COMPARATIVE STUDY OF POLYMERASE CHAIN REACTION (PCR) AND LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP) FOR DIRECT DETECTION OF *Mycobacterium tuberculosis* IN SPUTUM

Α

DISSERTATION PRESENTED TO THE CENTRAL DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN MICROBIOLOGY

BY BINITA KOIRALA

DEPARTMENT OF MICROBIOLOGY TRIBHUVAN UNIVERSITY KIRTIPUR, KATHMANDU, NEPAL 2008

RECOMMENDATION

This is to certify that **Ms. Binita Koirala** has completed this dissertation work entitled "**Comparative study of Polymerase Chain Reaction (PCR) and Loop-Mediated Isothermal Amplification (LAMP) for Direct Detection of** *Mycobacterium tuberculosis* in Sputum" as a partial fulfillment of M. Sc. degree in Microbiology under our supervision. To our knowledge this work has not been submitted for any other degree.

Dr. Anjana Singh Associate Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal Dr. Basu Dev Pandey Senior Medical Officer Sukra Raj Tropical and Infectious Disease Hospital Teku, Kathmandu, Nepal Dr. Bhawana Shrestha Project chief, German-Nepal Tuberculosis Project (GENETUP), Kalimati, Kathmandu, Nepal

Mr. Bishwa Raj Sapkota, Scientist, Mycobacterial Research Laboratory Anandaban Hospital, Lele, Lalitpur, Nepal

Date.....

CERTIFICATE OF APPROVAL

On the recommendation of **Dr. Anjana Singh, Dr. Basu Dev Pandey, Dr. Bhawana Shrestha** and **Mr. Bishwa Raj Sapkota**, this dissertation of **Ms. Binita Koirala** is approved for the examination and is submitted to Tribhuvan University in Partial fulfillment of the requirements for M. Sc. degree in Microbiology.

Date:

Dr. Anjana Singh Head Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

BOARD OF EXAMINERS

Recommended by:

Dr. Anjana Singh Supervisor

Dr. Basu Dev Pandey Supervisor

Dr. Bhawana Shrestha Supervisor

Mr. Bishwa Raj Sapkota Supervisor

Dr. Anjana Singh Head of Department

Dr. Keshab Bhakta Shrestha Former Director, NTC, and Medical Director Martyr Memorial Hospital External Examiner

Mr. Binod Lekhak Internal Examiner

Approved by:

Examined by:

Date:

ACKNOWLEDGEMENT

I would like to express my great debt of gratitude to my respected supervisors Dr. Anjana Singh, Associate Professor, Central Department of Microbiology Tribhuvan University Kirtipur, and Dr. Basu Dev Pandey, Senior Medical Officer, Sukra Raj Tropical and Infectious Disease Hospital Teku, for their regular supervision, scholastic inspiration, untiring encouragement and expert guidance during my research work.

It is my great pleasure to extend deep sense of indebtedness and profound gratitude to my respected supervisors Dr. Bhawana Shrestha, Project Chief, German-Nepal Tuberculosis Project (GENETUP), Kalimati and Mr. Bishwa Raj Sapkota, Scientist, Mycobacterial Research Laboratory Anandaban Hospital Leprosy Mission Nepal for their constant inspiration, continuous support, valuable suggestions and superb guidance during the entire period of my dissertation work.

I am grateful to Professor Dr. Sheetal Raj Basnyat, Associate Professor Mr. Dwij Raj Bhatta, Associate Professor Dr. Prakash Ghimire, Assistant Professor Mr. Binod Lekhak, Assistant Professor Ms. Saila Basnyat and all the respected teachers and staffs of Central Department of Microbiology for their full fledge support.

My deep sense of gratitude extend to Dr. Bishnu Acharya, Everest International Clinic and Research Center, for his inspiration and valuable comment during working period in the laboratory.

I am very much grateful to Mr. Bhagawan Maharjan, Lab incharge, GENETUP, for his help during sample collection and overall lab performance. I am also thankful to Mr. Suraj Shrestha, Mr. Sujit Maharjan, Mrs. Meera Shrestha and all other staffs of GENETUP, for their kindness and help during my research work.

I would like to express my sincere gratitude to Prof. Dr. Suzuki, Dr. Yoda and all Japanese team for their support for PCR and LAMP reagents and technical assistance.

I am especially thankful to Dr. Keshab Sharma, Mr. Ram Sharma and Mr. Nabaraj Adhikari for their help and constant inspiration during my research work.

I would like to thank my friends Ms. Binita Adhikari and Ms. Prativa Thapa for their kind co-operation during DNA extraction and DNA quantitation. Similarly my thanks goes to my seniors Mr. Ajay Poudel and Balram Adhikari and my all friends for their help during the study.

Finally, I would like to express my eternal gratitude to my respected parents and family members for their blessing, understanding, continuous inspiration and encouragement.

.....

Date:

Binita Koirala

ABSTRACT

The risk of spread of infection and emmergence of drug-resistant strain has created the need for a rapid, sensitive and specific diagnostic test for tuberculosis. In addition, clinically suspicious cases that do not give positive result in conventional laboratory test need the development and evaluation of new diagnostic technique, which can identify the etiological agent in rapid way.

The study was carried out from October 2006 to November 2007 based at German Nepal Tuberculosis Project, Mycobacterial Research Laboratory, Anandaban Hospital and Everest International Clinic and Research Center in collaboration with Central Department of Microbiology (CDMTU) and Osaka Perfectural Institute of Public Health, Japan. A total of 106 (53 fluorochrome staining positive and 53 fluorochrome staining negative) sputum samples were collected in this study. Out of 53 fluorochrome staining positive samples, all the samples 53 (100%) were positive on culture on Ogawa medium and 51 (96.22%) were found to be positive in both PCR and LAMP. Two (3.77%) PCR and LAMP negative samples were positive in culture.

Similarly, of 53 fluorochrome staining negative samples, 4 (7.54%) samples were positive and 45 (84.90%) were negative in all culture, PCR and LAMP. There was 1 (1.88%) sample which was positive by LAMP and PCR but culture negative and 3 (5.66%) samples were positive only by PCR but negative by culture and LAMP.

While comparing the microscopy results with culture as gold standard, the sensitivity, specificity, positive and negative predictive values were 92.98%, 100%, 100% and 92.45% respectively, however, these values for PCR were 96.49%, 91.83%, 93.22% and 95.74% respectively with reference to culture. Similarly, the sensitivity, specificity, positive and negative predictive values for LAMP with reference to culture were 96.49%, 97.95%, 98.21% and 96% respectively, however, with reference to PCR, these values were 94.91%, 100%, 100% and 94% respectively.

This study showed that PCR and LAMP could be a possible diagnostic tool for the confirmation of the smear negative cases that show clinical symptoms of TB. Due to its easy operation without sophisticated equipment, LAMP will be simple enough to use in small scale hospitals, primary care facilities, and clinical laboratories in developing countries if the remaining issues such as sample preparation, nucleic acid extraction and cross-contamination controls are addressed.

Key words: Sputum, M. tuberculosis, DNA, LAMP, PCR, Sensitivity, Specificity

TABLE OF CONTENTS

Title page	i
Recommendation	ii
Certificate of approval	iii
Board of examiners	iv
Acknowledgement	v
Abstract	vi
Table of contents	vii
List of abbreviations	Х
List of tables	xi
List of figures	xii
List of photographs	xiii
List of appendices	xiv
CHAPTER- I: INTRODUCTION	1
CHAPTER-II: OBJECTIVES	5
2.1 General objective	5
2.2 Specific objectives	5
CHAPTER III: LITERATURE REVIEW	6
3.1 Disease	6
3.2 Mycobacteria	7
3.3 Transmission	9
3.4 Risk of infection	10
3.5 Incubation period	11
3.6 TB infection versus TB disease	11
3.7 Pathogenesis	12
3.8 Genetic characters	16
3.9 Treatment and control	16
3.10 Diagnosis	17
3.10.1 Clinical diagnosis	17
3.10.2 Radiological diagnosis	17
3.10.3 Tuberculin skin test	18
3.10.4 Laboratory diagnosis	18

3.10.4.1 Microscopy	18
3.10.4.2 Culture	19
3.10.5 Other techniques for diagnosis of tuberculosis	21
3.10.5.1 Immunological diagnostic methods	21
3.10.5.2 Nucleic acid amplification tests	22
3.11 Polymerase chain reaction (PCR)	25
3.11.1 The principle of PCR	26
3.11.2 Optimization of PCR	27
3.11.3 Components of PCR	28
3.11.4 The procedure of PCR	30
3.11.5 Primers for PCR	31
3.11.6 Selection of primers	33
3.11.7 PCR for diagnosis of tuberculosis and other diseases	35
3.12 Loop-mediated isothermal amplification (LAMP)	38
3.12.1 Characteristics of LAMP	39
3.12.2 The principle of LAMP method	40
3.12.3 Components of LAMP	42
3.12.4 Procedure of LAMP	44
3.12.5 Optimized conditions for LAMP	45
3.12.6 Sensitivity of LAMP	46
3.12.7 LAMP for a RNA target	47
3.12.8 Primers for LAMP	47
3.12.9 Gyrase B gene (gyrB)	51
3.12.10 LAMP for diagnosis of tuberculosis and other diseases	52
3.13 Reverse transcription-loop-mediated isothermal amplification (RT-LAMP)	57
CHAPTER IV: MATERIAL AND METHODS	62
4.1 Material	62
4.2 Methodology	62
4.2.1 Study site	62
4.2.2 Study population	62
4.2.3 Sample collection	63
4.2.4 Sample evaluation	63
4.2.5 Sample processing	63
4.2.5.1 Sputum smears microscopy	63
4.2.5.2 Sample concentration and culture	64
4.2.5.3 Sample treatment for LAMP and PCR	64

4.2.5.4 PCR	66
4.2.5.5 Statistical analysis	68
4.2.5.6 LAMP	68
4.2.5.7 Statistical analysis	69
CHAPTER V: RESULTS	71
5.1 Distribution of total study cases by age and sex	71
5.2 Age and sex distribution of culture and LAMP positive cases	72
5.3 Socio-demographic and disease characteristic of interviewed persons	72
5.4 Laboratory result of samples	74
5.4.1 Study group A	74
5.4.2 Study group B	75
5.5 Evaluation of the Tests	76
CHAPTER-VI: DISCUSSION	79
6.1 Discussion	79
6.2 Conclusion	73
CHAPTER VII: SUMMARY AND RECOMMENDATIONS	87
7.1 Summary	87
7.2 Recommendations	89
REFERENCES	90

APPENDICES

LIST OF ABBREVIATIONS

А	:	Adenine
AFB	:	Acid Fast Bacilli
BCG	:	Bacilli Calmette-Guerin
bp	:	base pair
С	:	Cytosine
d ATP	:	2'-deoxyadenosine 5'-triphosphate
d CTP	:	2'-deoxycytidine 5'triphosphate
d GTP	:	2'-deoxyguanosine 5-'triphosphate
d NTPs	:	Deoxyribonucleoside triphosphates
DNA	:	Deoxyribonucleic acid
DOTS	:	Directly Observed Treatment Short Course Therapy
ELISA	:	Enzyme Linked Immunosorbent Assay
EPTB	:	Extra Pulmonary Tuberculosis
FD	:	Fluorescence Dye
G	:	Guanine
HIV	:	Human Immuno-Deficiency Virus
IUATLD	:	International Union Against Tuberculosis and Lung Disease
KDa	:	Kilo Dalton
LAMP	:	Loop Mediated Isothermal Amplification
L-J	:	Lowenstein-Jensen Medium
LTBI	:	Latent Tuberculosis Infection
MHC	:	Major Histocompatibility Complex
MOTT	:	Mycobacteria other Than Tuberculosis
NAA	:	Nucleic Acid Amplification
NaLC	:	N-acetyl-L-cysteine
NTC	:	National Tuberculosis Center
NTP	:	National Tuberculosis Programme
OD	:	Optical Density
PCR	:	Polymerase Chain Reaction
PPD	:	Purified Protein Derivative
PTB	:	Pulmonary Tuberculosis
rpm	:	Revolution per Minute
SAARC	:	South Asian Association of Regional Corporation
STC	:	SAARC Tuberculosis Center
Т	:	Thymine
ТВ	:	Tuberculosis
TST	:	Tuberculin Skin Test
WHO	:	World Health Organization
Z-N	:	Ziehl Neelsen

LIST OF TABLES

Table 1:	Distribution of total study cases by age and sex	58
Table 2:	Socio-demographic and disease characteristic of interviewed persons	60
Table 3:	Comparative results of fifty-three smear positive sample with culture, LAMP and PCR.	61
Table 4:	Comparative results of fifty-three smear negative samples with culture, LAMP and PCR	62
Table 5:	Results of one hundred six samples by microscopy, culture, LAMP and PCR	63
Table 6:	Comparison of microscopy with reference to culture	64
Table 7:	Comparison of LAMP with reference to culture	64
Table 8:	Comparison of TB-PCR with reference to culture	65
Table 9:	Comparison of TB-LAMP with reference to TB-PCR	65

LIST OF FIGURES

- Figure 1: Basic principle of LAMP
- Figure 2: Flow chart of methodology
- Figure 3: Sex wise distributions of total patients
- Figure 4: Positive results of fluorochrome staining positive sputum samples collected from PTB patients (group A)
- Figure 5: Positive results of fluorochrome staining negative sputum samples collected from smear negative patients (group B)
- Figure 6: Results of total samples by microscopy, culture and LAMP

LIST OF PHOTOGRAPHS

- Photograph 1: Acid fast bacilli in sputum smear (fluorochrome stain)
- Photograph 2: Culture of Mycobacteria on Ogawa medium
- Photograph 3: Laboratory performance during the study period
- Photograph 4: Laboratory performance of LAMP
- Photograph 5: Visual judgement of LAMP
- Photograph 6: Sensitivity of TB-PCR with TB1-F and TB1-R primers after agarose gel electrophoresis. Lane 1 and 2, PCR products of *M. tuberculosis* DNA extracted from sputum samples. Lane 3,4 and 5, PCR products of negative samples. Lane N and P were negative control and positive control respectively. Lane M is 100 bp molecular weight marker from Sigma Company.

LIST OF APPENDICES

Appendix I:	Materials	Ι
Appendix II:	Bacteriological media	III
Appendix III:	Reagents/Chemicals	IV
Appendix IV:	Primers used by Iwamoto et al., (2003)	Х
Appendix V:	Standard Operating Procedure for LAMP and PCR	XI
Appendix VI:	The multiple room approach followed in PCR	XII
Appendix VII:	Clinical utility of PCR in diagnosis of tuberculosis	XIII
Appendix VIII:	DNA molecular weight markers	XIV
Appendix IX:	Grading of microscopy and culture result	XV
Appendix X:	Screening test result by diagnosis	XVI
Appendix XI:	Statistical analysis of test	XVII
Appendix XII:	Classification of Mycobacteria	XIX
Appendix XIII:	Treatment regimens for tuberculosis	XX
Appendix XIV:	Results of total samples with culture, LAMP and PCR	XXI
Appendix XV:	Questionnaire for data collection	XXV