

Tribhuvan University Institute of Science and Technology

"Evaluation and Analysis of Connection Admission Control for QoS in WiMax networks"

DissertationSubmitted to

Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master's Degree in Computer Science and Information Technology

by **Bharat Bdr. Kathayat** CDCSIT, TU (2008-2010, Roll No.19)

Tribhuvan University Institute of Science and Technology

"Evaluation and Analysis of Connection Admission Control for QoS in WiMax networks"

DissertationSubmitted to

Central Department of Computer Science and Information Technology Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the Master's Degree in Computer Science and Information Technology

by **Bharat Bdr. Kathayat** CDCSIT, TU (2008-2010, Roll No.19)

Supervisor

Prof. Dr. Shashidhar Ram Joshi

Institute of Engineering Tribhuvan University, Nepal

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology

Student's Declaration

I hereby declare that I am the only author of this work and that no sources other than the listed here have been used in this work.

...

Bharat Bahadur Kathayat

Date: 04 Apr, 2017

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology

Supervisor's Recommendation

I hereby recommend that this dissertation prepared under my supervision by Mr. Bharat Bahadur Kathayat entitled "Evaluation and Analysis of Connection Admission Control for QoS in WiMax networks" in partial fulfillment of the requirements for the degree of M. Sc. in Computer Science and Informatin Technology be processed for the evaluation.

...

Prof. Dr. Shashidhar Ram Joshi Institute of Engineering (IOE), Pulchowk, Nepal

Date: 04 Apr, 2017

Tribhuvan University Institute of Science and Technology Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in Computer Science and Information Technology.

Evaluation Committee

(Internal Examiner) Date: 04 Apr, 2017	(External Examiner)

Abstract

IEEE 802.16/WiMax is one of the emerging as well as promising wireless technologies. Although wireless technology like WiMax has many features such as mobility and cost effectiveness etc. but it also has the issue like limited resources and QoS that necessitate the better mechanism to provide the solution. Among the other mechanism Connection Admission Control is one of the effective mechanisms for better QoS in wireless network.

The main idea behind the connection admission control is to maintain the QoS in the WiMax networks. The algorithm of connection admission control works based on condition whenever condition is satisfied it accepts the request for new connection otherwise it rejects. In the wireless network like WiMax, distinct kinds of applications need distinct requirement of QoS that necessitate the CAC. This thesis presents the theoretical concept on the CAC in the WiMax networks for better QoS. This report also presents two different approaches proposed by the researchers and compares, evaluates and analyzes them on the base features of the algorithm and result obtained by the researchers. Finally shows some area for future work of the two approaches.

Keywords:

Quality of Service, Connection Admission Control, Adaptive Admission Control, Measurement based admission Control

Acknowledgements

This thesis is the outcome of the direction, encouragement and invaluable guidance from my supervisor Prof. Dr. Shashidhar Ram Joshi. I thank him sincerely for helping and motivating me to move ahead with research work in each stage and encouraging me to do the best. I would like to record my sincere thanks and appreciation of his timely help in times of difficulty and friendly advice and inspirations to this work. With this regard I wish to extend my genuine appreciation to respected Head of Central Department of Computer Science and Information Technology, Asst. Prof. Nawaraj Poudel for his kind help and constructive suggestions.

My thanks also go to the members of evaluation committee for reading drafts of this dissertation and providing many valuable comments that improved the presentation and contents of this dissertation.

I express my sincere gratitude to all the people who supported and encouraged me involving directly or indirectly to complete this thesis. I am also obliged to all respected teachers and staffs of CDCSIT for their willing co-operation to bring this thesis work in tangible form.

I have given my best to make this thesis work complete and error free. However, I am always looking forward to the suggestions from the readers which will improve this work.

Table of Contents

Abstract	Ì
Acknowledgements	ii
List of Figure:	v
List of Tables:	vi
List of Abbreviation:	(vii-viii)
Table of Contents	(iii-iv)
Chapter 1: Introduction	1
1.1: Study Background	1
1.2: Main aim and objectives	4
1.3: Approach & Methodology	4
Chapter 2: Background and identification of problem	5
2.1: Introduction	5
2.2: Overview of IEEE802.16 WiMax	5
2.2.1: WiMax Topologies	6
2.2.2: WiMax Protocols Layer:	8
2.2.3: QoS Framework and Service Types in WiMax Networks:	12
2.3: Problem Statement & Connection Admission Control	16
2.3.1: Problem Statement:	16
Chapter 3: Literature Review	17
3.1: Connection Admission Control (CAC):	17
3.1.1: The Need of CAC in WiMax:	17
3.1.2: Basic components of Connection Admission control (CAC):	18
3.1.3: Parameter based and Measurement based Admission Control:	19
3.2: Adaptive admission control	20
3.3: Measurement based admission control (MBAC)	21

Chapter 4: Methodology	24
4.1: Approaches and methodology used in Adaptive CAC & Measurement based	
admission Control	24
4.1.1: Methodologies	24
Adaptive CAC:	24
Measurement based admission control:	24
4.1.2: A specific methods & algorithms used by Adaptive CAC& Measurement	
Based Admission Control	24
Adaptive CAC process:	24
MBAC process:	28
Chapter 5: Result and Analysis	35
5.1: Result obtained:	35
5.1.1: Adaptive CAC:	35
5.1.2: Measurement Based admission control:	37
5.2: Discussion of results	40
5.3: Analysis	40
Chapter 6: Conclusions	42
6.1: Conclusions	42
6.2: Recommendations	43
References:	44

List of Figure

2-1	PMP topology	7
2-2	Mesh topology	8
2-3	OSI reference model, In WiMax only the two first layers are defined	9
2-4	IEEE 802.16 protocol architecture	9
2-5	General format of MAC PDU	10
2-6	Protocol layers of IEEE 802.16	11
2-7	Security Sub layer	12
2-8	QoS Architecture in WiMax Network	13
3-1	Basic Architecture of Admission Control	18
3-2	Traditional CAC Algorithms in WiMax Networks	19
3-3	Components of Measurement based admission control	22
4-1	Proposed Bandwidth Reservation Scheme	26
4-2	M-LWDF scheduler	29
4-3	MAC frame partitioning	30
4-4	CAC algorithms for real time traffic	31
4-5	CAC algorithms for non-real-time traffic	32
5-1	Handoff and real-time connections blocking rates	35
5-2	Non-real-time and best effort connections blocking rates	36
5-3	Average packet delay Vs Average rate	38
5-4	Call blocking probability Vs Arrival rate	39

List of Tables

2-1	Comparative features of both version of WiMax (Fixed and Mobile)	6
2-2	IEEE803.16E Classes, Applications and QOS Parameters	14
2-3	QoS requirements for different applications	15
5-1	Simulation Parameters for Adaptive CAC	35
5-2	Simulation Parameter for Measurement Based admission control	37

List of Abbreviation

PHY:	Physical Layer
SS:	Subscriber Station
LLC:	Logical Link Control
ATM:	Asynchronous Transmission Mode
MAC:	Medium Access Control
BE:	Best traffic
BWA:	Broadband Wireless Access
CAC:	Connection Admission Control
PMP:	Point to Multipoint
CPS:	Common Part Sub layer
DSA:	Dynamic Service Addition
BS:	Base station
CS:	Convergence Sub layer
CID:	Connection Identifier
rtPS:	Real time Polling Service
GSM:	Global System for Mobile Communications
DSD:	Dynamic Service Change
ITU:	International Telecommunication Union
QoS:	Quality of Service
nrtPS:	Non real time Polling Service
IEEE:	Institute of Electronic and Electronic Engineers
MSDU:	Medium access Control protocol data unit
UGS:	Unsolicited Grant service
DSD:	Dynamic Service Detection
LOS:	Line of Sight
MAC CPS:	Medium access control common part sub layer
NLOS:	Non-line of Sight

MAC SAP: Medium Access Control Service Access Point

IETF: Internet Engineering Task Force

MBAC: Measurement Based admission control

WiMax: Worldwide Interoperability for Microwave Access

PDU: protocol data unite

M-LWDF: Modified Largest Weighted Delay First

OFDMA: Orthogonal Frequency Division Multiplexing access

OSI: Open Systems Interconnection

VoIP: Voice over Internet Protocol

OFDM: Orthogonal Frequency Division Multiplexing

PSDU: Protocol service data unite

SDU: Service data unite