: METHODOLOGY 

3.1 Reliability Based Algorithm 

Reliability based Algorithm is a decoding process which decodes the received symbol 

according to their reliability. A symbols which have more probability is placed to the 

first and symbols which have least probability is placed to the last. Hamming code (7 4 

3) where n=7, k=4 and dmin=3, is used for error control over the channel under the 

binary phase shift keying (BPSK) signaling. A bipolar version of codeword is used for 

transmission. The step of Reliability based algorithm for linear block code are 

Step 1: Reordering the received symbols according to their decreasing reliability. 

The received vector r composed of soft values is 

𝐫=  7654321 xxxxxxx  

Permute r into r' ordered for decreasing reliability 

𝐫′=  gfedcba xxxxxxx  

Where rix and              gfedcba xxxxxxx   

gfedcbai ,,,,,,  

Step 2: Obtain a systematic matrix corresponding to a permuted vector. 

A systematic generating matrix 
*

knG corresponding to permuted vector r' is obtained. 

 knG
   Column permutation reduce to systematic form  

*

knG   

Step 3: Hard decoding of the permuted received word 

The permuted received word r' is given by 

r' =  gfedcba xxxxxxx  
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The hard decoding of the permuted received word is denoted as R'  

R' =  gfedcba XXXXXXX  

Taking first k bits of R'  in account to get an input vector V* as. 

V*=  dcba XXXX  

Step 4: Calculate the first best codeword by encoding first k bits of hard decoding of 

permuted vector and systematic generating matrix corresponding to permuted vector 

Now, we encode V* by 
*

knG to obtain the first best codeword C* as 

C*= V* *

knG =  *

7

*

6

*

5

*

4

*

3

*

2

*

1 CCCCCCC  ………….………………….… (3.1) 

Step 5: Consider all the Test Error Patterns (TEPs) and calculate the each distance and 

update the codeword which gives minimum distance.  

Next, compute the euclidean distance D  of current best codeword *C from permuted 

received word. 

First choose the order 
rO of the algorithm and consider all Test Error Patterns (TEP) of 

length k  and weight <
rO . For each considered TEP 

 Sum to V* 

 encode by
*

knG  

 compute distance D  

Where distance D compare with current best distance *D , update new best codeword

*C  and new best distance *D . Finally all TEPs have been considered, best codeword 

*C is accepted. 

The main objective of the algorithm is to find a codeword C which is nearest to the 

received vector r in a Euclidean space. This is clearly equivalent to find a codeword 
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*C (Permuted version) which is nearest from the permuted vector r' in Euclidean space. 

Now, the Euclidean distance between *C  and r' is given by, 





n

i

ii
xcD

1

2*
)(  ……………………………………………………………….. (3.2) 





n

i

iii

n

i
i

xcxc
1

*2

1

2

2)(
*

 …………………………………………………...…. (3.3) 

The distance D can be minimized by using from the equation 3.3 i.e.  





n

i

ii xcmass
1

*
  ………………………..…………………………….…….……… (3.4) 

The focus is on minimizing the distance D for the given received vector r' by 

maximizing mass


n

i

ii xc
1

*
. 

3.2 Generalized Probabilistic Threshold Test (GPTT) 

The ordered statistics decoding gives an excellent trade-off between the performance 

and complexity for the decoding of linear block codes. For near optimum decoding 

performance extended (128, 64, 22) BCH code still requires a tremendous number of 

TEP reprocessing even for I=4 which is less than dmin/4. The stopping criterion is 

necessary which is able to limit the number of computation to a small number. 

Generalized Probabilistic Threshold Test which reduces the number of computation is 

presented. Given a permuted received sequence 𝑟′ and its binary version 𝑅′. Redefine 

a test statistic ET which measure the number of differences in the tail (parity check 

section) of permuted binary received vector𝑅′ when compared with the tail of the 

reprocessing 𝑐∗. 

OSD decoding considered the first 𝑘 Most Reliable Information (MRI) bits of 𝑅′to 

form a candidate information vector 𝑉∗. The candidate information is processed by 

adding a Test Error Pattern (TEP) and encoded by the matrix 𝐺𝑘𝑛
∗  to obtain a 

reprocessing codeword 𝑐∗.  



 

 

13 

 

Reformulate the scenario with binary hypothesis testing, we obtain 

Under Null Hypothesis   H0, ET=E3 ……………………………...…. (3.5) 

and under Alternate Hypothesis  H1, ET=E2 ………………………………… (3.6) 

Consider a test where the test statistic 𝐸𝑇 is compared against a predefined threshold 𝑇 

in order to decide if 𝑐∗a true permuted codeword is or not. Based on the test if 𝐸𝑇 > 𝑇, 

decision in favor of 𝐻0 is done, thus assumed a true permuted codeword is not yet 

found and the reprocessing algorithm goes on with the update of TEP. Otherwise, 

if 𝐸𝑇 < 𝑇, decision in favor of 𝐻1 is done, thus assumed a true permuted codeword is 

found and the reprocessing algorithm stops. It is clear that a predefined threshold 

measures the extent of TEP reduction.  

The decision statistic 𝐸𝑇  is compared which is evaluated only on the parity check 

section for all reprocessing codeword corresponding to TEP of any permissible order 

for which is called Generalized Probabilistic Threshold Test. Steps for OSD with 

𝐼 −order reprocessing based on GPTT defined stopping criterion is summarized here.  

(Starting from the permuted received vector and permuted generator matrix) 

1. Input 

a. Permuted received vector 𝑟′ 

b. Permuted generator matrix 𝐺𝑘𝑛
′  

2. Initialization 

a. Initial TEP 𝒑̅ = 𝟎 

b. Best minimum Euclidean distance 𝐷𝐸
𝑚𝑖𝑛 to a all zero codeword. 

c. Best codeword 𝑐𝑏 (corresponding to 𝐷𝐸
𝑚𝑖𝑛 to all zero codeword ) 

d. Set order 𝐼 of the reprocessing algorithm 

3. Hard decode the permuted received sequence 𝑟′ to form a permuted binary 

received vector 𝑦̅′ 

4. Take first 𝑘 information bits of 𝑦̅′ to form candidate information vector 𝑉∗ and 

start reprocessing. 

5. Add a TEP to a candidate information vector 𝑉∗ to form a reprocessing 

information vector 𝑉′ = 𝑉∗ + 𝒑̅ 
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6. Encode the reprocessing information vector by a permuted generator matrix 𝐺𝑘𝑛
∗  

generating a reprocessing codeword 𝑐∗. 

7. Evaluate test parameters  

a. Calculate the 𝐸𝑇 based on differences in the tail of 𝑐∗ and 𝑦̅′ 

b. Note the Euclidean distance 𝐷𝐸  between the permuted received sequence and 

the soft (BPSK modulated) valued version of the reprocessing codeword 𝑐∗ 

8. If 𝐷𝐸 < 𝐷𝐸
𝑚𝑖𝑛, update 𝐷𝐸

𝑚𝑖𝑛 by 𝐷𝐸  and 𝑐𝑏 by 𝑐∗. 

9. If 𝐸𝑇 < 𝑇 , update 𝑐𝑏 by𝑐∗,stop reprocessing and go step 11, else go to step-10. 

10.  Update TEP. If maximum number of TEP test supported by maximum order 𝐼 is 

reached, stop reprocessing and go to step-11, else go to step-4. 

11.  Declare the best codeword 𝑐𝑏 as the true permuted codeword. 
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CHAPTER FOUR: RELATED THEORIES 

4.1 TEP Reduction Analysis for Hamming (7, 4, 3) code 

TEP reduction analysis for reducing the complexity of Reliability based decoding of 

linear systematic block code based on ordered statistics. Reliability based algorithm 

doesn’t use the reliability information of the remaining parity check symbols of the 

permuted received vector. TEP reduction algorithm is based on the reliability 

information obtained from the tail of the permuted received sequence. In the TEP 

reduction analysis, the reliability information of the last n-k soft values to confine the 

minimum Euclidean distance in a very small set of TEP is utilized. 

Step 1: Count the number bits different from last n-k bits of hard decoded received 

word R’ and last n-k bits of first best codeword C*. Let the count is denoted by 

N. 

Step 2: Choose TEPs for testing based on the following observation. 

a. If N = 0 or 1, No need to check new best distance in other TEPs 

b. If N = 2 , Consider only single order TEPs 

c. If N = 3, Consider first and second order TEPs only 

Step 3: For each considered TEP sum to V* 

Step 4: Each V* is encoded by G*
kn to find the codeword 

Step 5: Compute the Euclidean distance for each TEPs 

4.2 Explanation of the TEP reduction algorithm 

Observation 1:  

X’
i== C*

i, the product term 𝑥𝑖𝑐𝑖
∗ is always positive.  

The arbitrary product term 𝑥𝑖𝑐𝑖
∗ from the expression of the “mass” is taken. For BPSK 

modulated symbols, it is obvious to say that,  

𝑋𝑖
′ = 1 => 𝑥𝑖 is positive 

𝐶𝑖
∗ = 1 => 𝑐𝑖 is positive 
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and the product 𝑥𝑖𝑐𝑖
∗ is positive. 

Similarly, for the reverse case. 

𝑋𝑖
′ = 0 => 𝑥𝑖 is Negative 

𝐶𝑖
∗ = 0 => 𝑐𝑖 is Negative 

Thus, the product 𝑥𝑖𝑐𝑖
∗ is positive. 

 𝑅′ == 𝐶∗, which shows mass is the sum of absolute values of the element of 

permuted received vector. 

Observation 2: 

V* is equal to the first k bits of 𝑅′and Gkn is systematic, 

First k bits of 𝐶∗ == V* 

First 4 bits of 𝑅′ == First four bits of 𝐶∗ which suggests, 

First mass = |𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + 𝑥5𝑐5
∗ + 𝑥6𝑐6

∗ + 𝑥7𝑐7
∗ ……………...…… (4.1) 

Observation 3:  

Mass Decreases if 𝑅𝑖
′ ≠ 𝐶𝑖

∗ 

The arbitrary product term 𝑥𝑖𝑐𝑖
∗ from the expression of the “mass”. For BPSK 

modulated symbols, it can be say that,  

𝑋𝑖
′ = 0 => 𝑥𝑖 is negative 

𝐶𝑖
∗ = 1 => 𝑐𝑖 is positive 

and the product 𝑥𝑖𝑐𝑖
∗ is positive. 

Similarly, for the reverse case. 

𝑋𝑖
′ = 1 => 𝑥𝑖 is positive 
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𝐶𝑖
∗ = 0 => 𝑐𝑖 is Negative 

Thus, the product 𝑥𝑖𝑐𝑖
∗ is negative. 

The product is negative means, it is going to get subtracted reducing the total “mass”. 

The analysis depicts the first information. First k bits of first best codeword C* and the 

first k bits of 𝑅′ are equal. Thus, in calculation of first “mass”, absolute of firs k soft 

values of 𝑟′ are always additive. 

Observation 4: (No TEP test condition) 

𝑅′ = 𝐶𝑖
∗ , i.e. ∀𝑖, if 𝑅′ = 𝐶𝑖

∗ , then 

𝑚𝑎𝑠𝑠1 = |𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔| ……...………………… (4.2) 

Now, consider 𝐶5
∗𝐶6

∗𝐶7
∗ differ with 𝑋𝑒𝑋𝑓𝑋𝑔 in any one position, the possible first 

masses in these situation are,  

𝑚𝑎𝑠𝑠2 = |𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| − |𝑥𝑔|……………………….... (4.3) 

𝑚𝑎𝑠𝑠3 = |𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| − |𝑥𝑓| + |𝑥𝑔|……………………...…. (4.4) 

𝑚𝑎𝑠𝑠4 = |𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| − |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|…………………...……. (4.5) 

𝑚𝑎𝑠𝑠1 > 𝑚𝑎𝑠𝑠2 > 𝑚𝑎𝑠𝑠3 > 𝑚𝑎𝑠𝑠4 > any other combination is a known fact since 

elements of 𝑟′ are ordered in decreasing reliability. 

The analysis depicts the second information. For no bit difference or single bit 

difference in the last n-k bits of C∗ and R′, first mass belongs (mass1, mass2, mass3, 

mass4) for sure which is already the maximum mass. It suggests that no other TEP can 

maximize the masses(mass1,mass2,mass3,mass4). 

Observation 5: (Single order TEP test condition) 

The permuted received word 𝑟′ is defined as, 
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𝑟′ = [𝑥𝑎𝑥𝑏𝑥𝑐𝑥𝑑𝑥𝑒𝑥𝑓𝑥𝑔] 

Hard decoded the permuted received word 𝑅′  

𝑅′ = [𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑𝑋𝑒𝑋𝑓𝑋𝑔] 

Input vector 𝑉∗ 

𝑉∗ = [𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑] 

For best codeword 𝐶∗ 

𝐶∗ = 𝑉∗𝐺𝑘𝑛
∗ = [𝐶1

∗𝐶2
∗𝐶3 

∗ 𝐶4 
∗ 𝐶5

∗ 𝐶6
∗ 𝐶7

∗]……….......................................................... (4.6) 

Now, consider 𝐶5
∗𝐶6

∗𝐶7
∗ differ with 𝑋𝑒𝑋𝑓𝑋𝑔 in any two position, the possible first 

masses in these situation are, 

𝑚𝑎𝑠𝑠5 = |𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| − |𝑥𝑓| − |𝑥𝑔|…………………...……. (4.7) 

𝑚𝑎𝑠𝑠6 = |𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| − |𝑥𝑒| + |𝑥𝑓| − |𝑥𝑔|……………………….... (4.8) 

𝑚𝑎𝑠𝑠7 = |𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| − |𝑥𝑒| − |𝑥𝑓| + |𝑥𝑔|……………………...…. (4.9) 

The analysis of equation 4.1-4.9 say that  𝑚𝑎𝑠𝑠1 > 𝑚𝑎𝑠𝑠2 > 𝑚𝑎𝑠𝑠3 > 𝑚𝑎𝑠𝑠3 >

𝑚𝑎𝑠𝑠4 > 𝑚𝑎𝑠𝑠5 > 𝑚𝑎𝑠𝑠6 > 𝑚𝑎𝑠𝑠7 but still cannot make a conclusion that this is 

the only possible ordering of the mass because there are possibilities such that one bit 

change in 𝑉∗ increase the mass compared to 𝑚𝑎𝑠𝑠5, 𝑚𝑎𝑠𝑠6,𝑚𝑎𝑠𝑠7 . 

A TEP ‘1000’ which changes above input vector 𝑉1
∗ = [𝑋̅𝑎 𝑋𝑏  𝑋𝑐 𝑋𝑑] now, since the 

permuted generator matrix is also a systematic matrix, the first k bits of the 

codeword  𝐶1
∗ = 𝑉1

∗𝐺𝑘𝑛
∗ = [ 𝑋̅𝑎 𝑋𝑏  𝑋𝑐 𝑋𝑑 𝐶5

∗ 𝐶6
∗ 𝐶7

∗]  

Check the last (𝑛 − 𝑘) bits of codeword 𝐶1
∗, it can find that, each of those bits are the 

linear combination of any three input vector bits. It means any one bit change in the 

input vector can change the at least two or three of the last (𝑛 − 𝑘) bits of codeword 

𝐶1
∗. Thus, possible masses for this condition can be noted as, 
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𝑚𝑎𝑠𝑠8 = −|𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|…………………....... (4.10) 

𝑚𝑎𝑠𝑠9 = −|𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| − |𝑥𝑔|……………………... (4.11) 

𝑚𝑎𝑠𝑠10 = −|𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| − |𝑥𝑓| + |𝑥𝑔|................................. (4.12) 

𝑚𝑎𝑠𝑠11= −|𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| − |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|….............................. (4.13) 

𝑚𝑎𝑠𝑠12 = −|𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| − |𝑥𝑓| − |𝑥𝑔|................................. (4.14) 

𝑚𝑎𝑠𝑠13 = −|𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| − |𝑥𝑒| + |𝑥𝑓| − |𝑥𝑔|…………………..... (4.15) 

𝑚𝑎𝑠𝑠14 = −|𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| − |𝑥𝑒| − |𝑥𝑓| + |𝑥𝑔|…………………..... (4.16) 

All the possibilities from equation 4.1- 4.16, only one mass, i.e. 𝑚𝑎𝑠𝑠8 might be (not 

always) greater than 𝑚𝑎𝑠𝑠5,𝑚𝑎𝑠𝑠6,𝑚𝑎𝑠𝑠7. If this is true then it locates 𝑚𝑎𝑠𝑠𝑚𝑎𝑥 

corresponding to above TEP. If this is not true, then the next TEP of order 1 can 

satisfy thus finding 𝑚𝑎𝑠𝑠𝑚𝑎𝑥 in next TEP of order 1.  

The difference of number between 𝐶∗ and 𝑅′ in any two position gives the information 

that no TEP of order greater than 1 is going to give 𝑚𝑎𝑠𝑠𝑚𝑎𝑥, because maximum 

masses with second or greater order TEP like,  

𝑚𝑎𝑠𝑠15 = |𝑥𝑎| + |𝑥𝑏| − |𝑥𝑐| − |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|..………...…………... (4.17) 

𝑚𝑎𝑠𝑠16 = |𝑥𝑎| − |𝑥𝑏| + |𝑥𝑐| − |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|………...…………..... (4.18) 

𝑚𝑎𝑠𝑠17 = |𝑥𝑎| − |𝑥𝑏| − |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|…………………...…. (4.19) 

𝑚𝑎𝑠𝑠18 = −|𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| − |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|................................. (4.20) 

𝑚𝑎𝑠𝑠19 = −|𝑥𝑎| + |𝑥𝑏| − |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|……………………. (4.21) 

𝑚𝑎𝑠𝑠20 = −|𝑥𝑎| − |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|................................. (4.22) 
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can never be greater masses 𝑚𝑎𝑠𝑠1, 𝑚𝑎𝑠𝑠2,𝑚𝑎𝑠𝑠3,𝑚𝑎𝑠𝑠4,𝑚𝑎𝑠𝑠5,𝑚𝑎𝑠𝑠6 

and 𝑚𝑎𝑠𝑠7. When the 𝐶∗differ with 𝑅′ in any two position, the single order TEPs test 

is sufficient in order to find 𝑚𝑎𝑠𝑠𝑚𝑎𝑥 which proves the second steps, point ‘b’ of the 

TEP reduction analysis. 

Observation 5: (single and double order TEP test condition) 

The permuted received word 𝑟′.is defined as 

𝑟′ = [𝑥𝑎𝑥𝑏𝑥𝑐𝑥𝑑𝑥𝑒𝑥𝑓𝑥𝑔] 

Hard decoded the permuted received word 𝑅𝑙 

𝑅′ = [𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑𝑋𝑒𝑋𝑓𝑋𝑔] 

Input vector 𝑉∗ 

𝑉∗ = [𝑋𝑎𝑋𝑏𝑋𝑐𝑋𝑑] 

For best codeword  𝐶∗ 

𝐶∗ = 𝑉∗𝐺𝑘𝑛
∗ = [𝐶1

∗𝐶2
∗𝐶3 

∗ 𝐶4 
∗ 𝐶5

∗ 𝐶6
∗ 𝐶7

∗] 

Now, consider 𝐶5
∗𝐶6

∗𝐶7
∗ differ with 𝑋𝑒𝑋𝑓𝑋𝑔 in all three position, the possible first 

masses in these situation is, 

𝑚𝑎𝑠𝑠21 = |𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| − |𝑥𝑒| − |𝑥𝑓| − |𝑥𝑔|…………………….... (4.23) 

The possibilities of finding 𝑚𝑎𝑠𝑠𝑚𝑎𝑥 by changing at most any two bits of 𝑉∗ 

searching is given by, 

𝑚𝑎𝑠𝑠22 = |𝑥𝑎| + |𝑥𝑏| − |𝑥𝑐| − |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|…................................ (4.24) 

𝑚𝑎𝑠𝑠23 = |𝑥𝑎| − |𝑥𝑏| + |𝑥𝑐| − |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|………...…………..... (4.25) 

𝑚𝑎𝑠𝑠24 = |𝑥𝑎| − |𝑥𝑏| − |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|…................................ (4.26) 
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𝑚𝑎𝑠𝑠25 = −|𝑥𝑎| + |𝑥𝑏| + |𝑥𝑐| − |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|………………...... (4.27) 

𝑚𝑎𝑠𝑠26 = −|𝑥𝑎| + |𝑥𝑏| − |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|………………….. (4.28) 

𝑚𝑎𝑠𝑠27 = −|𝑥𝑎| − |𝑥𝑏| + |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|………………….. (4.29) 

Which might be greater than 𝑚𝑎𝑠𝑠21. 

The analysis of equation 4.23 - 4.29 gives the information that, 𝐶∗ differ with 𝑅′ in 

any 3 position, no TEP of order greater than 2 is going to give 𝑚𝑎𝑠𝑠𝑚𝑎𝑥, because 

maximum masses with third or greater order TEP like, 

𝑚𝑎𝑠𝑠28 = |𝑥𝑎| − |𝑥𝑏| − |𝑥𝑐| − |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|……………………… (4.30) 

𝑚𝑎𝑠𝑠27 = −|𝑥𝑎| − |𝑥𝑏| + |𝑥𝑐| − |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|……………………. (4.31) 

𝑚𝑎𝑠𝑠30 = −|𝑥𝑎| − |𝑥𝑏| − |𝑥𝑐| + |𝑥𝑑| + |𝑥𝑒| + |𝑥𝑓| + |𝑥𝑔|…………………..... (4.32) 

can never be greater than 𝑚𝑎𝑠𝑠21 which clarifies that in case where the 𝐶∗ differ with 

𝑅′ in any 3 position, it is sufficient to test 𝑚𝑎𝑠𝑠𝑚𝑎𝑥 with TEPs of order less than 3, 

which proves the second step, point ‘c’ of the TEP reduction analysis.. 

4.3 MRB Decoding and Conventional Reprocessing 

The linear block code 𝐶(𝑛, 𝑘) with systematic generator matrix 𝐺𝑘𝑛, at the transmitter 

side a 𝑘 −bit information vector.is given by,  

𝐯̅ = (𝑣1, 𝑣2, … . , 𝑣3)……………………………………………………………..... (4.33) 

 is mapped into codeword.  

𝐜̅ = 𝑉. 𝐺𝑘𝑛 = (𝑐1, 𝑐2, … . , 𝑐𝑛)…………………………………………………….. (4.34) 

Under Binary Phase Shift Keying (BPSK), the codeword is mapped into a real-valued 

vector  

𝐬̅ = (𝑠1, 𝑠2, … . . , 𝑠𝑛) ……………………………………………………...……… (4.35) 
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Where  

𝑐𝑖 = 0 → 𝑠𝑖 = −1 

𝑐𝑖 = 1 → 𝑠𝑖 = +1 

The vector 𝐬̅ is transmitted over an Additive White Gaussian Noise (AWGN) channel. 

At receiver side, the received vector can be obtained as, 

𝑟̅ = (𝑟1, 𝑟2, … . , 𝑟𝑛) ……………………………………..………………..………. (4.36) 

Where: 𝑟𝑖 = 𝑠𝑖 + 𝑤𝑖, 𝑤𝑖 is White Gaussian noise sample with mean zero and 

variance 𝜎2. RBA start by reordering the received vector by decreasing magnitude. 

The first symbol characterized by a high probability, i.e. a large probability of being 

correct. Given 𝑟̅, by reordering its components for decreasing magnitude 𝜆𝑖 = |𝑟𝑖|, a 

vector is given by, 

𝑟̅′ = (𝑟1
∗, 𝑟2

∗, … . . , 𝑟𝑛
∗)…………………………………………………………….. (4.37) 

Such that |𝑟𝑖
∗| > |𝑟𝑖+1

∗ | for 1 ≤ 𝑖 ≤ 𝑛 . 

The generator matrix 𝐺𝑘𝑛 is also permuted using the permutation rule, to give the new 

permuted generating matrix. The permuted generating matrix is then processed by 

using elementary row operation to obtain a systematic form 𝐺𝑘𝑛
∗ . Given 𝑟 ∗̅,a symbol-

by-symbol hard decision is used to obtain the binary vector: 

𝑦 ′̅ = (𝑦1
′ , 𝑦2

′ , … . . , 𝑦𝑛
′) …………………………………………………………… (4.38) 

Where 

𝑟𝑖
′ < 0 → 𝑦𝑖

′ = 0 

𝑟𝑖
′ ≥ 0 → 𝑦𝑖

′ = 1 

Given 𝑦̅′, first 𝑘 bits to form the candidate information vector: 

𝑣̅∗ = (𝑣1
∗, 𝑣2

∗, … . . , 𝑣𝑛
∗) ………………………………………………………….... (4.39) 
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OSD algorithm consider a set of patterns  

𝑠 = {𝐩̅ = (𝑝1, 𝑝2, … . . , 𝑝𝑘) ......………………………………………………...... (4.40) 

With hamming weight 0 ≤ 𝑤𝐻(𝐩̅) ≤ 𝐼 , where 𝐼 is called the order of the algorithm. 

Each pattern is added to the candidate information vector, which is encoded by the 

matrix 𝑮𝒌𝒏
∗  to obtain a reprocessing codeword. When all patterns have been 

considered, the codeword 𝒄̅∗ at minimum Euclidean distance from the permuted 

received vector 𝒓̅′ is chosen as the received codeword. Since the first 𝑘 bits have high 

reliability, most of them are correct. If  𝑣̅′ contains no errors, the weight-zero pattern 

generates the maximum-likelihood best codeword, and so on.  

4.4 Ordered vector component statistics 

Given a linear block code 𝐶(𝑛, 𝑘) and consider all-zero codeword transmitted 

codeword: 

𝑐̅ = (0,… . . ,0… . ,0), 

Which is after BPSK mapping, corresponds to the transmitted vector: 

𝑠̅ = (−1,… . . , −1,… . , −1) 

At the output of AWGN channel, the received vector 𝑟̅ = (𝑟1, … . , 𝑟𝑖,…..,𝑟𝑛), with: 

𝑟𝑖 = −1 + 𝑤𝑖, ………………………………………………………………..….. (4.41) 

Where  𝑤𝑖 is Gaussian random variable with zero mean and variance 𝜎2 is observed. 

Each component 𝑟𝑖 has a Probability Density Function (pdf) given by: 

𝑓𝑟(𝑥) =
1

√2𝜋𝜎2
𝑒

−
(𝑥+1)2

2𝜎2 …………………………………………………………… (4.42) 

It is considered that the magnitude of the components of  𝒓 ̅ written as 𝜆𝑖 = |𝑟𝑖|, the 

pdf of 𝜆𝑖 is given by, 



 

 

24 

 

𝑓𝑟(𝑥) = {
0, 𝑥 < 0

1

√2𝜋𝜎2
𝑒

−
(𝑥+1)2

2𝜎2 +
1

√2𝜋𝜎2
𝑒

−
(𝑥−1)2

2𝜎2 , 𝑥 ≥ 0
 ………………………………… (4.43) 

While it’s Cumulative Distribution Function (cdf) is given by, 

𝑓𝑟(𝑥) = {
0, 𝑥 < 0

1

2
erf 

(𝑥+1)2

2𝜎2 +
1

2
erf 

(𝑥−1)2

2𝜎2 , 𝑥 ≥ 0
 ………………...…………………… (4.44) 

The vector 𝑟̅ observed by transmitting the all-zero codeword over an AWGN channel 

under BPSK modulation, the ordered vector 𝑟̅′ obtained by ordering 𝑟̅ in decreasing 

magnitude. 

The pdf of the 𝑖 − 𝑡ℎ component 𝑟𝑖
′ of 𝑟̅′ is given by: 

∀𝑥: 𝑓𝑟𝑖
′(𝑥) =

𝑛!

(𝑖−1)!(𝑛−𝑖)!
(1 − 𝐹𝜆(|𝑥|))𝑖−1(𝐹𝜆(|𝑥|)𝑛−𝑖𝑓𝑟(𝑥)……………………... (4.45) 

The pdf of the 𝑖 − 𝑡ℎ magnitude of component 𝜆𝑖
′ = |𝑟𝑖

′| of 𝑟̅′is given by, 

∀𝑥: 𝑓𝜆𝑖
′(𝑥) =

𝑛!

(𝑖−1)!(𝑛−𝑖)!
(1 − 𝐹𝜆(𝑥))𝑖−1(𝐹𝜆(𝑥)𝑛−𝑖𝑓𝜆(𝑥) ………………………... (4.46) 

4.5 Error information Based on Permuted Codeword 

Introduce three quantities, computed starting from the ordered vector𝑟̅′, which are 

important in OSD algorithm. Given 𝑟̅′, a symbol-by-symbol hard decision is used to 

obtain a binary received vector. 

𝑦̅′ = (𝑦1
′ , … . . , 𝑦2

′ , … . . , 𝑦𝑛
′ )………………………………………………...…….. (4.47) 

For further reprocessing, first 𝑘 Most Reliable Information (MRI) bits of 𝑦̅′ are 

considered to form a candidate information vector  𝑣̅′. The candidate information is 

processed by adding a Test Error Pattern (TEP) and encoded by the matrix 𝐺𝑘𝑛
∗  to 

obtain a reprocessing codeword. If 𝑐′ is the permuted version of the true codeword 

which is called true permuted codeword, there are two possibilities connected to 

codeword 𝑐∗which can be formulated by simple binary Hypothesis Testing. Under 

Null Hypothesis 𝐻0, a codeword which is not equal to the true permuted codeword is 

obtained, i.e. 
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𝑐∗|𝐻0
≠ 𝑐′………….. …………………………………………………………... (4.48) 

and under Alternate Hypothesis𝐻1, true permuted codeword 𝑐′ is obtained, i.e.  

𝑐∗|𝐻1
= 𝑐′…………………….............................................................................. (4.49) 

There are different basis for comparing these two hypothesis for given code of 

size (𝑛, 𝑘, 𝑑𝑚𝑖𝑛). The most common and effective method is the basis of Euclidean 

distance which compares the Euclidean distance between the permuted received vector 

𝑟′and the modulated soft valued vector corresponding to the codeword 𝑐∗. The basis of 

Euclidean distance is combined with the basis of hamming distance between the 

permuted binary received vector 𝑦̅′ and the reprocessing codeword 𝑐∗. 

Define two Random Variables (RVs) measuring the Hamming distance between the 

permuted binary received vector 𝑦̅′ and the reprocessing codeword𝑐∗. 

1) RV E1 = It considers the Hamming Distance between Permuted Binary received 

vector 𝒚̅′ and the reprocessing codeword 𝒄̅∗ in the first 𝑳 positions, 1 ≤ 𝑙 ≤ 𝑛, 

under a predefined scenario supported by 𝐻1. 

2) RV E2: It considers the Hamming distance between permuted binary received 

vector 𝑦̅′ and the reprocessing codeword 𝑐∗ in the parity check section under a 

predefined scenario supported by 𝐻1. 

3) RV E3: It considers the Hamming distance between permuted binary received 

vector 𝑦̅′ and the parity check section under a predefined scenario supported by 

𝐻0 . 

4.6 Analytical computation of Probability Density Function of E1 and E2 and E3 

The pdf of random variable 𝐸2 is given by  

𝑓𝐸2
(𝐸2 = 𝑗) = ∫ (𝑛−𝑘

𝑗
) 𝑝𝑗(1 − 𝑝)𝑛−𝑘−𝑗𝑓𝜆𝑘

′ (𝑥)𝑑𝑥
+∞

0
………………...…………. (4.50) 

Where  

𝑝 =
[erf(

𝑥+1

𝜎√2
)−erf(

1

𝜎√2
)]

[erf(
𝑥+1

𝜎√2
)−erf(

−𝑥+1

𝜎√2
)]

 ………………………………………………..…………. (4.51) 
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First of all, the distribution of the samples in the tail of the permuted received vector 

which fall in the range of −𝑥 to 𝑥 as shown in figure 4.1. 

 

Figure 4.1: PDF of ri 

Fix a value𝑥, and suppose the magnitude of the (𝑘) − 𝑡ℎ component of the reordered 

vector 𝒓̅′ is 𝝀𝒌
′ . Then, the vector 𝒓̅ contains exactly n-k components with |𝑟𝑖| ≤ 𝑥 . As 

can be observed in Figure 4.1, for each of these components, the probability of having 

an error is 

= 
𝐹𝑅𝑖

(𝑥)−𝐹𝑅𝑖
(0)

𝐹𝑅𝑖
(𝑥)−𝐹𝑅𝑖

(−𝑥)
 ……………………………………………….………………… (4.52) 

= 
[erf(

𝑥+1

𝜎√2
)−erf (

1

𝜎√2
)]

[erf(
𝑥+1

𝜎√2
)−erf(

−𝑥+1

𝜎√2
)]

 ………………………………………………………..…… (4.53) 

The components of received vector 𝒓̅ which are not reordered thus statistically 

independent, the probability of having j errors among these 𝑘 components is given by:  

𝑃(𝐸2 = 𝑗|{𝝀𝒌
′ =𝑥,𝐿=𝑛−𝑘} = (

𝑛 − 𝑘
𝑗

) 𝑝𝑗(1 − 𝑝)𝑛−𝑘−𝑗…………………………….. (4.55) 
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The above result is obtained under the condition 𝝀𝒌
′ = 𝒙 . By integrating over all 𝑥 

values by using 𝑓𝜆𝑘
′ (𝑥), the final result obtained as (4.49) 

Similar concept of the expression of random variable 𝐸1, the probability density 

function of the variable 𝐸1|𝐿=𝑙 is given by  

𝑓𝐸1(𝐿=𝑙)(𝐸1 = 𝑗) = ∫ (𝑙
𝑗
) 𝑝𝑗(1 − 𝑝)𝑙−𝑗𝑓𝜆𝑙+1

′ (𝑥)𝑑𝑥
+∞

0
……..…………..………… (4.56) 

Where   𝑝 =
[erf 𝑐(

𝑥+1

𝜎√2
)]

[1+erf 𝑐(
𝑥+1

𝜎√2
)−erf(

−𝑥+1

𝜎√2
)]

 …………………………….………………… (4.57) 

Fix a value𝑥, the magnitude of the (𝑙 + 1)-th component of reordered vector 𝒓̅′ is 𝑥. 

Then, vector 𝒓̅ contains exactly 𝑙 components with |𝑟𝑖| ≥ 𝑥 where the probability of 

having an error is 

 
[erf 𝑐(

𝑥+1

𝜎√2
)]

[1+erf 𝑐(
𝑥+1

𝜎√2
)−erf(

−𝑥+1

𝜎√2
)]

…………………………………………………...……..… (4.58) 

The probability of having 𝑗 errors among these 𝑘 components is given by, 

𝑃 (𝐸1 = 𝑗|𝜆𝑙+1
′ =𝑥,𝐿=𝑙) = (

𝑙
𝑗
) 𝑝𝑗(1 − 𝑝)𝑙−𝑗 ……………..…….…………………. (4.59) 

The equation 4.57 is obtained under the condition 𝜆𝑙+1
′ = 𝑥. By integrating over all x 

values by using 𝑓𝜆𝑙+1
′ (𝑥) and obtained the final pdf of 𝐸1 as in equation 4.54 and its 

cdf at some value 𝐸1 = 𝑗 is obtained at in equation 4.55 by summing the normalized 

pdf of 𝐸1 for all 𝐸1: 0 ≤ 𝐸1 ≤ 𝑗. 

Define 𝐷𝑤 the weight distribution of a linear block 𝐶(𝑛, 𝑘, 𝑑𝑚𝑖𝑛) under consideration. 

Now define 𝐸3 in term of hamming distance and eventually show its relation with the 

weight distribution of the considered linear block code. 

𝐸3 = 𝑑𝐻
𝑝(𝑦̅′, 𝑐̅∗)|𝐻0

 …………………………………………………………….... (4.60) 

Where 𝑑𝐻
𝑝

 is the hamming distance operator applied only on parity check section of 

the vector under consideration. Equivalently, 𝑦̅′ can be written as a sum of the true 
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permuted codeword 𝑐̅′ and the error vector 𝑒̅′. Also 𝑐̅∗ can be written as sum of true 

permuted codeword 𝑐̅′ and a codeword corresponding to a particular TEP defined by 

𝑐𝑇̅ = 𝒑̅. 𝑮𝒌𝒏
∗  . 

𝐸3 = 𝑑𝐻
𝑝(𝑐̅′ + 𝑒̅′, 𝑐̅′ + 𝑐𝑇̅)…………..…………………………………………… (4.61) 

= 𝑑𝐻
𝑝(0̅, 𝑒̅′ + 𝑐𝑇̅)…………………………………………………….…………. ..(4.62) 

Where 0̅ is an all-zero codeword.  

By the definition of Null hypothesis, for all cases, 𝑐̅𝑇|𝐻0
≠ 0̅. Now, the scenario can be 

explained well for two different cases of error vector 𝑒̅′. 

a. When 𝑒̅′ = 0̅ which occurs at very high SNR. Given a TEP of order 𝑖 , the 

distribution of 𝐸3 can be written in terms of weight distribution as, 

        𝐸3 = 𝑑𝐻
𝑝(0̅, 𝑐𝑇̅)|𝐻0,𝑒̅′=0̅ ≡ 𝐷𝑤 − 𝑖 ………………………………………….. (4.63) 

 TEP of all orders are assumed but exclude the effect of TEP order. Thus, in this 

scenario the distribution of 𝐸3 is equivalent to the weight distribution of the code. 

b. When 𝑒̅′ ≠ 0̅ which occurs at nominal SNR. Theoretically 𝐸3 is dependent on all 

three components, i.e. TEP order, the error vector and the weight distribution. 

However, codewords can be considered to have good properties in terms of 

distribution of 1’s and 0’s within the codeword, with which we can assume that 

summing a error vector does not change distribution of hamming weight of a 

codeword. Thus, when considering TEP of all orders, the distribution of 𝐸3 is the 

equivalent the weight distribution of the code. 

 Finally, it can be write as, 

 𝐸3 = 𝐷𝑤 ……………………………………………………………………. (4.64) 

4.7 OSD Error Performance Based on Distribution of E1 

A different look at the error performance of order-𝐼 OSD is presented based on the 

distribution of E1. Define 𝑃𝑒𝑂𝑆𝐷−𝐼(𝒄̅) the code error performance of the order-𝐼 OSD 
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and 𝑃𝑒(𝐼) the probability that the correct codeword is not among the candidate code-

words supported by the order-𝐼 OSD. The upper bound on the order-𝐼 OSD 

performance can be written as an inequality as:  

𝑃𝑒𝑂𝑆𝐷−𝐼(𝒄̅) ≤ 𝑃𝑒𝑀𝐿(𝒄̅) + 𝑃𝑒(𝐼) …………………………………….…………… (4.65) 

Where 𝑃𝑒𝑀𝐿(𝒄̅) is the MLD code error rate 𝑃𝑒(𝐼) can be simply evaluated as the 

probability of having more than 𝐼 errors in the first- K ordered received symbols in 

𝒓̅′given a identity permutation function 𝜌2. i.e.,  

𝑃𝑒(𝐼) = 1 − 𝐹𝐸1
(𝐼)…………………………………………...……..…………… (4.66) 

The permutation function 𝜌2 may or may not be identity. Consider d is the number of 

dependent columns before 𝑘𝑡ℎ independent one and 𝑝(𝑑) is the probability associated 

with d. The maximum number of dependent columns that can be found for a given 

generating matrix is given by 

𝑑𝑚𝑎𝑥 = 𝑛 − 𝑘 − 𝑑𝐻 − 1 ……………………………...………………………… (4.67) 

Thus, 𝑃𝑒(𝐼) can be expressed under all cases of 𝜌2 

𝑃𝑒(𝐼) = ∑ 𝑃 (
𝑀𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝐼 𝑒𝑟𝑟𝑜𝑟𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑑
𝑖𝑛 1𝑠𝑡  𝑘 + 𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑟̅′ )

𝑑𝑚𝑎𝑥
𝑑=0 𝑃(𝑑) ……….……………… (4.68) 

=∑ 𝑃(𝑑)(1 −
𝑑𝑚𝑎𝑥
𝑑=0 𝐹𝐸1(𝑘+𝑑)(𝐼) …………………………….…………………….. (4.69) 

Where 𝐹𝐸1(𝑘+𝑑) is the cdf of 𝐸1 at 𝐿 = 𝑘 + 𝑑.  

4.8 Performance and complexity trade-off based on GPTT 

The test performance can be evaluated by the well-known ROC parameters where 

probability of False Alarm and Probability of detection defined respectively as follows 

𝑃𝐹 = 𝑝𝑟(𝐸𝑇 < 𝑇|𝐻0
) …………………………………………………………….. (4.70) 

𝑃𝐷 = 𝑝𝑟(𝐸𝑇 < 𝑇|𝐻1
)………………………..…………….……...……………… (4.71) 



 

 

30 

 

4.9 Error performance of OSD with GPTT Based on stopping criterion 

The order-k reprocessing with the threshold equal to zero achieves the maximum 

likelihood decoding and requires 2k computations. Threshold equal to zero 

corresponds to a probability of false alarm equal to zero which means GPTT with 

threshold equal to zero does not limit the number of computation at all. Thus while 

considering order-k reprocessing with GPTT (T>0≡ 𝑃𝐹>0). Some of the unnecessary 

computation are spared with the price of certain probability of error. The probability of 

error due to the GPTT false alarm is upper bounded by the probability that GPTT 

gives a false alarm, given the codeword is within the codewords supported by the 

order - I OSD. 

𝑃𝑒−𝐺𝑃𝑇𝑇 = 𝑃𝐹 × (
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 ℎ𝑎𝑣𝑖𝑛𝑔 𝐼 
𝑜𝑟 𝑙𝑒𝑠𝑠 𝑒𝑟𝑟𝑜𝑟𝑠 𝑖𝑛 𝑀𝑅𝐼

)…………….……………………. (4.72) 

= 𝑃𝐹 × 𝐹𝐸1(𝑘)(𝐼) …………………………………………………………………. (4.73) 

4.10 Computational Savings 

Let 𝑆1(𝑘) = {1,2, … . . , 𝑘} be the index set for the first 𝑘 positions of 𝒚̅′. For1 ≤ 𝑖 ≤ 𝑘, 

let 𝑆2(𝑖) = {𝑗1, 𝑗2, …… 𝑗𝑖} be the proper subset of 𝑖 elements of 𝑆1 . If the elements in 

𝑆2 denotes the error positions in the information vector, then the TEP probability can 

be related to the probability of error in the positions indicated by the index set 𝑆2 as, 

𝑃𝑇𝐸𝑃(𝒑̅) = 𝑃𝑒(𝑆2)………………………………………………………………. (4.74) 

The order of TEP is arranged based on the decreasing order of 

the 𝑃𝑇𝐸𝑃(𝒑̅) which optimize the reprocessing algorithm, . Denote 𝑇𝐼 the total 

number of TEP supported by the 𝐼 −order reprocessing which is given by 

𝑇𝐼 = ∑ (
𝑘
𝑖
)

𝑇𝐼
𝑡𝐼=1 …………………………………………………………………… (4.75) 

The number of TEP’s to be reprocessed for particular codeword varies depending 

the 𝐸𝑏/𝑁0. In ordered TEP reprocessing, the number of TEPs to be reprocessed for 

locating the correct codeword is clearly dependent on the number of errors in MRI 

bits. If the number of errors in the MRI bits is less than or equal to 𝐼, then using a 
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GPTT stopping criterion, the algorithm may or may not require test all the TEPs 

supported by the order-𝐼 reprocessing otherwise if the number of errors in the MRI 

bits are greater than 𝐼, all the TEPs has to be reprocessed in order to declare a received 

codeword unless a GPTT False alarm occur. The scenario can be divided in two 

conditions as 

 

4.10.1 Number of errors in MRI is less than or equal to I 

The probability of having 𝐼 or less error in MRI can be easily evaluated using the cdf 

of 𝐸1 keeping 𝐿 = 𝐾. Number of TEP’s to be reprocessed depends upon the GPTT 

outcomes i.e. Normal detection and Missed detection. 

Normal detection: Consider a GPTT test truly detects a true permuted codeword is 

located corresponding to a TEP at position 𝑡𝐼 . If GPTT correctly detects the average 

number of TEP’s (𝑇𝑁) required to located the true permuted codeword is given by, 

𝑇𝑁 = ∑ 𝑃𝑇𝐸𝑃(𝑃̅𝑡𝐼). 𝑡𝐼
𝑇𝐼
𝑡𝐼=1 …………………………………………………………. (4.76) 

Missed detection: Under a missed detection, it is straight forward to say that normally 

the reprocessing algorithm has to test all the TEP’s to locate the true permuted 

codeword. Thus, for a given miss, average number of TEP’s (𝑇𝑀) to be reprocessed is 

given by, 

 𝑇𝑀 = 𝑇𝐼 ………………...………………..……………………………………… (4.77) 

4.10.2 Number of errors in MRI is more than I: The GPTT cannot detect the true 

codeword unless a False alarm is triggered, thus all the TEP has to be reprocessed. The 

probability of having more than 𝐼 errors can be evaluated as a complementary cdf of 

𝐸1 keeping 𝐿 = 𝑘. If 𝑇𝐺 is the average number of TEPs to be reprocessed in this case, 

it is given by, 

𝑇𝐺 = 𝑇𝐼 …………………………..………………………………………………. (4.78) 
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In total, the average number of TEPs computations required to decide for a true 

permuted codeword can be obtained by summing 𝑇𝑁 , 𝑇𝑀 , 𝑇𝐺 after weighting each of 

them by their respective probabilities, then the average number of TEP’s (𝑁𝐴) to be 

reprocessed to locate the true permuted codeword is given by, 

𝑁𝐴 = 𝐹𝐸1
(𝐼)[𝑃𝐷(∑ 𝑃𝑇𝐸𝑃(𝑃̅𝑡𝐼)𝑡𝐼

𝑇𝐼
𝑡𝐼=1 ) + 𝑃𝑀𝑇𝐼] + (1-𝐹𝐸1

(𝐼))𝑇𝐼 …………..………. (4.79) 

 

 

 



 

 

33 

 

CHAPTER FIVE:  RESULTS, ANALYSIS AND COMPARISION 

5.1 Results 

Table 5.1: Generating matrix, transmitted bit and codeword 
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Table 5.2: Ordered of received symbols 

 
 

Table 5.3: Systematic matrix 
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Table 5.4: First best codeword 

 
 

Table 5.5: Distance for all the test error patterns 
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Figure 5.1: Probability density function of E3 

 

 

Figure 5.2: Probability density function of E2 and E3 at 0dB 
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Figure 5.3: Probability density function of E2 at different SNR 

 

 

 

 

 

Figure 5.4: Pdf of E2 at different SNR compared with Pdf of E3 
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Figure 5.5: ROC for GPTT: Eb/No =2dB for (128, 64, 22) Extended BCH code 

 

 

 

 

 

 

Figure 5.6: ROC for GPTT: Eb/No =2.5dB for (128, 64, 22) Extended BCH code 
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Figure 5.7: ROC for GPTT: Eb/No =3dB for (128, 64, 22) Extended BCH code 

 

 

 

 

Figure 5.8: ROC for GPTT: Eb/No =3.5dB for (128, 64, 22) Extended BCH code 
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Figure 5.9: ROC for GPTT: Eb/No = 4dB for (128, 64, 22) Extended BCH code 

 

 

Figure 5.10: Code Error Rate of OSD at each reprocessing stage for (128, 64, 22)                                     

                    extended BCH code 
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Figure 5.11: Code error rate of OSD-GPTT for (128, 64, 22) extended BCH code:  

                         Reprocessing order I=4 

 

 

 

Figure 5.12: Reduction Capability in Percentage for (128, 64, 22) extended BCH code 
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5.2 Analysis 

5.2.1 Generation of Codeword Analysis  

Table 5.1 shows the generating matrix which is used to produce codeword by 

multiplying with transmitted bit and the codeword is modulated by BPSK signaling. 

Codeword can be obtained by multiplying the generator matrix with information bits. 

BPSK signaling produced 1 if the symbol in codeword is 1 and -1. If the symbol in 

codeword is 0. The first k bits of codeword represent the information digits and the 

remaining n-k digits represent the redundancy check bits. The first step is reorder the 

received symbols based on their reliability. In Table 5.1, k and n represents the length 

of information and codeword respectively. G denotes the systematic generator matrix. 

𝑐𝑡 represents the codeword and st represents the codeword after binary phase shift 

keying.  

5.2.2 Ordered received Symbol Analysis 

The output of the channel can be reordered according to their reliability. The absolute 

value of symbol which have greater probability can be placed as first position and the 

absolute value of received symbol which have least probability can be placed at last 

position. Table 5.2 shows the reordering of received symbols. After the reordering of 

received symbol the position of column of systematic generating matrix is changed. In 

table 5.2, ord represents the ordered received symbol according to their reliability 

measure. 

5.2.3 Permuted Generator matrix analysis 

The received vector can rearranged according to their reliability. When the received 

symbols are reordered, then the position of the symbol is changed. So, the column 

position of the generating matrix is changed which is not systematic. The matrix can 

be changed into systematic by elementary row operation and the systematic matrix 

after reordering the received symbol is called as permuted generating matix. mat2 

represents permuted generating matrix. 
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5.2.4 Hard Decision Decoding 

Table 5.3 shows systematic matrix which is obtained by using elementary row 

operation. Hard decoding of first four bit of ordered received symbols which is 

assumed as the required information bits.vv_2 represents the hard decoding of 

received symbol. In the hard decision decoding, value zero is taken as the threshold 

value and compare the given value with the threshold value. The value which is 

greater than the zero, it is taken as 1 and the value which is less than the zero taken as 

0. vv_2 is multiplied with permuted generating matrix which produce first best 

codeword. cc_2 represents the first best codeword. 

5.2.5 Mass Calculation Analysis 

Reliability Based Deciding decodes the codeword which may or may not be required 

codeword. So, algorithm consider all the 2k  test error patterns and their corresponding 

codeword .It is considered all the test error patterns and find the Euclidean distance 

between received symbols and all possible codeword. The mass can be calculate by 

using equation 3.4 and obtained the required codeword which gives maximum value 

of mass. The codeword which gives the value of maximum mass can be declared as a 

best minimum Euclidean distance. Table 5.5 shows the all the values of mass of 

possible codewords and also shows the obtaining of transmitted bits. M and vt2 

denotes the mass and the original transmitted bits respectively. 

5.2.6 Analysis of E2 and E3 

The empirical and analytical pdf of E3 validating the expression 4.60 assuring a well-

known binomial weight distribution of primitive binary BCH codes. Analytically, in 

binomial pdf of length n, it has no relation with Eb/N0. It also proves from figure 5.1 

that the distribution of E3 is also independent of TEP order. Thus for BCH (128, 64, 

22) code, the distribution of E3 can be assumed to be constant. Figure 5.3 shows the 

probability density function of E2 at 0dB and 3dB. Figure 5.3 shows that the pdf  E2 

shift towards zero as Eb/N0 increases. 
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Figure 5.4 shows the Pdf plot of E2 at 0dB and 3dB and E3 at 0dB. If the value of Eb/N0 

is increased that means the pdf of E2 and E3 can be well separated based on some 

predefined threshold. 

The distribution of E2 and E3 depicted in figure 5.2, that they can be well separated 

based on some predefined threshold. The plots of empirical and the analytical pdf of 

E2 and E3 validating the expression (4.50) and (4.60) respectively. 

The distribution of E2 and E3 depicted in figure 5.2, that they can be well separated 

based on some predefined threshold. Test statistic ET is compared against a predefined 

threshold T in order to decide if 𝒄̅∗a true permuted codeword is or not. Based on the 

test if  𝐸𝑇 > 𝑇 , decision in favor of H0 is done, thus assumed a true permuted 

codeword is not yet found and the reprocessing algorithm goes on with the update 

TEP. Otherwise, if 𝐸𝑇 < 𝑇, decision in favor of H1 is done, thus assumed a true 

permuted codeword is found and the reprocessing algorithm stops. It is clear that 

predefined threshold measures the extent of TEP reduction. 

Figure 5.3 shows the probability function of two random variable under different 

Eb/N0. It is clear that the pdf of E2 shift towards zero as Eb/N0 increases, which means 

the number of error in the tail decreases with the increase in the Eb/N0. But most 

peculiarly, the pdf of E2 is almost constant and is unaffected by the change in the 

Eb/N0. This noise independence characteristic of E3 can be the starting point of the 

reduction in the number of TEP. 

5.2.7 Performance and Complexity Trade-Off Based on GPTT Analysis 

ROC stands for Receiver Operating Characteristics which plot the graph between 

probability of false alarm (PF) and the probability of detection (PD).The test 

performance can be evaluated by the well-known ROC parameters where probability 

of false alarm and the probability of detection can be evaluated. Figure 5.5-5.9 shows 

the probability of detection when probability of false alarm is 10−7, 10−6 and 10−5 

with different SNR. 
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5.2.8 Code error rate of OSD Analysis 

Figure 5.10 depicts the error performance of the (128, 64, 22) extended BCH code. 

This plot includes the simulation results and the corresponding upper bounds 

computed from maximum likelihood performance. For constant Eb/No, if the order of 

OSD is increased then the code error rate should be decreased. Also, for constant 

order, when the value of Eb/No is increased then the code error rate is decreased. The 

maximum code error rate is given by MLD. 

5.2.9 Computational Saving Analysis 

Figure 5.12 shows the number of cases in percentage where all the TEPs need not be 

processed at different SNR for different probability of false alarm. When the 

probability of false alarm is 10-5 at 2dB SNR, number of cases in percentage where all 

the TEPs need not be processed is 20. That means GPTT algorithm saves 20 percent 

TEP generation which reduces the complexity of decoding. When the probability of 

false alarm is 10-5 at 2dB SNR, number of cases in percentage where all the TEPs need 

not be processed is 80. That means that GPTT algorithm saves 80 percent TEP need 

not to check. 

5.3 Comparison 

5.3.1 Code Error Rate Comparison between OSD and GPTT-OSD 

The code error rate performance of an (128, 64,22) extended BCH is presented in 

Figure 5.11 while using proposed GPTT decoding procedure and is compared with the 

MLD performance and also with OSD performance. The code error rate is plotted for 

varying False Alarm Probability of GPTT thresholding. Since the False Alarm of the 

GPTT decoding results in the increase in code error rate, it can be seen that for small 

False Alarm rate the performance of OSD-GPTT almost overlaps with the OSD 

performance for all range of Eb/No (for example, when the false alarm is 10-7, see OSD 

(pink line) overlaps with OSD-GPTT (orange line) for all range of Eb/No). However, 

for fairly large False Alarm rate, the OSD-GPTT curves elevates with higher code 

error rate compared to the OSD performance. Thus, we can see that lowering the false 
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alarm will maintain the code error performance of the OSD, but we will show later 

that lowering the false alarm rate decreases the TEP reduction percentage. 

5.3.2 TEPs Comparison between OSD and GPTT-OSD 

Figure 5.12 shows the percentage of computational saving in TEPs using OSD-GPTT. 

Reliability Based Algorithm generates 2k Test error patterns for k length of 

information bits. If the length of k is increased, the decoding complexity is also 

increased. RBA shows for k/n ≥ 0.5 ,dmin/4 reprocessing order is sufficient for 

decoding the required codeword. GPTT-OSD is proposed to decrease the TEPs at each 

reprocessing order. Figure 5.11 depicts that for small false alarm rate the performance 

of OSD-GPTT almost overlaps with OSD performance for all range of Eb/No. And, 

figure 5.12 depicts that, for lower false alarm rate, the percentage of TEPs which need 

not to be checked is increased when increased in Eb/No.  
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CHAPTER SIX: CONCLUSION  

6.1 Conclusion 

Reliability Based Algorithm was basically implemented in two stage a) determining 

the Most Reliable Independent (MRI) bits from Most Reliable Basis (MRB) of the 

code and b) order-I reprocessing on MRI using most likely Test Error Patterns (TEPs). 

Order-I reprocessing is designed to improve the hard decision decoded codeword 

progressively until either practically optimum or a desired performance is achieved. 

The approach of ML resource test is based on the cost function calculated from the 

soft valued samples of permuted received sequence as a stopping criterion after each 

stage j, 0 ≤ 𝑗 ≤ 𝐼 of order-𝐼 reprocessing which indeed proved excellent in reducing 

the average number of computation. Despite its simplicity and efficient decoding 

capability for small and medium length codes (𝑛 ≤ 150), the major weak point of the 

Reliability Based Algorithm are a) complex and loose theoretical error performance 

bound b) no stopping criterion can be achieved between that of order−𝑗 and 

order−(𝑗 − 1) reprocessing stages. 

A new statistics of the ordered vector component is presented. The probability Density 

Function (PDF) and the Cumulative Distribution Function (CDF) for each statistics is 

derived. The distribution of test statistics E2 and E3 can be well separated based on 

some predefined threshold which presents a stopping criterion after each TEP test thus 

largely cutting unnecessary TEP tests in higher level reprocessing.  

The Reliability Based Algorithm is used 2𝑘 Test Error Patterns for 𝑘 information bit 

which increased the complexity for increasing the length of information bits. 

Generalized Probabilistic Threshold Test (GPTT) algorithm is presented which has the 

property of instant stopping criterion. GPTT algorithm reduces the 80% time that all 

the TEPs need not to be processed at each reprocessing order which reduces 

computational complexity at the expense of negligible performance degradation. 

When the probability of false alarm is increased, the code error rate of OSD-GPTT 

dominates the performance of OSD. When the probability of false alarm increased, the 

number of cases in percentage where all the TEPs need not be processed is increased. 

So, the choice of probability of false alarm limit the performance of TEPs reduction. 
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In future enhancement, the application of new statistical approach which is described 

by E1, E2, E3 can be applied to derive the further simplified error performance bound of 

other order statistics based algorithms for linear block codes like Generalized GMD 

and chase-type decoding.  
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APPENDICES 

A. THESIS CODE 

clc 

clear all 

close all 

k = 4; 

n = 7; 

G = [1 0 0 0 1 1 0; ... 

     0 1 0 0 1 0 1; ... 

     0 0 1 0 0 1 1; ... 

     0 0 0 1 1 1 1]; 

 pat = [0 0 0 0; 1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1; 1 1 0 0; 1 0 1 0; 1 0 0 1; 0 1 1 

0; 0 1 0 1; 0 0 1 1; 1 1 1 0; 1 1 0 1; 1 0 1 1; 0 1 1 1]; 

 

mass_count = []; 

dec_num = 10; 

iter = 1; 

zer = eye(k); 

ber_count1 = 0; 

err = 1; 

for iii = 1:iter 

     dec_num = mod((dec_num + 1),16);     

     Vt = dec2bin(dec_num, 4); 

     tran_dat = mod(Vt*zer, 2); 

     Ct = mod(Vt*G, 2); 

     St = 2*Ct - 1; 

     noise = sqrt(7/8)*randn(1,7); 

     Sr = St + noise; 

%     Sr = [2.0295    -0.4445    1.0804   -0.3953   -1.6944    0.0070    1.1987]; 

    rum = abs(Sr); 

    ord = sort(rum, 'descend'); 

    perm = []; 

    for i = 1:n 
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        perm = [perm find(rum == ord(i))]; 

        iperm(find(rum == ord(i))) = i; 

    end 

    perm; 

    iperm; 

    mat2 = []; 

    for i = 1:n 

        mat2 = [mat2 G(:,perm(i))]; 

    end 

     

    test = k + 1; 

    for i = 1:k 

         

        while(mat2(i, i) == 0) 

            flag = 1; 

            count = i; 

            while(flag) 

                count = count + 1; 

                if((count<(k+1)) && (mat2(count,i) == 1)) 

                    mat2(i,:) = xor(mat2(i,:), mat2(count,:)); 

                    flag = 0; 

                else 

                    if((count > k) && (flag == 1)) 

                        swap = mat2(:,i); 

                        mat2(:,i) = mat2(:, test); 

                        mat2(:, test) = swap; 

                        prm = perm(test); 

                        perm(test) = perm(i); 

                        perm(i) = prm; 

 

                        test = test+1; 

                        flag = 0; 

                    end 

                end 
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            end 

        end 

        for j = 1:k 

                if((i~=j) && (mat2(j,i) == 1)) 

                    mat2(j,:) = xor(mat2(i,:), mat2(j,:)); 

                end 

        end 

    end 

    mat2; 

    for i = 1:n 

        for j = 1:n 

            if (perm(j)==i) 

                iperm(i)=j; 

            end 

        end 

     end 

    S2_r = Sr(perm); 

    S2_r; 

    v_2 = (S2_r>0); 

    vv_2 =v_2(1:k); 

    vv_2; 

    cc_2 = mod(vv_2*mat2, 2); 

    cc_2    ; 

    mass = sum((2*cc_2 - 1).* S2_r); 

    mass; 

    massimo = 0; 

    numero_TEP = 15; 

    M = []; 

    for zz=1:numero_TEP 

 

        for w=1:k 

            pattern(w) = pat(zz,w); 

        end 
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        for w =1:n 

            h(w) = 0; 

        end 

 

        for j = 1:k 

            if (pattern(j) == 1)  

                for w =1:n 

                    h(w) = xor(h(w),mat2(j,w)); 

                end 

            end 

        end 

         

        mas = mass; 

 

        for w = 1:n 

            if h(w) == 1 

                if cc_2(w) == 1 

                    mas = mas - 2*S2_r(w); 

                else 

                    mas = mas + 2*S2_r(w); 

                end 

            end 

        end 

        M = [M;mas];  

%          

        if (mas > massimo)  

            massimo = mas; 

            for w = 1:n 

                hh(w) = h(w); 

            end 

 

            for w =1:n 

                gg_2(w) = xor(cc_2(w), hh(w)); 

            end 
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        end 

        

    end 

    vr = gg_2(iperm); 

    vr2 = vr(1:k)    ; 

    if(vr2 == tran_dat) 

        ber_count1 = ber_count1 +1; 

        err = 0; 

    end 

        

end 

M 

  


