PATTERN OF BACTERIAL ISOLATES AND ANTIBIOGRAM FROM OPEN WOUND INFECTION AMONG THE INDOOR PATIENTS OF BIR HOSPITAL

A

Dissertation Presented to the Central Department of Microbiology Tribhuvan University

In Partial fulfillment of the requirement for the Award of the degree of Master of Science in Microbiology

(Medical)

By

Kiran Kumari

Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2008

RECOMMENDATION

This is to certify that Ms. Kiran Kumari has completed this dissertation work entitled **"PATTERN OF BACTERIAL ISOLATES AND ANTIBIOGRAM FROM OPEN WOUND INFECTION AMONG THE INDOOR PATIENTS OF BIR HOSPITAL"** as a partial fulfillment of Master of Science Degree in Microbiology under our supervision. To our knowledge, this work has not been submitted for any other degree.

Dr. Anjana Singh, Ph.D.	Dr. Chandrika Devi Shrestha	Mrs. Jyotsna Shrestha
Head	Head	Consultant Medical
Central Department of	Pathology Department	Microbiologist
Microbiology	Bir Hospital	Pathology Department
Tribhuvan University	Kathmandu	Bir Hospital
Kirtipur, Kathmandu		Kathmandu

Date:

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Anjana Singh, Dr. Chandrika Devi Shrestha and Mrs. Jyotsna Shrestha** this dissertation work of **Ms. Kiran Kumari** is approved for the examination and is submitted to the Tribhuvan University in the partial fulfillment of the **Master of Science Degree in Microbiology**.

Dr. Anjana Singh, Ph.D. Head Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date:

BOARD OF EXAMINERS

Recommended by

Dr. Anjana Singh, Ph.D. Supervisor

Dr. Chandrika Devi Shrestha

Supervisor

Mrs. Jyotsna Shrestha Supervisor

Approved by

Examined by

Dr. Anjana Singh, Ph.D. Head of Department

Prof. Nhuchhe Ratna Tuladhar

External Examiner

Dr. Prakash Ghimire

Internal Examiner

Date:

ACKNOWLEDGEMENT

First of all I would like to express my deep sense of indebtedness and profound gratitude to my respected supervisors **Dr. Anjana Singh**, Head, Central Department of Microbiology; **Mrs. Jyotsna Shrestha**, Consultant Medical Microbiologist, Bir Hospital and **Dr. Chandrika Devi Shrestha**, Head, Pathology Department, Bir Hospital for their expert guidance, constant and untiring inspiration for hardwork and their valuable suggestions and strong support for the completion of this thesis work.

I would like to express my sincere gratitude and earnest compliment to Professor **Dr. Sheetal Raj Basnyat, Dr. Prakash Ghimire, Dr. Shreekant Adikari, Dr. Dwij Raj Bhatta, Mr. Binod Lekhak, Ms. Shaila Basnyat** and all the respected teachers and staffs of Central Department of Microbiology for their innate inspiration, support and encouragement.

My sincere and deepest gratitude goes to all the staffs of Pathology Department, Bir Hospital for providing me a well arranged laboratory facilities and continuous support during my laboratory performance. I am very much thankful to doctors, nurses and other staffs of Bir Hospital for their cooperation during sample collection in the course of my study.

I am especially thankful to my friend **Ms. Prashamsa Karki** for her kind cooperation during sample collection and throughout my thesis work. I want to acknowledge the supportive contributions and thoughtful suggestions of my senior **Mr. Kiran Sapkota**. My best wishes and thanks extend to all my friends for their support. I particularly want to acknowledge the tremendously supportive contributions of my sister **Ambika** during computer works.

Finally, I would like to express my deepest gratitude to my respected parents and family members for their blessings, understanding, encouragement, continuous inspiration and unconditional support.

Date:

Kiran Kumari

ABSTRACT

The present study was conducted for a period of 9 months with an aim to identify the etiological agents causing wound infection along with their antibiotic susceptibility pattern among inpatients in Bir Hospital. In this study a total of 305 pus samples which consisted 251 (82.29%) pus swabs and 54 (17.70%) pus aspiration from the infected wounds were collected and analyzed. The etiological agents were isolated, identified by culture and biochemical tests and their susceptibility pattern to commonly used antibiotics were determined using standard protocols. The male patients were high in number (n=185) than females (n=120) and majority of patients belonged to age group 21-30 (n=76). Out of total 305 pus samples, 197 (64.45%) samples showed growth; of which 135 (68.52%) samples showed single isolates and 62 (31.47%) showed multiple isolates. The growth was found to be highest in burn ward (90.90%) followed by post operative ward (80%) and lowest was in plastic surgery ward (33.33%). A total of 253 bacterial isolates were found which belonged to 15 different species; of which 155 (61.2%) were Gram negative and 98 (38.8%) were Gram positive bacteria. Among Gram positive bacteria, S. aureus (83.67%) was most common followed by CONS (7.14%), non haemolytic streptococci (4.08%), unidentified Gram positive rods (3.06%) and haemolytic streptococci (2.04%). Among Gram negative bacteria, E. coli (38.7%) was most common followed by P. aeruginosa (25.16%), Acinetobacter spp. (10.96%), K. oxytoca (7.74%), P. mirabilis (5.16%), K. pnemoniae (4.51%), P. vulgaris (2.58%), Enterobacter spp. (2.58%), C. freundii (1.93%) and Providencia spp. (0.64%). Direct smear Gram staining and culture were found to be correlated ($r_{xy} = 0.99$). Among the antibiotics used, the most effective antibiotic for overall bacterial isolates was found to be Ciprofloxacin with a sensitivity of 67.58%. For Gram positive isolates, the most sensitive antibiotic was Ofloxacin (70.40%) while among the Gram negative isolates, Ciprofloxacin (69.03%) was the most sensitive antibiotic. Hence, etiological agents of wound infection along with their antibiotic susceptibility pattern were determined.

Key words: wound infection, indoor patients, bacterial isolates, antibiogram

TABLE OF CONTENTS

Particulars	Page No
Title page	i
Recommendation	ii
Certificate of approval	iii
Board of examiners	iv
Acknowledgement	v
Abstract	vi
Table of contents	vii
List of abbreviations	ix
List of tables	х
List of figures	xi
List of photographs	xii
List of appendices	xiii
Chapter 1 Introduction	1-4
Chapter 2 Objectives	5
Chapter 3 Literature review	6-32
3.1 Wound infection	6
3.2 Recognition of wound infection	7
3.3 Mode of wound infection	8
3.4 Predisposing factors to wound infection	10
3.5 Routes of wound infection	12
3.6 Types of wounds	14
3.7 Classification of wound	15
3.8 Complications of wound infection	23
3.9 Wound healing	24
3.10 Organisms commonly encountered in wound infection	26
3.11 Laboratory diagnosis of wound infection	27

3.12. Antimicrobial susceptibility testing	31
Chapter 4 Materials and Methods	33-36
4.1 Materials	33
4.2 Methods	33
Chapter 5 Result	37-52
5.1 Distribution of samples and pattern of results	37
5.2 Distribution of patients in hospital	39
5.3 Pattern of microbial isolates	40
5.4 Antibiotic susceptibility profile of the bacterial isolates	50
Chapter 6 Discussion	53-62
6.1 Distribution of samples and pattern of results	53
6.2 Pattern of microbial isolates	55
6.3 Correlation between direct smear Gram staining and culture	60
6.4 Antibiotic susceptibility profile of the bacterial isolates	61
Chapter 7 Summary and recommendations	63-64
Chapter 8 References	65-77
Appendices	I-XVI

LIST OF ABBREVIATIONS

AIDS	Acquired Immuno Defiency Syndrome
BA	Blood Agar
CDC	Centre for Disease Control
CONS	Coagulase Negative Staphylococcus
DNA	Deoxyribonucleic Acid
ENT	Ear Nose Throat
FSW	Female Surgical Ward
GNB	Gram Negative Bacilli
GPC	Gram Positive Cocci
HAI	Hospital Acquired Infection
ICU	Intensive Care Unit
MA	Mac Conkey Agar
mcg	Micro-gram
MHA	Muller Hinton Agar
MRSA	Methicillin Resistant Staphylococcus aureus
MSW	Male Surgical Ward
NA	Nutrient Agar
NB	Nutrient Broth
NINSS	Nosocomial Infection National Surveillance Service
NNIS	National Nosocomial Infection Surveillance
NSW	Neurosurgical Ward
PMN	Polymorphonucleocytes
POW	Post Operative Ward
RCMB	Robertson's Cooked Meat Broth
SIRS	Systemic Inflammatory Response
SSI	Surgical Site Infection
TUTH	Tribhuvan University Teaching Hospital
WHO	World Health Organisation

LIST OF TABLES

Table 1	Pattern of growth in different types of samples	38
Table 2	Pattern of single and multiple isolates from different pus samples	38
Table 3	Number and percentage of Gram positive and Gram negative bacteria	
	from different samples	39
Table 4	Gender wise distribution of patients showing positive and negative grow	th 39
Table 5	Pattern of microbial growth in samples collected from different wards	41
Table 6	Pattern of single and multiple isolates in pus samples collected from	
	various wards	42
Table 7	Frequency of Gram positive and Gram negative isolates from samples	
	collected from different wards	43
Table 8	Pattern of microbial isolates in different pus samples	45
Table 9(a)	Pattern of microbial isolates in pus sample collected from burn ward,	
	post operative ward and surgical wards	47
Table 9(b)	Pattern of microbial isolates in pus sample collected from orthopedic	
	ward, male and female medical wards, ENT, ICU and CTVS wards	48
Table 10	Correlation between direct smear Gram staining and culture	49
Table 11	Antibiotic susceptibility profile of Gram positive isolates	50
Table 12	Antibiotic susceptibility profile of Gram negative isolates	51

LIST OF FIGURES

Figure 1	Pattern of distribution of pus samples from total patients	37
Figure 2	Age and gender wise distribution of patients	40
Figure 3	Pattern of distribution of Gram positive isolates from total pus samples	44
Figure 4	Pattern of distribution of Gram negative isolates from total pus samples	44
Figure 5	Antibiotic susceptibility profiles of the bacterial isolates as a whole	51
Figure 6	Antibiotic susceptibility profiles of S. aureus only	52

LIST OF PHOTOGRAPHS

- Photograph 1 Photograph of a patient with burn wound infection
- Photograph 2 Anaerobic gas jar with inoculated plates and gas pak
- Photograph 3 Culture plate of *S. aureus* on Nutrient agar
- Photograph 4 Tube coagulase test for *S. aureus*
- Photograph 5 Culture plate of *K. pneumoniae* on Mac Conkey agar
- Photograph 6 Biochemical test for *P. vulgaris*
- Photograph 7 Antibiotic susceptibility test for *S. aureus*
- Photograph 8 Antibiotic susceptibility test for *P. aeruginosa*

LIST OF APPENDICES

Appendix-I

(A)	Clinical profile	Ι
(B)	Microbiological profile	Ι
(C)	List of materials	III

Appendix-II

(A)	Composition and preparation of different types of culture media	IV
(B)	Composition and preparation of different types of biochemical media	V
(C)	Composition and preparation of different reagents	VII

Appendix-III

(A)	Procedure of different biochemical tests	Х
(B)	Antibiotic disc used and procedure of susceptibility test	XIV
(C)	Statistical tools	XV