

Tribhuvan University

Institute of Science and Technology

 Comparative Evaluation of Minimum Degree Based

Approximation Algorithms for Minimum Vertex Cover problem

Dissertation

Submitted To

Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the

 Master’s Degree in Computer Science and Information Technology

By

Santosh Kumar Mahato

Date: April 2, 2017

Tribhuvan University

Institute of Science and Technology

Comparative Evaluation of Minimum Degree Based

Approximation Algorithms for Minimum Vertex Cover problem

Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements for the

 Master’s Degree in Computer Science and Information Technology

By

Santosh Kumar Mahato

Date: April 2, 2017

Supervisor

Mr. Arjun Singh Saud

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the

listed here have been used in this work.

...........................

Santosh Kumar Mahato

Date: April 2, 2017

Supervisor’s Recommendation

I hereby recommend that this dissertation prepared under my supervision by Mr. Santosh

Kumar Mahato entitled “Comparative Evaluation of Minimum Degree Based

Approximation Algorithms for Minimum Vertex Cover problem” in partial fulfillment of

the requirements for the degree of M. Sc. in Computer Science and Information Technology

be processed for the evaluation.

… … … … … … … … …

Mr. Arjun Singh Saud

CDCSIT, TU

Kirtipur, Kathmandu, Nepal

Date: April 2, 2017

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope

and quality as a dissertation in the partial fulfillment for the requirement of Masters Degree in

Computer Science and Information Technology.

Evaluation Committee

...

Mr. Nawaraj Paudel

CDCSIT, Tribhuvan University,

Kathmandu, Nepal

(Head)

...

Asst. Prof. Arun K. Timalsina, PhD

Department of Electronics and Computer

Engineering, Pulchowk Campus,

Institute Of Engineering,

Tribhuvan University,

Pulchowk , Lalitpur, Nepal

(External Examiner)

Date: 13 April, 2017

...

Mr. Arjun Singh Saud

CDCSIT, Tribhuvan University,

Kathmandu, Nepal

(Supervisor)

...

Mr. Sarbin Sayami

CDCSIT, Tribhuvan University,

Kathmandu, Nepal

(Internal Examiner)

i

ACKNOWLEDGEMENT

At first I thank God who gave ability, strength and confidence in me to complete this work. It

is a great pleasure for me that I have completed this dissertation work and want to

acknowledge the contributions of all the individuals to this work. I express my genuine

thanks to my supervisor Mr. Arjun Singh Saud , for his valuable guidance in carrying out this

work under his effective supervision and for providing support throughout this dissertation

work. I want to express sincere thanks to Asst. Prof. Nawraj Paudel, Head of Department for

his encouragement and support regarding the dissertation work. Next, Iam also very thankful

to my colleague Mr. Ashok Pant, Mahesh Kumar Yadav and Mr. Bhim Rawat for their

technical help and support.

I am also thankful to all the staff members of the Department of Computer Science and

Information technology, TU (Kathmandu, Nepal) for their full cooperation and help. Thanks

to all my friends for their supports and help in creation documentation.

Finally, I thank my family for their love, support and encouragement.

ii

ABSTRACT

Minimum vertex cover(MVC) problem is a NP Complete optimization problem that attracts

many researchers due to its wide range of application in real life problems. As MVC is NP-

complete, there are no any algorithm that finds optimal solution to MVC problem in

polynomial time. Numerous of approaches have been proposed among which approximation

approach is much favored in the field of MVC as it guarantees to give a solution that is near

to optimal or sub optimal solution. There is a number of MVC algorithm based on

approximation approaches that constructs vertex cover .This Dissertation work is focused on

a comparative study of three recent approximation approach based algorithms

,NOVCA,CSSA and NMVSA. The performance of each algorithm is measured in terms of

approximation ratio and step count. Here step count is used as second performance metrics

because the performance differences in approximation ratio of all the algorithms are

relatively small. In the dissertation work, benchmark graph datasets are used for the

comparison of algorithms and an extensive analysis have been provided to help the selection

of efficient algorithm.

Keywords: Minimum vertex cover, Approximation algorithms, Approximation ratio,

Near optimal vertex cover algorithm(NOVCA), New modified vertex support

algorithm(NMVSA), Clever Steady Strategies Algorithm(CSSA)

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT .. i

ABSTRACT .. ii

LIST OF FIGURES .. vi

LIST OF TABLES ... vii

LIST OF ABBREVIATIONS ..viii

CHAPTER 1 ... 1

INTRODUCTION AND BACKGROUND ... 1

1.1 Introduction ... 1

1.2 Problem Definition .. 2

1.3 Objective .. 2

1.4 Motivation .. 2

1.5 Background .. 3

1.5.1 The Vertex Cover Problem ... 3

1.5.2 Application of Vertex Cover ... 5

1.5.3 Problems Related to Vertex cover .. 6

1.5.4 Complexity Classes of Problems: P, NP, and NPC ... 7

1.5.5 Coping with NP-completeness/ Solving NP-complete problems 8

1.6 Contribution Of This Dissertation ... 9

1.7 Outline of the Dissertation .. 10

CHAPTER 2 ... 11

RESEARCH METHODOLOGY ... 11

2.1 Literature Review .. 11

2.2 Concepts of Approximation algorithm .. 16

2.3 Research Methodology .. 16

iv

2.3.1 Input Selection .. 16

2.3.2 Input File Format ... 17

2.3.3 Output Format ... 17

2.3.4 Data Collection ,testing and comparison ... 18

CHAPTER 3 ... 19

THE ALGORITHMS .. 19

3.1 Nearly Optimal Vertex Cover (NOVAC-I) ... 19

3.2 Clever Steady Strategy Algorithm ... 19

3.3 New Modified Vertex Support Algorithm .. 20

CHAPTER 4 ... 21

IMPLEMENTATION ... 21

4.1 Tools Used in program development ... 21

4.2 Data Structure Used .. 21

4.3 Experimental Setup ... 22

4.4 Pseudocode of algorithms ... 22

4.4.1 NOVCA-I Algorithm ... 22

4.4.2 CSSA Algorithm... 22

4.4.3 NMVSA Algorithm .. 23

4.4.4 Illustration of algorithms .. 23

 Illustration of NOVCA.. 23

 Illustration of NMVSA.. 25

 Illustration of CSSA .. 27

CHAPTER 5 ... 29

RESULT ANALYSIS .. 29

5.1 Approximation Ratio .. 29

5.2 Step Count ... 33

v

5.3 Analysis and Result ... 38

5.3.1 Approximation Ratio ... 38

5.3.2 Step Count .. 42

CHAPTER 6 ... 48

CONCLUSION AND FURTHER RECOMMENDATIONS .. 48

6.1 Conclusion .. 48

6.2 Further Recommendation .. 48

REFERENCES ... 49

vi

LIST OF FIGURES

Figure 1.1: Vertex Cover examples..3

Figure1.2: Minimum vertex cover..3

Figure1.3: Relationship of VC with other NP-problems.. 7

Figure 1.4 : Relationship among P,NP, NP-complete and NP Hard Problems.....................7

Figure 2.1:Vertex cover by greedy algorithm...12

Figure 2.2: Input Graph...17

Figure 4.1: A graph with 7 vertices and 8 edges...23

Figure 4.2: Final vertex cover for graph in Figure 4.1..28

Figure 5.1: (I) Approximation ratio of NOVCA, NMVSA and CSSA.................................38

Figure 5.1: (II) Approximation ratio of NOVCA, NMVSA and CSSA................................39

Figure 5.1: (III) Approximation ratio of NOVCA, NMVSA and CSSA..............................40

Figure 5.1: (IV) Approximation ratio of NOVCA, NMVSA and CSSA..............................41

Figure 5.2: (I) Step Count of NOVCA, NMVSA and CSSA..43

Figure 5.2: (II) Step Count of NOVCA, NMVSA and CSSA...44

Figure 5.2: (III) Step Count of NOVCA, NMVSA and CSSA...45

Figure 5.2: (IV) Step Count of NOVCA, NMVSA and CSSA..46

vii

LIST OF TABLES

Table 4.1: Degree and sum of degree of adjacent for each vertex...24

Table 4.2: Updated Degree and sum of degree of adjacent for each vertex (I).......................24

Table 4.3: Updated Degree and sum of degree of adjacent for each vertex(II........................24

Table 4.4: Degree and Support of adjacent for each vertex...25

Table 4.5: Updated Degree and Support for each vertex(I)...26

Table 4.5: Updated Degree and support for each vertex(II)...26

Table 4.7: Degree of each vertex...27

Table 4.8: Updated Degree of each vertex(I)..27

Table 4.9: Updated Degree of each vertex(II)...27

Table 5.1: (I) Approximation ratio of NOVCA, NMVSA and CSSA..................................29

Table 5.1: (II) Approximation ratio of NOVCA, NMVSA and CSSA.................................30

Table 5.1: (III) Approximation ratio of NOVCA, NMVSA and CSSA................................31

Table 5.1: (IV) Approximation ratio of NOVCA, NMVSA and CSSA................................32

Table 5.2: Minimum, Average and Maximum Approximation ratio of NOVCA, NMVSA and

CSSA..33

Table 5.3: (I) Step count of CSSA, NOVCA and NMVSA...34

Table 5.3: (II) Step count of CSSA, NOVCA and NMVSA...35

Table 5.3: (III) Step count of CSSA, NOVCA and NMVSA...36

Table 5.3: (IV) Step count of CSSA, NOVCA and NMVSA...37

viii

LIST OF ABBREVIATIONS

ACO: Ant Colony Optimization

AVSA: Advance Vertex Support Algorithm

CNF: Conjuctive Normal Form

CSSA: Clever Steady Strategies Algorithm

DC: Degree Contribution

DCA: Degree Contribution Algorithm

DFS: Depth First Search

GIC: Greedy Independent Cover

GVCP: General Vertex Cover Problem

HVX: Heuristic Vertex Cover

IDE: Integrated Development Environment

MC: Maximum Clique

MDG: Maximum Degree Greedy

MIS: Maximum Independent Set

MVC: Minimum Vertex Cover

MVSA: Modified Vertex Support Algorithm

NMVSA: New Modified Vertex Support Algorithm

NOVCA: Near Optimal Vertex Cover Algorithm

NP: Non Deterministic Polynomial time

NPC: Non Deterministic Polynomial time Complete

P: Polynomial time

VCP: Vertex Cover Problem

VCUMI: Vertex Cover Using Maximum Independent Set

VLSI: Very Large Scale Integration

VSA: Vertex Support Algorithm

1

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Vertex cover of a graph represents the sub set of vertices that are sufficient to cover

all the edges of the undirected graph. Vertex cover problem is one of the graph related

problem where the objective is to determine a set of vertices of a graph that covers allthe

edges of the graph. It is an important NP Complete problem that has been extensively

researched and reviewed by various researchers.

Minimum vertex cover problem is an important combinatorial optimization problem

with a goal of finding a vertex cover of smallest possible size for the given graph.MVC has

many real-world applications, such as network security, scheduling, VLSI design and

industrial machine assignment. To find an optimal solution to minimum vertex cover is very

difficult, but to get an alternative approximate or sub optimal solution is easier. So, many

approximation algorithms have been proposed to construct vertex cover indifferent ways.

Such algorithms have a polynomial time complexity and return a solution that is close to

optimal solution. The quality of solution produced by approximation algorithm is

traditionally measured in terms of approximation ratio of the solution and the optimal one.

Approximation ratio is not necessarily a constant. If it is small, the quality of solution is good

and the algorithm is considered to be efficient. But with ongoing research, there are several

approximation algorithms for VCP that provide good quality solutions with almost same

approximation ratios. So the efficiency of the algorithms cannot be measured by using only

approximation ratios.

This Dissertation work explores the different approximation techniques that have been

successfully applied to VCP, and compares three recent algorithms to determine the efficient

one among them. In order to do so, an extensive literature review has been carried out and an

experimental result, that compares these three algorithms in terms of different performance

metrics, is provided in this dissertation work. The two comparison parameters: approximation

ratio and step count, are used to compare the performance of algorithms. Here step count is

used as second performance metrics because the differences in approximation ratio of these

algorithms are relatively very small. Different standard benchmark graph datasets available

2

across the repository of internet are used for the comparing of algorithms performance and

comparative analysis have been provided for the selection of efficient algorithm.

1.2 Problem Definition

The minimum vertex cover problem is the optimization problem of finding a smallest

vertex cover in a given graph. Since it is a NP complete, there is no any algorithms that can

find a optimal solution to this problem in polynomial time of the size of input. Among the

different approaches to deal with NP-complete problems, approximation algorithms are most

preferred technique as the size of the vertex-cover returned by these approximation

algorithms is guaranteed to be no more than twice the size of an optimal vertex-cover. There

are different Approximation algorithms for the vertex-cover problem that returns a solution

that is near to optimal. Many of these algorithms claim that it is better or have best known

approximation ratio for finding minimum vertex cover. Thus comparative evaluation of such

algorithms is worth in computational complexity theory.

1.3 Objective

The main objective of this dissertation work is:

 To study the approximation algorithms for finding minimum vertex cover in a given

undirected graph.

 To evaluate and to compare the performance of three recent approximation algorithms

in terms of approximation ratio and step count.

 To suggest an approximation algorithm that has best approximation ratio and which

gives best suboptimal/optimal solution to a wide range of input graphs.

1.4 Motivation

Vertex cover problem is one of the most explored NP complete problems due to its

wide range of applicability to real world problem. Researchers are providing different

innovative ideas to solve the minimum vertex cover problem efficiently and as fast as

possible. A number of algorithms are presented one after another that are both efficient and

fast in their own context but it is difficult to decide which algorithm is appropriate for the use

with large variety of inputs. Therefore it is a worth work to compare existing algorithms that

claim to be efficient and to provide an extensive analysis of these algorithms.

3

1

2

6

3

4

5

1

2

6

3 4

5

1

2

6

3

4

5

1

2

6

3 4

5

1.5 Background

1.5.1 The Vertex Cover Problem

In graph theory, a vertex cover of a graph is a set of vertices such that each edge of

the graph is incident to at least one vertex of the set. It is a set of vertices in a graph such that

every edge in the graph is covered by the vertices in the cover set. Formally, A vertex cover

of an undirected graph G =(V,E) is a subset V'V such that if (u,v)E, then u V' or vV'

(or both). That is, each vertex “covers” its incident edges, and a vertex cover for G is a set of

vertices that covers all the edges in E. The size of a vertex cover is the number of vertices in

it. The following Figure 1.1 shows two examples of vertex covers, where vertex cover V ′ is

shaded [1].

 Figure 1.1: Vertex Cover examples

In above example, a possible vertex cover are {1,2,4} and {1,3,4,6}. The number of

vertices in vertex cover gives its size. The vertex-cover problem is a problem that aims to

find a vertex cover of minimum size in a given graph. Such a vertex cover is also called a

minimum vertex cover or optimal vertex cover. It is a classical optimization problem in

computer science and is a typical example of an NP hard optimization problem that has

approximation algorithms. The following Figure 1.2 shows examples of minimum vertex

cover for the graphs in Figure1.1, where minimum vertex cover is shaded.

Figure1.2:Minimum vertex cover

4

In above example, minimum vertex cover for graphs in Figure 1.1 are {2,6} and

{2,3,6}.

There are two forms of minimum vertex cover: Optimization and Decision.

The minimum vertex cover problem is the optimization problem of finding a

minimum sized vertex cover in a given graph.

INSTANCE: Graph G

OUTPUT: Smallest number k such that G has a vertex cover of size k.

If the problem is stated as a decision problem, the problem is to determine whether a

graph has a vertex cover of a given size. That is verification is done to analyze the vertex

cover of a specified size.

INSTANCE: Graph G and positive integer k.

QUESTION: Does G have a vertex cover of size at most k ? [1]

This decision version was one of Karp’s 21 NP-complete problems and is therefore a

classical NP-complete problem in computational complexity theory. Furthermore, it (the

vertex cover problem) is fixed-parameter tractable and a central problem in parameterized

complexity theory. It is often used in computational complexity theory as a starting point for

NP-hardness proofs [1]. Since It is a NP – complete problem, so there are no any algorithm

that can solve it exactly in polynomial time. Because of the NP-Completeness and wide range

of applications, vertex cover problem, especially minimum vertex cover problem has been an

important research topic among researchers. Many real world problems can be formulated as

an instance of minimum vertex cover problem. Example areas are communication network,

civil and electrical engineering, bio-informatics etc. One typical application of minimum

vertex cover problem is in installing cameras on traffic lights to cover each road on a map can

be modeled as minimum vertex cover problem where lights representing vertex and roads as

edges and job is to install the minimum number of cameras so every road has at least one

camera on its either end [2].

Even though it is not possible to find an optimal vertex cover in a graph G in

polynomial time, a vertex cover that is near to optimal can be found efficiently in reasonable

time. Approximation algorithms play a critical role in obtaining near to optimal solution to all

NP-Complete problems[3].

5

1.5.2 Application of Vertex Cover

The vertex cover problem is a NP complete class problem in terms of complexity.

Due to NP class problem this problem mainly attracts researcher towards it. Other main

reason is it’s relevant to real world applications. The minimum vertex cover (MVC) problem

is very popular due to its real life applications. MVC is used in civil and electrical

engineering, VLSI design, MAP labeling, computer networking, sensor networks and

Bioinformatics [4].

One of the real life application examples of the minimum vertex cover is the

deployment of guards on the corridors in a museum. Each edge corresponds to corridor in a

museum and each corridor intersection corresponds to a vertex in the graph. The problem

here is to deploy guards in such a way to cover each corridor of a museum with minimum

number of guards. This problem can be solved by using the minimum vertex cover

algorithms. [4].

 Application Example in sensor network: The paper [5] addresses a problem in

wireless sensors network to increase the network life time and proposed a solution for it using

vertex cover algorithm. The proposed algorithms adopt the vertex cover technique to enhance

the live-time of the wireless sensor network by selecting minimum number of nodes that

reduce power consumption. The minimum (optimal) number of vertices (sensors) problem is

NP-Complete. Therefore, a near-optimal solution to the problem can be obtained by an

approximation algorithm that solves the problem in polynomial time.

The vertex cover problem is also closely related to many other hard graph problems

such as the problems of maximum clique and independent set problems and so it interests the

researchers in the field of design of optimization and approximation algorithms. For instance,

the independent set problem [3] is similar to the minimum vertex cover problem because a

minimum vertex cover defines a maximum independent set and vice versa. Another

interesting problem that is closely related to the minimum vertex cover is the edge cover

which searches for the smallest set of edges such that each vertex is included in one of the

edges[6].

Another example of a practical application is the hitting set problem arises in efficient

dynamic detection of race conditions. In this case, each time global memory is written, the

current thread and set of locks held by that thread are stored. Under lockset-based detection,

if later another thread writes to that location and there is not a race, it must be because it

holds at least one lock in common with each of the previous writes. Thus the size of the

6

hitting set represents the minimum lock set size to be race-free. This is useful in eliminating

redundant write events, since large lock sets are considered unlikely in practice[1].

1.5.3 Problems Related to Vertex cover

 Vertex cover problem is closely related to two other popular optimization problems:

MC and MIS. The Figure 1.3 shows an example. These three problems actually can be

considered as three different forms of the same problem[6].

1.5.3.1 Clique problem

A clique in an undirected graph G= (V, E) is a subset V' ⊆V of vertices, eachpair of

which is connected by an edge in E. In other words, a clique is a completesub-graph of G.

The size of a clique is the number of vertices it contains. The Cliqueproblem is the

optimization problem of finding a clique of maximum size in a graph.As a decision problem,

we ask simply whether a clique of a given size k exists in thegraph [3].

Instance: a graph G= (V, E) and a positive integer k ≤ |V|.

Question: is there a clique V' ⊆ V of size ≥ k?

1.5.3.2 Independent-set problem

An independent set of a graph G= (V, E) is a subset V' ⊆V of vertices such thateach

edge in E is incident on at most one vertex in V'. The independent set problem isto find a

maximum-size independent set in G [3].

Instance: a graph G= (V, E) and a positive integer k ≤ |V|.

Question: is there an independent set of size ≥ k?

The following are equivalent for G= (V, E) and a subset V' of V and 𝐺 = (V,𝐸), where

𝐸 = {(u, v): u, v ∉V, u≠ v, and (u, v) ∉ E}

(a). V' is a clique of G.

(b). V' is an independent of 𝐺

(c). V-V' is a vertex-cover of 𝐺

7

Figure1.3: Relationship of VC with other NP-problems.

(a) Graph G(V,E) with Clique V'={u,v,x,y} (b)Complement graph G' with Independent set

V'={u,v,x,y} (c) Vertex cover for graph in Figure (b) is V-V'={w,z}

1.5.4 Complexity Classes of Problems: P, NP, and NPC

Figure 1.4 : Relationship among P,NP, NP-complete and NP Hard Problems

The class P consists of those problems that are solvable in polynomial time. More

specifically, they are problems that can be solved in time O(n
k
) for some constant k, where n

is the size of the input to the problem. The class NP consists of those problems that are

“verifiable” in polynomial time. The abbreviation NP refers to "nondeterministic polynomial

time". That is if a “certificate” of a solution to a problem is given, then it can be verified that

the "certificate" is correct, in time polynomial of the size of the input to the problem. For

example, minimum vertex cover problem, the Hamiltonian cycle problem, 3-CNF

satisfiability etc. are NP complete problems. Any problem in P is also in NP, since if a

problem is in P then it can be solved in polynomial time without even being supplied a

certificate.

NP
NP-Complete

P

NP-Hard

(a) (b) (c)

z

u

y

v

x

w z

u

y

v

x

w

z

u

y

v

x

w

8

NP-hard problems are partly similar but more difficult problems than NP complete

problems. They don’t themselves belong to class NP, but all problems in class NP can be

reduced to them. Very often, the NP-hard problems really require exponential time or even

worse.

NP-complete problems are a subset of NP-hard problems, and that’s why NP-

complete problems are sometimes called NP-hard. In computational complexity theory, a

decision problem is NP-complete when it is both in NP and NP-hard. The set of NP-complete

problems is often denoted by NP-C or NPC[3,7]. Figure 1.4 shows the Relationship among P,

NP, NP-complete and NP Hard Problem.

1.5.5 Coping with NP-completeness/ Solving NP-complete problems

There are many important optimization problems with NP-completeness that may be

quite hard to solve exactly. Due to the theoretical and practical importance NP complete

problems must be solved, as solutions to these problems are useful in various fields. Various

algorithmic approaches have been used to tackle NP-complete problems. At present, all

known algorithms for NP-complete problems require time that is super polynomial in the

input size, and it is unknown whether there are any faster algorithms. The following

techniques [7] can be applied to solve computational problems in general, and they often give

rise to substantially faster algorithms:

Approximation: The idea is that instead of searching for an optimal solution, a solution that

is near to optimal or “almost” optimal can be determined. This is an algorithm that runs in

polynomial time (ideally), and produces a solution that is within a guaranteed factor of the

optimum solution.

Randomization: Randomness can be used to get a faster average running time, and allow the

algorithm to fail with some small probability. An algorithm that uses random numbers to

decide what to do next anywhere in its logic is called Randomized Algorithm. The algorithm

typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of

achieving good performance in the "average case" over all possible choices of random bits.

Formally, the algorithm's performance will be a random variable determined by the random

bits; thus either the running time, or the output (or both) are random variables.

9

General Search Methods: There are a number of very powerful techniques for solving

general combinatorial optimization problems that have been developed in the areas of AI and

operations research such as branch-and-bound, A*-search, simulated annealing, and genetic

algorithms. The performance of these approaches varies considerably from one problem to

problem and instance to instance. But in some cases they can perform quite well.

Restriction: By restricting the structure of the input (e.g., to planar graphs), faster algorithms

are usually possible. Narrowing the problem space helps to solve the problem. For instance, if

we can't solve TSP on general graphs, we can try to just solve it for graphs obeying a

Euclidean distance metric.

Parameterization: If certain parameters of the input are fixed, faster algorithms can be

designed. These algorithms depends on a parameter say 'k' of the given problem . Generally

the algorithm running time is exponential on k but not on the input size. Hence for smaller

value of k, a solution can be found.

Heuristic: A heuristic is a strategy for producing a valid solution, but there are no guarantees

how close it is to optimal. These algorithms works “reasonably well” in many cases, but the

quality of result and efficiency of the algorithm may not be always so good. This is

worthwhile if all else fails, or if lack of optimality is not really an issue. A heuristic is a

function that ranks alternatives in search algorithms at each branching step based on available

information to decide which branch to follow. Metaheuristic approaches are often used. A

metaheuristic is a heuristic designed to select a heuristic (partial search algorithm) that may

offer a satisfactorily good solution to an optimization problem, especially with incomplete

information or limited computation capacity. Metaheuristics sample a set of solutions which

is too large to be completely sampled. Metaheuristics may make few assumptions about the

optimization problem being solved, and so they may be usable for a variety of problems.

1.6 Contribution Of This Dissertation

The main contribution of this dissertation to the field of vertex cover problem is that

this dissertation work compares three recent algorithms experimentally on more than 70

different instances of different benchmark graphs datasets. This experimental comparison

10

provides clear result that helps in the selection process of the minimum vertex cover

algorithms for solving the real world problem where vertex cover algorithms can be applied.

1.7 Outline of the Dissertation

The remaining part of the document is organized as follows,

Chapter 2 describes the research methodology of the dissertation work on Vertex cover

problems. It includes the methods and techniques used in the area of vertex cover problem till

now and the method used for the comparative analysis in this dissertation work.

Chapter 3presents the overview of the algorithms used in this dissertation work.

Chapter 4 describes the details of implementation of the three algorithms used in this work.

Chapter 5contains the experimental data collected during this dissertation work and analyses

the experimental results. The performances of the algorithms over the input datasets are

analyzed in this section.

Chapter 6concludes the dissertation work by summarizing the analysis and further

recommendation of the research work.

11

CHAPTER 2

RESEARCH METHODOLOGY

2.1 Literature Review

Vertex cover problem fascinates a lot of computer science researchers. A lot of work

in the field of vertex cover problem had been done in the past and new research is going on.

In 1972, Researcher Karp proved this problem to be NP complete[8]. Even if a problem is

NP-complete, there are three ways to get around NP-completeness. First, if the actual inputs

are small, an algorithm with exponential running time may be perfectly satisfactory. Second,

it may be possible to isolate important special cases that can be solved in polynomial time.

Third, we might come up with approaches to find near-optimal solutions in polynomial time

(either in the worst case or the expected case). In practice, near optimality is often good

enough. An algorithm that returns near-optimal solutions is called an approximation

algorithm. Although the vertex cover problem and minimum vertex cover problem is NP

complete problems, there had been a lot of research works for finding a optimal or near to

optimal solutions using different techniques such as heuristics algorithms , approximation

algorithms etc. Many researchers are in favor of approximation algorithms as the size of the

vertex-cover returned by these approximation algorithms is guaranteed to be no more than

twice the size of an optimal vertex-cover.

APPROX-VERTEX-COVER [3] is a polynomial time 2-approximation algorithm that

picks any edge and adds the corresponding vertices to vertex cover set S. The idea of this

heuristic is to simply put both vertices into the vertex cover and remove all the edges that are

incident to either of the added vertex. This process is repeated for all remaining edges. This

simple algorithm guarantees an approximation within a factor of 2 for the vertex cover

problem i.e. the cover generated is at most twice the size of the optimum cover. It runs in O

(V + E) time and loops until all edges have been removed returning a vertex cover that is

twice the optimal cover.

The Maximum Degree Greedy (MDG)[9,10] improves the 2-for-1 heuristic of the approx

vertex cover algorithm. MDG is a simple but clever algorithm. At each step, it selects and

adds the vertex of highest degree to vertex cover, and then removes it and its all incident

edges. This process is repeated until all edges in the graph are covered. Clearly a vertex of

12

higher degree should be more valuable in forming a small vertex cover since it covers a

number of edges.

The Greedy Independent Cover (GIC)[10] is an adaptation of the greedy algorithm for the

maximum independent set problem[11]. It is based on the concept that the vertices not in

independent set must belongs to vertex cover. In this algorithm, vertex of the minimum

degree is selected and all its neighbors are added to the vertex cover, the process continues

until we cover all edges. The greedy heuristic cannot always find an optimal solution. The

Figure 2.1 shows failure of greedy approach in a simple graph.

Figure 2.1: Vertex cover by greedy algorithm

Vertex cover algorithms based on greedy approach has worst performance on

complete bipartite graphs and gives a solution of size two times the optimal size.

The Depth First Search (DFS) algorithm has worst-case approximation ratio of 2. This

algorithm creates depth-first search spanning tree from the given graph and returns its non-

leaf vertices. If G is connected the result is a connected vertex cover. Otherwise the algorithm

is executed on each connected component of G (excepted isolated vertices) [10].

The LISTLEFT(LL) algorithm [10] proposed by Avis and Imamura to find vertex

cover based on a list heuristic. In this model, an algorithm scans the vertices one by one in a

fixed given order (called a list) and takes a decision for each currently scanned vertex (and

each decision is definitive). In this algorithm the order of scanning the list (i.e. selection) of

the vertices is known in advance and cannot be changed during the process. It works by

scanning the vertex list from left to right and the vertex that has at least a right neighbor not

in vertex cover is added to vertex cover set. The authors show that the ListLeft Algorithm has

(a) A Graph instance (b) A vertex cover of

size 5 obtained by the

greedy algorithm

(c) A minimum

vertex cover

13

an approximation ratio of
√∆

2
+

3

2
(is the maximum degree of the graph) when lists are sorted

by decreasing order of their degrees and that any list algorithm cannot have an approximation

better than
√∆

2
in that case[10].

Another list heuristic algorithm ListRight [12] modifies the LISTLEFT algorithm by

changing the order of processing the list, i.e. list are scanned from right to left. The ListRight

(LR) algorithm is a better list heuristic than ListLeft. It was proved that for any list L

ListRight returns a vertex cover whose size is smaller than or equal to the one constructed

byListLeft applied on the same list L. ListRight has a worst-case approximation ratio of Δ,

where Δ is the maximum degree in the graph. [10,12].

Aggression and Stein presented a divide and conquer approach. Their idea is to divide

the graph into sub graphs and then solving each sub graph. The sub-solutions are then

combined to get the solution of the original graph. The division of graph is done on the basis

of specific graph structure and unique properties. The included methodologies are degree one

and two vertices elimination, triangle elimination, almost bipartite etc. Their approach does

not seem to be feasible for practical purpose as the criteria for graph division is vague. Divide

and conquer approach is very efficient for providing solutions to other scenarios but it fails to

provide a generic solution plus the graph divisions also add to the complexity[13].

Alom [13] proposed a solution to vertex cover problem by introducing an O(|E|)

greedy algorithm. This algorithm selects the vertex which has maximum number of edges

incident to it. All the edges, that are incident to this vertex, are discarded. If more than one

vertex have the same maximum number of edges, this algorithm select the vertex which have

at least one edge that is not covered by other vertices. This process is repeated until to cover

all vertices[13].

Many of the previous mentioned methods to solve the problem of MVC depend on the

degree of the vertex itself. Balaji et al. presented another technique that depends of a value of

the support of the vertex. Support of a vertex is the sum of degrees of all vertices adjacent to

that vertex. They proposed an algorithm called vertex support algorithm (VSA). They have

tested their approach on large number of benchmarks and are optimal in most of the cases and

its rum time complexity is O (EV
2
) [13,14,15]. They provide empirical results obtained using

extensive set benchmark graphs to show the effectiveness of algorithm. They have also

compared their approach with other techniques. The algorithm design is little bit complex and

14

the calculation of support for each and every node in iterative manner adds some complexity.

But the quality of results is considerably better than other approaches[13,15].

A modification of the VSA called Modified Vertex Support Algorithm(MVSA) is

proposed by Imran and Hasham by modifying the decision of MVC node selection, MVSA

select node on the basis of their surroundings [13,14]. Here in MVSA, the selection of the

vertex does not depend only on the vertex that have the maximum the support value but it

finds all the vertices with minimum support value and then it selects the vertex with

minimum support from the list of all neighbors of the selected vertices. MVSA selects vertex

after analysis of surrounding support value of all attached vertices to the candidate node. All

vertices attached to minimum support value is analyzed first on the basis of their support

value and then vertex with maximum support is selected. It is a small modification but

experimental results provided in [14]show that MVSA can provide better results in

comparison to the original VSA[13,14].

Some other solutions depend on genetic algorithms such as algorithm for heuristic

vertex cover (HVX) [16]. Xu and Ma[13,17] presented a solution that uses annealing

algorithms to find the minimum vertex cover. In their work they show almost 100%

approximation ratio for some benchmarks but they need to apply it on more benchmarks. A

new clever intelligent greedy approach is presented by Gajurel and Bielefeld named

NOVAC-I [13,18,19]. This approach works on a clever concept raised from the keen

observation and analysis of relationship among vertices. The vertices attached to minimum

degree nodes are candidate of MVC with high probability. A well modified version of VSA

named Advance Vertex Support Algorithm (AVSA) has been proposed in [20]and has

showed that if the selection is modified then results vary a lot from the original values. It also

concludes that the quality of solution also depends on the data structure used and its

manipulation.

The Clever Steady Strategies Algorithm (CSSA) [4] presents a simple and fast

polynomial time algorithm. The proposed algorithm consists of three stages which produce

optimal or approximate vertex cover for any un weighted and undirected G = (V, E). The

CSSA is tested on small as well as on large benchmark instances. The experimental results

and comparative analysis show that the CSSA yields better and fast solution than those

approximation algorithms found in literature for solving minimum vertex cover problem. A

recent paper proposes a new algorithm, New modified vertex support algorithm (NMVSA)

[21] which is a modification of already existed algorithm called MVSA that uses the same

15

principle of selecting candidate from the neighborhood of the vertex with a modification in

the selection procedure. A comparative study is conducted between the NMVSA and MVSA

which shows that the proposed algorithm NMVSA provides better or equal results in the most

cases of the underlying data sets which leads to a better average approximation ratio of

NMVSA. NMVSA inherits the simplicity of the original algorithm[21].

In a research paper[22],Chen, J., Kou, L., and Cui, X. presents a new approach, an

approximation algorithm is obtained for the minimum vertex cover problem that is based on

Dijkstra algorithm. In the process of getting a vertex cover, the maximum value of shortest

paths is considered as a standard, and some other criteria are defined The time complexity of

the Algorithm is O(n
3
) ,where n is the number of vertices in a graph.

In [23] authors have presented a new extra fast approximation algorithm for solving

MVC generally in all graphs. The proposed algorithm is named as degree contribution

algorithm (DCA), and it introduces a new data structure called 'degree contribution' (DC) for

each node which is the sum of degree of that node and total number of nodes with that degree

in graph.This data structure for graphs takes account of whole graph for each node

contribution value. All decisions regarding vertices are made on the basis of the proposed

data structure. Effectiveness of DCA is shown by applying it to best available benchmarks

and after large number of experiments worst approximation ratio recorded was 1.041 and an

average approximation ratio was 1.005. These results show that algorithm can perform well

in solving graphs faster as compared to other algorithms

In [24] an evolutionary approach to solving the generalized vertex cover problem

(GVCP) is presented. Binary representation and standard genetic operators are used along

with the appropriate objective function. The experiments were carried out on randomly

generated instances with up to 500 vertices and 100 000 edges.

`A hybrid approach to approximating the minimum vertex cover based on a combination of a

steady state genetic algorithm with a greedy heuristic. First the genetic algorithm produces a

set of nodes, which is then reduced by greedy heuristics. They tested their approach against

ant colony optimization (ACO) and showed that their approach not only works faster than

ACO, but is also efficient in producing final output[25].

The authors of [25] propose a new approximation algorithm for the minimum vertex

cover problem called vertex cover using a maximum independent set (VCUMI). This

algorithm works by removing the nodes of a maximum independent set until the graph is an

approximate solution of MVC. Based on its empirical results, it states that VCUMI

16

outperforms all competing algorithms presented in the literature. Based on all the

benchmarks[26] used, VCUMI achieved the worst case error ratio of 1.033, while VSA,

MDG and NOVAC-1 gave the worst error ratios of 1.583, 1.107 and 1.04, respectively.

2.2 Concepts of Approximation algorithm

Many computational problems of practical significance are NP-complete. Some of

themare so important that they cannot be left unsolved for the fact that their optimal solution

is impossible to be determined in a reasonable time frame. If a problem is NP-complete, it is

unlikely to find a polynomial-time algorithm for solving it exactly, but as previously

mentioned there are different methods to tackle with them. In practice, near-optimality is

often good enough. An algorithm that returns near-optimal solutions is called an

approximation algorithm[3].

Depending on the problem, an optimal solution may be defined as one with maximum

possible cost or one with minimum possible cost; that is the problem may be either

maximization or a minimization problem. An algorithm for a problem has an approximation

ratio of ρ(n) if, for any input of size n, the cost c of the solution produced by the algorithm is

within afactor of ρ(n) of the cost c* of an optimal solution[3]:

Max(c/c*, c*/c) ≤ ρ (n)

 An algorithm that achieves an approximation ratio of ρ(n) is called a ρ(n)-

approximation algorithm.The definitions of approximation ratio and of ρ (n)-approximation

algorithm apply for both minimization and maximization problems[3].

2.3 Research Methodology

2.3.1 Input Selection

All the graph data that is used for the testing and analysis of the approximation

algorithms are obtained from the different benchmark graph datasets available over the

internet[26]. The benchmark graph datasets have predetermined optimal solution [26].

17

2.3.2 Input File Format

The inputs provided in the above files are in the formats as given below:

Figure 2.2: Input Graph

Sample graph data file format for above graph in Figure2.2 :

p edge 7 8

e 1 2

e 2 3

e 3 4

e 4 5

e 4 6

e 4 7

e 5 6

e 5 3

Here 'p' is the number of vertices in the graph, edge is the number of edges in the graph and 'e

1 2' represents an edge between vertex 1 and vertex 2 and so on.

2.3.3 Output Format

The output file containing vertex cover information is formatted as given below:

size 3 2 4 5

Here the 'size' and the first number following the word 'size' is the size of vertex cover

found by the algorithm. The other numbers following the first number, represents the vertex

included in the minimum vertex cover set.

2 3

5
7

1

4

6

18

There are other three output files for each algorithm generated as outputs that contains

data and information about the input and output of the algorithms implemented, formatted as

given below:

(Algorithm name) results:

 input graph file | No. of vertices | MVC Size | step count |

 frb30-15-1.mis 450 427 427

2.3.4 Data Collection ,testing and comparison

The benchmark graph dataset is passed as the input in the different algorithms

implemented and three separate output files are generated for each of the input graph data

files and each algorithm. Each of these output files contains the size of vertex cover and the

vertex cover set found by the algorithm. This output file containing vertex cover set is tested

for the verification that the output file contains a valid vertex cover set for the input graph.

The aim of this Dissertation is to compare the performance of three algorithms CSSA,

NOVCA-I, and NMVSA. The size of vertex cover and vertex cover set is determined by

executing the implemented programs for the algorithms for each input graph and the required

data is collected in separate text file as output of the programs. The approximation ratio of the

algorithms is calculated as:

Approximation ratio= MVC size determined by algorithm / Optimal MVC size.

The results of the experimentation are tabulated in tables.

19

CHAPTER 3

THE ALGORITHMS

3.1 Nearly Optimal Vertex Cover (NOVAC-I)

Gajurel and Bielfeld presented an extremely fast polynomial time algorithm, the Near

Optimal Vertex Cover Algorithm (NOVCA)-I[18,19] that produces an optimal or near

optimal vertex cover for any known undirected graph G (V, E). NOVCA-I is motivated by

the fact that a vertex cover candidates are those that are adjacent to minimum degree vertex.

So that when the adjacent vertices of minimum degree are added to vertex cover list, the

degree of the minimum degree vertex will be forcibly rendered to zero without choosing it.

This fact has been reinforced during tie when the vertex with neighbors having maximum

degrees is preferred over other minimum vertices. The complexity of NOVCA-I is O(E (V +

log
2
V)); with V = n, the complexity becomes O(n

2
 (n + log

2
n)) which is polynomial.

NOVCA-I constructs the vertex cover by repeatedly adding, at each step, all vertices adjacent

to the vertex of minimal degree; in the case of a tie, it selects the one having the maximum

sum of degrees of its neighbors. The vertices are chosen in increasing order of their degrees

i.e. the adjacent vertices of minimum degree vertex are included in vertex cover VC. The

implementation forcibly renders the degree of low degree vertices to zero without choosing

them. Run time complexity using their approach is in O (n
2
 log n) where 'n' is total number of

vertices [18].

3.2 Clever Steady Strategy Algorithm

The algorithm Clever steady strategy algorithm (CSSA) [4] selects a minimum degree

vertex from a list of all vertices adjacent to minimum degree vertices. The algorithm

primarily consists of three stages which produce optimal or approximate vertex cover for any

unweighted and undirected G = (V, E). In the first step the degree of each node of the given

graph is calculated. Then the minimum degree node(s) is searched and the adjacent nodes of

minimum degree nodes are determined. In the third stage the minimum degree node in all

adjacent nodes of minimum degree is searched out and is selected as a candidate for MVC

and all its edges are deleted. These three steps are executed repeatedly until no edge remains

in the graph.

The complexity of the CSSA is O(n
2
 log n), where n is number of vertices.

20

3.3 New Modified Vertex Support Algorithm

The selection of vertices in New Modified Vertex Support Algorithm (NMVSA) [21]

algorithm relies on the degree of the neighborhood vertices and support of a vertex. The

definition of neighborhood, degree, and support of vertex is as:

 Neighborhood of a vertex: Let G be an undirected graph G (V, E) where V is set of

vertices and E is set of Edges. |E|=m, |V|=n. For each vV the neighborhood of v,

N (v) = {uV | u is adjacent to v. }

 Degree of a vertex: The degree of the vertex d (v) is the number of adjacent neighbors

for vertex v V.

 The support of a vertex: support of a vertex s (v) is the sum of degrees of all neighbors

of v.

 Vertex Cover: Vertex cover c={x V | x=u or v if (v,u) is an edge eE}

The idea of selection in the algorithm NMVSA depends on the fact that the candidates

of vertex cover are adjacent to the vertices with minimum degrees. On each iteration,

NMVSA adds a vertex from the support list with the maximum degree to the vertex cover

and delete all edges connected to this vertex. The process continues until no more edges still

in E [21].

The selections of the vertices that will be part of the vertex cover rely on the vertices

that are adjacent to minimum degree vertices and their values of support. Value of support is

a value represents the sum of the degrees of the neighbors of the vertices. The intuition

behind the algorithm is to select the vertices that connect as much as possible from the

vertices that are located on the edges of the graph. The complexity of the NMVSA is O(mn
2
),

where m is number of edges and n is number of vertices.

21

CHAPTER 4

IMPLEMENTATION

4.1 Tools Used in program development

All the three algorithms studied in this dissertation work, are separately implemented

using C++ programming language. The standard template library (STL) of C++

programming language are heavily used in the implementation of algorithms as these library

provides number of built in methods that are very useful while developing the programs.

4.2 Data Structure Used

Different data structures such as array, vector, lists that are readily available in

Standard Template Library of C++ are used while implementing the algorithms for this

dissertation work. The graph data structure is implemented using adjacency list concept, A

graph class is implemented using the combination of these data structures as shown below:

class graph

{

 int V; // No. of vertices

 list<int> *adj; // Pointer to an array containing adjacency lists

 public:

 vector<int>deg; //vector to store the degree of vertices

 vector<int>spt; // vector to store the support of vertex

 graph(int V); // Constructor

 void addEdge(ifstream& fin); // method to add an edge to graph reading from

//input file

 int mindeg(vector<int>); //method to find minimum degree in the graph

 int minspt(vector<int>); //method to find minimum support in the graph

vector<int>printVertexCover(graph g); //method to find vertex cover

};

22

4.3 Experimental Setup

The system used during implementation has Windows 8 operating system with 4 GB

RAM and Intel Core I3 processor. The algorithms are implemented by creating a

console based multifile project by using Dev-C++ Version 5.6.3 IDE. The multifile

project contains 4 separate files; 3 files for the three algorithms and 1 file is for the

main process.

4.4 Pseudocode of algorithms

4.4.1 NOVCA-I Algorithm

Algorithm 4.1

step 1. Initialize VC to '0'; //VC means vertex cover set.

step 2. Calculate degree for each vertex in the graph.

step 3. Calculate the sum of degrees of adjacent vertices for each vertex.

step 4. Get a vertex with minimum degree, and if there are more than one vertex

with minimum degree the select the one having maximum value of sum of

degrees of adjacent vertices.

step 5. Add all adjacent vertices of that vertex to vertex cover and delete all its

edges.

step 6. Update value of degrees and sum of degrees of adjacent vertices for each

vertex.

step 7. Repeat through steps 4 to 7 while all Edges are processed.

step 8. Return MVC

4.4.2 CSSA Algorithm

Algorithm 4.2

step 1. Calculate degree of all vertices in the graph G.

step 2. Find out the minimum degree vertex/vertices and create a list L of their

adjacent

vertex/vertices.

step 3. Find minimum degree vertex/vertices (Vm) in the list L.

23

step 4. Add Vm to minimum vertex cover (MVC) set and delete all edges adjacent to

it.

step 5. Repeat steps 1 to 4 until edge exists.

step 6. Return MVC.

4.4.3 NMVSA Algorithm

Algorithm 4.3

step 1. Calculate degree for each vertex that is not included in vertex cover set VC.

step 2. Calculate support for each vertex

step 3. Find minimum support value(minsup)

step 4. Create list L of vertices Vi with same minimium support value (minsup)

step 5. Find and create list(H) of neighbours of minimum support vertices in L

step 6. Select vertex(vertices) C with maximum support value from H and add them

to vertex cover set

step 7. Delete all adjacent edges of C

step 8. Repeat step 1 to 7 until edges exists in graph.

step 9. Return MVC

4.4.4 Illustration of algorithms

 Illustration of NOVCA

Let us consider the given graph as in Figure 4.1.

Figure 4.1: A graph with 7 vertices and 8 edges

 Edge ={(1,2),(2,3).(3,4),(3,5),(4,5),(4,6), (4,7), (5,6)}, vc=0,VC={ }

 Degree and sum of degrees of adjacent vertices for each vertex are calculated as in

Table 4.1.

2 3 7

1 5

6

4

24

Table 4.1: Degree and sum of degree of adjacent for each vertex

 minimum degree vertices: 1,7

since sum_adj_deg(7)>sum_adj_deg(1)

selected vertex = 7

adjacent (7)= 4

 Add vertex 4 to vertex cover and delete all its edges ; VC={4},vc=1;

 Value of degrees and sum of degrees of adjacent vertices for each vertex are updated

as in Table 4.2.

Table 4.2: Updated Degree and sum of degree of adjacent for each vertex(I)

 Edge ={(1,2),(2,3),(3,5),(5,6)},

 minimum degree vertices: 1,6

since sum_adj_deg(6)=sum_adj_deg(1)

selected vertex = 6

adjacent (6)=5

 Add vertex 5 to vertex cover and delete all its edges

 VC={4,5},vc=2;

 value of degrees and sum of degrees of adjacent vertices for each vertex are Updated

as in Table 4.3.

Table 4.3: Updated Degree and sum of degree of adjacent for each vertex(II)

Vertex(v) 1 2 3 4 5 6 7

Degree(v) 1 2 3 4 3 2 1

Sum_deg_adj(v) 2 4 9 9 9 7 4

Vertex(v) 1 2 3 4 5 6 7

Degree(v) 1 2 2 0 2 1 0

Sum_deg_adj(v) 2 3 4 0 3 2 0

Vertex(v) 1 2 3 4 5 6 7

Degree(v) 1 2 1 0 0 0 0

Sum_deg_adj(v) 2 2 2 0 0 0 0

25

 Edge ={(1,2),(2,3)}

 minimum degree vertices: 1,3

 since sum_adj_deg(1)=sum_adj_deg(3)

 selected vertex = 1

 adjacent(1)=2

 Add vertex 2 to the VC and delete all its edges

 VC={4,5,2}, vc=3;

 Edge list={}

 Stop;

Final Minimum Vertex cover VC={4,5,2}

 Illustration of NMVSA

Let us consider the given graph in Figure 4.1

 Edge ={(1,2),(2,3),(3,4),(3,5),(4,5),(4,6), (4,7), (5,6)}, vc=0,VC={ }

 degree and support for each vertex in the graph are calculated as in Table 4.4.

Table 4.4: Degree and support for each vertex

 minimum support=2

 list of minimum support vertices, L:{ 1}

 list of neighbor of L; H ={2}

 max support of H =4

 max support vertex/vertices in H={2}

 Add vertex 2 to vertex cover and delete all its edges; VC={2},vc=1;

 value of degrees and support for each vertex are updated as in Table 4.5.

Vertex(v) 1 2 3 4 5 6 7

Degree(v) 1 2 3 4 3 2 1

support(v) 2 4 9 9 9 7 4

26

Table 4.5: Updated Degree and Support for each vertex(I)

 Edge ={((3,4),(3,5),(4,5),(4,6), (4,7), (5,6)},

minimum support=4

 list of minimum support vertices, L:{ 7}

 list of neighbor of L; H ={4}

 max support of H =9

 max support vertex/vertices in H={4}

 Add vertex 4 to vertex cover and delete all its edges

 VC={2,4}; vc=2;

 value of degrees and support for each vertex are updated as in Table 4.6.

Table 4.6: Updated Degree and Support for each vertex(II)

 Edge={(3,5),(5,6)}

 minimum support=2

 list of minimum support vertices, L:{ 3,5,6}

 list of neighbor of L; H ={3,5,6,5}

 max support of H =2

 max support vertex/vertices in H={3,5,6,5}

 Add vertex 5 to the VC and delete all its edges

 VC={2,4,5 }, vc=3;

 Edge list={}

 Stop;

Final Minimum Vertex cover VC={2,4,5}

Vertex(v) 1 2 3 4 5 6 7

Degree(v) 0 0 2 4 3 2 1

support(v) 0 0 7 9 9 7 4

Vertex(v) 1 2 3 4 5 6 7

Degree(v) 0 0 1 0 2 1 0

support(v) 0 0 2 0 2 2 0

27

 Illustration of CSSA

Let us consider the given graph

 Edge ={(1,2),(2,3),(3,4),(3,5),(4,5),(4,6), (4,7), (5,6)}, vc=0,VC={ }

 degree for each vertex in the graph are calculated as in Table 4.7.

Table 4.7: Degree of each vertex

 minimum degree vertices: 1,7

 Adj(1,7)={2,4}

 minimum degree in adj(1,7) =2

 Add vertex 2 to vertex cover and delete all its edges

VC={2},vc=1;

 value of degrees for each vertex are updated as in Table 4.8.

Table 4.8: Updated Degree of each vertex(I)

 Edge ={((3,4),(3,5),(4,5),(4,6), (4,7), (5,6)},

 minimum degree vertices: 7

adjacent (7)=4

minimum degree of adjacent(7)=4

 Add vertex 4 to vertex cover and delete all its edges

 VC={2,4}; vc=2;

 value of degrees for each vertex are updated as in Table 4.9.

Table 4.9: Updated Degree of each vertex(II)

 Edge={(3,5),(5,6)}

 Minimum degree vertex=3,6

 adjacent(3,6)=5

 Add vertex 5 to the VC and delete all its edges

Vertex(v) 1 2 3 4 5 6 7

Degree(v) 1 2 3 4 3 2 1

Vertex(v) 1 2 3 4 5 6 7

Degree(v) 0 0 2 4 3 2 1

Vertex(v) 1 2 3 4 5 6 7

Degree(v) 0 0 1 0 2 1 0

28

 VC={2,4,5 }, vc=3;

 Edge list={}

 Stop;

Final Minimum Vertex cover VC={2,4,5 }

Figure 4.2: Final vertex cover for graph in Figure 4.1

2 3 7

1 6 5

4

29

CHAPTER 5

RESULT ANALYSIS

5.1 Approximation Ratio

The first Performance metrics used in this comparative study is Approximation ratio.

The following Table 5.1(I) to Table 5.1(IV) lists the Approximation ratio of CSSA, NOVCA

and NMVSA algorithms along with the number of vertices in the input graph, Size of

Optimal MVC for the graph, the size of MVC for the input graph determined by the

algorithms.

Table 5.1:(I) Approximation ratio of NOVCA, NMVSA and CSSA

Input

graph file

No. of

Vertices

Optimal

MVC

MVC Size Approximation ratio

CSSA NOVCA NMVSA NMVSA NOVCA CSAA

frb30-15-1 450 420 427 424 425 1.012 1.010 1.017

frb30-15-2 450 420 426 426 426 1.014 1.014 1.014

frb30-15-3 450 420 425 425 425 1.012 1.012 1.012

frb30-15-4 450 420 426 426 424 1.010 1.014 1.014

frb30-15-5 450 420 425 424 425 1.012 1.010 1.012

frb35-17-1 595 560 566 566 567 1.013 1.011 1.011

frb35-17-2 595 560 565 565 567 1.013 1.009 1.009

frb35-17-3 595 560 565 565 565 1.009 1.009 1.009

frb45-21-1 945 900 908 906 907 1.008 1.007 1.009

frb45-21-2 945 900 908 907 909 1.010 1.008 1.009

frb45-21-3 945 900 909 909 910 1.011 1.010 1.010

frb45-21-4 945 900 906 907 908 1.009 1.008 1.007

frb45-21-5 945 900 907 908 908 1.009 1.009 1.008

frb50-23-2 1150 1100 1112 1108 1109 1.008 1.007 1.011

frb50-23-3 1150 1100 1107 1107 1107 1.006 1.006 1.006

frb50-23-4 1150 1100 1107 1107 1110 1.009 1.006 1.006

frb50-23-5 1150 1100 1111 1109 1110 1.009 1.008 1.010

30

Table 5.1: (II) Approximation ratio of NOVCA, NMVSA and CSSA

Input

graph file

No. of

Vertices

Optimal

MVC

MVC Size Approximation ratio

CSSA NOVCA NMVSA NMVSA NOVCA CSAA

graph50-01 50 30 30 30 30 1.000 1.000 1.000

graph50-02 50 30 30 30 30 1.000 1.000 1.000

graph50-03 50 30 30 30 30 1.000 1.000 1.000

graph50-04 50 40 40 40 40 1.000 1.000 1.000

graph50-05 50 27 27 27 27 1.000 1.000 1.000

graph50-06 50 38 38 38 38 1.000 1.000 1.000

graph50-07 50 35 35 35 35 1.000 1.000 1.000

graph50-08 50 29 29 29 29 1.000 1.000 1.000

graph50-09 50 40 40 40 40 1.000 1.000 1.000

graph50-10 50 35 35 35 35 1.000 1.000 1.000

graph100-01 100 60 60 60 60 1.000 1.000 1.000

graph100-02 100 65 65 65 65 1.000 1.000 1.000

graph100-03 100 75 75 75 75 1.000 1.000 1.000

graph100-04 100 60 60 60 60 1.000 1.000 1.000

graph100-05 100 60 60 60 60 1.000 1.000 1.000

graph100-06 100 80 80 80 80 1.000 1.000 1.000

graph100-07 100 65 65 65 65 1.000 1.000 1.000

graph100-08 100 75 75 75 75 1.000 1.000 1.000

graph100-09 100 85 85 85 85 1.000 1.000 1.000

graph100-10 100 70 70 70 70 1.000 1.000 1.000

graph250-05 250 200 200 200 200 1.000 1.000 1.000

graph500-01 500 350 350 350 350 1.000 1.000 1.000

graph500-02 500 400 400 400 400 1.000 1.000 1.000

graph500-03 500 375 375 375 375 1.000 1.000 1.000

graph500-04 500 300 300 300 300 1.000 1.000 1.000

graph500-05 500 290 290 290 290 1.000 1.000 1.000

31

Table 5.1: (III) Approximation ratio of NOVCA, NMVSA and CSSA

Input

graph file

No. of

Vertices

Optimal

MVC

MVC Size Approximation ratio

CSSA NOVCA NMVSA NMVSA NOVCA CSAA

hamming10-2 1024 512 512 512 512 1.000 1.000 1.000

hamming10-4 1024 984 992 988 988 1.004 1.004 1.008

hamming6-2 64 32 32 32 32 1.000 1.000 1.000

hamming8-2 256 128 128 128 128 1.000 1.000 1.000

hamming8-4 256 240 240 240 240 1.000 1.000 1.000

C125.9 125 91 94 92 94 1.033 1.011 1.033

C250.9 250 206 208 211 211 1.024 1.024 1.010

C500.9 500 443 453 451 452 1.020 1.018 1.023

DSJC500.5 500 <=487 489 489 489 1.004 1.004 1.004

c-fat500-10 500 374 374 374 374 1.000 1.000 1.000

c-fat500-5 500 436 436 436 436 1.000 1.000 1.000

gen400_p0_9_65 400 335 354 355 354 1.057 1.060 1.057

gen400_p0_9_75 400 325 353 353 356 1.095 1.086 1.086

johnson32-2-4 496 480 480 480 480 1.000 1.000 1.000

johnson8-2-4 28 24 24 24 24 1.000 1.000 1.000

keller4 171 160 160 164 163 1.019 1.025 1.000

keller5 776 749 754 761 754 1.007 1.016 1.007

32

Table 5.1: (IV) Approximation ratio of NOVCA, NMVSA and CSSA

Input

graph file

No. of

Vertices

Optimal

MVC

MVC Size Approximation ratio

CSSA NOVCA NMVSA NMVSA NOVCA CSAA

MANN_a81 3321 2221 2225 2225 2409 1.085 1.002 1.002

MANN_a45 1035 690 693 693 739 1.071 1.004 1.004

p_hat300-2 300 275 275 275 277 1.007 1.000 1.000

p_hat300-3 300 264 266 266 268 1.015 1.008 1.008

p_hat500-1 500 491 492 492 492 1.002 1.002 1.002

p_hat500-2 500 464 467 466 473 1.019 1.004 1.006

p_hat500-3 500 450 455 454 457 1.016 1.009 1.011

p_hat700-3 700 638 642 641 643 1.008 1.005 1.006

sanr400_0_7 400 379 382 382 381 1.005 1.008 1.008

san400_0_5_1 400 387 392 391 391 1.010 1.010 1.013

san400_0_7_1 400 360 379 379 378 1.050 1.053 1.053

san400_0_7_2 400 370 382 383 382 1.032 1.035 1.032

san400_0_7_3 400 378 385 384 385 1.019 1.016 1.019

san400_0_9_1 400 300 326 318 317 1.057 1.060 1.087

sanr400_0_5 400 387 389 388 389 1.005 1.003 1.005

frb100-40 4000 3900 3919 3917 3920 1.005 1.004 1.005

33

Table 5.2: Minimum, Average and Maximum Approximation ratio of NOVCA,

NMVSA and CSSA

5.2 Step Count

Step count is second performance metrics used in this dissertation work that counts the

number of vertices that the particular algorithm requires to process a candidate vertex of the

vertex cover set. The following Table 5.3(I) to Table 5.3(V) lists the step counts of the

different algorithms.

Approximation ratio NMVSA NOVCA CSSA

Average approximation ratio 1.012 1.008 1.009

Max approximation ratio 1.095 1.086 1.087

Min approximation ratio 1 1 1

34

Table 5.3: (I) Step count of CSSA, NOVCA and NMVSA

Input graph

file
No. of Vertices

step count

CSSA NOVCA NMVSA

frb30-15-1 450 427 25 425

frb30-15-2 450 426 24 426

frb30-15-3 450 425 25 425

frb30-15-4 450 426 24 424

frb30-15-5 450 425 25 425

frb35-17-1 595 566 29 567

frb35-17-2 595 565 30 567

frb35-17-3 595 565 30 565

frb45-21-1 945 908 39 907

frb45-21-2 945 908 38 909

frb45-21-3 945 909 36 910

frb45-21-4 945 906 37 908

frb45-21-5 945 907 37 908

frb50-23-2 1150 1112 41 1109

frb50-23-3 1150 1107 43 1107

frb50-23-4 1150 1107 43 1110

frb50-23-5 1150 1111 41 1110

35

Table 5.3: (II) Step count of CSSA, NOVCA and NMVSA

Input graph

file

No. of

Vertices

Step count

CSSA NOVCA NMVSA

graph50-01 50 30 9 30

graph50-02 50 30 10 30

graph50-03 50 30 6 30

graph50-04 50 40 9 40

graph50-05 50 27 9 27

graph50-06 50 38 6 38

graph50-07 50 35 6 35

graph50-08 50 29 7 29

graph50-09 50 40 4 40

graph50-10 50 35 8 35

graph100-01 100 60 6 60

graph100-02 100 65 10 65

graph100-03 100 75 7 75

graph100-04 100 60 4 60

graph100-05 100 60 14 60

graph100-06 100 80 6 80

graph100-07 100 65 4 65

graph100-08 100 75 6 75

graph100-09 100 85 5 85

graph100-10 100 70 4 70

graph250-05 250 200 14 200

graph500-01 500 350 17 350

graph500-02 500 400 8 400

graph500-03 500 375 8 375

graph500-04 500 300 5 300

graph500-05 500 290 6 290

36

Table 5.3: (III) Step count of CSSA, NOVCA and NMVSA

Input graph file
No. of

Vertices

Step count

CSSA NOVCA NMVSA

hamming10-2 1024 512 256 512

hamming10-4 1024 992 34 988

hamming6-2 64 32 16 32

hamming8-2 256 128 64 128

hamming8-4 256 240 12 240

C125.9 125 94 32 94

C250.9 250 208 39 211

C500.9 500 453 49 452

DSJC500.5 500 489 11 489

c-fat500-10 500 374 2 374

c-fat500-5 500 436 2 436

gen400_p0_9_65 400 354 45 354

gen400_p0_9_75 400 353 46 356

johnson32-2-4 496 480 15 480

johnson8-2-4 28 24 3 24

keller4 171 160 7 163

keller5 776 754 15 754

37

Table 5.3: (IV) Step count of CSSA, NOVCA and NMVSA

Input graph file
No. of

Vertices

Step count

CSSA NOVCA NMVSA

MANN_a81 3321 2225 1096 2409

MANN_a45 1035 693 342 739

p_hat300-2 300 275 23 277

p_hat300-3 300 266 33 268

p_hat500-1 500 492 8 492

p_hat500-2 500 467 31 473

p_hat500-3 500 455 45 457

p_hat700-3 700 642 58 643

sanr400_0_7 400 382 17 381

san400_0_5_1 400 392 8 391

san400_0_7_1 400 379 21 378

san400_0_7_2 400 382 17 382

san400_0_7_3 400 385 15 385

san400_0_9_1 400 326 61 317

sanr400_0_5 400 389 11 389

frb100-40.mis 4000 3919 83 3920

38

5.3 Analysis and Result

The performance of the approximation algorithms for MVC is measured in terms of

following two factors:

5.3.1 Approximation Ratio

The approximation ratio is the ratio of the size of MVC of given graph in solution and

the optimal size of MVC of the given graph. An approximation algorithm with

approximation ratio 1 produces an optimal solution, and an approximation algorithm with a

large approximation ratio may return a solution that is much worse than optimal. In the

above table, the approximation ratio for each input graph is calculated separately for each

algorithm after all the data are collected.

Figure 5.1: (I)Approximation ratio of NOVCA, NMVSA and CSSA

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

A
p

p
ro

x
im

a
ti

o
n

 r
a

ti
o

Input Graph

NMVSA NOVCA CSAA

39

Figure 5.1(II) Approximation ratio of NOVCA, NMVSA and CSSA

0

0.2

0.4

0.6

0.8

1

1.2

g
ra

p
h
5

0
-0

1

g
ra

p
h
5

0
-0

2

g
ra

p
h
5

0
-0

3

g
ra

p
h
5

0
-0

4

g
ra

p
h
5

0
-0

5

g
ra

p
h
5

0
-0

6

g
ra

p
h
5

0
-0

7

g
ra

p
h
5

0
-0

8

g
ra

p
h
5

0
-0

9

g
ra

p
h
5

0
-1

0

g
ra

p
h
1

0
0

-0
1

g
ra

p
h
1

0
0

-0
2

g
ra

p
h
1

0
0

-0
3

g
ra

p
h
1

0
0

-0
4

g
ra

p
h
1

0
0

-0
5

g
ra

p
h
1

0
0

-0
6

g
ra

p
h
1

0
0

-0
7

g
ra

p
h
1

0
0

-0
8

g
ra

p
h
1

0
0

-0
9

g
ra

p
h
1

0
0

-1
0

g
ra

p
h
2

5
0

-0
5

g
ra

p
h
5

0
0

-0
1

g
ra

p
h
5

0
0

-0
2

g
ra

p
h
5

0
0

-0
3

g
ra

p
h
5

0
0

-0
4

g
ra

p
h
5

0
0

-0
5

A
p

p
ro

x
im

a
ti

o
n

 r
a

ti
o

Input Graph

NMVSA NOVCA CSAA

40

 Figure 5.1 :(III) Approximation ratio of NOVCA, NMVSA and CSSA

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12
A

p
p

ro
x
im

a
ti

o
n

 R
a

ti
o

Input Graph

NMVSA NOVCA CSAA

41

Figure 5.1: (IV)Approximation ratio of NOVCA, NMVSA and CSSA

From the above tabulated information in Table 5.1(I) to Table 5.1(IV) and Figure

5.1(I)to Figure 5.1(IV) ,it is observed that MVC size determined by all the algorithms

NMVSA, NOVCA and CSSA has nominal differences (except in some cases). The

approximation ratios of all the three algorithms do not differ significantly. The minimum

approximation ratio of all the three algorithms is one, the maximum approximation ratios are

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1
A

p
p

ro
x
im

a
ti

o
n

 r
a

ti
o

Input Graph

NMVSA NOVCA CSAA

42

also very close to one and they do not deviate much. The average approximation ratio of

NOVCA-I is 1.008 which less than that of CSSA and NMVSA, 1.009 and 1.012respectively.

It is clearly seen that NOVCA-I has better or same performance as the other two NMVSA,

and CSSA algorithm in terms of approximation ratio. As the phrase, the lesser the

approximation ratio the better the algorithm is, suggests that the NOVCA-I algorithm is better

than the other two algorithms. It is very close to or equal to 1 for the given benchmark graph

datasets. A solution having 1 approximation ratio is an optimal solution and solution with

approximation ratio very close to 1 can be considered as sub optimal solution and can be used

as optimal solution.

5.3.2 Step Count

It represents a number that counts the number of vertices processed by the algorithm

to find a valid vertex cover of the given graph. This measure serves in comparing the

performance of algorithms in terms of the number of vertices to be processed for finding

vertex cover. The lesser step count will indicate the better performance of algorithm. This

feature is implemented using a integer variable 'step_count' in the program. This variable is

initialized to zero when algorithm starts and gets incremented each time a vertex is processed

for finding candidates of minimum vertex cover. When a valid and complete vertex cover set

is found by the algorithm, the last value of this variable represents the total number of steps

that the algorithms has taken to process the vertices of the minimum vertex cover.

43

Figure 5.2: (I)Step Count of NOVCA, NMVSA and CSSA

0

200

400

600

800

1000

1200
S

te
p

 C
o

u
n

t

Input Graph

CSSA NOVCA NMVSA

44

Figure 5.2: (II)Step Count of NOVCA, NMVSA and CSSA

0

50

100

150

200

250

300

350

400

450

g
ra

p
h
5

0
-0

1

g
ra

p
h
5

0
-0

2

g
ra

p
h
5

0
-0

3

g
ra

p
h
5

0
-0

4

g
ra

p
h
5

0
-0

5

g
ra

p
h
5

0
-0

6

g
ra

p
h
5

0
-0

7

g
ra

p
h
5

0
-0

8

g
ra

p
h
5

0
-0

9

g
ra

p
h
5

0
-1

0

g
ra

p
h
1

0
0

-0
1

g
ra

p
h
1

0
0

-0
2

g
ra

p
h
1

0
0

-0
3

g
ra

p
h
1

0
0

-0
4

g
ra

p
h
1

0
0

-0
5

g
ra

p
h
1

0
0

-0
6

g
ra

p
h
1

0
0

-0
7

g
ra

p
h
1

0
0

-0
8

g
ra

p
h
1

0
0

-0
9

g
ra

p
h
1

0
0

-1
0

g
ra

p
h
2

5
0

-0
5

g
ra

p
h
5

0
0

-0
1

g
ra

p
h
5

0
0

-0
2

g
ra

p
h
5

0
0

-0
3

g
ra

p
h
5

0
0

-0
4

g
ra

p
h
5

0
0

-0
5

S
te

p
 C

o
u

n
t

Input Graph

CSSA NOVCA NMVSA

45

Figure 5.2:(III) Step Count of NOVCA, NMVSA and CSSA

0

200

400

600

800

1000

1200
S

te
p

 C
o

u
n

t

Input Graph

CSSA NOVCA NMVSA

46

 Figure 5.2: (IV)Step Count of NOVCA, NMVSA and CSSA

From the observation of Table 5.3(I) to Table 5.3(IV) and Figure 5.2(I) to

Figure5.2(IV), it is obvious that the steps needed to process the possible vertex cover

candidates by NOVCA-I is much more less than the step counts of NMVSA and CSSA

algorithm. This is because NOVCA-I selects minimum degree vertex and adds its all adjacent

0

500

1000

1500

2000

2500

3000

3500

4000
S

te
p

 C
o

u
n

t

Input Graph

CSSA NOVCA NMVSA

47

vertices to vertex cover. This strategy adds a number of vertices to vertex cover set in a single

step (specially in dense graphs).So that when the adjacent vertices of minimum degree are

added to vertex cover list, the degree of the minimum degree vertex adjacent to these vertices

will be forcibly rendered to zero. Whereas the CSSA selects one vertex at a time to add it to

vertex cover set which obviously shows that step count increases as the size of vertex cover

increases. NMVSA tries to add a number of vertices to vertex cover list by selecting those

vertices having same maximum support in the neighborhood list of minimum support vertices

but it may leave the minimum support vertices without rendering its degree to zero. These

vertices may again be selected for further processing but may not be fruitful to select the

vertex cover candidates and may add extra steps and vertex to vertex cover. So NOVCA

seems to be better than NMVSA and CSSA in term of step counts.

48

CHAPTER 6

CONCLUSION AND FURTHER RECOMMENDATIONS

6.1 Conclusion

Vertex cover Problem is a NP-complete problem; hence a polynomial time algorithm

that finds an optimal solution efficiently is impossible in present context. Approximation

algorithm is the best suitable approach to find a acceptable solution to minimum vertex cover

problem. From the experimental results and analysis based on the two performance metrics

(approximation ratio and step counts), it is observed that the performance of NOVCA-I

algorithm outperforms the other two algorithms: NMVSA and CSSA. NOVCA shows better

performance in dense graph.The average approximation ratio of NOVCA is 1.008 for the

different benchmark graph instances used in this dissertation work. Although the other two

algorithms have not so significant difference in approximation ratio with NOVCA but they

have step counts much more than NOVCA. From experimental observation and analysis of

the results, it can be concluded that the algorithm NOVCA-I is efficient and has better

performance in terms of both approximation ratio and step count, than the other two

algorithms NMVSA and CSSA.

6.2 Further Recommendation

In this Dissertation work the comparison of three approximation algorithms is done on

the benchmark graph datasets. The future scope of the research may include comparison of

these algorithms with other algorithms such as hybrid algorithms, genetic algorithms.

Algorithm performance enhancement by changing the selection procedure, parameter of the

vertex cover candidate, finding the redundant or extra vertex in the vertex cover set and

removing these vertices may be some possible research directions.

49

REFERENCES:

[1] "Vertex cover - Wikipedia," Vertex cover. [Online].

Available: https://en.wikipedia.org/wiki/vertex_cover [Accessed: 15-Jan-2017]

[2] G. Singh, G. Sharma and P. Singh "A Novel Algorithm to solve vertex cover

problem," International Journal of Advanced Computation Engineering and

Networking, Vol-1, Issue-1, ISSN(p): 2320-2106, pp 60-66, Mar 2013.

[3] T. H. Cormen, C. E. Lieserson, R. L. Rivest and C. Stein, “Introduction to

Algorithms,” 3rd Ed, Cambridge: MIT Press, 2009.

[4] M. Fayaz, S. Arshad, "Clever Steady Strategy Algorithm: A Simple and efficient

approximation algorithm for minimum vertex cover problem," 2015 13th

International Conference on Frontiers of Information Technology (FIT), 2015

[5] Y. Khamayseh, W. Mardini, and A. Shatnawi, "An Approximation Algorithm for

Vertex Cover Problem," 2012 International Conference on Computer Networks and

Communication Systems (CNCS 2012) IPCSIT vol.35 (2012) © (2012) IACSIT

Press, Singapore , 2012 .

[6] K. V. R. Kumar," Choosing the efficient algorithm for vertex cover problem,"

(Masters Thesis, THAPAR UNIVERSITY PATIALA, 2009).

[7] "NP-completeness. - Wikipedia," NP- completeness. [Online].

Available: https://en.wikipedia.org/wiki/NP-completeness [Accessed: 15-Jan-2017]

[8] R. Karp, “Reducibility among combinatorial problems,” New York: Plenum Press,

1972.

[9] K. L. Clarkson, "A modification to the greedy algorithm for the vertex cover

problem," Information Processing Letters, vol. 16, no.1, pp 23-25, 1983.

[10] F. Delbot and C. Laforest, “Analytical and experimental comparison of six algorithms

for the vertex cover problem,” Journal of Experimental Algorithmics, vol. 15, 2010.

[11] M. Halldorsson and J. Radhakrishnan, “Greed is good: Approximating independent

sets in sparse and bounded-degree graphs,” In Proceedings of 26th Annual ACM

Symposium on Theory of Computing, New York: ACM, 1994.

[12] F. Delbot and C. Laforest, “A better list heuristic for vertex covers," Information

Processing Letters, vol. 107, 2008.

[13] I. Khan, and S. Khan," Experimental Comparison of Five Approximation Algorithms

for Minimum Vertex Cover," International Journal of u-and e-Service, Science and

Technology, vol.7, no.6, pp 69-84, 2014.

50

[14] I. Khan. and H. Khan, "Modified Vertex Support Algorithm: A New approach for

approximation of Minimum vertex cover," Research Journal of Computer and

Information Technology Sciences, ISSN 2320-6527, vol. 1, no. 6, pp. 7-11, 2013.

[15] S. Balaji, V. Swaminathan, and K. Kannan, "Optimization of unweighted minimum

vertex cover," World Academy of Science, Engineering and Technology, vol. 43, pp.

716-729, 2010.

[16] S. Bansal, and A. Rana," Analysis of Various Algorithms to Solve Vertex Cover

Problem," International Journal of Innovative Technology and Exploring Engineering

(IJITEE) ISSN: 2278-3075, vol. 3, issue-12, May 2014

[17] X. Xu and J. Ma, “An efficient simulated annealing algorithm for the minimum vertex

cover problem,” Neurocomputing, vol. 69, no. 7, pp. 913-916, 2006.

[18] S. Gajurel, and R. Bielefeld," A fast near optimal vertex cover algorithm (NOVCA),"

International Journal of Experimental Algorithms(IJEA), vol. 3, issue 1, pp. 9-18,

2012.

[19] S. Gajurel and R. Bielefeld, “A Simple NOVCA: Near Optimal Vertex Cover

Algorithm,” Procedia Computer Science, vol. 9, 2012.

[20] I. Khan, I. Ahmad and M. Khan, “AVSA, Modified Vertex Support Algorithm for

Approximation of MVC,” International Journal of Advanced Science and

Technology, vol. 67, pp. 71-78, 2014.

[21] M. Eshtay, A. Sliet, and A. Sharieh," NMVSA Greedy Solution for Vertex Cover

Problem," International Journal of Advanced Computer Science and Applications

(IJACSA), Vol. 7, No. 3, pp.60-64, 2016

[22] J. Chen, L. Kou, and X. Cui, "An Approximation Algorithm for the Minimum Vertex

Cover Problem," Procedia Engineering, vol. 137, pp. 180-185, 2016.

[23] I. Khan, and H. Khan," Degree Contribution Algorithm for Approximation of MVC.

International Journal of Hybrid Information Technology," vol. 7, no.5, pp. 183-190,

2014.

[24] M. Milanovic," Solving the generalized vertex cover problem by genetic algorithm,"

Computing and Informatics," vol. 29, no. 6, 2010.

[25] I. Khan, and N. Riaz. " A new and fast approximation algorithm for vertex cover

using a maximum independent set (VCUMI)," Operations Research and Decisions,

vol.25, no. 4, pp. 5-18, 2015.

[26] "Vertex Cover Benchmark Instances", [Online].

Available: https://turing.cs.hbg.psu.edu/txn131/vertex_cover.html [Accessed: 5-Feb-

2017]

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1
	INTRODUCTION and Background
	Introduction
	Problem Definition
	Objective
	Motivation
	Background
	The Vertex Cover Problem
	Application of Vertex Cover
	Problems Related to Vertex cover
	Clique problem
	Independent-set problem

	Complexity Classes of Problems: P, NP, and NPC
	Coping with NP-completeness/ Solving NP-complete problems

	Contribution Of This Dissertation
	Outline of the Dissertation

	CHAPTER 2
	RESEARCH METHODOLOGY
	Literature Review
	Concepts of Approximation algorithm
	Research Methodology
	Input Selection
	Input File Format
	Output Format
	Data Collection ,testing and comparison

	CHAPTER 3
	THE ALGORITHMS
	Nearly Optimal Vertex Cover (NOVAC-I)
	Clever Steady Strategy Algorithm
	New Modified Vertex Support Algorithm

	CHAPTER 4
	IMPLEMENTATION
	Tools Used in program development
	Data Structure Used
	Experimental Setup
	Pseudocode of algorithms
	NOVCA-I Algorithm
	CSSA Algorithm
	NMVSA Algorithm
	Illustration of algorithms
	Illustration of NOVCA
	Illustration of NMVSA
	Illustration of CSSA

	CHAPTER 5
	REsult ANALYSIS
	Approximation Ratio
	Step Count
	Analysis and Result
	Approximation Ratio
	Step Count

	CHAPTER 6
	CONCLUSION AND FURTHER RECOMMENDATIONS
	Conclusion
	Further Recommendation

	REFERENCES:

