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ABSTRACT 

Minimum vertex cover(MVC) problem is a NP Complete optimization problem that attracts 

many researchers due to its wide range of application in real life problems. As MVC is NP-

complete, there are no any algorithm that finds optimal solution to MVC problem in 

polynomial time. Numerous of approaches have been proposed among which approximation 

approach is much favored in the field of MVC as it guarantees to give a solution that is near 

to optimal or sub optimal solution. There is a number of MVC algorithm based on 

approximation approaches that constructs vertex cover .This Dissertation work is focused on 

a comparative study of three recent approximation approach based algorithms 

,NOVCA,CSSA and NMVSA. The performance of each algorithm is measured in terms of 

approximation ratio and step count. Here step count is used as second performance metrics 

because the performance differences in approximation ratio of all the algorithms are 

relatively small.  In the dissertation work, benchmark graph datasets are used for the 

comparison of algorithms and an extensive analysis have been provided to help the selection 

of efficient algorithm. 

 

Keywords: Minimum vertex cover, Approximation algorithms, Approximation ratio, 

Near optimal vertex cover algorithm(NOVCA), New modified vertex support 

algorithm(NMVSA), Clever Steady Strategies Algorithm(CSSA) 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Introduction 

Vertex cover of a graph represents the sub set of vertices that are sufficient to cover 

all the edges of the undirected graph. Vertex cover problem is one of the graph related 

problem where the objective is to determine a set of vertices of a graph that covers allthe 

edges of the graph. It is an important NP Complete problem that has been extensively 

researched and reviewed by various researchers. 

Minimum vertex cover problem is an important combinatorial optimization problem 

with a goal of finding a vertex cover of smallest possible size for the given graph.MVC has 

many real-world applications, such as network security, scheduling, VLSI design and 

industrial machine assignment. To find an optimal solution to minimum vertex cover is very 

difficult, but to get an alternative approximate or sub optimal solution is easier. So, many 

approximation algorithms have been proposed to construct vertex cover indifferent ways. 

Such algorithms have a polynomial time complexity and return a solution that is close to 

optimal solution. The quality of solution produced by approximation algorithm is 

traditionally measured in terms of approximation ratio of the solution and the optimal one. 

Approximation ratio is not necessarily a constant. If it is small, the quality of solution is good 

and the algorithm is considered to be efficient. But with ongoing research, there are several 

approximation algorithms for VCP that provide good quality solutions with almost same 

approximation ratios. So the efficiency of the algorithms cannot be measured by using only 

approximation ratios. 

This Dissertation work explores the different approximation techniques that have been 

successfully applied to VCP, and compares three recent algorithms to determine the efficient 

one among them. In order to do so, an extensive literature review has been carried out and an 

experimental result, that compares these three algorithms in terms of different performance 

metrics, is provided in this dissertation work. The two comparison parameters: approximation 

ratio and step count, are used to compare the performance of algorithms. Here step count is 

used as second performance metrics because the differences in approximation ratio of these 

algorithms are relatively very small. Different standard benchmark graph datasets available 
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across the repository of internet are used for the comparing of algorithms performance and 

comparative analysis have been provided for the selection of efficient algorithm. 

 

1.2 Problem Definition 

The minimum vertex cover problem is the optimization problem of finding a smallest 

vertex cover in a given graph. Since it is a NP complete, there is no any algorithms that can 

find a optimal solution to this problem in polynomial time of the size of input. Among the 

different approaches to deal with NP-complete problems, approximation algorithms are most 

preferred technique as the size of the vertex-cover returned by these approximation 

algorithms is guaranteed to be no more than twice the size of an optimal vertex-cover. There 

are different Approximation algorithms for the vertex-cover problem that returns a solution 

that is near to optimal. Many of these algorithms claim that it is better or have best known 

approximation ratio for finding minimum vertex cover.  Thus comparative evaluation of such 

algorithms is worth in computational complexity theory. 

  

1.3 Objective 

The main objective of this dissertation work is:  

 To study the approximation algorithms for finding minimum vertex cover in a given 

undirected graph. 

 To evaluate and to compare the performance of three recent approximation algorithms 

in terms of approximation ratio and step count. 

 To suggest an approximation algorithm that has best approximation ratio and which 

gives best suboptimal/optimal solution to a wide range of input graphs. 

 

1.4 Motivation 

Vertex cover problem is one of the most explored NP complete problems due to its 

wide range of applicability to real world problem. Researchers are providing different 

innovative ideas to solve the minimum vertex cover problem efficiently and as fast as 

possible. A number of algorithms are presented one after another that are both efficient and 

fast in their own context but it is difficult to decide which algorithm is appropriate for the use 

with large variety of inputs. Therefore it is a worth work to compare existing algorithms that 

claim to be efficient and to provide an extensive analysis of these algorithms. 



3 

 

 

1 

2 

6 

3 

4 

5 

1 

2 

6 

3 4 

5 

1 

2 

6 

3 

4 

5 

1 

2 

6 

3 4 

5 

1.5 Background 

1.5.1 The Vertex Cover Problem 

In graph theory, a vertex cover of a graph is a set of vertices such that each edge of 

the graph is incident to at least one vertex of the set. It is a set of vertices in a graph such that 

every edge in the graph is covered by the vertices in the cover set. Formally, A vertex cover 

of an undirected graph G =(V,E)  is a subset V'V such that if  (u,v)E, then u V'  or  vV' 

(or both). That is, each vertex “covers” its incident edges, and a vertex cover for G is a set of 

vertices that covers all the edges in E. The size of a vertex cover is the number of vertices in 

it. The following Figure 1.1 shows two examples of vertex covers, where vertex cover V ′ is 

shaded [1]. 

    Figure 1.1: Vertex Cover examples 

 

In above example, a possible vertex cover are {1,2,4} and {1,3,4,6}. The number of 

vertices in vertex cover gives its size. The vertex-cover problem is a problem that aims to 

find a vertex cover of minimum size in a given graph. Such a vertex cover is also called a 

minimum vertex cover or optimal vertex cover. It is a classical optimization problem in 

computer science and is a typical example of an NP hard optimization problem that has 

approximation algorithms. The following Figure 1.2 shows examples of minimum vertex 

cover for the graphs in Figure1.1, where minimum vertex cover is shaded. 

 

 

 

 

 

 

 

Figure1.2:Minimum vertex cover 
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In above example, minimum vertex cover for graphs in Figure 1.1 are {2,6} and 

{2,3,6}.  

There are two forms of minimum vertex cover: Optimization and Decision.  

The minimum vertex cover problem is the optimization problem of finding a 

minimum sized vertex cover in a given graph. 

INSTANCE: Graph G 

OUTPUT: Smallest number k such that G has a vertex cover of size k. 

 

If the problem is stated as a decision problem, the problem is to determine whether a 

graph has a vertex cover of a given size. That is verification is done to analyze the vertex 

cover of a specified size. 

INSTANCE: Graph G and positive integer k.  

QUESTION: Does G have a vertex cover of size at most k ? [1] 

 

This decision version was one of Karp’s 21 NP-complete problems and is therefore a 

classical NP-complete problem in computational complexity theory. Furthermore, it (the 

vertex cover problem) is fixed-parameter tractable and a central problem in parameterized 

complexity theory. It is often used in computational complexity theory as a starting point for 

NP-hardness proofs [1]. Since It is a NP – complete problem, so there are no any algorithm 

that can solve it exactly in polynomial time. Because of the NP-Completeness and wide range 

of applications, vertex cover problem, especially minimum vertex cover problem has been an 

important research topic among researchers. Many real world problems can be formulated as 

an instance of minimum vertex cover problem. Example areas are communication network, 

civil and electrical engineering, bio-informatics etc. One typical application of minimum 

vertex cover problem is in installing cameras on traffic lights to cover each road on a map can 

be modeled as minimum vertex cover problem where lights representing vertex and roads as 

edges and job is to install the minimum number of cameras so every road has at least one 

camera on its either end [2]. 

Even though it is not possible to find an optimal vertex cover in a graph G in 

polynomial time, a vertex cover that is near to optimal can be found efficiently in reasonable 

time. Approximation algorithms play a critical role in obtaining near to optimal solution to all 

NP-Complete problems[3]. 
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1.5.2 Application of Vertex Cover 

The vertex cover problem is a NP complete class problem in terms of complexity. 

Due to NP class problem this problem mainly attracts researcher towards it. Other main 

reason is it’s relevant to real world applications. The minimum vertex cover (MVC) problem 

is very popular due to its real life applications. MVC is used in civil and electrical 

engineering, VLSI design, MAP labeling, computer networking, sensor networks and 

Bioinformatics [4]. 

One of the real life application examples of the minimum vertex cover is the 

deployment of guards on the corridors in a museum. Each edge corresponds to corridor in a 

museum and each corridor intersection corresponds to a vertex in the graph. The problem 

here is to deploy guards in such a way to cover each corridor of a museum with minimum 

number of guards. This problem can be solved by using the minimum vertex cover 

algorithms. [4]. 

 Application Example in sensor network: The paper [5] addresses a problem in 

wireless sensors network to increase the network life time and proposed a solution for it using 

vertex cover algorithm. The proposed algorithms adopt the vertex cover technique to enhance 

the live-time of the wireless sensor network by selecting minimum number of nodes that 

reduce power consumption. The minimum (optimal) number of vertices (sensors) problem is 

NP-Complete. Therefore, a near-optimal solution to the problem can be obtained by an 

approximation algorithm that solves the problem in polynomial time. 

The vertex cover problem is also closely related to many other hard graph problems 

such as the problems of maximum clique and independent set problems and so it interests the 

researchers in the field of design of optimization and approximation algorithms. For instance, 

the independent set problem [3] is similar to the minimum vertex cover problem because a 

minimum vertex cover defines a maximum independent set and vice versa. Another 

interesting problem that is closely related to the minimum vertex cover is the edge cover 

which searches for the smallest set of edges such that each vertex is included in one of the 

edges[6]. 

Another example of a practical application is the hitting set problem arises in efficient 

dynamic detection of race conditions. In this case, each time global memory is written, the 

current thread and set of locks held by that thread are stored. Under lockset-based detection, 

if later another thread writes to that location and there is not a race, it must be because it 

holds at least one lock in common with each of the previous writes. Thus the size of the 
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hitting set represents the minimum lock set size to be race-free. This is useful in eliminating 

redundant write events, since large lock sets are considered unlikely in practice[1]. 

 

1.5.3 Problems Related to Vertex cover 

 Vertex cover problem is closely related to two other popular optimization problems: 

MC and MIS. The Figure 1.3 shows an example. These three problems actually can be 

considered as three different forms of the same problem[6]. 

 

1.5.3.1 Clique problem  

A clique in an undirected graph G= (V, E) is a subset V' ⊆V of vertices, eachpair of 

which is connected by an edge in E. In other words, a clique is a completesub-graph of G. 

The size of a clique is the number of vertices it contains. The Cliqueproblem is the 

optimization problem of finding a clique of maximum size in a graph.As a decision problem, 

we ask simply whether a clique of a given size k exists in thegraph [3]. 

 

Instance: a graph G= (V, E) and a positive integer k ≤ |V|. 

Question: is there a clique V' ⊆ V of size ≥ k?    

 

1.5.3.2 Independent-set problem  

An independent set of a graph G= (V, E) is a subset V' ⊆V of vertices such thateach 

edge in E is incident on at most one vertex in V'. The independent set problem isto find a 

maximum-size independent set in G [3]. 

 

Instance: a graph G= (V, E) and a positive integer k ≤ |V|. 

Question: is there an independent set of size ≥ k? 

The following are equivalent for G= (V, E) and a subset V' of V and 𝐺 = (V,𝐸 ), where 

𝐸  = {(u, v): u, v ∉V, u≠ v, and (u, v) ∉ E} 

(a). V' is a clique of G. 

(b). V' is an independent of 𝐺 

(c). V-V' is a vertex-cover of 𝐺 



7 

 

 

 

Figure1.3: Relationship of VC with other NP-problems. 

(a) Graph G(V,E) with Clique V'={u,v,x,y} (b)Complement graph G' with Independent set 

V'={u,v,x,y}  (c) Vertex cover for graph in Figure (b) is V-V'={w,z} 

 

1.5.4 Complexity Classes of Problems: P, NP, and NPC 

 

Figure 1.4 : Relationship among P,NP, NP-complete and NP Hard Problems 

 

The class P consists of those problems that are solvable in polynomial time. More 

specifically, they are problems that can be solved in time O(n
k
) for some constant k, where n 

is the size of the input to the problem. The class NP consists of those problems that are 

“verifiable” in polynomial time.  The abbreviation NP refers to "nondeterministic polynomial 

time". That is if a “certificate” of a solution to a problem is given, then it can be verified that 

the "certificate" is correct, in time polynomial of the size of the input to the problem. For 

example, minimum vertex cover problem, the Hamiltonian cycle problem, 3-CNF 

satisfiability etc. are NP complete problems. Any problem in P is also in NP, since if a 

problem is in P then it can be solved in polynomial time without even being supplied a 

certificate. 

NP 
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P 
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NP-hard problems are partly similar but more difficult problems than NP complete 

problems. They don’t themselves belong to class NP, but all problems in class NP can be 

reduced to them. Very often, the NP-hard problems really require exponential time or even 

worse.  

NP-complete problems are a subset of NP-hard problems, and that’s why NP-

complete problems are sometimes called NP-hard. In computational complexity theory, a 

decision problem is NP-complete when it is both in NP and NP-hard. The set of NP-complete 

problems is often denoted by NP-C or NPC[3,7]. Figure 1.4 shows the Relationship among P, 

NP, NP-complete and NP Hard Problem. 

 

1.5.5 Coping with NP-completeness/ Solving NP-complete problems 

There are many important optimization problems with NP-completeness that may be 

quite hard to solve exactly. Due to the theoretical and practical importance NP complete 

problems must be solved, as solutions to these problems are useful in various fields. Various 

algorithmic approaches have been used to tackle NP-complete problems.  At present, all 

known algorithms for NP-complete problems require time that is super polynomial in the 

input size, and it is unknown whether there are any faster algorithms. The following 

techniques [7] can be applied to solve computational problems in general, and they often give 

rise to substantially faster algorithms: 

 

Approximation: The idea is that instead of searching for an optimal solution, a solution that 

is near to optimal or “almost” optimal can be determined. This is an algorithm that runs in 

polynomial time (ideally), and produces a solution that is within a guaranteed factor of the 

optimum solution. 

 

Randomization: Randomness can be used to get a faster average running time, and allow the 

algorithm to fail with some small probability.  An algorithm that uses random numbers to 

decide what to do next anywhere in its logic is called Randomized Algorithm. The algorithm 

typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of 

achieving good performance in the "average case" over all possible choices of random bits. 

Formally, the algorithm's performance will be a random variable determined by the random 

bits; thus either the running time, or the output (or both) are random variables. 
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General Search Methods: There are a number of very powerful techniques for solving 

general combinatorial optimization problems that have been developed in the areas of AI and 

operations research such as branch-and-bound, A*-search, simulated annealing, and genetic 

algorithms. The performance of these approaches varies considerably from one problem to 

problem and instance to instance. But in some cases they can perform quite well. 

 

Restriction: By restricting the structure of the input (e.g., to planar graphs), faster algorithms 

are usually possible. Narrowing the problem space helps to solve the problem. For instance, if 

we can't solve TSP on general graphs, we can try to just solve it for graphs obeying a 

Euclidean distance metric. 

 

Parameterization: If certain parameters of the input are fixed, faster algorithms can be 

designed. These algorithms depends on a parameter say 'k' of the given problem . Generally 

the algorithm running time is exponential on k but not on the input size. Hence for smaller 

value of k, a solution can be found. 

 

Heuristic: A heuristic is a strategy for producing a valid solution, but there are no guarantees 

how close it is to optimal. These algorithms works “reasonably well” in many cases, but the 

quality of result and efficiency of the algorithm may not be always so good. This is 

worthwhile if all else fails, or if lack of optimality is not really an issue. A heuristic is a 

function that ranks alternatives in search algorithms at each branching step based on available 

information to decide which branch to follow. Metaheuristic approaches are often used. A 

metaheuristic is a heuristic designed to select a heuristic (partial search algorithm) that may 

offer a satisfactorily good solution to an optimization problem, especially with incomplete 

information or limited computation capacity. Metaheuristics sample a set of solutions which 

is too large to be completely sampled. Metaheuristics may make few assumptions about the 

optimization problem being solved, and so they may be usable for a variety of problems. 

 

1.6 Contribution Of This Dissertation 

The main contribution of this dissertation to the field of vertex cover problem is that 

this dissertation work compares three recent algorithms experimentally on more than 70 

different instances of different benchmark graphs datasets. This experimental comparison 



10 

 

 

provides clear result that helps in the selection process of the minimum vertex cover 

algorithms for solving the real world problem where vertex cover algorithms can be applied. 

 

1.7 Outline of the Dissertation 

The remaining part of the document is organized as follows, 

Chapter 2 describes the research methodology of the dissertation work on Vertex cover 

problems. It includes the methods and techniques used in the area of vertex cover problem till 

now and the method used for the comparative analysis in this dissertation work. 

Chapter 3presents the overview of the algorithms used in this dissertation work. 

Chapter 4 describes the details of implementation of the three algorithms used in this work. 

Chapter 5contains the experimental data collected during this dissertation work and analyses 

the experimental results. The performances of the algorithms over the input datasets are 

analyzed in this section. 

Chapter 6concludes the dissertation work by summarizing the analysis and further 

recommendation of the research work. 
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CHAPTER 2 

RESEARCH METHODOLOGY 

2.1 Literature Review 

Vertex cover problem fascinates a lot of computer science researchers. A lot of work 

in the field of vertex cover problem had been done in the past and new research is going on. 

In 1972, Researcher Karp proved this problem to be NP complete[8]. Even if a problem is 

NP-complete, there are three ways to get around NP-completeness. First, if the actual inputs 

are small, an algorithm with exponential running time may be perfectly satisfactory. Second, 

it may be possible to isolate important special cases that can be solved in polynomial time. 

Third, we might come up with approaches to find near-optimal solutions in polynomial time 

(either in the worst case or the expected case). In practice, near optimality is often good 

enough.  An algorithm that returns near-optimal solutions is called an approximation 

algorithm. Although the vertex cover problem and minimum vertex cover problem is NP 

complete problems, there had been a lot of research works for finding a optimal or near to 

optimal solutions using different techniques such as heuristics algorithms , approximation 

algorithms etc. Many researchers are in favor of approximation algorithms as the size of the 

vertex-cover returned by these approximation algorithms is guaranteed to be no more than 

twice the size of an optimal vertex-cover.  

APPROX-VERTEX-COVER [3] is a polynomial time 2-approximation algorithm that 

picks any edge and adds the corresponding vertices to vertex cover set S. The idea of this 

heuristic is to simply put both vertices into the vertex cover and remove all the edges that are 

incident to either of the added vertex. This process is repeated for all remaining edges. This 

simple algorithm guarantees an approximation within a factor of 2 for the vertex cover 

problem i.e. the cover generated is at most twice the size of the optimum cover. It runs in O 

(V + E) time and loops until all edges have been removed returning a vertex cover that is 

twice the optimal cover. 

The Maximum Degree Greedy (MDG)[9,10] improves the 2-for-1 heuristic of the approx 

vertex cover algorithm. MDG is a simple but clever algorithm. At each step, it selects and 

adds the vertex of highest degree to vertex cover, and then removes it and its all incident 

edges. This process is repeated until all edges in the graph are covered. Clearly a vertex of 
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higher degree should be more valuable in forming a small vertex cover since it covers a 

number of edges.  

The Greedy Independent Cover (GIC)[10] is an adaptation of the greedy algorithm for the 

maximum independent set problem[11]. It is based on the concept that the vertices not in 

independent set must belongs to vertex cover.  In this algorithm, vertex of the minimum 

degree is selected and all its neighbors are added to the vertex cover, the process continues 

until we cover all edges. The greedy heuristic cannot always find an optimal solution. The 

Figure 2.1 shows failure of greedy approach in a simple graph.  

 

Figure 2.1: Vertex cover by greedy algorithm 

 

Vertex cover algorithms based on greedy approach has worst performance on 

complete bipartite graphs and gives a solution of size two times the optimal size. 

The Depth First Search (DFS) algorithm has worst-case approximation ratio of 2. This 

algorithm creates depth-first search spanning tree from the given graph and returns its non-

leaf vertices. If G is connected the result is a connected vertex cover. Otherwise the algorithm 

is executed on each connected component of G (excepted isolated vertices) [10]. 

The LISTLEFT(LL) algorithm [10] proposed by Avis and Imamura to find vertex 

cover based on a list heuristic. In this model, an algorithm scans the vertices one by one in a 

fixed given order (called a list) and takes a decision for each currently scanned vertex (and 

each decision is definitive). In this algorithm the order of scanning the list (i.e. selection) of 

the vertices is known in advance and cannot be changed during the process. It works by 

scanning the vertex list from left to right and the vertex that has at least a right neighbor not 

in vertex cover is added to vertex cover set. The authors show that the ListLeft Algorithm has 

(a) A Graph instance (b)  A vertex cover of 

size 5 obtained by the 

greedy algorithm 

(c) A minimum 

vertex cover 
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an approximation ratio of
√∆

2
+

3

2
(is the maximum degree of the graph) when lists are sorted 

by decreasing order of their degrees and that any list algorithm cannot have an approximation 

better than
√∆

2
in that case[10]. 

Another list heuristic algorithm ListRight [12] modifies the LISTLEFT algorithm by 

changing the order of processing the list, i.e. list are scanned from right to left. The ListRight 

(LR) algorithm is a better list heuristic than ListLeft. It was proved that for any list L 

ListRight returns a vertex cover whose size is smaller than or equal to the one constructed 

byListLeft applied on the same list L. ListRight has a worst-case approximation ratio of Δ, 

where Δ is the maximum degree in the graph. [10,12]. 

Aggression and Stein presented a divide and conquer approach. Their idea is to divide 

the graph into sub graphs and then solving each sub graph. The sub-solutions are then 

combined to get the solution of the original graph. The division of graph is done on the basis 

of specific graph structure and unique properties. The included methodologies are degree one 

and two vertices elimination, triangle elimination, almost bipartite etc. Their approach does 

not seem to be feasible for practical purpose as the criteria for graph division is vague. Divide 

and conquer approach is very efficient for providing solutions to other scenarios but it fails to 

provide a generic solution plus the graph divisions also add to the complexity[13]. 

Alom [13] proposed a solution to vertex cover problem by introducing an O(|E|) 

greedy algorithm. This algorithm selects the vertex which has maximum number of edges 

incident to it. All the edges, that are incident to this vertex, are discarded. If more than one 

vertex have the same maximum number of edges, this algorithm select the vertex which have 

at least one edge that is not covered by other vertices. This process is repeated until to cover 

all vertices[13]. 

Many of the previous mentioned methods to solve the problem of MVC depend on the 

degree of the vertex itself. Balaji et al. presented another technique that depends of a value of 

the support of the vertex. Support of a vertex is the sum of degrees of all vertices adjacent to 

that vertex. They proposed an algorithm called vertex support algorithm (VSA). They have 

tested their approach on large number of benchmarks and are optimal in most of the cases and 

its rum time complexity is O (EV
2
) [13,14,15]. They provide empirical results obtained using 

extensive set benchmark graphs to show the effectiveness of algorithm. They have also 

compared their approach with other techniques. The algorithm design is little bit complex and 
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the calculation of support for each and every node in iterative manner adds some complexity. 

But the quality of results is considerably better than other approaches[13,15]. 

A modification of the VSA called Modified Vertex Support Algorithm(MVSA) is 

proposed by Imran and Hasham by modifying the decision of MVC node selection, MVSA 

select node on the basis of their surroundings [13,14]. Here in MVSA, the selection of the 

vertex does not depend only on the vertex that have the maximum the support value but it 

finds all the vertices with minimum support value and then it selects the vertex with 

minimum support from the list of all neighbors of the selected vertices. MVSA selects vertex 

after analysis of surrounding support value of all attached vertices to the candidate node. All 

vertices attached to minimum support value is analyzed first on the basis of their support 

value and then vertex with maximum support is selected. It is a small modification but 

experimental results provided in [14]show that MVSA can provide better results in 

comparison to the original VSA[13,14]. 

Some other solutions depend on genetic algorithms such as algorithm for heuristic 

vertex cover (HVX) [16]. Xu and Ma[13,17] presented a solution that uses annealing 

algorithms to find the minimum vertex cover. In their work they show almost 100% 

approximation ratio for some benchmarks but they need to apply it on more benchmarks.  A 

new clever intelligent greedy approach is presented by Gajurel and Bielefeld named 

NOVAC-I [13,18,19]. This approach works on a clever concept raised from the keen 

observation and analysis of relationship among vertices. The vertices attached to minimum 

degree nodes are candidate of MVC with high probability. A well modified version of VSA 

named Advance Vertex Support Algorithm (AVSA) has been proposed in [20]and has 

showed that if the selection is modified then results vary a lot from the original values. It also 

concludes that the quality of solution also depends on the data structure used and its 

manipulation.  

The Clever Steady Strategies Algorithm (CSSA) [4] presents a simple and fast 

polynomial time algorithm. The proposed algorithm consists of three stages which produce 

optimal or approximate vertex cover for any un weighted and undirected G = (V, E). The 

CSSA is tested on small as well as on large benchmark instances. The experimental results 

and comparative analysis show that the CSSA yields better and fast solution than those 

approximation algorithms found in literature for solving minimum vertex cover problem. A 

recent paper proposes a new algorithm, New modified vertex support algorithm (NMVSA) 

[21] which is a modification of already existed algorithm called MVSA that uses the same 
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principle of selecting candidate from the neighborhood of the vertex with a modification in 

the selection procedure. A comparative study is conducted between the NMVSA and MVSA 

which shows that the proposed algorithm NMVSA provides better or equal results in the most 

cases of the underlying data sets which leads to a better average approximation ratio of 

NMVSA. NMVSA inherits the simplicity of the original algorithm[21]. 

In a research paper[22],Chen, J., Kou, L., and Cui, X. presents a new approach, an 

approximation algorithm is obtained for the minimum vertex cover problem that is based on 

Dijkstra algorithm. In the process of getting a vertex cover, the maximum value of shortest 

paths is considered as a standard, and some other criteria are defined The time complexity of 

the Algorithm is O(n
3
 ) ,where n is the number of vertices in a graph. 

In [23] authors have presented a new extra fast approximation algorithm for solving 

MVC generally in all graphs. The proposed algorithm is named as degree contribution 

algorithm (DCA), and it introduces a new data structure called 'degree contribution' (DC) for 

each node which is the sum of degree of that node and total number of nodes with that degree 

in graph.This data structure for graphs takes account of whole graph for each node 

contribution value. All decisions regarding vertices are made on the basis of the proposed 

data structure. Effectiveness of DCA is shown by applying it to best available benchmarks 

and after large number of experiments worst approximation ratio recorded was 1.041 and an 

average approximation ratio was 1.005. These results show that algorithm can perform well 

in solving graphs faster as compared to other algorithms 

In [24] an evolutionary approach to solving the generalized vertex cover problem 

(GVCP) is presented. Binary representation and standard genetic operators are used along 

with the appropriate objective function. The experiments were carried out on randomly 

generated instances with up to 500 vertices and 100 000 edges. 

`A hybrid approach to approximating the minimum vertex cover based on a combination of a 

steady state genetic algorithm with a greedy heuristic. First the genetic algorithm produces a 

set of nodes, which is then reduced by greedy heuristics. They tested their approach against 

ant colony optimization (ACO) and showed that their approach not only works faster than 

ACO, but is also efficient in producing final output[25]. 

The authors of [25] propose a new approximation algorithm for the minimum vertex 

cover problem called vertex cover using a maximum independent set (VCUMI). This 

algorithm works by removing the nodes of a maximum independent set until the graph is an 

approximate solution of MVC. Based on its empirical results, it states that VCUMI 
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outperforms all competing algorithms presented in the literature. Based on all the 

benchmarks[26] used, VCUMI achieved the worst case error ratio of 1.033, while VSA, 

MDG and NOVAC-1 gave the worst error ratios of 1.583, 1.107 and 1.04, respectively. 

 

2.2 Concepts of Approximation algorithm 

Many computational problems of practical significance are NP-complete. Some of 

themare so important that they cannot be left unsolved for the fact that their optimal solution 

is impossible to be determined in a reasonable time frame. If a problem is NP-complete, it is 

unlikely to find a polynomial-time algorithm for solving it exactly, but as previously 

mentioned there are different methods to tackle with them. In practice, near-optimality is 

often good enough. An algorithm that returns near-optimal solutions is called an 

approximation algorithm[3]. 

Depending on the problem, an optimal solution may be defined as one with maximum 

possible cost or one with minimum possible cost; that is the problem may be either 

maximization or a minimization problem. An algorithm for a problem has an approximation 

ratio of ρ(n) if, for any input of size n, the cost c of the solution produced by the algorithm is 

within afactor of ρ(n) of the cost c* of an optimal solution[3]:  

 

Max(c/c*, c*/c) ≤ ρ (n) 

 

 An algorithm that achieves an approximation ratio of ρ(n) is called a ρ(n)-

approximation algorithm.The definitions of approximation ratio and of ρ (n)-approximation 

algorithm apply for both minimization and maximization problems[3]. 

 

2.3 Research Methodology 

 

2.3.1 Input Selection 

All the graph data that is used for the testing and analysis of the approximation 

algorithms are obtained from the different benchmark graph datasets available over the 

internet[26]. The benchmark graph datasets have predetermined optimal solution [26].  

 

 



17 

 

 

2.3.2 Input File Format 

The inputs provided in the above files are in the formats as given below: 

 

 

 

 

 

Figure 2.2: Input Graph 

 

Sample graph data file format for above graph in Figure2.2 : 

p edge 7 8 

e 1 2 

e 2 3 

e 3 4 

e 4 5 

e 4 6 

e 4 7 

e 5 6 

e 5 3 

 

Here 'p' is the number of vertices in the graph, edge is the number of edges in the graph and 'e 

1 2' represents an edge between vertex 1 and vertex 2 and so on. 

 

 

2.3.3 Output Format 

The output file containing vertex cover information is formatted as given below: 

size 3 2 4 5 

 

Here the 'size' and the first number following the word 'size' is the size of vertex cover 

found by the algorithm. The other numbers following the first number, represents the vertex 

included in the minimum vertex cover set. 

2 3 

5 
7 

1 

4 

6 
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There are other three output files for each algorithm generated as outputs that contains 

data and information about the input and output of the algorithms implemented, formatted as 

given below: 

 

(Algorithm name) results: 

       input graph file |        No. of vertices |               MVC Size |            step count | 

           frb30-15-1.mis                      450                      427                      427 

 

2.3.4 Data Collection ,testing and comparison 

The benchmark graph dataset is passed as the input in the different algorithms 

implemented and three separate output files are generated for each of the input graph data 

files and each algorithm. Each of these output files contains the size of vertex cover and the 

vertex cover set found by the algorithm. This output file containing vertex cover set is tested 

for the verification that the output file contains a valid vertex cover set for the input graph.  

The aim of this Dissertation is to compare the performance of three algorithms CSSA, 

NOVCA-I, and NMVSA. The size of vertex cover and vertex cover set is determined by 

executing the implemented programs for the algorithms for each input graph and the required 

data is collected in separate text file as output of the programs. The approximation ratio of the 

algorithms is calculated as:  

Approximation ratio= MVC size determined by algorithm / Optimal MVC size. 

The results of the experimentation are tabulated in tables. 
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CHAPTER 3 

THE ALGORITHMS 

3.1 Nearly Optimal Vertex Cover (NOVAC-I) 

Gajurel and Bielfeld presented an extremely fast polynomial time algorithm, the Near 

Optimal Vertex Cover Algorithm (NOVCA)-I[18,19] that produces an optimal or near 

optimal vertex cover for any known undirected graph G (V, E). NOVCA-I is motivated by 

the fact that a vertex cover candidates are those that are adjacent to minimum degree vertex. 

So that when the adjacent vertices of minimum degree are added to vertex cover list, the 

degree of the minimum degree vertex will be forcibly rendered to zero without choosing it. 

This fact has been reinforced during tie when the vertex with neighbors having maximum 

degrees is preferred over other minimum vertices. The complexity of NOVCA-I is O(E (V + 

log
2
V)); with V = n, the complexity becomes O(n

2
 (n + log

2
n)) which is polynomial. 

NOVCA-I constructs the vertex cover by repeatedly adding, at each step, all vertices adjacent 

to the vertex of minimal degree; in the case of a tie, it selects the one having the maximum 

sum of degrees of its neighbors. The vertices are chosen in increasing order of their degrees 

i.e. the adjacent vertices of minimum degree vertex are included in vertex cover VC. The 

implementation forcibly renders the degree of low degree vertices to zero without choosing 

them. Run time complexity using their approach is in O (n
2
 log n) where 'n' is total number of 

vertices [18]. 

 

3.2 Clever Steady Strategy Algorithm 

The algorithm Clever steady strategy algorithm (CSSA) [4] selects a minimum degree 

vertex from a list of all vertices adjacent to minimum degree vertices.  The algorithm 

primarily consists of three stages which produce optimal or approximate vertex cover for any 

unweighted and undirected G = (V, E). In the first step the degree of each node of the given 

graph is calculated. Then the minimum degree node(s) is searched and the adjacent nodes of 

minimum degree nodes are determined. In the third stage the minimum degree node in all 

adjacent nodes of minimum degree is searched out and is selected as a candidate for MVC 

and all its edges are deleted. These three steps are executed repeatedly until no edge remains 

in the graph. 

The complexity of the CSSA is  O(n
2
 log n), where n is number of vertices. 
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3.3 New Modified Vertex Support Algorithm 

The selection of vertices in New Modified Vertex Support Algorithm (NMVSA) [21] 

algorithm relies on the degree of the neighborhood vertices and support of a vertex. The 

definition of neighborhood, degree, and support of vertex is as:  

 Neighborhood of a vertex: Let G be an undirected graph G (V, E) where V is set of 

vertices and E is set of Edges. |E|=m, |V|=n. For each vV the neighborhood of v,  

N (v) = {uV | u is adjacent to v. } 

 Degree of a vertex: The degree of the vertex d (v) is the number of adjacent neighbors 

for vertex v V.  

 The support of a vertex: support of a vertex s (v) is the sum of degrees of all neighbors 

of v.  

 Vertex Cover: Vertex cover c={x  V | x=u or v if (v,u) is an edge eE}  

The idea of selection in the algorithm NMVSA depends on the fact that the candidates 

of vertex cover are adjacent to the vertices with minimum degrees. On each iteration, 

NMVSA adds a vertex from the support list with the maximum degree to the vertex cover 

and delete all edges connected to this vertex. The process continues until no more edges still 

in E [21]. 

The selections of the vertices that will be part of the vertex cover rely on the vertices 

that are adjacent to minimum degree vertices and their values of support. Value of support is 

a value represents the sum of the degrees of the neighbors of the vertices. The intuition 

behind the algorithm is to select the vertices that connect as much as possible from the 

vertices that are located on the edges of the graph. The complexity of the NMVSA is O(mn
2
), 

where m is number of edges and n is number of vertices. 
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CHAPTER 4 

IMPLEMENTATION 

4.1 Tools Used in program development 

All the three algorithms studied in this dissertation work, are separately implemented 

using C++ programming language. The standard template library (STL) of  C++  

programming language are heavily used in the implementation of algorithms as these library 

provides number of built in methods that are very useful while developing the programs. 

 

4.2 Data Structure Used 

Different data structures such as array, vector, lists that are readily available in 

Standard Template Library of C++ are used while implementing the algorithms for this 

dissertation work. The graph data structure is implemented using adjacency list concept, A 

graph class is implemented using the combination of these data structures as shown below:  

class graph 

{ 

    int V;       // No. of vertices 

    list<int> *adj;   // Pointer to an array containing adjacency lists 

    public: 

 vector<int>deg; //vector to store the degree of vertices 

 vector<int>spt; // vector to store the support of vertex 

    graph(int V);     // Constructor 

 void addEdge(ifstream& fin);  // method to add an edge to graph reading from  

//input file  

 int mindeg(vector<int>  );  //method to find minimum degree in the graph 

 int minspt(vector<int>  );  //method to find minimum support in the graph 

vector<int>printVertexCover(graph g);  //method to find vertex cover 

}; 
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4.3 Experimental Setup 

The system used during implementation has Windows 8 operating system with 4 GB 

RAM and Intel Core I3 processor. The algorithms are implemented by creating a 

console based multifile project by using Dev-C++ Version 5.6.3 IDE. The multifile 

project contains 4 separate files; 3 files for the three algorithms and 1 file is for the 

main process. 

 

4.4 Pseudocode of algorithms 

 

4.4.1 NOVCA-I Algorithm 

Algorithm 4.1 

step 1. Initialize VC to '0'; //VC means vertex cover set.  

step 2. Calculate degree for each vertex in the graph.  

step 3. Calculate the sum of degrees of adjacent vertices for each vertex.  

step 4. Get a vertex with minimum degree, and if there are more than one vertex  

with minimum degree the select the one having maximum value of sum of 

degrees of adjacent vertices.  

step 5. Add all adjacent vertices of that vertex to vertex cover and delete all its  

edges.  

step 6. Update value of degrees and sum of degrees of adjacent vertices for each  

vertex.  

step 7. Repeat through steps 4 to 7 while all Edges are processed.  

step 8. Return MVC 

 

4.4.2 CSSA Algorithm 

Algorithm 4.2 

step 1. Calculate degree of all vertices in the graph G. 

step 2. Find out the minimum degree vertex/vertices and  create a list L of their 

adjacent  

vertex/vertices. 

step 3. Find minimum degree vertex/vertices (Vm) in the list L. 
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step 4. Add Vm to minimum vertex cover (MVC) set and delete all edges adjacent to 

it. 

step 5. Repeat steps 1 to 4 until edge exists. 

step 6. Return MVC. 

 

4.4.3 NMVSA Algorithm 

Algorithm 4.3 

step 1. Calculate degree for each vertex that is not included in vertex cover set VC. 

step 2. Calculate support for each vertex 

step 3. Find minimum support value(minsup)  

step 4. Create list L of vertices Vi with same minimium support value (minsup) 

step 5. Find and create list(H) of neighbours of minimum support vertices in L 

step 6. Select vertex(vertices) C with maximum support value from H and add them 

to vertex cover set  

step 7. Delete all adjacent edges of C 

step 8. Repeat step 1 to 7 until edges exists in graph. 

step 9. Return MVC 

 

4.4.4 Illustration of algorithms 

 Illustration of NOVCA 

Let us consider the given graph as in Figure 4.1. 

 

Figure 4.1: A graph with 7 vertices and 8 edges 

 Edge ={(1,2),(2,3).(3,4),(3,5),(4,5),(4,6), (4,7), (5,6)}, vc=0,VC={ } 

  Degree and sum of degrees of adjacent vertices for each vertex are calculated as in 

Table 4.1. 

 

2 3 7 

1 5 

 

6 

4 
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Table 4.1: Degree and sum of degree of adjacent for each vertex 

 

 

 

 minimum degree vertices: 1,7 

since sum_adj_deg(7)>sum_adj_deg(1) 

selected vertex =  7 

adjacent (7)= 4 

 Add vertex 4 to vertex cover and delete all its edges ; VC={4},vc=1; 

 Value of degrees and sum of degrees of adjacent vertices for each vertex are updated 

as in Table 4.2. 

 

Table 4.2: Updated Degree and sum of degree of adjacent for each vertex(I) 

 

 

 

 

 Edge ={(1,2),(2,3),(3,5),(5,6)},  

 minimum degree vertices: 1,6 

since sum_adj_deg(6)=sum_adj_deg(1) 

selected vertex =  6 

adjacent (6)=5 

 Add vertex 5 to vertex cover and delete all its edges 

 VC={4,5},vc=2; 

 value of degrees and sum of degrees of adjacent vertices for each vertex are Updated 

as in Table 4.3. 

 

Table 4.3: Updated Degree and sum of degree of adjacent for each vertex(II) 

 

 

 

Vertex(v) 1 2 3 4 5 6 7 

Degree(v) 1 2 3 4 3 2 1 

Sum_deg_adj(v) 2 4 9 9 9 7 4 

Vertex(v) 1 2 3 4 5 6 7 

Degree(v) 1 2 2 0 2 1 0 

Sum_deg_adj(v) 2 3 4 0 3 2 0 

Vertex(v) 1 2 3 4 5 6 7 

Degree(v) 1 2 1 0 0 0 0 

Sum_deg_adj(v) 2 2 2 0 0 0 0 
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 Edge ={(1,2),(2,3)} 

 minimum degree vertices: 1,3 

 since sum_adj_deg(1)=sum_adj_deg(3) 

 selected vertex =  1 

 adjacent(1)=2 

 Add vertex 2 to the VC and delete all its edges 

 VC={4,5,2}, vc=3; 

 Edge list={} 

 Stop; 

Final Minimum Vertex cover VC={4,5,2} 

 

 Illustration of NMVSA 

Let us consider the given graph in Figure 4.1 

 Edge ={(1,2),(2,3),(3,4),(3,5),(4,5),(4,6), (4,7), (5,6)}, vc=0,VC={ } 

 degree and support for each vertex in the graph are calculated as in Table 4.4. 

 

Table 4.4: Degree and support for each vertex 

 

 

 

 

 minimum support=2 

 list of minimum support vertices, L:{ 1} 

 list of neighbor of L;  H ={2} 

 max support of H =4 

 max support vertex/vertices in H={2} 

 Add vertex 2 to vertex cover and delete all its edges;  VC={2},vc=1; 

 value of degrees and support for each vertex are updated as in Table 4.5. 

 

 

 

Vertex(v) 1 2 3 4 5 6 7 

Degree(v) 1 2 3 4 3 2 1 

support(v) 2 4 9 9 9 7 4 
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Table 4.5: Updated Degree and Support for each vertex(I) 

 

 

 

 

 Edge ={((3,4),(3,5),(4,5),(4,6), (4,7), (5,6)},  

minimum support=4 

 list of minimum support vertices, L:{ 7} 

 list of neighbor of L;  H ={4} 

 max support of H =9 

 max support vertex/vertices in H={4} 

 Add vertex 4 to vertex cover and delete all its edges 

 VC={2,4}; vc=2; 

 value of degrees and support for each vertex are updated as in Table 4.6. 

 

Table 4.6: Updated Degree and Support for each vertex(II) 

 

 

 

 Edge={(3,5),(5,6)} 

 minimum support=2 

 list of minimum support vertices, L:{ 3,5,6} 

 list of neighbor of L;  H ={3,5,6,5} 

 max support of H =2 

 max support vertex/vertices in H={3,5,6,5} 

 Add vertex 5 to the VC and delete all its edges 

 VC={2,4,5 }, vc=3; 

 Edge list={} 

 Stop; 

Final Minimum Vertex cover VC={2,4,5} 

 

Vertex(v) 1 2 3 4 5 6 7 

Degree(v) 0 0 2 4 3 2 1 

support(v) 0 0 7 9 9 7 4 

Vertex(v) 1 2 3 4 5 6 7 

Degree(v) 0 0 1 0 2 1 0 

support(v) 0 0 2 0 2 2 0 
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 Illustration of CSSA 

Let us consider the given graph  

 Edge ={(1,2),(2,3),(3,4),(3,5),(4,5),(4,6), (4,7), (5,6)}, vc=0,VC={ } 

 degree for each vertex in the graph are calculated as in Table 4.7. 

Table 4.7: Degree of each vertex 

 

 

 minimum degree vertices: 1,7 

 Adj(1,7)={2,4} 

 minimum degree in adj(1,7) =2 

 Add vertex 2 to vertex cover and delete all its edges 

VC={2},vc=1; 

 value of degrees for each vertex are updated as in Table 4.8. 

 

Table 4.8: Updated Degree of  each vertex(I) 

 

 

 Edge ={((3,4),(3,5),(4,5),(4,6), (4,7), (5,6)},  

 minimum degree vertices: 7 

adjacent (7)=4 

minimum degree of adjacent(7)=4 

 Add vertex 4 to vertex cover and delete all its edges 

 VC={2,4}; vc=2; 

 value of degrees for each vertex are updated as in Table 4.9. 

 

Table 4.9: Updated Degree of each vertex(II) 

 

 

 Edge={(3,5),(5,6)} 

 Minimum degree vertex=3,6 

 adjacent(3,6)=5 

 Add vertex 5 to the VC and delete all its edges 

Vertex(v) 1 2 3 4 5 6 7 

Degree(v) 1 2 3 4 3 2 1 

Vertex(v) 1 2 3 4 5 6 7 

Degree(v) 0 0 2 4 3 2 1 

Vertex(v) 1 2 3 4 5 6 7 

Degree(v) 0 0 1 0 2 1 0 
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 VC={2,4,5 }, vc=3; 

 Edge list={} 

 Stop; 

Final Minimum Vertex cover VC={2,4,5 } 

 

Figure 4.2: Final vertex cover for graph in Figure 4.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 3 7 

1 6 5 

 

4 
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CHAPTER 5 

RESULT ANALYSIS 

5.1 Approximation Ratio 

The first Performance metrics used in this comparative study is Approximation ratio. 

The following Table 5.1(I) to Table 5.1(IV) lists the Approximation ratio of CSSA, NOVCA 

and NMVSA algorithms along with the number of vertices in the input graph, Size of 

Optimal MVC for the graph, the size of MVC for the input graph determined by the 

algorithms. 

Table 5.1:( I ) Approximation ratio of NOVCA, NMVSA and CSSA 

Input 

graph file 

No. of 

Vertices 

Optimal 

MVC 

MVC Size Approximation ratio 

CSSA NOVCA NMVSA NMVSA NOVCA CSAA 

frb30-15-1 450 420 427 424 425 1.012 1.010 1.017 

frb30-15-2 450 420 426 426 426 1.014 1.014 1.014 

frb30-15-3 450 420 425 425 425 1.012 1.012 1.012 

frb30-15-4 450 420 426 426 424 1.010 1.014 1.014 

frb30-15-5 450 420 425 424 425 1.012 1.010 1.012 

frb35-17-1 595 560 566 566 567 1.013 1.011 1.011 

frb35-17-2 595 560 565 565 567 1.013 1.009 1.009 

frb35-17-3 595 560 565 565 565 1.009 1.009 1.009 

frb45-21-1 945 900 908 906 907 1.008 1.007 1.009 

frb45-21-2 945 900 908 907 909 1.010 1.008 1.009 

frb45-21-3 945 900 909 909 910 1.011 1.010 1.010 

frb45-21-4 945 900 906 907 908 1.009 1.008 1.007 

frb45-21-5 945 900 907 908 908 1.009 1.009 1.008 

frb50-23-2 1150 1100 1112 1108 1109 1.008 1.007 1.011 

frb50-23-3 1150 1100 1107 1107 1107 1.006 1.006 1.006 

frb50-23-4 1150 1100 1107 1107 1110 1.009 1.006 1.006 

frb50-23-5 1150 1100 1111 1109 1110 1.009 1.008 1.010 
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Table 5.1: ( II ) Approximation ratio of NOVCA, NMVSA and CSSA  

Input 

graph file 

No. of 

Vertices 

Optimal 

MVC 

MVC Size Approximation ratio 

CSSA NOVCA NMVSA NMVSA NOVCA CSAA 

graph50-01 50 30 30 30 30 1.000 1.000 1.000 

graph50-02 50 30 30 30 30 1.000 1.000 1.000 

graph50-03 50 30 30 30 30 1.000 1.000 1.000 

graph50-04 50 40 40 40 40 1.000 1.000 1.000 

graph50-05 50 27 27 27 27 1.000 1.000 1.000 

graph50-06 50 38 38 38 38 1.000 1.000 1.000 

graph50-07 50 35 35 35 35 1.000 1.000 1.000 

graph50-08 50 29 29 29 29 1.000 1.000 1.000 

graph50-09 50 40 40 40 40 1.000 1.000 1.000 

graph50-10 50 35 35 35 35 1.000 1.000 1.000 

graph100-01 100 60 60 60 60 1.000 1.000 1.000 

graph100-02 100 65 65 65 65 1.000 1.000 1.000 

graph100-03 100 75 75 75 75 1.000 1.000 1.000 

graph100-04 100 60 60 60 60 1.000 1.000 1.000 

graph100-05 100 60 60 60 60 1.000 1.000 1.000 

graph100-06 100 80 80 80 80 1.000 1.000 1.000 

graph100-07 100 65 65 65 65 1.000 1.000 1.000 

graph100-08 100 75 75 75 75 1.000 1.000 1.000 

graph100-09 100 85 85 85 85 1.000 1.000 1.000 

graph100-10 100 70 70 70 70 1.000 1.000 1.000 

graph250-05 250 200 200 200 200 1.000 1.000 1.000 

graph500-01 500 350 350 350 350 1.000 1.000 1.000 

graph500-02 500 400 400 400 400 1.000 1.000 1.000 

graph500-03 500 375 375 375 375 1.000 1.000 1.000 

graph500-04 500 300 300 300 300 1.000 1.000 1.000 

graph500-05 500 290 290 290 290 1.000 1.000 1.000 
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Table 5.1: ( III ) Approximation ratio of NOVCA, NMVSA and CSSA  

Input 

graph file 

No. of 

Vertices 

Optimal 

MVC 

MVC Size Approximation ratio 

CSSA NOVCA NMVSA NMVSA NOVCA CSAA 

hamming10-2 1024 512 512 512 512 1.000 1.000 1.000 

hamming10-4 1024 984 992 988 988 1.004 1.004 1.008 

hamming6-2 64 32 32 32 32 1.000 1.000 1.000 

hamming8-2 256 128 128 128 128 1.000 1.000 1.000 

hamming8-4 256 240 240 240 240 1.000 1.000 1.000 

C125.9 125 91 94 92 94 1.033 1.011 1.033 

C250.9 250 206 208 211 211 1.024 1.024 1.010 

C500.9 500 443 453 451 452 1.020 1.018 1.023 

DSJC500.5 500 <=487 489 489 489 1.004 1.004 1.004 

c-fat500-10 500 374 374 374 374 1.000 1.000 1.000 

c-fat500-5 500 436 436 436 436 1.000 1.000 1.000 

gen400_p0_9_65 400 335 354 355 354 1.057 1.060 1.057 

gen400_p0_9_75 400 325 353 353 356 1.095 1.086 1.086 

johnson32-2-4 496 480 480 480 480 1.000 1.000 1.000 

johnson8-2-4 28 24 24 24 24 1.000 1.000 1.000 

keller4 171 160 160 164 163 1.019 1.025 1.000 

keller5 776 749 754 761 754 1.007 1.016 1.007 
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Table 5.1: ( IV ) Approximation ratio of NOVCA, NMVSA and CSSA  

Input 

graph file 

No. of 

Vertices 

Optimal 

MVC 

MVC Size Approximation ratio 

CSSA NOVCA NMVSA NMVSA NOVCA CSAA 

MANN_a81 3321 2221 2225 2225 2409 1.085 1.002 1.002 

MANN_a45 1035 690 693 693 739 1.071 1.004 1.004 

p_hat300-2 300 275 275 275 277 1.007 1.000 1.000 

p_hat300-3 300 264 266 266 268 1.015 1.008 1.008 

p_hat500-1 500 491 492 492 492 1.002 1.002 1.002 

p_hat500-2 500 464 467 466 473 1.019 1.004 1.006 

p_hat500-3 500 450 455 454 457 1.016 1.009 1.011 

p_hat700-3 700 638 642 641 643 1.008 1.005 1.006 

sanr400_0_7 400 379 382 382 381 1.005 1.008 1.008 

san400_0_5_1 400 387 392 391 391 1.010 1.010 1.013 

san400_0_7_1 400 360 379 379 378 1.050 1.053 1.053 

san400_0_7_2 400 370 382 383 382 1.032 1.035 1.032 

san400_0_7_3 400 378 385 384 385 1.019 1.016 1.019 

san400_0_9_1 400 300 326 318 317 1.057 1.060 1.087 

sanr400_0_5 400 387 389 388 389 1.005 1.003 1.005 

frb100-40 4000 3900 3919 3917 3920 1.005 1.004 1.005 

 

 

 

 

 

 



33 

 

 

Table 5.2: Minimum, Average and Maximum Approximation ratio of NOVCA,  

NMVSA and CSSA 

 

 

5.2 Step Count  

Step count is second performance metrics used in this dissertation work that counts the 

number of vertices that the particular algorithm requires to process a candidate vertex of the 

vertex cover set. The following Table 5.3(I) to Table 5.3(V) lists the step counts of the 

different algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

Approximation ratio NMVSA  NOVCA CSSA  

Average approximation ratio 1.012 1.008 1.009 

Max approximation ratio 1.095 1.086 1.087 

Min approximation ratio 1 1 1 
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Table 5.3: (I) Step count of CSSA, NOVCA and NMVSA 

Input graph 

file 
No. of Vertices 

step count 

CSSA NOVCA NMVSA 

frb30-15-1 450 427 25 425 

frb30-15-2 450 426 24 426 

frb30-15-3 450 425 25 425 

frb30-15-4 450 426 24 424 

frb30-15-5 450 425 25 425 

frb35-17-1 595 566 29 567 

frb35-17-2 595 565 30 567 

frb35-17-3 595 565 30 565 

frb45-21-1 945 908 39 907 

frb45-21-2 945 908 38 909 

frb45-21-3 945 909 36 910 

frb45-21-4 945 906 37 908 

frb45-21-5 945 907 37 908 

frb50-23-2 1150 1112 41 1109 

frb50-23-3 1150 1107 43 1107 

frb50-23-4 1150 1107 43 1110 

frb50-23-5 1150 1111 41 1110 
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Table 5.3: (II) Step count of CSSA, NOVCA and NMVSA 

Input graph 

file 

No. of 

Vertices 

Step count 

CSSA NOVCA NMVSA 

graph50-01 50 30 9 30 

graph50-02 50 30 10 30 

graph50-03 50 30 6 30 

graph50-04 50 40 9 40 

graph50-05 50 27 9 27 

graph50-06 50 38 6 38 

graph50-07 50 35 6 35 

graph50-08 50 29 7 29 

graph50-09 50 40 4 40 

graph50-10 50 35 8 35 

graph100-01 100 60 6 60 

graph100-02 100 65 10 65 

graph100-03 100 75 7 75 

graph100-04 100 60 4 60 

graph100-05 100 60 14 60 

graph100-06 100 80 6 80 

graph100-07 100 65 4 65 

graph100-08 100 75 6 75 

graph100-09 100 85 5 85 

graph100-10 100 70 4 70 

graph250-05 250 200 14 200 

graph500-01 500 350 17 350 

graph500-02 500 400 8 400 

graph500-03 500 375 8 375 

graph500-04 500 300 5 300 

graph500-05 500 290 6 290 
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Table 5.3: (III) Step count of CSSA, NOVCA and NMVSA 

Input graph file 
No. of 

Vertices 

Step count 

CSSA NOVCA NMVSA 

hamming10-2 1024 512 256 512 

hamming10-4 1024 992 34 988 

hamming6-2 64 32 16 32 

hamming8-2 256 128 64 128 

hamming8-4 256 240 12 240 

C125.9 125 94 32 94 

C250.9 250 208 39 211 

C500.9 500 453 49 452 

DSJC500.5 500 489 11 489 

c-fat500-10 500 374 2 374 

c-fat500-5 500 436 2 436 

gen400_p0_9_65 400 354 45 354 

gen400_p0_9_75 400 353 46 356 

johnson32-2-4 496 480 15 480 

johnson8-2-4 28 24 3 24 

keller4 171 160 7 163 

keller5 776 754 15 754 
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Table 5.3: (IV) Step count of CSSA, NOVCA and NMVSA 

Input graph file 
No. of 

Vertices 

Step count 

CSSA NOVCA NMVSA 

MANN_a81 3321 2225 1096 2409 

MANN_a45 1035 693 342 739 

p_hat300-2 300 275 23 277 

p_hat300-3 300 266 33 268 

p_hat500-1 500 492 8 492 

p_hat500-2 500 467 31 473 

p_hat500-3 500 455 45 457 

p_hat700-3 700 642 58 643 

sanr400_0_7 400 382 17 381 

san400_0_5_1 400 392 8 391 

san400_0_7_1 400 379 21 378 

san400_0_7_2 400 382 17 382 

san400_0_7_3 400 385 15 385 

san400_0_9_1 400 326 61 317 

sanr400_0_5 400 389 11 389 

frb100-40.mis 4000 3919 83 3920 

  

 

 

 



38 

 

 

5.3 Analysis and Result 

The performance of the approximation algorithms for MVC is measured in terms of 

following two factors:  

5.3.1 Approximation Ratio 

The approximation ratio is the ratio of the size of MVC of given graph in solution and 

the optimal size of MVC of the given graph. An approximation algorithm with 

approximation ratio 1 produces an optimal solution, and an approximation algorithm with a 

large approximation ratio may return a solution that is much worse than optimal. In the 

above table, the approximation ratio for each input graph is calculated separately for each 

algorithm after all the data are collected. 

 

Figure 5.1: (I)Approximation ratio of NOVCA, NMVSA and CSSA 
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Figure 5.1(II) Approximation ratio of NOVCA, NMVSA and CSSA 
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 Figure 5.1 :(III) Approximation ratio of NOVCA, NMVSA and CSSA 
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Figure 5.1: (IV)Approximation ratio of NOVCA, NMVSA and CSSA 
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also very close to one and they do not deviate much. The average approximation ratio of 

NOVCA-I is 1.008 which less than that of CSSA and NMVSA, 1.009 and 1.012respectively. 

It is clearly seen that NOVCA-I has better or same performance as the other two NMVSA, 

and CSSA algorithm in terms of approximation ratio. As the phrase, the lesser the 

approximation ratio the better the algorithm is, suggests that the NOVCA-I algorithm is better 

than the other two algorithms. It is very close to or equal to 1 for the given benchmark graph 

datasets. A solution having 1 approximation ratio is an optimal solution and solution with 

approximation ratio very close to 1 can be considered as sub optimal solution and can be used 

as optimal solution. 

 

5.3.2 Step Count 

It represents a number that counts the number of vertices processed by the algorithm 

to find a valid vertex cover of the given graph. This measure serves in comparing the 

performance of algorithms in terms of the number of vertices to be processed for finding 

vertex cover. The lesser step count will indicate the better performance of algorithm. This 

feature is implemented using a integer variable 'step_count' in the program. This variable is 

initialized to zero when algorithm starts and gets incremented each time a vertex is processed 

for finding candidates of minimum vertex cover. When a valid and complete vertex cover set 

is found by the algorithm,  the last value of this variable represents the total number of steps 

that the algorithms has taken to process the vertices of the minimum vertex cover. 
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Figure 5.2: (I)Step Count of NOVCA, NMVSA and CSSA 
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Figure 5.2: (II)Step Count of NOVCA, NMVSA and CSSA 
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Figure 5.2:(III) Step Count of NOVCA, NMVSA and CSSA 
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 Figure 5.2: (IV)Step Count of NOVCA, NMVSA and CSSA 
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vertices to vertex cover. This strategy adds a number of vertices to vertex cover set in a single 

step (specially in dense graphs).So that when the adjacent vertices of minimum degree are 

added to vertex cover list, the degree of the minimum degree vertex adjacent to these vertices 

will be forcibly rendered to zero. Whereas the CSSA selects one vertex at a time to add it to 

vertex cover set which obviously shows that step count increases as the size of vertex cover 

increases. NMVSA tries to add a number of vertices to vertex cover list by selecting those 

vertices having same maximum support in the neighborhood list of minimum support vertices 

but it may leave the minimum support vertices without rendering its degree to zero. These 

vertices may again be selected for further processing but may not be fruitful to select the 

vertex cover candidates and may add extra steps and vertex to vertex cover. So NOVCA 

seems to be better than NMVSA and CSSA in term of step counts. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 



48 

 

 

CHAPTER 6 

CONCLUSION AND FURTHER RECOMMENDATIONS 

6.1 Conclusion  

Vertex cover Problem is a NP-complete problem; hence a polynomial time algorithm 

that finds an optimal solution efficiently is impossible in present context. Approximation 

algorithm is the best suitable approach to find a acceptable solution to minimum vertex cover 

problem. From the experimental results and analysis based on the two performance metrics 

(approximation ratio and step counts), it is observed that the performance of NOVCA-I 

algorithm outperforms the other two algorithms: NMVSA and CSSA. NOVCA shows better 

performance in dense graph.The average approximation ratio of NOVCA is 1.008 for the 

different benchmark graph instances used in this dissertation work. Although the other two 

algorithms have not so significant difference in approximation ratio with NOVCA but they 

have step counts much more than NOVCA. From experimental observation and analysis of 

the results, it can be concluded that the algorithm NOVCA-I is efficient and has better 

performance in terms of both approximation ratio and step count, than the other two 

algorithms NMVSA and CSSA. 

 

6.2 Further Recommendation 

In this Dissertation work the comparison of three approximation algorithms is done on 

the benchmark graph datasets. The future scope of the research may include comparison of 

these algorithms with other algorithms such as hybrid algorithms, genetic algorithms. 

Algorithm performance enhancement by changing the selection procedure, parameter of the 

vertex cover candidate, finding the redundant or extra vertex in the vertex cover set and 

removing these vertices may be some possible research directions. 
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