

Tribhuvan University

Institute of Science and Technology

Task Scheduling in Cloud Computing Environment using Evolutionary
and Swarm Based Algorithm

Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Tribhuvan University, Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

for the Master’s Degree in Computer Science and Information Technology

By

Nawa Raj Rimal

November, 2017

Tribhuvan University

Institute of Science and Technology

Task Scheduling in Cloud Computing Environment using Evolutionary
and Swarm Based Algorithm

Dissertation

Submitted to

Central Department of Computer Science and Information Technology

Tribhuvan University, Kirtipur, Kathmandu, Nepal

In partial fulfillment of the requirements

for the Master’s Degree in Computer Science and Information Technology

By

Nawa Raj Rimal

November, 2017

Supervisor

Prof. Dr. Subarna Shakya

Tribhuvan University
Institute of Science and Technology

Central Department of Computer Science and Information
Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the
listed here have been used in this work.

… … … … … … …
Nawa Raj Rimal
November, 2017

Tribhuvan University

Institute of Science and Technology
Central Department of Computer Science and Information

Technology

Supervisor’s Recommendation

We hereby recommend that this dissertation prepared under our supervision by Mr.

Nawa Raj Rimal entitled “Task Scheduling in Cloud Computing Environment using

Evolutionary and Swarm Based Algorithm” be accepted as partial fulfillment of the

requirements for the degree of M. Sc. in Computer Science and Information Technology.

In our best knowledge, this is an original work in computer science.

…………………………..

Prof. Dr. Subarna Shakya

Department of Electronics & Computer Engineering

Institute of Engineering (IOE)

Tribhuvan University

Pulchwok, Kathmandu, Nepal

(Supervisor)

Tribhuvan University

Institute of Science and Technology
Central Department of Computer Science and Information

Technology

LETTER OF APPROVAL

We certify that we have read this dissertation and in our opinion, it is satisfactory in the

scope and quality as a dissertation in the partial fulfillment for the requirement of Masters

Degree in Computer Science and Information Technology.

Evaluation Committee

…………………………..
Prof. Dr. SubarnaShakya

Department of Electronics & Computer Engineering
Institute of Engineering (IOE)

Tribhuvan University
Pulchwok, Kathmandu, Nepal

(Supervisor)

…………………………..
Asst. Prof.NawarajPaudel

Central Department of Computer Science and
Information Technology (CDCSIT)

Tribhuvan University
Kritipur

Head of Department (HOD)

(External Examiner)

(Internal Examiner)

i

Acknowledgements

I would like to express my gratitude to all the people who supported and accompanied me

during the preparation of this dissertation “Task Scheduling in Cloud Computing

Environment using Evolutionary and Swarm Based Algorithm”. This research work

has been performed under Central Department of Computer Science and Information

Technology (Tribhuwan University), Kirtipur. I am very grateful to my department for

giving me an enthusiastic support.

First, I would like to express my gratitude to my supervisor Professor Dr. Subarna

Shakya, Professor of the Department of Electronics and Computer Engineering, Institute

of Engineering, Pulchowk. This research would not have been possible without his

advices and patience.

Most importantly I would like to thank to respected Head of Department of Central

Department of Computer Science and Information Technology, Assoc. Prof. Nawaraj

Poudel, respected teachers of CDCSIT, TU, for providing me such a broad knowledge

and inspirations.

Special thanks to my family and members of educational organizations that I have been

working, for their endless motivation, constant mental support and love which have been

influential in whatever I have achieved so far.

I wish to thank to all my colleagues and friends especially Mr. Deep Raj Sharma, and Mr.

Ranjit Barma for supporting me directly and indirectly in this research work.

I have done my best to complete this research work. Suggestions from the readers are

always welcomed, which will improve this work.

Nawa Raj Rimal

November, 2017

ii

Abstract

Cloud computing is a popular computing concept that performs processing of huge

volume of data using highly accessible geographically distributed resources that can be

access by user on the basis of Pay per Use policy. In the modern computing environment

where the amount of data to be processed is increasing day by day, the costs involved in

the transmission and execution of such amount of data is mounting significantly. So there

is a requirement of appropriate scheduling of tasks which will help to manage the

escalating costs of data intensive applications. Complexity class of the task scheduling

problem belongs to NP-complete involving extremely large search space with

correspondingly large number of potential solutions and takes much longer time to find

the optimal solution. There is no readymade and well-defined methodology to solve the

problems under such circumstances. However, in cloud, it is sufficient to find near

optimal solution, preferably in a short period of time.

The Evolutionary and Swarm based Algorithm is a scheduling algorithm capable of

locating good solutions efficiently. The algorithm could be considered as belonging to the

category of “Intelligent Optimization”. This dissertation work analyzes Genetic

Algorithm, Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)

task scheduling algorithms in cloud computing that address the above-mentioned

problem. The simulation result shows that the PSO algorithm produces the significant

result and provides the better solution. General GA, ACO and PSO are implemented and

tested. Evaluation results have shown that PSO seemed to be 38% better than GA and

26.5% better than ACO.

Keywords: Task Scheduling, Cloud Computing, Genetic Algorithm, Ant Colony

Optimization, Particle Swarm Optimization

iii

Table of Contents
Acknowledgements .. i	

Abstract ... ii	

List of Figures ... v	

List of Tables ... vi	

List of Abbreviations .. vii	

CHAPTER 1 ... 1	

INTRODUCTION AND BACKGROUND ... 1	

1.1 Introduction to the Cloud Computing ... 1	

1.1.1 Attributes of Cloud Computing .. 2	

1.1.2 Cloud Computing Architecture .. 4	

1.2.3 History .. 5	

1.2 Task and Task Scheduling in Cloud system .. 5	

1.2.1 Genetic Algorithm .. 6	

1.2.2 Ant Colony Optimization ... 8	

1.2.3 Particle Swarm Optimization .. 10	

1.3 Problem Statement .. 11	

1.4 Objective ... 12	

1.5 Thesis organization ... 12	

CHAPTER 2 ... 13	

REVIEW OF THE LITERATURE .. 13	

2.1 Previous Work ... 13	

2.2 Genetic Algorithm ... 14	

2.3 Ant Colony Optimization .. 15	

2.3.1 ACO algorithm for TSP .. 17	

2.3.2 ACO in job scheduling problems ... 17	

2.4 Particle Swarm Optimization Algorithms ... 17	

iv

CHAPTER 3 ... 19	

RSEARCH METHODOLOGY .. 19	

3.1 Search of Suitable Algorithm .. 19	

3.2 Algorithms ... 19	

3.3 The Problem and modified Algorithms for the problem ... 19	

3.3.1 Modified Genetics Algorithm .. 20	

3.3.2 Modified Ant Colony Algorithm .. 21	

3.3.3 Modified Particle Swarm Optimization .. 21	

3.4 Implementation of Algorithms .. 22	

3.5 Analyzing Results ... 22	

CHAPTER 4 ... 24	

RESULT, ANALYSIS AND COMPARISIONS ... 24	

4.1 Experimental Setup ... 24	

4.2 Generation of Data set ... 24	

4.3 Trace of Algorithms .. 25	

4.3.1 Trace of GA .. 25	

4.3.2 Trace of ACO ... 31	

4.3.3 Trace of PSO .. 34	

4.4 Results and Analysis ... 35	

4.4.1 Comparative Analysis of GA, ACO and PSO .. 35	

4.4.2 Results .. 39	

CHAPTER 5 ... 40	

CONCLUSION ... 40	

5.1 Conclusion ... 40	

5.2 Limitation .. 40	

References ... 42	

v

List of Figures
Figure1: Cloud definition provided by NIST .. 4	

Figure 2: Flow Chart of Genetic Algorithm ... 6	

Figure 3:Flow Chart of ACO .. 9	

Figure 4: Flow Chart of PSO .. 10	

Figure 5: Framework of Research ... 19	

Figure 6: System Flowchart for Task Scheduling ... 24	

Figure 7: Simulation result 1 ... 36	

Figure 8: Simulation result 2 ... 37	

Figure 9: Simulation result 3 ... 38	

vi

 List of Tables
Table 1 Resource 3 and Tasks 13 ... 35	

Table 2 Resource 5 and Tasks 30 ... 37	

Table 3 Resource 7 and Tasks 26 ... 38	

vii

List of Abbreviations
ACO - Ant Colony Optimization

ASP - Application Service Provision

BCO - Bee Colony Optimization

DPS - Dynamic Priority Scheduling

GA - Genetic Algorithm

ICT - Information, Communication and Technology

MGA1 - Modified Genetic Algorithm 1

MGA2 - Modified Genetic Algorithm 2

PSO - Particle Swarm Optimization

TSP - Travelling Salesman Problem

1

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction to the Cloud Computing
Cloud Computing is a buzzword of 2010 and many experts disagree on its exact

definition. But the most used one and concurred one includes the notion of web- based

services which are available on demand from and optimized and highly scalable service

provider. Since such a disagreement on the definition, one will be provided to better

understand of the notion. The cloud is IT as a service, delivered by IT resources that are

independent of location. It is a style of computing in which dynamically scalable and

often virtualized resources are provided as a service over the Internet where end- users

have no knowledge of, expertise in, or control over the technology infrastructure (the

cloud) that supports them [1].

Cloud computing is developed from the grid computing, distributed computing and

parallel computing. It is a new business computing model and will distribute the tasks on

the resources pool of large number computers, storage devices. Parallel and distributed

system consisting of a collection of interconnected virtual computers. That presented as

one or more unified computing resources based on service-level agreements between the

service provider and consumers. There are three types of services of cloud computing [2]:

a. Software as a Service (SaaS)

b. Platform as a Service (PaaS)

c. Infrastructure as a Service (IaaS)

Platform as a Service (PaaS): PaaS is a deployment and development platform for

applications provided as a service to developers over the Web. Third party renders

develop and deploy software or applications to the end users through internet and servers.

The cost and complexity of development and deployment of applications can be reduced

to a great extent by developers by using this service. Thus, the developers can reduce the

cost of buying and reduce the complexity of managing the required Infrastructure. It

2

provides all of the services required to build and deliver the web services to support the

complete life cycle of web applications entirely from the Internet. This platform consists

of infrastructure software, databases, middleware, and development tools.

Infrastructure as a Service (IaaS): is a delivery model associated with Hardware and

Software as a service. Hardware such as Storage, server and network along with

supporting software such as operating system, virtualization technology and file system.

It is an 3 evolution of traditional hosting to allow users to provide resources on demand

and without require any long term commitment. Different from PaaS services, the IaaS

provider does very little management of data other than to keep the data center

operational. Deployment and managing of the software services must be done by the end

users just as the way they would in their own data center.

Software as a service (SaaS): SaaS allows access to programs to large number of users

all the way through browser. For a user, this can save some cost on software and servers.

For Service provider’s, they only need to maintain one program, this can also save space

and cost. Naturally, a SaaS provider gives access to applications to multiple clients and

users over web by hosting and managing the given application in their or leased

datacenters. SaaS providers also run their applications on platforms and infrastructure

provided by other cloud providers.

1.1.1 Attributes of Cloud Computing

Before some of the attributes will be defined, the term cloud should be explained. A

cloud has been long used in IT, in network diagrams respectively, to represent a sort of

black box where the interfaces are well known but the internal routing and processing is

not visible to the network users. Key attributes in cloud computing:

Service- Based: Consumer concerns are abstracted from provider concerns through

service interfaces that are well- defined. The interfaces hide the implementation details

and enable a completely automated response by the service provider. The service could

be considered "ready to use" or "off the shelf" because it is designed to serve the specific

3

needs of a set of consumers, and the technologies are tailored to that need rather than the

service being tailored to how the technology works. The articulation of the service feature

is based on service levels and IT outcomes such as availability, response time,

performance versus price, and clear and predefined operational processes, rather than

technology and its capabilities. In other words, what the service needs to do is more

important than how the technologies are used to implement the solution [3].

Scalable and Elastic: The service can scale capacity up or down as the consumer

demands at the speed of full automation (from seconds for some services to hours for

others). Elasticity is a trait of shared pools of resources. Scalability is a feature of the

underlying infrastructure and software platforms. Elasticity is associated with not only

scale but also an economic model that enables scaling in both directions in an automated

fashion. This means that services scale on demand to add or remove resources as needed.

Shared: Services share a pool of resources to build economies of scale and IT resources

are used with maximum efficiency. The underlying infrastructure, software or platforms

are shared among the consumers of the service (usually unknown to the consumers). This

enables unused resources to serve multiple needs for multiple consumers, all working at

the same time.

Metered by Use: Services are tracked with usage metrics to enable multiple payment

models. The service provider has a usage accounting model for measuring the use of the

services, which could then be used to create different pricing plans and models. These

may include pay- as- you go plans, subscriptions, fixed plans and even free plans. The

implied payment plans will be based on usage, not on the cost of the equipment. These

plans are based on the amount of the service used by the consumers, which may be in

terms of hours, data transfers or other use- based attributes delivered.

Uses Internet Technologies: The service is delivered using Internet identifiers, formats

and protocols, such as URLs, HTTP, IP and representational state transfer Web- oriented

architecture. Many examples of Web technology exist as the foundation for

4

Internet- based services. Google's Gmail, Amazon.com's book buying, eBay's auctions

sharing all exhibit the use of Internet and Web technologies and protocols. More details

about examples are in the chapter four – Integration [3].

1.1.2 Cloud Computing Architecture

NIST (National Institute of Standards and Technology) is a well accepted institution all

over the world for their work in the field of Information Technology. The working

definition provided by NIST of Cloud Computing is provided here. NIST defines the

Cloud Computing architecture by describing five essential characteristics, three cloud

services models and four cloud deployment models.

Figure1: Cloud definition provided by NIST

Similar to type of service, cloud may be hosted and deployed in different fashions

depending on the use case. Cloud deployment models are as follows:

Private cloud: In private cloud model, the cloud infrastructure is deployed merely for

single organization.

5

Community cloud: In community cloud model, the cloud infrastructure is shared by

several organizations and supports a specific community that has shared concerns.

Public cloud: In public cloud model, the cloud infrastructure is made available to public

or a large industry group. The cloud is owned by an organization that sells service.

Hybrid cloud: In hybrid model, the cloud infrastructure is a composition of two or more

clouds (private, community, or public).

1.2.3 History

History of Cloud Computing surprisingly began almost 50 years ago. The father of this

idea is considered to be John McCarthy, a professor at MIT University in US, who first in

1961 presented the idea of sharing the same computer technology as being the same as

for example sharing electricity. Electrical power needs many households/firms that

possess a variety of electrical appliances but do not possess power plant. One power plant

serves many customers and using the electricity example, power plant=service provider,

distribution network=internet and the households/firms=computers [4].

Since that time, Cloud computing has evolved through a number of phases which include

grid and utility computing, application service provision (ASP), and Software as a

Service (SaaS). One of the first milestones was the arrival of Salesforce.com in 1999,

which pioneered the concept of delivering enterprise applications via a simple website.

The next development was Amazon Web Services in 2002, which provided a suite of

cloud- based services including storage, computation and even human intelligence.

Another big milestone came in 2009 as Google and others started to offer browser- based

enterprise applications, though services such as Google Apps [5].

1.2 Task and Task Scheduling in Cloud system
Task scheduling is an important and challenging issue of cloud computing environment.

A task is a sequential activity that uses a set of inputs to produce a set of outputs. Every

application is completely different and is independent but the task with in application

6

may be dependent with each other. For example, some require more CPU time to

compute complex task, and some others may need more memory to store data, etc.

Its main purpose is to schedule tasks to the adaptable resources in accordance with

adaptable time, which involves finding out a proper sequence in which all the tasks can

be executed such that execution time and execution cost can be minimized.

1.2.1 Genetic Algorithm

The concept of genetic algorithm was developed by Holland and his colleagues in the

1970s [6]. Genetic Algorithm (GA) inspired by Darwin's theory of evolution. It was the

first evolutionary technique that is based on the principle of natural selection. GA has

various advantages over other techniques for computationally intensive problems, if

provided with properly set operators and fitness functions. GA defines a set of solutions

(chromosomes) that are collectively called a population. The method then performs

crossover, mutation and selection operations iteratively till the stopping criteria is

satisfied.

Figure 2: Flow Chart of Genetic Algorithm

7

Basic Steps in Genetic Algorithm

1. A population with randomly generated individuals (Chromosome) is taken.

2. The fitness function for each and every individual is calculated

3. Two chromosomes selected, as parents which has best fitness value.

4. Crossover between the parents is applied with probability and crossover rate.

5. Mutation is applied with probability and mutation rate.

6. Repeat step 3- step 6, until enough members are generated.

Encoding and Representation

In GA terminology, a solution vector is called an individual or a chromosome.

Chromosomes are made of discrete units called genes. Many data structures such as

array, lists or trees are used in many ways for representing these chromosomes. The

length of such data structures is equal to the number of tasks and resources represent their

elements.

Population Initialization

The initial chromosome is used to generate the initial population. Initial population

generator function takes the initial chromosome as input to generate new chromosomes

which form population of initial generation. To design a new chromosome the gene

values of chromosome are taken as the key elements. The digits are randomly arranged in

the positions of the new chromosome.

Fitness Function and Selection

The fitness function generates a fitness value of each chromosome. The value indicates

how suitable for solving a task scheduling problem a chromosome is. The fitness function

for general task scheduling problems is based on execution time of tasks. But, task

scheduling problems in Cloud computing are different from general task scheduling

problems because computing services in Cloud computing are offered through a Service

level argument (SLA) between cloud users and providers. The minimization of execution

time is a goal of task scheduling in Cloud computing. Therefore, the fitness function in

our genetic algorithm is defined by these elements.

8

Crossover and Mutation

The crossover operation is a simple mechanism to swap one part of a chromosome for

that of another chromosome. The one-point crossover is used for transferring genetic

material of parent to children.

The mutation operation is to expand the search space by changing one part of a

chromosome. In the beginning of the genetic algorithm, the quality of generated

chromosomes is not particularly good. As time goes by, the quality of chromosomes

becomes more improved. There is the potential for improvement in quality by the

mutation operation in the early part of the genetic algorithm.

Restart & Stop Condition

If the best fitness value of the current population does not reach the minimum fitness

threshold, chromosomes with high fitness values in the current population fill the half of

the next population. And, the rest of the next population is filled with chromosomes

generated randomly.

1.2.2 Ant Colony Optimization

The ant colony optimization meta-heuristic (ACO) was first described by Marco Dorigo

in 1992 in his PhD thesis, and was initially applied to the travelling salesman problem

(TSP). Many species of ant deposit a chemical pheromone trail as they move about their

environment, and they are also able to detect and follow pheromone trails that they may

encounter [7]. Interaction among ants and the environment is based on pheromones. Ants

can smell the pheromone and tend to choose paths marked by strong pheromone

concentrations.

9

Figure 3:Flow Chart of ACO

Basic Steps in Ant Colony Optimization

1. First Pheromone Initialization.

2. Location of the ant is initialized as an entry state.

3. Next state will be selected.

4. Check if the next state is final state or if it not then repeat from state 3, if yes the

do state 5.

5. Pheromone updating step (deposit, daemon and evaporate of pheromone).

6. If stopping criteria is satisfied than the stop the execution, else repeat from step 2.

Probability matrix

The probability of picking a resource i to which task j will be allocated, Probij is

determined as following.

10

wheret(i,j)and h(i, j) are the pheromone value and heuristic value associated with the

component and a, b is a parameter used to define the extent to which the ants use the

pheromone information and heuristic information.

1.2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a self-adaptive global search based optimization

technique introduced by Kennedy and Eberhart [8]. The algorithm is similar to other

population-based algorithms like Genetic algorithms but, there is no direct re-

combination of individuals of the population.

Figure 4: Flow Chart of PSO

Basic steps in Particle Swarm Optimization

1. Population is initialized with particle of random position and velocities.

2. The fitness function is calculated for every particle.

3. If the fitness value is better than the previous best pbest, set current fitness value

as the new pbest.

11

4. After step 2 and step 3 for all particles select best particle as gbest.

5. By using the following (1) and (2) equation, particle's position and velocity will

update.

6. If	the	number	of	iteration	is	reached	maximum,	then	stop	otherwise	repeat	from	

step	2.

The velocity and position of the particle can be calculated by

vi
k+1 = wvi

K + c1r1(pbesti - xi
k) + c2r2(gbesti - xi

k) (1)

xi
k +1 = xi

k + vi
k+1(2)

where:

vi
k velocity of particle i at iteration k

vi
k+1 velocity of particle i at iteration k+1

w intertia weight

cj acceleration coefficients, j=1,2

ri random number between 0 and 1; i=1,2

xi
k current position of particle i at iteration k

pbesti best position of particle i

gbesti position of best particle in a population

xi
k +1 position of the particle i at iteration k+1.

1.3 Problem Statement
Task scheduling is one of the most important and critical problems in cloud computing.

The problem of task scheduling is a NP-complete problem. Task scheduling problem is

defined as the problem of scheduling a set T of n independent task Ti = {t1,…..., tn},

on a set R of m resources, Rj = {r1,, rm} such that all the jobs are completed as

quickly as possible, i.e. minimizing the makespan of the solution. Makespan is equal to

time that execution of last task on processing resources is finished. Suppose that

execution time of task i on computational resources j is known, and equal to

jobRunTime(ij).

Makespan(MS)= max (∑ xi,j) where, i ϵ T and j ϵ R. (1)

12

Find the schedule that Minimize Total Cost of executing the task on the available

resource with satisfying the following constraints.

a) At any instance, a task is executing on only one resource.

b) Tasks are independent to each other.

c) Ensure that a task hosted on only on a resource which is operating.

d) Total processing requirements of all tasks hosted on resource should not exceed the

maximum processing capacity of that resource.

e) Total memory requirements of all tasks hosted on resource should not exceed the

maximum memory available with that resource.

1.4 Objective

The objective of this work in particular is to design efficient task scheduling algorithm

and other general objectives are

1) To compare the different variation of GA, ACO and PSO algorithm to solve task

scheduling in cloud.

2) To implementation of GA, ACO and PSO in cloud framework and find the best

algorithm from these three.

1.5 Thesis organization
The rest of this thesis is organized as: chapter2 is a survey of the major existing task

scheduler in cloud computing environment, chapter 3 details the research methodology of

the Genetic algorithms (GA), Ant colony optimization (ACO) and Particle swarm

optimization (PSO) based task scheduling problem for cloud environment, chapter 4

presents the experiment and result, and chapter 5 concludes the thesis, summarizing its

achievements and further recommendations.

13

CHAPTER 2

REVIEW OF THE LITERATURE

Cloud computing is an emerging fields of information technology which aim to provides

information, communication and technology (ICT) services as a utility. It will be

beneficial for both ICT industry and customer if this technology get success. It is

necessary to improve the utilization of data center to provide these services on demand.

To improve the utilization of data center resource, the scheduling of task in to a set of

data center plays an important role. If the schedule of task assignment into a set of data

center is optimal then it produces the efficient use of resource and increase the

performance of system. In the data center, hundreds of servers run thousands of tasks that

come and keep receiving so many requests are in queue. In this context, one needs to find

few target servers out of many powered servers, which can fulfill a batch of incoming

tasks. So, Task scheduling is an important issue which is greatly influences the

performance of cloud service provider. The task scheduling problem belongs to NP-

complete complexity class, involving extremely large search space with correspondingly

large number of potential solutions and takes much longer time to find the optimal

solution. There is no readymade and well-defined methodology to solve the problems

under such circumstances. However, in cloud, it is sufficient to find near optimal

solution, preferably in a short period of time.

2.1 Previous Work
In the work presented in [9], the genetic algorithm is developed to solve the task

scheduling with near optimal solution and two modifications on basic genetic algorithm

are also applied to get better result. The simulation result shows that the modification on

basic genetic algorithm produces the significant result and provides the better solution.

The genetic algorithm is simple to implement but it is powerful to solve complex problem

such as scheduling of task on multiple machine. The final schedule produced by GA

depends upon the initial population used. If the initial population provided to GA, is more

near to solution, it produces better solution with less time. The results show that MGA2 is

14

slightly better than MGA1 in terms of total Make-span. In some experiment, the MGA1

has produced minimum make-span. “It is due to the random chromosome included in the

initial population of MGA1 and MGA2”. In conclusion, from experimentation in[9], the

MGA2 is better than MGA1.

The different data set were designed with the expected output as a minimum makespan

time. The analysis of output of GA, ACO and MMAS algorithms was done and which

one produced minimum makespan for scheduling was analyzed in [10].

2.2 Genetic Algorithm
Genetic Algorithm strategy is one of the heuristic strategies. By using it we search to get

a near-optimal solution in many large solution spaces. At first, we randomly initialize a

population of chromosomes which we generally consider as possible scheduling for a

given particular task. We can get a fitness value (make span) which is acquired from the

scheduling of tasks to particular machines within that chromosome. After getting the

initial population, we will evaluate all the chromosomes in the population based on their

respective fitness value and we consider the smaller make span as a better mapping. We

perform Selection scheme which duplicates some chromosomes probabilistically and

deletes others and at the same time we can find that better mappings have more

probability of being duplicated in successive generation and we will find that population

size remains constant in all the generations. Next, we perform a crossover operation

which select a random pair of chromosomes of a task and picks a random point in first

chromosome. This operation also exchanges machine assignments between particular

corresponding tasks. Next, we perform mutation operation after crossover which

randomly selects a chromosome and then selects a task randomly within the chromosome

and finally reassigns randomly it to a new machine. We start another iteration of Genetic

Algorithm after evaluating the new population and there after we perform all the above-

mentioned operations like selection, crossover, mutation and evaluation. We just stop the

iteration when the stopping criteria are met.

15

Basic Steps in Genetic Algorithm

1. A population with randomly generated individuals (Chromosome) is taken.

2. The fitness function for each and every individual is calculated

3. Two chromosomes selected, as parents which has best fitness value.

4. Crossover between the parents is applied with probability and crossover rate.

5. Mutation is applied with probability and mutation rate.

6. Repeat step 3- step 6, until enough members are generated.

Savitha P et. al. (2013)[11] proposed a genetic algorithm (GA) for task scheduling in

cloud computing environment. This proposed algorithm is well tested and results are

compared with the existing genetic algorithm based workflow scheduling techniques. The

results of proposed GA outperform the system's throughput.

2.3 Ant Colony Optimization
Ant Colony Optimization (ACO) is a type of swarm which carries out the work based on

the indirect communication. This type of communication can be seen among the real ants

that use a substance called pheromone in order to communicate. Some artificial ants

while conveying about their particular experience regarding solving a problem they act as

special agents try to use numerical information which is also called as artificial

pheromone information. All these fundamentals are going to provide a basic framework

to several combinational problems of optimization in applications of ant algorithms.

Hence, we call the algorithms as ACO algorithms if they were acquired from ACO

swarm.

In order to design swarm algorithms, we mainly consider Ant Colony Optimization

(ACO) since they can solve many combinational optimization problems. The first or

earliest algorithm which we categorized in this framework was presented in 1991and,

since then several modifications regarding the principles were documented in the

literature. The combination of both priori and posterior information is the main

characteristic of ACO algorithms. We can have the basic structure or design of promising

or best solution in priori information while we can have the design or structure of earlier

16

obtained good solutions in posterior information. Algorithms like Meta heuristic

algorithms work up on some basic heuristic with the main intention to get rid of local

optima. The basic heuristic may be constructive heuristic which starts from null solution

and finally get a complete solution by adding elements or it can be a local heuristic where

you have a complete solution and finally you acquire a better solution by iteratively

modifying some elements in it. But the Meta heuristic part allows the low-level heuristic

to attain good solutions since you cannot get them from the heuristic when it is iterated.

We can have control over these heuristics either by randomizing or constraining or you

can control by mixing the elements which you derived from various different solutions.

Basic Steps in Ant Colony Optimization

1. First Pheromone Initialization.

2. Location of the ant is initialized as an entry state.

3. Next state will be selected.

4. Check if the next state is final state or if it not then repeat from state 3, if yes the do

state 5.

5. Pheromone updating step (deposit, daemon and evaporate of pheromone).

6. If stopping criteria is satisfied than the stop the execution, else repeat from step 2.

C.W. Chiang et. al. (2006)[12] has proposed the task scheduling and matching using ant

colony optimization. Here one algorithm is proposed named ACO-TMS that reduces the

scheduling time and always help to search a satisfactory scheduling result by integrating

local search procedure. The proposed technique is compare with some existing approach

like GA and DPS heuristic. The new technique gives better result and minimizes the time

as compared to existing methodologies.

Linan Zhu et. al. (2012)[13] proposed ant colony optimization techniques to overcome

the problem related to scheduling of resources. Here basic ant colony optimization is used

to analyze and design the scheduling of resources in cloud. CloudSim simulation tool is

used to balance and distribute of load of nodes for better performance.

17

2.3.1 ACO algorithm for TSP

ACO is a probabilistic technique where searching is done for the optimal path in the

graph based on behavior of ants seeking a path between their colony and source of food.

Algorithm for TSP is presented below:

Ø Often applied to TSP: shortest path between n nodes

Ø Algorithm in Pseudocode:

1. Initialize Trail

2. Do While (Stopping Criteria Not Satisfied) – Cycle Loop

2.1 Do Until (Each Ant Completes a Tour) – Tour Loop

2.2 Local Trail Update

2.3 End Do

2.4 Analyze Tours

2.5 Global Trail Update

3. End	Do	

2.3.2 ACO in job scheduling problems

In the paper [14], they apply the collective intelligence of many simple agents to the

problem of Job Shop Scheduling, which consists of finding an optimal plan that

minimizes the makespan, which is the time required to perform a finite number of tasks

in a finite number of machines. Each task is a sequence of operations, each one with a

determined machine and processing time. Feasible solutions must comply with the

restrictions that apply to the problem of Job Shop Scheduling, as respecting the

precedence between operations determining the technological sequence without

interrupting any operations until completion. The operations conform the graph nodes

that represent the problem, united by edges in which ants are moving. Each individual

only has local information of the system that shares through a hormone called

pheromone.

2.4 Particle Swarm Optimization Algorithms
Particle Swarm Optimization (PSO) is an evolutionary approach to optimization

technique. It is a population based stochastic technique inspired by bird flocking and fish

18

schooling. First developed by James Eberhart and Kennedy in 1995, the algorithm

maintains swarm of particles in multidimensional space. Each particle in the swarm is a

potential solution to the given problem [8]. Each particle moves through a problem search

space seeking an optimal or better-found solution; broadcasts its current position to

neighboring particles seeking an optimal or better found solution.

Basic steps in Particle Swarm Optimization

1. Population is initialized with particle of random position and velocities.

2. The fitness function is calculated for every particle.

3. If the fitness value is better than the previous best pbest, set current fitness value

as the new pbest.

4. After step 2 and step 3 for all particles select best particle as gbest.

5. By using the above (1) and (2) equation, particle's position and velocity will

update.

6. If	the	number	of	iteration	is	reached	maximum,	then	stop	otherwise	repeat	from	

step	2.

Suraj Pandey et. al. (2010)[15] proposed heuristic based particle swarm optimization for

task scheduling to optimize the cost associated with computation and communication.

PSO can properly balance the workflow and saves the cost as compared to existing

technique.

19

CHAPTER 3

RSEARCH METHODOLOGY

In this chapter, the outline of the proposed work is discussed. The first few paragraphs in

this chapter describe the algorithms used to solve the task scheduling problem. The

remaining of the chapter explains the details of Genetic ACO and PSO algorithm

implemented in this work.

Figure 5: Framework of Research

3.1 Search of Suitable Algorithm
From the literature, a conclusion came that there are lot of algorithms for Task scheduling

optimization problem. From them, we selected GA, ACO, and PSO for our work.

3.2 Algorithms
GA, ACO and PSO are modified in some extent without spoiling their taste to solve the

scheduling problem in our scenario. Our Problem and the modified algorithms to solve

the problem are presented below:

3.3 The Problem and modified Algorithms for the problem
We have assumed a scenario where processing power of every Machine (Resource) is

same but with different holding Capacity (RAM capacity). Each Task (Process) has two

20

properties associated with it. The first property amount of RAM space it would take. This

space is termed as ‘power’ of the Task. And the second property is the amount of time

required inside the Machine (Resource) to finish the task.

3.3.1 Modified Genetics Algorithm
The modified algorithm for solving this problem is presented here:

Given:

a. Number of Resources, a set R = { R1 ,R2,R3……… RN } ,

holding capacity, a set C = {c1,c2,c3 ,………… cN}

b. Number of Tasks, a set T= {t1,t2,t3……….tN}, two lists associated with T;

First list is the power and the second list is time needed to complete the task in

RAM.

Procedure:

1. Initialize the Resources with ‘legal’ Tasks.

2. While the Task list is not empty:

2.1 Calculate the available capacity of all the Resources

2.2. Create all the possible combinations for ‘Excluding’ or ‘Including’ of

a Resource with respect to ‘legal’ Task

2.3 Let I= {I1, I2, I3, ….}be the set of Included task.

2.4 Calculate the weight of I defined as follows:

 Weight= 0

 For element in I:

 Weight= Weight+ Available Resource of element

 Return weight

2.5 Find the best I

2.6 Schedule jobs to elements of best I

2.7 Update task remaining and completed in elements of I

The ‘Legal’ task mentioned in the above algorithm are the tasks having power <=the

available capacity (RAM) of the Resource.

21

3.3.2 Modified Ant Colony Algorithm

Given:

a. Number of Resources, a set R = { R1 ,R2,R3……… RN } ,

Holding capacity, a set C = {c1,c2,c3 ,………… cN}

b. Number of Tasks, a set T= {t1,t2,t3……….tN}, two lists associated with T;

First list is the power and the second list is time needed to complete the task in

RAM.

Procedure:

1. Initialize the Resources with ‘Legal’ Tasks

2. While the Task list is not empty:

a. Calculate visibility matrix

b. Calculate Pheromone list

c. Calculate Probability list

d. On the basis of Probability, Choose the Task from task list to send on

applicable Resource

e. Update Task remaining and Completed in elements of I

3.3.3 Modified Particle Swarm Optimization

Given:

a. Number of Resources, a set R = { R1 ,R2,R3……… RN } ,

Holding capacity, a set C = {c1,c2,c3 ,………… cN}

b. Number of Tasks, a set T= {t1,t2,t3……….tN}, two lists associated with T;

First list is the power and the second list is time needed to complete the task in

RAM.

Procedure:

1. Initialize the Resources with ‘Legal’ Tasks

2. While the Task list is not empty:

a. Broadcast the available Capacity by each Resource

b. Select the ‘Legal’ Task and assignment of that task to the fittest

Resource

22

c. Update Task remaining and Completed in elements of I

3.4 Implementation of Algorithms
In order to understand how to implement an Algorithm, we first need to conceptually

understand what an Algorithm is. An Algorithm is a series of steps that we expect will

arrive at a specific solution. Writing a program does not equal expressing code, that idea

ignores and neglects the entire idea of writing code to solve a problem.

1. Establish the Rules of a Problem: A problem can be interpreted in many ways.

The outcome of the problem is how we respond to those problems.

2. We need to specify a Plan that Should Solve the Problem and Elaborate the Plan

into Steps: Come up with a sequence of steps that we can explain to a very

obedient preschooler. There should be no room for confusion for what these steps

really mean.

3. Translate each step into a line of code: This step is deterministic. The process of

translating from one definitely clear solution in any natural language can be easily

translated to a correct programming language.

The implementation of the algorithms was done within the following Resources:

a. Core I5 Intel Processor with 4 GB RAM

b. Compaq Dual Core processor with 2 GB RAM

The Programming languages used were:

a. JAVA 1.8

b. PYTHON 2.7

3.5 Analyzing Results
After completion of implementing Algorithms, the Analysis of Result was done which is

explained in the upcoming chapter. Basically, the conclusion of our results is based

totally on experiments. Almost 20 Datasets were generated randomly, using a Computer

23

program to give the input for the three Algorithms. The Computer program used for

preparation of data set is shown below:

import random

import time

from threading import Thread

time_list = [1,2,3,4,5,6,7,8,9,10]

capacity_list = [10,11,12,13,14,15,16,17,18,19,20,21,22]

power_list = [5,6,7,8,9,10]

total_resources = int(raw_input("Enter number of Resources:"))

total_tasks=int(raw_input("Enter total number of task: "))

res_list = []

task_list = []

fori in range(total_resources):

res_list.append((random.choice(capacity_list),[]))

fori in range(total_tasks):

task_list.append((random.choice(power_list),random.choice(time_list)))

print "Task List:"

printtask_list

print "Resource List:"

printres_list

24

CHAPTER 4

RESULT, ANALYSIS AND COMPARISIONS

4.1 Experimental Setup
The experimental environment consists of Intel Core™ i5-2450 2.5 GHz 4G RAM

configuration, and window 10 Pro, Ubuntu 16.04 LTS Operating System. The simulation

idea as shown in figure 5.1 is implemented on the machine with Eclipse IDE with java

SDK 1.8 and Python 2.7. The class resource allocator consists of information such as

status of resource, capacity of resources and processing power of resources. Similarly the

class Task to represent the set of task also consist of information such as the memory

requirement, burst time of given task, status of given task either finish or running or

interrupted. Scheduler Algorithm is invoked accordingly. Each task is removed from set

T after it is served.

Figure 6: System Flowchart for Task Scheduling

4.2 Generation of Data set
Task list is generated randomly and it is added to the set T. Arrival time of the task is

recorded or assumed to be zero. The total numbers of tasks were set 7 to 35, the

25

processing times of tasks are uniformly distributed in [1, 15] and the memory

requirement for each task is also uniformly distributed in [7, 50]. The numbers of Data

Centers are from 2 to 20. In all experiments of the following sections the numeric

parameters α=1 and β=2 values are taken [13].

4.3 Trace of Algorithms
Here datacenters are represented by R = {R1, R2…..., RN} assume as resources and tasks

are represented by T = {T1, T2, ……, TN}.

The capacity of resources is given in braces like R1(12) that means resource R1 has

computing capacity 12. The power and time required to execute task are given in braces

like T1(6,3) where 6 is power of task and 3 is time required to execute task on any

resources.

To trace all three algorithms, we will take five resources and 13 tasks to schedule on

those resources.

4.3.1 Trace of GA
Resources: R1(14), R2(18), R3(10), R4(12), R5(15)

Tasks: T1(7,6), T2(9,7), T3(5,7), T4(7,3), T5(7,1), T6(8,2), T7(10,6), T8(6,6), T9(10,5),

T10(8,2), T11(7,3), T12(7,2), T13(6,7)

Time 0

Initialization: Randomly pick the ‘legal’ tasks for processing in Resources

#X# where X represents available space of the resources.

R1(14) àT2(9,7) #5#

R2(18) àT12(7,2) #11#

R3(10) àT9(10,5) #0#

R4(12) àT2(5,7) #7#

R5(15) àT10(8,2) #7#

Chromosome generation:

26

 Chromosome Weight

1. 00000 0

2. 00001 7

3. 00010 7

4. 00011 14

5. 00100 0

6. 00101 7

7. 00110 7

8. 00111 14

9. 01000 11

10. 01001 18

11. 01010 18

12. 01011 25

13. 01100 11

14. 01101 18

15. 01110 18

16. 01111 25

17. 10000 5

18. 10001 12

19. 10010 12

20. 10011 19

21. 10100 5

22. 10101 12

23. 10110 12

24. 10111 19

25. 11000 16

26. 11001 23

27. 11010 23

28. 11011 30

29. 11100 16

30. 11101 23

27

31. 11110 23

32. 11111 30

Selection of fittest chromosome: 01111(25) and 11011(30)

Crossover Result 11011, 01111

Mutation Result 01011(25), 11111(30)

Therefore, new task will be scheduled to R1, R2, R3, R4, R5

R1(14) àT2(9,7) #5#

R2(18) àT12(7,2), T11(7,3) #4#

R3(10) àT9(10,5) #0#

R4(12) àT2(5,7), T8(6,6) #1#

R5(15) àT10(8,2), T13(6,7) #1#

Time 1

R1(14) àT2(9,6) #5#

R2(18) àT12(7,1), T11(7,2) #1#

R3(10) àT9(10,4) #0#

R4(12) àT2(5,6), T8(6,5) #1#

R5(15) àT10(8,1), T13(6,6) #1#

Time 2

R1(14) àT2(9,5) #5#

R2(18) àT12(7, completed), T11(7,1) #11#

R3(10) àT9(10,3) #0#

R4(12) àT2(5,5), T8(6,4) #1#

R5(15) àT10(8, completed), T13(6,5) #9#

28

Chromosome generation:

 Chromosome Weight

33. 00000 0

34. 00001 9

35. 00010 1

36. 00011 10

37. 00100 0

38. 00101 9

39. 00110 1

40. 00111 10

41. 01000 11

42. 01001 20

43. 01010 12

44. 01011 21

45. 01100 11

46. 01101 20

47. 01110 12

48. 01111 21

49. 10000 5

50. 10001 14

51. 10010 6

52. 10011 15

53. 10100 5

54. 10101 14

55. 10110 6

56. 10111 15

57. 11000 16

58. 11001 25

59. 11010 17

60. 11011 26

61. 11100 16

29

62. 11101 25

63. 11110 17

64. 11111 26

Selection of fittest chromosome: 11011(26) and 11001(25)

Crossover Result 11001, 11011

Mutation Result 11011(26), 11001(25)

Therefore, new task will be scheduled to R1, R2, R3, R4

R1(14) àT2(9,5) #5#

R2(18) àT11(7,1), T7(10,6) #1#

R3(10) àT9(10,3) #0#

R4(12) àT2(5,5), T8(6,4) #1#

R5(15) àT13(6,5), T6(8,2) #1#

Time 3

R1(14) àT2(9,4) #5#

R2(18) àT11(7, completed), T7(10,5) #8#

R3(10) àT9(10,2) #0#

R4(12) àT2(5,4), T8(6,3) #1#

R5(15) àT13(6,4), T6(8,1) #1#

Chromosome generation:

 Chromosome Weight

65. 00000 0

66. 00001 1

67. 00010 1

68. 00011 2

69. 00100 0

30

70. 00101 1

71. 00110 1

72. 00111 2

73. 01000 8

74. 01001 9

75. 01010 9

76. 01011 10

77. 01100 8

78. 01101 9

79. 01110 9

80. 01111 10

81. 10000 5

82. 10001 6

83. 10010 6

84. 10011 7

85. 10100 5

86. 10101 6

87. 10110 6

88. 10111 7

89. 11000 13

90. 11001 14

91. 11010 14

92. 11011 15

93. 11100 13

94. 11101 14

95. 11110 14

96. 11111 15

Selection of fittest chromosome: 11011(15) and 11110(14)

Crossover Result 11111, 11010

Mutation Result 11110(14), 11011(15)

31

Therefore, new task will be scheduled to R1, R2, R4, R5

Similarly, Time 4, Time 5 and Time 6 were calculated and total time taken for all

tasks to be completed = 12 units of time.

4.3.2 Trace of ACO

Resources: R1(14), R2(18), R3(10), R4(12), R5(15)

Tasks: T1(7,6), T2(9,7), T3(5,7), T4(7,3), T5(7,1), T6(8,2), T7(10,6), T8(6,6), T9(10,5),

T10(8,2), T11(7,3), T12(7,2), T13(6,7)

Time 0

Initialization: Randomly pick the ‘legal’ tasks for processing in Resources

 #X# where X represents available space of the resources.

R1(14) àT7(10,6) #4#

R2(18) àT11(7,3) #11#

R3(10) àT2(9,7) #1#

R4(12) àT10(8,2) #4#

R5(15) àT12(7,2) #8#

Calculation of Visibility matrix=

[

[0, 0.02040816326530612, 0.1111111111111111, 0, 0.0625],

[0.02040816326530612, 0, 0.010000000000000002, 0.02040816326530612,

0.1111111111111111],

[0.1111111111111111, 0.010000000000000002, 0, 0.1111111111111111,

0.02040816326530612],

[0, 0.02040816326530612, 0.1111111111111111, 0, 0.0625],

[0.0625, 0.1111111111111111, 0.02040816326530612, 0.0625, 0]

]

Pheromone calculation =

[

[0.2857142857142857],

32

[0.6111111111111112],

 [0.1],

[0.3333333333333333],

[0.5333333333333333]

]

 Probability Matrix calculation =

 [

[0.0, 0.10244735344336936, 0.5577689243027888, 0.0, 0.31374501992031867],

[0.17109564913393016, 0.0, 0.0838368680756258, 0.17109564913393016,

0.9315207563958419],

 [0.12953253733973652, 0.011657928360576289, 0.0, 0.12953253733973652,

0.023791690531788336],

 [0.0, 0.11952191235059759, 0.6507304116865869, 0.0, 0.36603585657370513],

[0.30684486707447894, 0.5455019859101847, 0.10019424231003393,

0.30684486707447894, 0.0]

]

Since max (probability matrix) is at 2nd Row and 5th column; therefore, New Tasks will

be scheduled in these Resources R2 and R5.

Time 1

R1(14) àT7(10,6) #4#

R2(18) àT11(7,3), T9(10,4) #1#

R3(10) àT2(9,7) #1#

R4(12) àT10(8,2) #4#

R5(15) àT12(7,2), T5(7, completed), T6(8,2) #0#

33

Visibility matrix calculation =

[

[0, 0.1111111111111111, 0.1111111111111111, 0, 0.0625],

[0.1111111111111111, 0, 0, 0.1111111111111111, 0.02040816326530612],

[0.1111111111111111, 0, 0, 0.1111111111111111, 0.02040816326530612],

[0, 0.1111111111111111, 0.1111111111111111, 0, 0.0625],

[0.0625, 0.02040816326530612, 0.02040816326530612, 0.0625, 0]

]

Pheromone calculation =

[

[0.2857142857142857],

[0.05555555555555555],

[0.1],

[0.3333333333333333],

 [0.5333333333333333]

]

 Probability matrix calculation =

 [

[0.0, 0.627177700348432, 0.627177700348432, 0.0, 0.352787456445993],

[0.07748260594560405, 0.0, 0.0, 0.07748260594560405, 0.014231499051233394],

[0.13946869070208728, 0.0, 0.0, 0.13946869070208728, 0.025616698292220113],

[0.0, 0.7317073170731707, 0.7317073170731707, 0.0, 0.4115853658536585],

[0.7962085308056872, 0.25998645903859174, 0.25998645903859174,

0.7962085308056872, 0.0]

]

Since max (probability matrix) is at 5th Row and 1st column; therefore, New Tasks will be

scheduled in these Resources R5 and R1.

34

Similarly, Time 2, Time 3, Time 4 were calculated and total time taken for all tasks to be

completed = 10 units of time.

4.3.3 Trace of PSO

Resources: R1(14), R2(18), R3(10), R4(12), R5(15)

Tasks: T1(7,6), T2(9,7), T3(5,7), T4(7,3), T5(7,1), T6(8,2), T7(10,6), T8(6,6), T9(10,5),

T10(8,2), T11(7,3), T12(7,2), T13(6,7)

Time 0

Initialization: Randomly pick the ‘legal’ tasks for processing in Resources

 #X# where X represents available space of the resources.

R1(14) àT12(7,2) #7#

R2(18) àT2(9,7) #9#

R3(10) àT13(6,7) #4#

R4(12) àT9(10,5) #2#

R5(15) àT6(8,2) #8#

Broadcast available capacity from each resources and legal task will assign to resources.

R1(14) àT12(7,2), T1(7,6) #0#

R2(18) àT2(9,7), T11(7,3) #2#

R3(10) àT13(6,7) #4#

R4(12) àT9(10,5) #2#

R5(15) àT6(8,2), T5(7,1) #0#

Time 1

R1(14) àT12(7,1), T1(7,5) #0#

R2(18) àT2(9,6), T11(7,2) #2#

R3(10) àT13(6,6) #4#

R4(12) àT9(10,4) #2#

R5(15) àT6(8,1), T5(7, completed) #7#

35

Broadcast available capacity from each resources and legal task will assign to resources.

R1(14) àT12(7,1), T1(7,5) #0#

R2(15) àT2(9,6), T11(7,2) #2#

R3(10) àT13(6,6) #4#

R4(12) àT9(10,4) #2#

R5(15) àT6(8,1), T10(7,2) #0#

Similarly, Time 2, Time 3, Time 4 were calculated and total time taken for all tasks to be

completed = 9 units of time.

 4.4 Results and Analysis
The results of the simulation are represented in graph. Simulation results demonstrate that

more iterations or number of particles obtain the better solution since more solutions were

generated.

4.4.1 Comparative Analysis of GA, ACO and PSO

Different number of Resources and Tasks were taken at random and for almost 90 % of

the cases, PSO was seen best. The tabular and graphical comparisons of these three

algorithms with three different scenarios are presented below.

Time	 Tasks	Completed	

	
GA	 ACO	 PSO	

0	 0	 0	 0	
1	 0	 0	 3	
2	 1	 0	 3	
3	 3	 1	 4	
4	 4	 4	 8	
5	 6	 8	 11	
6	 7	 9	 13	
7	 9	 10	 -	
8	 10	 13	 -	
9	 11	 -	 -	
10	 13	 -	 -	

Table 1 Resource 3 and Tasks 13

36

Figure 7: Simulation result 1

Tome	 Tasks	Completed	

	
GA	 ACO	 PSO	

0	 0	 0	 0	
1	 0	 0	 3	
2	 1	 0	 4	
3	 3	 1	 7	
4	 4	 2	 10	
5	 6	 8	 10	
6	 9	 8	 20	
7	 9	 10	 25	
8	 10	 11	 30	
9	 12	 20	 -	

10	 13	 24	 -	
11	 14	 25	 -	
12	 15	 27	 -	
13	 17	 27	 -	
14	 17	 30	 -	
15	 24	 -	 -	
16	 25	 -	 -	
17	 25	 -	 -	
18	 30	 -	 -	

37

Table 2 Resource 5 and Tasks 30

Figure 8: Simulation result 2

38

Time	 Task	Completed	

	
GA	 ACO	 PSO	

0	 0	 0	 3	
1	 0	 0	 3	
2	 3	 0	 7	
3	 3	 3	 9	
4	 5	 7	 9	
5	 8	 9	 16	
6	 8	 9	 21	
7	 9	 10	 26	
8	 11	 16	 -	
9	 11	 18	 -	

10	 13	 20	 -	
11	 13	 23	 -	
12	 17	 23	 -	
13	 20	 26	 -	
14	 24	 -	 -	
15	 24	 -	 -	
16	 26	 -	 -	

Table 3 Resource 7 and Tasks 26

Figure 9: Simulation result 3

39

4.4.2 Results

From the experiment 1, we found that PSO is 40% better than GA and 25% better than

ACO. From the experiment 2, we found that PSO is almost 43% better than ACO and

almost 50% better than GA. Similarly, from the experiment 3, we found again that PSO is

almost 50% better than GA and 40% better than ACO.

For the huge number of tasks too, we did experiments and almost in every occasion, PSO

seemed to be best. It seemed best by an average of 38% better than GA (on an average)

and 26.5% better in comparison to ACO (on an average).

40

CHAPTER 5

CONCLUSION

5.1 Conclusion
Selecting the appropriate resources for the specific task is the one of the challenging work

in cloud computing. Here, GA, ACO and PSO are to dynamically generate an optimal

schedule so as to complete the tasks in minimum period of time as well as utilizing the

resources in an efficient way. The results show that ACO is slightly better than GA in

terms of total makespan. In some experiment, the PSO has produced minimum

makespan. Evaluation results have shown that PSO seemed to be 38% better than GA and

26.5% better than ACO on average. It is thus concluded that the Particle Swarm

Optimization can be efficiently used for task scheduling in cloud. Thus, the Particle

Swarm Optimization Algorithm is highly flexible and can be effectively used to schedule

task by considering very few control parameters as compared with the other heuristic

algorithms.

5.2 Limitation
The further research works that are not addressed in this work and are limitation of this

work are also discussed in this chapter. Since the task scheduling problem is NP-

complete and its optimal solution is not possible with in polynomial time till now and it is

an open question that whether the NP is equal to P or not. So up to now, the NP-complete

problems are solved for small instance with sub-optimal solution using some heuristics.

Now in this work, the GA, ACO and PSO are used to find the sub-optimal solution.

Since the task scheduling problem is NP-complete, the other heuristic based approach

such as modified PSO and BCO can be used to solve the problem with near optimal

solution.

5.3 Future Enhancement
The PSO approach can be applied to solve various cloud optimization problems in which

there is an uncertainty of task selection. Future developments of this work are related

41

further improve on algorithm by adding more Quality of Service parameters. In the

future, I'm planning to further improve algorithms to re-allocate resources according to

requirement or to the existing status of the Cloud in order to optimize resource usage.

42

References
	

[1] J. RHOTON, "Cloud Computing Explained. 2.edition," Kent: Recursive Limited,

2011, p. 508 ISBN 9780956355607.

[2] B. C. E. a. L. I. Rimal, "A taxonomy and survey of cloud computing systems," In

Proceedings of the 5th IEEE International joint conference of INC, IMS and IDC,

pp. 44-51, 2009.

[3] G. NEWSROOM, "Gartner Highlights Five Attributes of Cloud Computing," 2009.

[Online]. [Accessed 08 05 2011].

[4] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan

Press, 1975.

[5] S. P. G. Reddy, "A Review Work on a Task Scheduling in Cloud Computing using

Genetic Algorithm," International Journal of Science and Technology research, pp.

241-244, 2013.

[6] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan

Press, 1975.

[7] Q. L. a. L. H. Linan Zhu, "Study on Cloud Computing Resources Scheduling

Strategy Based on the Ant Colony Optimization Algorithm," IJCSI International

Journal of Computer Science Issues, vol. 9, no. 2, pp. 54-58, 2012.

[8] J. K. a. R. C. Eberhart, "Particle swarm optimization," in in Proceedings of the 4th

IEEE International Conference on Neural Networks, 1995.

[9] S. Poudel, "Comparative Study of Genetic Based Task Scheduling Algorithms in

Cloud Computing Environment," Dissertation submitted to Tribhuvan University,

Kathmandu, 2013.

43

[10] A. Pandey, "Comparative Analysis of Genetic algorithm And Ant Colony

Optimization Based Task Scheduling," Dissertation submitted to Tribhuvan

University, Kathmandu, 2015.

[11] S. P. G. Reddy, "A Review Work on a Task Scheduling in Cloud Computing using

Genetic Algorithm," International Journal of Science and Technology research, pp.

241-244, 2013.

[12] Y. L. C. L. a. T. C. C.W. Chiang, "Ant Colony Optimization for Task Matching and

Scheduling," IEEE Proc. Computer Digital. Techniques, vol. 153, no. 6, pp. 373-

379, 2006.

[13] Q. L. a. L. H. Linan Zhu, "Study on Cloud Computing Resources Scheduling

Strategy Based on the Ant Colony Optimization Algorithm," IJCSI International

Journal of Computer Science Issues, vol. 9, no. 2, pp. 54-58, 2012.

[14] E. F. e. al., "An Ant Colony Optimization Algorithm for Job Shop Scheduling

Problem".

[15] L. S. M. G. a. R. B. Suraj Pandey, "A Particle Swarm Optimization-based Heuristic

for Scheduling Workflow Applications in Cloud Computing Environment," IEEE

International Conference on Advance Information Networking and Applications, pp.

400-407, 2010.

