COMPARISON OF THE RESISTANCE RATIO AND PROPORTION METHODS FOR DRUG SUSCEPTIBILITY TESTING OF *Mycobacterium tuberculosis* ISOLATED FROM PATIENTS VISITING NATIONAL TUBERCULOSIS CENTRE

Α

Dissertation Submitted to the Central Department of Microbiology Tribhuvan University

In Partial Fulfillment of the Requirements for the Award of the Degree of Master of Science in Microbiology

(Medical)

by

Sushma Acharya

Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu, Nepal 2008

RECOMMENDATION

This is to certify that Ms. Sushma Acharya has worked under our supervision and guidance on the thesis entitled **"Comparison of the resistance ratio and proportion methods for drug susceptibility testing of** *Mycobacterium tuberculosis* **isolated from patients visiting National Tuberculosis Centre"** as a partial fulfillment of M.Sc. Degree in Microbiology. To the best of our knowledge this is an original research work of her and has not been submitted for any other degree.

Dr. Prakash Ghimire, Ph.D. Associate Professor Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal Mr. Dhruba Kumar Khadka Sr. Medical Technologist (Microbiologist) National Tuberculosis Centre Thimi Bhaktapur Nepal

Date: _____

CERTIFICATE OF APPROVAL

On the recommendation of Associate Professor Dr. Prakash Ghimire, Ph.D. and Mr. Dhruba Kumar Khadka this dissertation work by Ms. Sushma Acharya, entitled "Comparison of the resistance ratio and proportion methods for drug susceptibility testing of *Mycobacterium tuberculosis* isolated from patients visiting National Tuberculosis Centre" has been approved for the examination and is submitted to Tribhuvan University in partial fulfillment of the requirement for M.Sc. Degree in Microbiology.

Dr. Anjana Singh Head of Department Central Department of Microbiology Tribhuvan University Kirtipur, Kathmandu Nepal

Date: _____

BOARD OF EXAMINERS

Recommended by:

Dr. Prakash Ghimire, Ph.D. (Supervisor)

Mr. Dhruba Kumar Khadka (Supervisor)

Approved by:

Dr. Anjana Singh, Ph.D. Head of Department

Examined by:

Dr. Dwij Raj Bhatta, Ph.D. (Internal Examiner)

Dr. Basista Rijal, Ph.D. (External Examiner)

Date: _____

ACKNOWLEDGEMENT

It gives me pleasure to express my sincere gratitude to my respected supervisor **Dr**. **Prakash Ghimire**, Associate Professor, Central Department of Microbiology, TU for his continuous support, valuable suggestions and guidance during the period of this thesis work.

I sincerely like to express my respectable appreciation to my supervisor **Mr. Dhruba Kumar Khadka**, Sr. Medical Technologist (Microbiologist), National Tuberculosis Centre (NTC), Thimi, Bhaktapur for his kind support, constant inspiration, excellent guidance and encouragement.

I have a special debt of gratitude and respect to **Dr. Anjana Singh**, Head, Central Department of Microbiology, TU for providing me an opportunity to carry out this work.

I am grateful to **Dr. Pushpa Malla**, Director, National Tuberculosis Centre, Thimi, Bhaktapur for allowing me to utilize the laboratory facilities.

I am also grateful to all teachers Assistant Professor Binod Lekhak, Shaila Basnyat, Pushpa Man Shrestha and Drona Prasad Tiwari for their kind concern. A special thanks to Mr. Anil Thapa, Biostatistics Officer, MIS, Department of Health Service.

I express my genuine thanks to all the staffs of NTC, Thimi, Bhaktapur for their kind help and support in various stages of my work through various means. Although there is a long list, my heartfelt thanks are due to **Mr. Bhola Choudhary**, **Mr. Ram Babu Shrestha, Mr. Jagat Khadka, Mr. Shanta Ram Raujara, Ms. Sheela Pradhan, Mr. Pradip Kumar Shrestha** and **Mr. Bikash Lama** for their help and cooperation throughout the period of my study. I am equally thankful to **Mr. Kailash Bahadur Karki** and **Mr. Pradhyumna Bhandari** of SAARC Tuberculosis and HIV/AIDS Centre, Thimi, Bhaktapur. I would like to express my sincere thanks to the staffs of Central Department of Microbiology, TU for their help whenever I needed during this study period.

I would like to express my special indebtedness to my friend **Mr. Sujay Nepali** for providing me materials, limitless energy, boundless enthusiasm and suggestions throughout the study period. My heartfelt thanks also go to **Ms. Amrita Sigdel** and other friends who helped me in completing this work.

I would like to express my emotional feelings towards my parents who showed their blessings, love, affection and constant encouragement and moral support in every steps of my life.

Finally, I am indebted to all those who, directly or indirectly, have made it possible for me to complete this dissertation.

Date: _____

Sushma Acharya

ABSTRACT

This CDM TU & NTC collaborative study was carried out based at National Tuberculosis Centre (NTC), Thimi, Bhaktapur, Nepal from September 2006 to June 2007 with an objective to compare the two *in vitro* methods (viz, resistance ratio (RR) and proportion (PR) methods), used to determine antimicrobial susceptibilities of *Mycobacterium tuberculosis* against primary anti-tubercular drugs {Isoniazid (INH), Rifampicin (RFP), Streptomycin (SM) and Ethambutol (EMB)}.

Among 221 isolates of *M. tuberculosis* analyzed during the study period, 56.56% and 57.47% of the isolates were resistant to at least one drug by resistance ratio and proportion method respectively. Among all resistant isolates detected, 5.88% were resistance to INH, 4.52% to SM and 1.81% to RFP by RR method, while 5.43% were resistance to both INH and SM and 0.45% to RFP by PR method. No EMB resistant isolates could be detected by both methods. Multi-drug resistance (MDR) was observed in 28.96% and 29.86% isolates by RR and PR methods respectively.

On correlation analysis using Mc Nemar chi-square test, no significant difference between the two tests were observed (p>0.05). The results showed high agreement between both the methods and agreement rates to INH, RFP, SM and EMB were 93.21, 93.67, 93.21 and 94.12 % respectively. Similarly, the agreement rates between both the methods using kappa analysis showed kappa value of 0.864, 0.854, 0.861 and 0.838 for INH, RFP, SM and EMB respectively, which is believed to be good agreement between both methods (k= 0.80 to 1.00 :very good agreement).

Thus both the resistance ratio and proportion methods are equally good for determining drug susceptibility of *M. tuberculosis*, so that we need not to depend only on tedious method like proportional method for Antimicrobial susceptibility testing.

TABLE OF CONTENTS

	Page no.
Title page	i
Recommendation	ii
Certificate of approval	iii-iv
Acknowledgement	v-vi
Abstract	vii
Table of contents	viii-xiii
List of abbreviations	xiv-xv
List of tables	xvi
List of figures	xvii
List of photographs	xviii
List of appendices	xix-xx
CHAPTER I: INTRODUCTION	1-2
CHAPTER II: OBJECTIVES	3
CHAPTER III: LITERATURE REVIEW	4-40
3.1 Tuberculosis (Definition)	4-7
3.2 History	4
3.3 Epidemiology	5-7
3.3.1 Global situation	5-6
3.3.2 Situation in Nepal	6-7
3.4 Bacteriology	7-9
3.4.1 Etiological agents	7-8
3.4.2 General characteristics and morphology	8-9
3.4.3 Cultural characteristics	9
3.5 Pathogenesis	9-16

3.5.1 Mode of infection and transmission	9-10
3.5.2 Predisposing factors in the development of TB	10-11
3.5.3 Virulence factors of tubercle bacilli	11-12
3.5.4 Immunity to tuberculosis	12-14
3.5.4.1 Innate immunity	12-13
3.5.4.2 Specific cell-mediated immunity	13
3.5.4.3 The role of the macrophage	13-14
3.5.5 Types of tuberculosis	14-16
3.5.5.1 Pulmonary tuberculosis	14-16
3.5.5.1.1 Primary infection	14-15
3.5.5.1.2 Post-primary tuberculosis	15-16
3.5.5.2 Extra pulmonary tuberculosis	16
3.6 Diagnosis of pulmonary tuberculosis	
3.6.1 Clinical diagnosis of pulmonary TB	
3.6.2 Radiological diagnosis of pulmonary TB3.6.3 Laboratory diagnosis of pulmonary TB	
3.6.3.2 Sputum evaluation and macroscopic examination	18-19
3.6.3.3 Microscopic examination	19-20
3.6.3.4 Culture of sputum sample	20-23
3.6.3.4.1 Homogenization and decontamination	20-21
3.6.3.4.2 Culture media for isolation of mycobacteria	21-23
3.6.3.4.3 Inoculation and incubation	23
3.6.3.5 Identification tests	24-26
3.6.3.5.1 Growth rate and growth at 25°C and 42°C	24
3.6.3.5.2 Growth on medium containing p-nitrobenzoic a	cid24
3.6.3.5.3 Niacin test	24-25
3.6.3.5.4 Catalase test	25
3.6.3.5.5 Nitrate test	25
3.6.3.5.6 Urease test	25-26

3.6.3.5.7 Pyrazinamidase test	26
3.6.3.6 Serological tests	26-27
3.6.3.6.1 Enzyme linked immunosorbent assay	26
3.6.3.6.2 MycoDot antibody test	26-27
3.6.3.7 Tuberculin test	27
3.6.3.8 New techniques for diagnosing tuberculosis	28
3.7 Antimicrobial susceptibility testing	28-33
3.7.1 Direct Vs. indirect susceptibility testing	29
3.7.2 Conventional methods	29-31
3.7.2.1 Resistance ratio method	29-30
3.7.2.2. Proportion method	30
3.7.2.3 Absolute concentration method	30
3.7.2.4 Disc diffusion method	30-31
3.7.3 Bactec radiometric method	31
3.7.4 New approaches	31-32
3.7.5 Possible consequences of inaccurate drug susceptibility testing	32-33
3.8 Treatment	33-37
3.8.1 Treatment regimens	34-37
3.8.2 Adverse effects of anti-TB drugs	37
3.9 Drug resistant tuberculosis	38-40
3.9.1 Types of drug resistance	38
3.9.1.1 Primary or pre-treatment resistance	38
3.9.1.2 Acquired or secondary resistance	38
3.9.2 Mechanism of resistance	39
3.9.3 Multi-drug resistant TB	39-40
3.9.4 Extensive drug resistant TB	40

	CHAPTER IV: MATERIALS AND METHODS	
	4.1 Materials	
	4.2 Methods	
	4.2.1 Study design	41
	4.2.2 Study setting	41
	4.2.3 Study population	41
	4.2.4 Study period	41
	4.2.5 Sample size	42
	4.2.6 Data collection and analysis	42
	4.3 Laboratory methodology	42-49
	4.3.1 Collection of sputum sample	42
	4.3.2 Sputum evaluation	42-43
4.3.3 Macroscopic examination of sputum		43
4.3.4 Microscopic examination of sputum		43-44
	4.3.4.1 Sputum smear preparation	43
	4.3.4.2 Direct smear microscopy by fluorochrome method	44
	4.3.5 Culture of sputum	45-47
	4.3.5.1 Digestion and decontamination of sputum for culture	45
	4.3.5.2 Culture of digested and decontaminated sample	45
	4.3.5.3 Culture examination	46-47
	4.3.5.3.1 Recording and reporting of culture results	46
	4.3.5.3.2 Microscopic examination of ZN-staining	46
	4.3.5.3.3 Subculture from Ogawa medium on LJ medium	47
	4.3.6 Identification of isolates	47-49
	4.3.6.1 Biochemical tests	47-49
	4.3.6.1.1 Niacin production tests	47-48
	4.3.6.1.2 Drop catalase test	48
	4.3.6.1.3 68°C labile catalase test	48-49
	4.3.7 Antimicrobial susceptibility testing	49-54

4.3.7.1 Proportion method	49-52
4.3.7.1.1 Preparation of drug containing media	49-50
4.3.7.1.2 Preparation of bacillary suspension	50
4.3.7.1.3 Dilution of bacillary suspension for inoculation	50
4.3.7.1.4 Inoculation and incubation	50-51
4.3.7.1.5 Interpretation of results	51-52
4.3.7.2 Resistance ratio method	52-54
4.3.7.2.1 Preparation of drug containing media	52
4.3.7.2.2 Preparation of bacillary suspension	53
4.3.7.2.3 Inoculation and incubation	53
4.3.7.2.4 Interpretation of results	53-54
4.3.8 Quality control	54-55
CHAPTER V: RESULTS	56-65
5.1 Age and gender of the suspected PTB patients included in the study	56
5.2 AFB smear microscopy	
5.3 Agewise distribution of fluorochrome stain of the samples	
5.4 Pattern of culture results	
5.5 Genderwise distribution of culture results	
5.6 Agewise distribution of culture results	
5.7 Results of biochemical tests	
5.8 Antimicrobial susceptibility studies	60-62
5.9 Agreement between Proportion and Resistance ratio methods	63-64
CHAPTER VI: DISCUSSION AND CONCLUSION	66-71
6.1 Discussion	66-70
6.2 Conclusion	71
CHAPTER VII: SUMMARY AND RECOMMENDATIONS	72-74

7.1 Summary	72-73
7.2 Recommendations	74
CHAPTER VIII: REFERENCES	75-92
APPENDICES: I-VIII	i-xviii

LIST OF TABLES

No.	Title P	age no.
1.	Outcomes of primary infection	15
2.	Recommended treatment regimens for each treatment category	36
3.	Symptoms based approach to adverse effects of anti-TB drugs	37
4.	Macroscopic examination of sputum sample	43
5.	Interpretation of stained smear by fluorescence microscopy	44
6.	Recording and reporting of culture	46
7.	Concentrations of drugs used for proportion method	49
8.	Critical concentrations of primary anti-tubercular drugs used in the study	51
9.	Concentrations of drugs used for resistance ratio method	52
10.	Age and genderwise distribution of the patients visiting hospital	57
11.	Genderwise distribution of fluorochrome stain of the samples	57
12.	Genderwise distribution of culture results on Ogawa medium	59
13.	Pattern of culture results with respect to fluorescence staining	60
14.	Pattern of susceptibilities to four anti-tuberculosis drugs determined by	
	proportion and resistance ratio methods	61
15.	Comparison between the Proportion and the Resistance ratio methods for	
	susceptible and resistance of isolates of <i>M. tuberculosis</i> to all four primar	У
	anti-tubercular drugs	62
16.	Patterns of resistance of <i>M. tuberculosis</i> to primary anti-tuberculosis drug	<u></u> gs
	determined by the Proportion and the Resistance ratio methods	63
17.	Percentage agreement between the Proportion and the Resistance ratio	
	methods for susceptibility testing of <i>M. tuberculosis</i> to each drug tested	64
18.	Comparison between the Proportion and the Resistance ratio methods for	
	determining the susceptibility of M. tuberculosis to four primary	
	anti-tubercular drugs	65

LIST OF FIGURES

Figure 1.	Flow chart of methodology
Figure 2.	Genderwise distribution of the patients included in the study
Figure 3.	Number of AFB smear positive and negative cases
Figure 4.	Agewise distribution of fluorochrome stain of the sample
Figure 5.	Pattern of culture results
Figure 6.	Agewise distribution of culture results
Figure 7.	Percentage distribution of antimicrobial susceptibility pattern of
	M. tuberculosis by Proportion and Resistance ratio methods
Figure 8.	Pattern of drug resistance with number of primary anti-tubercular
	drugs determined by Proportion and Resistance ratio methods
Figure 9.	Agewise distribution of susceptibilities of M. tuberculosis to
	primary anti-tubercular drugs determined by Proportion method
Figure 10.	Agewise distribution of susceptibilities of M. tuberculosis to
	primary anti-tubercular drugs determined by Resistance ratio
	method

LIST OF ABBREVIATIONS

AAFB	Acid and Alcohol Fast Bacilli
AFB	Acid Fast Bacilli
AIDS	Acquired Immuno Deficiency Syndrome
AMP	Adenosine Mono Phosphate
AST	Antimicrobial Susceptibility Testing
BACTEC	Becton Dickinson and Company
BCG	Bacille Calmette Guéruin
CDC	Centre for Disease Control
CMI	Cell Mediated Immunity
DNA	Deoxyribo Nucleic Acid
DOTS	Directly Observed Treatment Short course
DST	Drug Susceptibility Test
ELISA	Enzyme Linked Immuno Sorbet Assay
EMB/E	Ethambutol
E-test	Epsilometer-test
GI	Growth Index
HIV	Human Immunodeficiency Virus
INH/H	Isoniazid
IUATLD	International Union Against Tuberculosis and Lung Diseases
LAMs	Lipoarabinomannans
LJ media	Lowenstein Jensen media
MDR	Multi Drug Resistant
MDR-TB	Multi Drug Resistant-Tuberculosis
MGIT	Mycobacterium Growth Indicator Tube
MIC	Minimum Inhibitory Concentration
MOTT	Mycobacteria Other than Tuberculous bacilli
MTC	Mycobacterium Tuberculosis Complex
NALC-NaOH	N-Acetyl Cysteine-Sodium Hydroxide

NTC	National Tuberculosis Centre
NTM	Non-Tuberculous Mycobacteria
NTP	National Tuberculosis Programme
PCR	Polymerase Chain Reaction
PNB	Para-NitroBenzoic acid
PPD	Purified Protein Derivative
PR	Proportion method
PTB	Pulmonary Tuberculosis
PZA/Z	Pyrazinamide
RFP/R	Rifampicin
ROI	Reactive Oxygen Intermediate
RR	Resistance Ratio method
SAARC	South Asian Association for Regional Cooperation
SEAR	South East Asia Region
SM/S	Streptomycin
SPSS	Statistical Package for Social Science
STC	SAARC Tuberculosis Centre
Т	Thioacetazone
ТВ	Tuberculosis
TNF	Tumor Necrosis Factor
Vs.	Versus
WHO	World Health Organization
XDR	Extended Drug Resistant
XDR-TB	Extended Drug Resistant Tuberculosis
ZN staining	Ziehl-Neelsen staining
Z-TSP	Zephiran-Tri-Sodium Phosphate

LIST OF PHOTOGRAPHS

- Photograph 1. ZN-stained sputum smear showing red AFB of *M. tuberculosis*
- Photograph 2. Auramine-O stained sputum smear showing glowing *M. tuberculosis*
- Photograph 3. Staining of AFB by ZN staining
- Photograph 4. Observation of Auramine stained slide by fluorescent microscope
- Photograph 5. Processing of samples inside the safety cabinet at NTC
- Photograph 6. Culture of Mycobacterium (From left to right: plain Ogawa medium, culture on Ogawa medium, plain LJ medium and sub-culture on LJ medium)
- Photograph 7. Drug susceptibility testing of test strain in LJ media by RR method (From left to right: INH-0.5µg/ml & 1.0µg/ml; RFP-32µg/ml & 64µg/ml; SM-16µg/ml & 32µg/ml; and EMB-4µg/ml & 8µg/ml)
- Photograph 8. Drug susceptibility testing of control H₃₇Rv strain in LJ media by RR method (From left to right: EMB-8µg/ml & 4µg/ml; SM-32µg/ml & 16µg/ml; RFP-64µg/ml & 32µg/ml; and INH-1.0µg/ml & 0.5µg/ml)
- Photograph 9. Drug susceptibility testing of test strain in LJ media by PR method (From left to right: Controls I, II and III; INH-0.25µg/ml & 8µg/ml; RFP-20µg/ml & 40µg/ml; SM-4µg/ml & 8µg/ml; and EB-2µg/ml & 1µg/ml)
- Photograph 10. Drug susceptibility testing of control H₃₇Rv strain in LJ media by PR method (From left to right: Controls III, II and I; INH-0.25µg/ml & 8µg/ml; RFP-20µg/ml & 40µg/ml; SM-4µg/ml & 8µg/ml; and EMB-1µg/ml & 2µg/ml)

LIST OF APPENDICES

		Page no.
APPENDIX-I:	Questionnaire for the PTB patient	i
APPENDIX-II:	Material used during the study	ii-iii
	1. Equipments	ii
	2. Glasswares	ii
	3. Plastics	ii
	4. Safety	ii
	5. Chemicals and media base	iii
	6. Miscellaneous supplies	iii
APPENDIX-III:	Composition and preparation of staining reagents	iv-v
	A. Fluorochrome staining reagents	iv
	B. Ziehl-Neelsen (ZN) staining reagents	V
APPENDIX-IV:	Composition and preparation of Digestion and	
	decontamination reagents	vi
	Sputum smear preparation	vi
	Sodium hydroxide (Modified Petroff) method for	
	digestion and decontamination of sputum sample	vii
	Ziehl-Neelsen (ZN) staining procedure	vii-viii
APPENDIX-V:	Composition and preparation of culture media	ix-xi
	A. 2% Modified Ogawa medium	ix-x
	B. Lowenstein-Jensen (LJ) medium	x-xi
	C. Mc Farland No.1 preparation	xi
APPENDIX-VI:	Composition and preparation of different	
	biochemical reagents	xii-xiii
	A. Niacin test reagents	xii

	B. Catalase test reagents	xiii
APPENDIX-VII:	Preparation of Drug solutions and Drug containing	
	media	xiv-xvii
	A. Proportion method	xiv-xv
	B. Resistance ratio method	xvi-xvii
APPENDIX-VIII:	Quality check of media for drug susceptibility test	xviii