GEOLOGY, MINING AND PROCESSING

OF

OKHARE LIMESTONE DEPOSIT, HETAUDA

CENTRAL NEPAL

A DISSERTATION SUBMITTED TO (NATURAL RESOURCES STREAM) THE CENTRAL DEPARTMENT OF GEOLOGY INSTITUTE OF SCIENCE AND TECHONOLOGY TRIBHUVAN UNIVERSITY

KIRTIPUR, KATHMANDU, NEPAL

BY

BHARAT BANJADE

IN

PARTIAL FULLMENT OF

THE REQUIREMENTS FOR

THE MASTER'S DEGREE OF SCIENCE IN GEOLOGY

February 2008

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and appreciation to my respected supervisor Dr. R. B. Sah, Reader, Central Department of Geology for providing valuable guidance, continuous support and inspiration throught the study period of thesis work.

I admire Dr. Prakash Chandra Adhikari, Reader, Central Department of Geology for his inspiration, support and encouragement throught the completion of my thesis work.

I am thankful to Dr. N.K. Tamrakar, Lecturer, Central Department of Geology for taking microphotographs. The assistance of Mr. Shiva Shankar Shrestha for completing thin section is highly appreciated.

I extend my heartly gratitude to Mr. R.K. Aryal, G.M. of Hetauda Cement Industries, Limited. Who is the initiator of this thesis work and he provided facilities for fieldwork. Mr. Durga Nanda Mishra, D.G.M. of HCIL have provided me data of Okhare deposit. Mr. Muralidhar Jha, Mining Engineer of HCIL behave me very friendly and presented interest in my work. Mr. Shiva Ratna Sthapit, Chief of Chemical Lab, provided me facilities for work in the lab of HCIL. Mr. Ram Krishna Mandal, electrical overseer and Mr. Amol Mishra, mining supervisor have helped me in studying Okhare deposit. Last, I want to give my special thanks for all the family member of HCIL for their cooperation when I was in the Industry area.

Special thanks goes to Mr. Suni R. Poudel, Mr. Sudhan B. Maharjan, Mr. Madan Pokharel and Mr. Suresh Shrestha for their help during fieldwork and deskwork and the rest of my classment and senior Mr. Narayan Baskota for constant help during the course of this work.

Finally, I express my deepest gratitude to my family members for their prolonged help, support and inspiration.

Bharat Banjade

Balagau 3, Mahadevsthan

February, 2008

ABSTRACT

The purpose of the study is to clarify the regional geology around Okhare Limestone Deposit, to evaluate the quality and reserve of Okhare deposit, and having a general understanding of mining and processing of Limestone by HCIL.

About 59 km² area was mapped during the fieldwork. Three limestone deposits was studied during this work: Okhare, Bhainse and Majuwa. Okhare and Bhainse belongs to the Okhare-Kitni range of Bhainsedobhan Marble and Majuwa Limestone belongs to the Jhiku Bed of Benighat Slate.

The study area is separated by two thrusts MBT and MT and divided into three tectonic zones. Southern part of the area consists of sedimentary rocks of Siwalik Group, which followed to the north by low-grade metamorphic rocks of Midland Group and around Bhainse area, northern part of the study area, medium to high-grade metamorphic rocks of Bhimphedi Group are exposed. The general trend of the rocks of the study area is NW-SE with dip amount being around $40^0 - 75^0$. The area is of high tectonic activity because of the presence of MBT, MT, numerous folds, faults and landslides in the area.

Okhare Limestone Deposit is a sedimentary-metamorphic deposit showing well developed crystals of calcite presenting as a outlier at the top of the Chattre Bhanjyang hill. Okhare deposit consists of light to dark-grey, medium to coarse-grained Limestone bands which vary in the content of Cao% and Sio_{2%}. Phyllitic Limestone is its notable characteristic. Phyllite is present as spot, lenses within the bed and coatings on the bedding plane looking phyllitic bed. The strike of the bed is NWW – SEE and average dip amount being 45^{0} with 46.5% of Cao and 1.30% of Mgo with the hill slope of 50-75⁰. Reserve of the deposit was estimated by cross-sectional method. Total reserve is 15.33 million ton with 13 million ton at 85% recovery factor. The ratio of volume of Limestone to waste is 1:0.32.

Area above 1900m (above sea level) of the area is proposed for mining with the area of 1,90,000 sq.m. This deposit is not yet been worked. Okhare deposit will be worked by opencast method with bench cut as quarrying method. 5m height and 20 - 25m width benches with at least two quarry face will be made for quality control. Drilling, blasting and loading are main works in mining.

Limestone is processed from mine to packing unit as cement through Primary Crusher, Secondary Crusher, Mixing Hopper, Grinding Mill, Blending Silo, Rotary Kiln, Clinker Silo, Cement Mill Silo and Packing Unit.

TABLE OF CONTENT

Page No.

Chapter One

INTRODUCTION

1.1 B	Background	1
1.2 L	ocation and Accessibility	2
1.3 C	Climate	2
1.4 T	Copography and Drainage	2
1.5 0	Dbjectives	5
1.6 N	Aethodology	5
1.7 L	cimitation of the Study	6

Chapter Two

PREVIOUS WORKS ON CEMENT GRADE LIMESTONE

Cha	Chapter Three		
2.3	Other Cement Grade Limestone Deposit	10	
	2.2.2 Okhare Deposit	9	
	2.2.1 Bhainse Deposit	8	
2.2	Bhainsedobhan Marble	7	
2.1	Background	7	

GEOLOGY OF THE STUDY AREA

3.1	Background	14
3.2	Lithostratigraphy of the area	22
	3.2.1 Midland Group	22
	3.2.1.1 Benighat Slate	22
	3.2.1.2 Robang Formation	27
	3.2.2 Bhimphedi Group	27
	3.2.2.1 Raduwa Formation	27
	3.2.2.2 Bhainsedobhan Marble	28
	3.2.2.3 Kalitar Formation	31
	3.2.3 Siwalik Group	31
3.3	Geological Structure	32
	3.3.1 Major Structure	32
	3.3.2 Minor Structure	34
Cha	apter Four	
GR	ADING AND RESERVE ESTIMATION	
4.1	Grading	36
	4.1.1 Chemical Analysis	38

4.1.2 Petrographic study 46

4.2 Reserve Estimation 49

Chapter Five

MINING PROCEDURE

5.1	Background	56

5.2 Development of Quarry Face	58
5.3 Quality Control	60
5.4 Drilling and Blasting	61
5.5 Dumping Waste Material	62
Chapter Six	
SAFETY IN MINING	
6.1 Introduction	63
6.2 Hazardous Factor	63
6.3 Prevention Measors	67
Chapter Seven	
CEMENT PRODUCTION SYSTEM	
7.1 Background	69
7.2 Cement Production System	70
Chapter Eight	
CONCLUSION AND RECOMMENDATION	73
Conclusion	73
Recommendation	74
REFERENCES	
ANNEX	
I. Table of amount of exploration done of NBM(1975)	
II. Table of brief description of bore holes	

III. Analytical result of borehole no. 1

LISTS OF TABLES	
Table 2.1 Chemical Constituents of the Bhainsedobhan Deposit	
(after Kohres and Ruolf, 1965)	8
Table 2.2 Chemical Constituent of the Bhainsedobhan Limestone Deposit	
(NBM, 1968)	8
Table 3.1 Stratigraphic subdivision of the Lesser Himalaya of the	
Central Nepal (after Stocklin, 1980)	17
Table 3.2 The stratigraphic sequence of the Lesser Himalaya of the	
study area	22
Table 4.1 Chemical Composition specification of Cement Grade Limestone	
(IBM, 2005)	38
Table 4.2 Limiting Paricle Size of Raw Mix for better Burnability and	
Grindability (Ghosh, 1978)	38
Table 4.3 Results of Bore Hole (NBM 1975)	41
Table 4.4 Results of Trenches (NBM 1975)	42
Table 4.5 Rapid test result of samples of mine road from Chhagothe	
to mining area of Okhare deposit area	44
Table 4.6 Result of rapid analysis of limestone of Okhare area	45
Table 4.7 Result of total analysis of limestone of Okhare area	45
Table 4.8 Table of correlation of grain sizes	48
Table 4.9 Estimation of Calculation of Reserve	50
Table 4.10 Estimation of Calculation of volume of Overburden and Waste	51

LISTS OF FIGURES	
Fig. 1.1 Location map of the study area	3
Fig. 1.2 Drainage and accessibility map of the study area	4
Fig. 2.1 Limestone distribution map(Shrestha, 2001)	13
Fig. 3.1 Block diagram showing major geological	
Structures of Central Nepal(Hagen, 1969)	15
Fig. 3.2 Geological map of the study area after Stocklin and Bhattari(197	7) 16
Fig. 3.3 Geological map and its cross-section of the study area	18-20
Fig. 3.4 Columnar-Section of the geological formations along	21
the road section	
Fig. 3.5 Photograph of Drag fold found near Sanutar Gaon	23
Fig. 3.6 Photograph of Limestone band at Majuwa Mine	24
Fig. 3.7 Photomicrograph of Majuwa limestone	24
Fig. 3.8 Columnar-Section of Majuwa Limestone (at Mine)	26
Fig. 3.9 Fault near MT	28
Fig. 3.10 White- blue marble exposed at Bhainse mine	29
Fig. 3.11 Columnar- Section prepared for the Bhainsedobhan Marble	30
Fig. 3.12 Columnar- Section of Siwalik near MBT in Sukaura Khola	33
Fig. 3.10 Photograph of MBT at Sukaura Khola	34

Fig. 4.	Photograph of distribution of Phyllite lamination within the	
	Limestone bed	36
Fig. 4.	2 Photograph of sliding of the bed over thin beds	37
Fig. 4.	3 Photomicrograph of Okhare Limestone	47

LISTS OF ABBREVIATIONS

Calc. - Calcareous

- HCIL-Hetauda Cement Industry Limited
- IBM Indian Bureau of Mines
- MBT Main Boundary Thrust
- MT Mahabharat Thrust
- NBM-Nepal Bureau of Mines

tpd-Ton per day

- UNDP-United National Development Project
- VDC Village Development Committee
- qtz. Quartz
- calc. Calcite
- mu. Muscovite