

1

Chapter 1

INTRODUCTION

1.1 eSTREAM Project

eSTREAM, a multi-year project coordinated by ECRYPT, came to an end in April 2008.

This project is dedicated to promoting the design of new stream ciphers. The project finished

with the publication of a portfolio of new stream ciphers. Four of the proposals in the final

portfolio were suited to fast encryption in software which is called Profile-1 [1].

The portfolio was revised in September 2008, after the announcement of cryptanalytic results

against one of the algorithms, and since then has been revisited periodically as the algorithms

have matured. The current 2012 eSTREAM portfolio contains seven algorithms. Among

them, four algorithms are shortlisted as the finalists for software applications and remaining

are for hardware applications. They are HC-128, Rabbit, Salsa20/12 and SOSEMANUK (in

alphabetical order) for software applications [1].

Stream cipher HC-128 is the simplified version of HC-256 for 128-bit security. HC-128 is a

simple, secure, software-oriented cipher and it is freely-available [1]. HC-128 consists of two

secret tables, each one with 512 32-bit elements. At each step, we update one element of a

table with non-linear feedback function. All the elements of the two tables get updated every

1024 steps. At each step, one 32-bit output is generated from the non-linear output filtering

function. HC-128 is suitable for the modern superscalar microprocessors [1].

Rabbit is a stream cipher algorithm that has been designed for high performance in software

implementation. Both key setup and encryption are very fast, making the algorithm

particularly suited for all applications where large amounts of data or large numbers of data

packages have to be encrypted. Examples: - Server-side encryption, Multimedia encryption,

Hard-disk encryption, and encryption on limited-resource devices etc. [2, 3].

Salsa20/r is a software-oriented stream cipher by Bernstein. During the operation of the

cipher, the key, a 64-bit nonce (unique message number), a 64-bit counter, and four 32-bit

constants are used to construct the 512-bit initial state of the cipher [1]. After r iterations of

the Salsa20/r round function, the updated state is used as a 512-bit output. Each such output

block is an independent combination of the key, nonce, and counter and, since there is no

2

chaining between blocks, the operation of Salsa20/r resembles the operation of a block cipher

in counter mode. This stream cipher is used to do fast encryption for huge amount of data.

SOSEMANUK has a variable key length, ranging from 128 to 256 bits, and takes an initial

value of 128 bits. However, for any key length the cipher is only claimed to 128-bit security.

SOSEMANUK uses similar design principles to the stream cipher SNOW 2.0 [5] and the

block cipher SERPENT [4].

SOSEMANUK aims to overcome potential structural weaknesses in SNOW 2.0 while

providing better performance by decreasing the size of the internal state. As for SNOW 2.0,

SOSEMANUK has two main components: A linear feedback shift register(LFSR) and a finite

state machine (FSM). The LFSR operates on 32-bit words and has length 10. At every clock a

new 32-bit word is computed. The FSM has two 32-bit memory registers. This algorithm is

also used for fast software encryptions [1].

1.2 Motivation

As being the stream cipher, a branch of symmetric cryptography, I thought that it also should

have significant features, results as the block cipher. Keeping this in mind, while researching,

finding and studying the papers and the contents related to this field, I came to know about

eSTREAM project run by ECRYPT from Europe. In this project, there were several

techniques or algorithms participated in the competition held during 2004. Finally, four of

them were selected as eSTREAM finalist by the end of 2008 AD [1].

They are HC-128, Rabbit, Salsa20/12 and SOSEMANUK. Among them, Rabbit is the oldest

and patented stream cipher. It is seen that the HC-128 has shown the best performance among

others. Similarly, high security can be achieved by SOSEMANUK since it has entirely

different mechanism for setting IV and getting unique key.

Performances of these algorithms are depending upon number of parameters. One can easily

ask the question what the performance of these techniques will be if different sizes of

message are input to them considering other factors constant. This question is the sign of

motivation in this thesis that the performance of the algorithms is observed by inputting small

to large (variable) sizes of textual message.

3

1.3 Objective

 To implement and analyze the performance of eSTREAM cipher finalists such as HC-

128, Rabbit, Salsa20/12 and SOSEMANUK using different parameters like different

size of messages.

 To calculate cycle/Byte performance.

1.4 Thesis Organization

The rest of the content in this study is organized into subsequent five chapters.

Chapter 2 provides background study required for dissertation. In this chapter the problem of

different eSTREAM cipher algorithms are mentioned, problem statement is formulated and

how this study response those issues is mentioned.

Chapter 3 contains previous literature related to this work in detail under literature review.

Moreover, it contains details of each algorithms of eSTREAM project.

Chapter 4 provides an implementation overview of different eSTREAM cipher finalists in

Java Programming language integrated in NetBeans 8.0.2 version. The implementation

details with major coding functions are provided in this chapter.

Chapter 5 includes the analysis of time required for creating key streams and encrypting

messages and finally with the help of average time needed for encrypting for all candidates

algorithm, cycle per byte is calculated. The result of the study is shown in tabular form as

well as in graphs.

Finally, the concluding remarks and further recommendations as well as future works are

outlined in chapter 6.

4

Chapter 2

THESIS BACKGROUND

Today, the internet has virtually become the way of doing business as it offers a powerful

widespread medium of commerce and enables greater connectivity of disparate groups

throughout the world. So, it may have many risks like loss of privacy, loss of data integrity,

denial of service and identify spoofing. To the solution of these threads in internet many

secure cryptographic algorithms are needed for providing services such as confidentiality,

data integrity and authentication to handle packets which may vary in size over a large range.

The size of the message has a significant impact on the performance of such algorithms.

Hence the messages have to be prepared by padding the required amount of zero bits to get

an integer number of blocks. This process becomes a considerable overhead when the short

messages are more dominant in the message stream. In this thesis, for simplicity

communicating parties are named as Alice and Bob where as attacker named as Darth.

2.1 Problem Definition

Before eSTREAM project was lunched, there was an another project called NESSIE which

stands for “New European Schemes for Signature, Integrity and Encryption”. In that project,

several techniques and algorithms were submitted for selecting fast stream cipher algorithm.

None of the stream ciphers, submitted to NESSIE, were selected because everyone felt to

cryptanalysis. This surprising result led to the eSTREAM project [6].

There were eight algorithms submitted in eSTREAM project namely CryptMT, Dragon, HC-

128, LEX, NLS, Rabbit, Salsa20/12 and SOSEMANUK [7]. Among them, CryptMT,

Dragon, LEX as well as NLS were actually slower as compared to other remaining and

performance was not remarkable. Therefore, Rabbit, Salsa20/12, HC-128 and SOSEMANUK

were selected in eSTREAM portfolio phases 3. These are stream cipher finalists announced

by ECRYPT in eSTREAM project in 2012 [1]. Time is the key factor for encryption as well

as decryption in cryptography. So that, the best and the fastest algorithm among these stream

cipher finalists with good performance will be purposed in this study.

2.2 Background Study

Since all the study require the basic terms and terminology related to that study in this

context, basic study related to this work are outlined in the following sections.

https://en.wikipedia.org/wiki/Stream_cipher
https://en.wikipedia.org/wiki/ESTREAM

5

2.2.1 Cryptography

Cryptography is art of protecting information by encrypting it into an unreadable format,

called cipher text. Only those who possess a secret key can decipher (or decrypt) the message

into plaintext. Encrypted messages can sometimes be broken by cryptanalysis, also

called code breaking, although modern cryptography techniques are virtually unbreakable.

Cryptography enables one to store sensitive information or transmit it across insecure

networks so that it cannot be read by anyone except the intended recipient. While

cryptography is the science of securing data, cryptanalysis is the science of analyzing and

breaking secure communication. Classical cryptanalysis involves an interesting combination

of analytical reasoning, application of mathematical tools, pattern finding, patience,

determination, and luck. Cryptanalysts are also called attackers and represented as Darth.

Cryptology embraces both cryptography and cryptanalysis. The modern cryptography can be

divided into two main branches [8, 21]:

 Symmetric Cryptography, where the same key is used to encrypt a message and

decrypt data.

 Asymmetric cryptography, where two different keys are used for encryption and

decryption.

2.2.1.1 Symmetric Cryptography

Symmetric cryptography is a form of cryptosystem in which encryption and decryption are

performed using the same key. It is also known as private key cryptosystem. Symmetric

cryptosystem was the only type of encryption technique in use prior to the development of

public key cryptosystem. Which can be defined as: Let M denotes the set of all possible

plaintext messages, C the set of all possible cipher text, K the set of all possible keys, k: M →

C is the encryption function, and k: C → M, is decryption function, such that k(k(m)) = m for

all m ε M and k ε K. In this cryptosystem, sender and receiver have to initially agree upon a

secret key k ε K. After that, whenever sender wishes to send a message m ε M to receiver,

sender sends the cipher text C = k (m) to receiver, from which receiver can recover m by

applying the decryption function as m = k(C) [27]. The notion of private key cryptosystem is

depicted in Figure 2.1.

http://www.webopedia.com/TERM/E/encryption.htm
http://www.webopedia.com/TERM/C/cipher_text.htm
http://www.webopedia.com/TERM/D/decryption.htm
http://www.webopedia.com/TERM/P/plain_text.htm

6

Figure-2.1: Simplified Model of Symmetric Encryption [19].

The effectiveness of private key cryptosystems relies on the requirement of strong encryption

algorithm which would be like the algorithm to be such that an opponent who knows the

algorithm and has access to one or more cipher texts would be unable to decipher the cipher

text or find out the key and another requirement is that sender and receiver must have

obtained copies of the secret key in a secure fashion and must keep the key secure. Modern

techniques used in private key cryptosystem are XOR Cipher, Rotation Cipher, Substitution

Cipher: S-box, Transposition Cipher: Data Encryption Standard (DES), Advanced Encryption

Standard (AES) and so on. As mentioned in [19], private key cryptosystems have numerous

limitations which are outlined below:

 Key distribution problem: Two parties that want to communicate each other need to

set up a shared secrete key before starting communicate over an insecure channel.

 Key management problem: Every pair of users must share a secret key leading to a

total of n*(n-1)/2 keys. Where n be the users in a network. If n is large, then the

number of keys become unmanageable and traffic in network may be increased. It

makes difficult to manage key.

 No signatures possible: A digital signature is an authentication mechanism that

enables the creator of the message to attach a special token that acts as a signature. A

digital signature allows the receiver of a message to convince any third-party that the

message in fact originated from the sender.

7

2.2.1.2 Asymmetric Cryptography

Asymmetric encryption is a form of cryptosystem in which encryption and decryption are

performed using the different key- one a public key and one a private key. It is also known as

public-key encryption. Asymmetric encryption transforms plaintext into cipher text using a

one of two keys and an encryption algorithm. Using the paired key and a decryption

algorithm, the plaintext is recovered from the cipher text.

Asymmetric encryption can be used for confidentiality, authentication, or both. The most

widely used public-key cryptosystem is RSA. Public-key algorithms are based on

mathematical functions rather than on substitution and permutation. More important, public-

key cryptography is asymmetric, involving the use of two separate keys, in contrast to

symmetric encryption, which uses only one key. The use of two keys has profound

consequences in the areas of confidentiality, key distribution, and authentication [19].

Figure-2.2: Encryption with Public Key [19].

8

Chapter 3

LITERATURE REVIEW

3.1 Stream Ciphers

Stream ciphers are an important class of encryption algorithms and are defined as the ciphers

in which plain texts are encrypted by XORing between secret key and plain texts to obtain

ciphers. They encrypt individual characters (usually binary digits) of a plaintext message one

at a time. Stream ciphers are generally faster than block ciphers in software as well as

hardware applications [14]. They are more appropriate in some telecommunications

applications, where buffering is limited or characters must be individually processed as they

are received. If it is observed at the types of cryptographic algorithms that exist in a little bit

more detail, it can be seen that the symmetric ciphers can be divided into stream ciphers and

block ciphers, as shown in Fig-3.1.

Figure-3.1: Showing Cryptographic Branches [14].

3.1.1 Stream and Block Ciphers

Symmetric cryptography is split into block ciphers and stream ciphers, which are easy to

distinguish. Figure 3.2 depicts the operational differences between stream [Fig. 3.2(a)] and

block [Fig. 3.2(b)] ciphers when we want to encrypt b bits at a time, where b is the width of

the block cipher.

Figure-3.2: Principles of Encrypting b bits with a stream (a) and a block (b) cipher [14].

Cryptography

Symmetric Ciphers Asymmetric Ciphers

Stream Ciphers Block Ciphers

 k x0 k y0

 x1 y1

x0 x1….. xb y0 y1…yb

 xb yb

 (a) (b)

Stream Cipher Block Cipher

9

Stream ciphers encrypt bits individually. This is achieved by adding a bit from a key stream

to a plaintext bit. There are synchronous stream ciphers where the key stream depends only

on the key, and asynchronous ones where the key stream also depends on the cipher text. If

the dotted line in Fig. 3.3 is present, the stream cipher is an asynchronous one. Most practical

stream ciphers are synchronous ones. An example of an asynchronous stream cipher is the

cipher feedback (CFB) mode [14].

Figure-3.3: Showing Asynchronous Stream Cipher Generation [14].

Block ciphers encrypt an entire block of plaintext bits at a time with the same key. This

means that the encryption of any plaintext bit in a given block depends on every other plain

text bit in the same block. In practice, the vast majority of block cipher, either have a block

length of 128 bits (16 bytes) such as the advanced encryption standard (AES), or a block

length of 64 bits (8 bytes) such as the data encryption standard (DES) or triple DES (3DES)

algorithm. Some differentiation points between stream ciphers vs. block ciphers are as below:

1. In practice, particularly for encrypting computer communication on the Internet, block

ciphers are used more often than stream ciphers.

2. Because stream ciphers tend to be small and fast, they are particularly relevant for

applications with little computational resources, e.g., for cell phones or other small embedded

devices.

A prominent example for a stream cipher is the A5/1 cipher, which is part of the GSM mobile

phone standard and is used for voice encryption. However, stream ciphers are sometimes also

used for encrypting Internet traffic, especially the stream cipher RC4.

10

3. It is assumed that stream ciphers tended to encrypt more efficiently than block ciphers.

Efficient for software-optimized stream ciphers means that they need fewer processor

instructions (or processor cycles) to encrypt one bit of plaintext.

3.1.2 Encryption and Decryption in Stream Ciphers

Example: Alice wants to encrypt the letter A, where the letter is given in ASCII code. The

ASCII value for A is 6510 = 10000012. Let‟s furthermore assume that the first key stream bits

are (s0, . . . , s6) = 0101100.

Sender: - Alice, Receiver: - Bob, Attacker: - Darth

x0, . . . , x6 = 1000001 = A

 ⊕

s0, . . . , s6 = 0101100

y0, . . . ,y6 = 1101101 = m

.

.

.

.−−−−m−=−1−10−1−10−1−−→

y0, . . . ,y6 = 1101101

 ⊕

s0, . . . , s6 = 0101100

x0, . . . ,x6 = 1000001 = A

According to above mentioned example, bitwise XORing between message and key is carried

out for encryption as well as decryption.

3.1.3 Random Numbers, Nonce and OTP in Stream Cipher

Random numbers and its generation play very important role in stream ciphers since

generating key is major thing and encryption and decryption is simply the XOR operation.

Random number can be generated by three ways: TRNG, PRNG and CSPRNG [14].

11

True random number generators (TRNGs) are characterized by the fact that their output

cannot be reproduced. For instance, if we flip a coin 100 times and record the resulting

sequence of 100 bits, it will be virtually impossible for anyone on Earth to generate the same

100 bit sequence. The chance of success is 1/2
100

, which is an extremely small probability.

TRNGs are based on physical processes. Examples include coin flipping, rolling of dice etc

[14].

Pseudorandom number generators (PRNGs) generate sequences which are computed from an

initial seed value. Often they are computed recursively in the following way:

 s0 = seed

 si+1 = f (si), i = 0,1, . . .

A widely used example is the rand() function used in ANSI C. A common requirement of

PRNGs is that they possess good statistical properties, meaning their output approximates a

sequence of true random numbers. There are many mathematical tests, e.g., the chi-square

test for PRNG [14].

Cryptographically secure pseudorandom number generators (CSPRNGs) are a special type of

PRNG which possess the following additional property: A CSPRNG is PRNG which is

unpredictable. Informally, this means that given n output bits of the key stream si, si+1, . . . ,

si+n−1, where n is some integer, it is computationally infeasible to compute the subsequent bits

si+n, si+n+1, A more exact definition is that given n consecutive bits of the key stream,

there is no polynomial time algorithm that can predict the next bit sn+1 with better than 50%

chance of success.

Another property of CSPRNG is that given the above sequence, it should be computationally

infeasible to compute any preceding bits si−1, si−2, Note that the need for unpredictability

of CSPRNGs is unique to cryptography. Virtually, in all other situations where

pseudorandom numbers are needed in computer science or engineering, unpredictability is

not needed [14].

Many aspects of cryptography require random numbers, for example: Key generation, nonce,

one-time pads etc. The "quality" of the randomness required for these applications varies. For

example, creating a nonce in some protocols needs only uniqueness. On the other hand,

generation of a master key requires a higher quality. In cryptography, a nonce is an arbitrary

number that may only be used once. It is similar in spirit to a nonce word. They can also be

useful as initialization vectors and in cryptographic hash function [14].

https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Key_generation
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://en.wikipedia.org/wiki/Cryptographic_protocol
https://en.wikipedia.org/wiki/Key_%28cryptography%29
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Nonce_word
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/Cryptographic_hash_function

12

In cryptography, the one-time pad (OTP) is an encryption technique that cannot be cracked if

used correctly. In this technique, a plaintext is paired with a random secret key (also referred

to as a one-time pad). Then, each bit or character of the plaintext is encrypted by combining

it with the corresponding bit or character from the pad using modular addition. If the key is

truly random, is at least as long as the plaintext, is never reused in whole or in part, and is

kept completely secret, then the resulting cipher text will be impossible to decrypt or break. It

has also been proved that any cipher with the perfect secrecy property must use keys with

effectively the same requirements as OTP keys [14].

3.2 Candidate Algorithms

3.2.1 HC-128

Stream cipher HC-128 is the simplified version of HC-256 for 128-bit security [10]. HC-128

is a simple, secure, software-efficient cipher and it is freely-available. HC-128 consists of two

secret tables, each one with 512 32-bit elements. At each step, we update one element of a

table with non-linear feedback function. All the elements of the two tables get updated every

1024 steps.

At each step, one 32-bit output is generated from the non-linear output filtering function. HC-

128 is suitable for the modern superscalar microprocessors. The dependency between

operations in HC-128 is very small: three consecutive steps can be computed in parallel. At

each step, the feedback and output functions can be computed in parallel. The high degree of

parallelism allows HC-128 to run efficiently on the modern processor [10, 15]. An entire

diagram for HC-128 algorithm is given as below in Fig. 3.4.

Figure-3.4: Showing Block Diagram for HC-128 Algorithm [15].

https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Key_%28cryptography%29
https://en.wikipedia.org/wiki/Modular_addition
https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Secret
https://en.wikipedia.org/wiki/Ciphertext

13

3.2.1.1 Cipher Specification

Stream Cipher consists of two secret tables. Each table contains 32 bit elements. After each

step, one element from one table gets updated from a nonlinear feedback function. After 1024

steps, all of the elements will have been updated once.

Definitions needed to explain the algorithm:

● K will be our 128 bit key.

● IV will be an 128 bit initialization vector.

● si will be the 32 bit output generated by step i.

● P and Q will be the two tables containing 512 32bit elements each. Each element

will be referenced as P[i] and Q[i].

Functions used in the algorithm are given as below.

● f1(x) = (x >>> 7) XOR (x >>> 18) XOR (x >> 3)

● f2(x) = (x >>> 17) XOR (x >>> 19) XOR (x >> 10)

● g1(x, y, z) = ((x >>> 10) XOR (z >>> 23)) + (y >>> 8)

● g2(x, y, z) = ((x <<< 10) XOR (z <<< 23)) + (y <<< 8)

● h1(x) = Q[x0] + Q[256 + x2]

● h2(x) = P[x0] + P[256 + x2]

● x = x3 || x2 || x1 || x0

The initialization is broken into a few steps. These contribute to expanding K and IV into the

P and Q tables. For the first step, we expand into an array W of size 1280 for W[i] as follows:

 {Step-1: Expanding key and IV into an array Wi (0 ≤ i≤ 1279)...}

 For i = 0 → 7 do

 Wi← Ki

 end for

 for i = 8 → 15 do

 Wi← IVi−8

 end for

 for i = 16 → 1279 do

 Wi ← f2(Wi−2) +Wi−7 + f1(Wi−15) +Wi−16 + i

 end for

{Step-2: Update the tables P and Q with the array W}

 For i = 0 → 511 do

14

 P[i] ← Wi+256

 Q[i] ← Wi+768

 end for

{Step-3: Run the cipher for 1024 steps and use the outputs to replace the table elements....}

 for i = 0 → 511 do

 P[i] ← (P[i] + g1(P[i⊟3], P[i⊟10], P[i⊟511])) ⊕h1(p[i⊟12])

 Q[i] ← (Q[i] + g2(P[i⊟3], P[i⊟10], P[i⊟511])) ⊕h2(p[i⊟12])

 end for

3.2.1.2 Key Stream Generation

{Assume N bits are required....}

 For i = 0 → N do

 j = i mod 512

 if (i mod 1024) <512 then

 P[j] ← (P[j] + g1(P[j ⊟3], P[j ⊟10], P[j ⊟511]))

 si = h1(P[j ⊟12] ⊕P[j])

 else

 Q[j] ← (Q[j] + g2(Q[j ⊟3],Q[j ⊟10],Q[j ⊟511]))

 si = h2(Q[j ⊟12] ⊕Q[j])

 end if

 i← i + 1

 End for

Starting with the far left as in figure-3.4, we have i‟s value, based on this, we either go to the

P or Q S-box. If i is less than 512 we go to the S-box P, if i is greater than or equal to 512 we

go to the S-box Q. Once we know which box we are using we grab 4 elements out of the box

by;

Sj-3 Mod 512;

Sj-10 Mod 512;

Sj-511 Mod 512;

Sj Mod 512.

These elements go into the Feedback function below.

15

3.2.1.3 Feedback Function

In the Feedback Function we use the elements sj-3 Mod 512; sj-10 Mod 512; sj-511 Mod 512,

from the table, as parameters in the g function which bit shifts the elements and XORs them

together, after the output of the g function is then added to sj Mod 512 and the result is put

back into the correct box at sj. In the above picture it demonstrates the use of the P S-box, if

„i‟ would have been greater than or equal to 512 we would have grabs the elements from the

Q S-box, replace the function g1 with g2 and instead put the output back into the Q S-box.

The output of this function also goes into the Output Function described below figure-3.5.

Figure: - 3.5: Showing Feedback Function [15].

3.2.1.4 Output Function

In the Output Function shown above, we use the elements sj and sj-12 Mod 512 in the function

h1and then the output of that function goes into the final function si = h1(x) XOR p[j], the

output of this function is the key stream.

In the above picture it demonstrates the use of the P S-box, if i would have been greater than

or equal to 512, the elements from the Q S-box would have been grabbed and the function h1

with h2 would be replaced.

16

Figure:-3.6: Showing Output Function [15].

3.2.2 Rabbit

Rabbit is a synchronous stream cipher introduced in Fast Software Encryption in 2003. It is

one of the most potent candidates of the eSTREAM project. The designers of the cipher

targeted to use it in both software and hardware environments. The design is very strong as

the designers provided the security analysis considering several possible attacks viz.

algebraic, differential, guess-and-determine, and statistical attacks. The Rabbit Algorithm

takes 128-bit key and if necessary 64-bit IV as input [11].

In each iteration, it generates 128-bit output. The output is pseudo-random in the natural

sense that they cannot be distinguished from random strings of 128-bit with non negligible

probability. The core of this cipher consists of 513 internal state bits. Obviously, the output

generated in each iteration is some combination of these state-bits. The 513 bits are divided

into eight 32-bit state variable, eight 32-bit counter and one counter carry bit. The state

functions which update these state variables are non-linear and thus build the basic of security

provided by this cipher [11].

The design of rabbit enables faster implementation than common ciphers. Mostly bitwise

operations like concatenation, bitwise XOR, shifting are involved which explains its faster

performances. A few costly operations like squaring are necessary to enhance the amount of

non-linearity. A key of size 128-bit can be used for encrypting up to 2
64

 blocks of plain-text.

17

3.2.2.1 Specifications of Rabbit

Most of the notation used here are well-known. However, Necessary notations are provided

here below.

 ⊕ Logical Exclusive OR.

 & Logical AND.

 <<</>> >Left / Right Rotation.

 ≪ / ≫ Left / Right Shift.

 ◊ Concatenation.

 A
[g..h]

 Bit number g through h of A.

In addition, while numbering the bits, the least significant bit is denoted by 0 and

hexadecimal numbers are prefixed conventionally by “0x”.

The internal state of the stream cipher consists of 513 bits as stated earlier. 512 bits are

divided between eight 32-bit state variables xj, i and eight 32-bit counter variables cj, i, where

xj, i is the state variable of subsystem j at iteration i, and cj, i denotes the corresponding counter

variable. There is one counter carry bit via υ7,i, which needs to be stored between iterations.

Basically it stores the carry output of a summation which updates counter in each iteration.

This counter carry bit is initialized to zero. The eight state variables and the eight counters are

derived from the key at initialization.

3.2.2.2 Key-Setup Scheme

The Key-Setup scheme consists of three main parts. It takes the key as input and initializes

them. Then it interacts with Next-State function several times. Finally to prevent key

recovery by inversion of the counter system, it re-initializes the counter system.

The goal of the algorithm used in this step is to expand the input key (128-bit) into both the

eight state variables and the eight counters such that there is a one-to-one correspondence

between the key and the initial state variables xj,0 and the initial counters cj,0. The key,

K
[127..0],

 is divided into eight sub-keys: k0 = K
[15..0]

, k1 = K
[31..16]

, . . ., k7 = K
[127..112]

.The state

and counter variables are initialized from the sub-keys as follows:

 xj,0 = k(j+1 mod 8) ◊ kj for j even

 xj,0 = k(j+5 mod 8) ◊ k(j+4 mod 8) for j odd

 and

 Cj,0 = k(j+4 mod 8) ◊ k(j+5 mod 8) for j even

 Cj,0 = kj ◊ k(j+1 mod 8) for j odd

18

Then, the system is iterated four times, according to the Next-state function, to diminish

correlations between bits in the key and bits in the internal state variables. Finally, the

counter variables are re-initialized according to:

 cj,4 = cj,4 ⊕ x((j+4)mod 8),4

for all j, to prevent recovery of the key by inversion of the counter system.

A block diagram for Rabbit Stream cipher algorithm is given as below in Figure-3.7.

Figure-3.7: Showing an Entire Block Diagram of Rabbit [13].

Key Setup Algorithm is given as below in high level pseudo code:

{Step-1: Initializing System....}

 For j = 0 → 7 do

 if (j is even) then

 xj,0 ← CONCAT(k(j+1)mod 8 , kj)

 cj,0 ← CONCAT(k(j+4)mod 8 , k(j+5)mod 8)

 else

 xj,0 ← CONCAT(k(j+5)mod 8 , k(j+4)mod 8)

19

 cj,0 ← CONCAT(kj , k(j+1)mod 8)

 end if

 end for

{Step-2: Iterating System by Next-State Function....}

 For i= 0 → 3 do

 State[xj,i+1, cj,i+1] ← NEXT-STATE(State[xj, i, cj, i]) ∀j ∈ {0, . . . , 7}

 end for

{Step-3: Re-initializing Counters....}

 For j = 0 → 7 do

 cj,4 ← XOR(cj,4 , x((j+4)mod 8),4)

 end for

3.2.2.3 IV-Setup Scheme

Now, after completion of Key-Setup, one can optionally run IV-setup scheme. The input of

this part is the output from Key-Setup and a 64-bit IV. The internal states after key-setup, is

called the Master State. In this scheme, a copy of that Master State is modified. The IV-setup

scheme works by modifying the counter state as function of the IV. This is done by XORing

the 64-bit IV on all the 256 bits of the counter state. The 64 bits of the IV are denoted IV
[63..0]

.

 The counters are modified as:

 c0,4 = c0,4 ⊕ IV
[31..0]

 c1,4 = c1,4 ⊕ IV
[63..48] ⊕ IV

[31..16]

 c2,4 = c2,4 ⊕ IV
[63..32]

c3,4 = c3,4 ⊕ IV
[47..32]

 ⊕ IV
[15..0]

 c4,4 = c4,4 ⊕ IV
[31..0]

 c5,4 = c5,4 ⊕ IV
[63..48]

 ⊕ IV
[31..16]

 c6,4 = c6,4 ⊕ IV
[63..32]

 c7,4 = c7,4 ⊕ IV
[47..32]

 ⊕ IV
[15..0]

The system is then iterated four times to make all state bits non-linearly dependent on all IV

bits. This is essential to incorporate non-linearity in this scheme. Like the previous scheme,

this is done by calling the Next-state Function 4 times. The modification of the counter by the

IV guarantees that all 2
64

 different IV vectors will lead to unique key-streams. The scheme

has been summarized by a high-level pseudo-code as below.

{Step-1: Modifying counters by input IV....}

 For j= 0 → 7 do

 If j= 0 mod 4 then

 cj,4 ← XOR(cj,4, IV
[31..0])

20

 end if

 if j = 1 mod 4 then

 cj,4 ← XOR(cj,4,CONCAT(IV
[63..48]

, IV
[31..16]

))

 end if

 if j = 2 mod 4 then

 cj,4 ← XOR(cj,4, IV
[63..32])

 end if

 if j = 3 mod 4 then

 cj,4 ← XOR(cj,4, CONCAT(IV
[47..32]

, IV
[15..0]

))

 end if

 end for

{Step-2: Iterating System by Next-State Function....}

 For i= 0 → 3 do

 State[xj,i+1, cj,i+1] ← NEXT-STATE(State[xj, i, cj, i]) ∀j ∈ {0, . . . , 7}

 end for

3.2.2.4 Extraction Scheme

The Extraction Scheme takes the output from IV-Setup scheme whenever the later is used.

Otherwise, it takes the output of Key-setup scheme as its input. In this scheme again the input

state variable is iterated using Next-state function. And, after each iteration, the 128-bit

output key-stream si is extracted from 128-bit internal state variable i.e. xi as follows:

 si
[15..0]

 = x0,i
[15..0]

 ⊕ x5,i
[31..16]

 si
[31..16]

 = x0,i
[31..16] ⊕x3,i

[15..0]

 si
[47..32]

 = x2,i
[15..0]

 ⊕ x7,i
[31..16]

 si
[63..48] = x2,i

[31..16]
 ⊕ x5,i

[15..0]

 si
[79..64]

 = x4,i
[15..0]

 ⊕ x1,i
[31..16]

 si
[95..80]

 = x4,i
[31..16]

 ⊕ x7,i
[15..0]

 si
[111..96]

 = x6,i
[15..0]

 ⊕ x3,i
[31..16]

 si
[127..112]

 = x6,i
[31..16]

 ⊕ x1,i
[15..0]

 Consequently the high-level pseudo-code has been given below:

 for i = 0 → SIZE do {Iterate the system...}

 State[xj,i+1, cj,i+1] ← NEXT-STATE(State[xj,i, cj,i]) ∀ j ∈ {0, . . . , 7}

 {Generate Key-Stream as in Extraction Scheme ...}

 si ←COMPUTE-KEY-STREAM(xj,i)∀ j ∈ {0, . . . , 7}

21

 end for

3.2.2.5 Next-State Function

Now, next step in this cipher is Next-state Function. Actually there are three steps which are

performed in this function. First counters are updated according to the counter function, then

the g-values are computed from the old state-variable and updated counter-variable. Then the

state variables are updated from the newly computed g-values. For better modularity, the

implementation can be thought of as the cascading call of three different functions which are

doing those different tasks. The Next-state function calls the subroutine g-function which

again calls the counter-updating function [13].

The counter-variables are updated by following equations:

 c0,i+1 = c0,i + a0 + υ7,i mod 2
32

 c1,i+1 = c1,i + a1 + υ0,i+1 mod 2
32

 c2,i+1 = c2,i + a2 + υ1,i+1 mod 2
32

 c3,i+1 = c3,i + a3 + υ2,i+1 mod 2
32

 c4,i+1 = c4,i + a4 + υ3,i+1 mod 2
32

 c5,i+1 = c5,i + a5 + υ4,i+1 mod 2
32

 c6,i+1 = c6,i + a6 + υ5,i+1 mod 2
32

 c7,i+1 = c7,i + a7 + υ6,i+1 mod 2
32

where the counter carry bit is given by the following equation:

 υj,i+1 = 1 if c0,i + a0 + υ7,i ≥ 2
32

 and j = 0

 υj,i+1 = 1 if cj,i + aj + υj−1,i+1 ≥ 2
32

 and j > 0

 υj,i+1 = 0 Otherwise.

 The aj are constants having following values:

 a0 = 0x4D34D34D a1 = 0xD34D34D3

 a2 = 0x34D34D34 a3 = 0x4D34D34D

 a4 = 0xD34D34D4 a5 = 0x34D34D34

 a6 = 0x4D34D34D a7 = 0xD34D34D3

In the next step, the g-values are computed with the updated counter values and the old state-

variables. They are computed as:

 gj,i = ((xj,i + cj,i+1)
2
 ⊕ ((xj,i + cj,i+1)

2
 ≫ 32)) mod 2

32

22

Finally, the internal state variables (x′j, is) are computed as follows:

x0,i+1 = g0,i + (g7,i≪16) + (g6,i≪16) mod 2
32

x1,i+1 = g1,i + (g0,i≪8) + g7,i mod 2
32

x2,i+1 = g2,i + (g1,i≪16) + (g0,i≪16) mod 2
32

x3,i+1 = g3,i + (g2,i≪8) + g1,i mod 2
32

x4,i+1 = g4,i + (g3,i≪16) + (g2,i≪16) mod 2
32

x5,i+1 = g5,i + (g4,i≪8) + g3,i mod 2
32

x6,i+1 = g6,i + (g5,i≪16) + (g4,i≪16) mod 2
32

x7,i+1 = g7,i + (g6,i≪8) + g5,i mod 2
32

3.2.2.6 Encryption / Decryption Scheme

The extracted bits are XOR‟ed with plaintext / cipher text to encrypt/decrypt.

 ci = pi ⊕ si

 pi = ci ⊕ si

where ci and pi are the i
th

 128-bit cipher text and plaintext blocks respectively.

3.2.3 Salsa20/12

Salsa20/12 is a stream cipher submitted to eSTREAM by Daniel Bernstein. It is built on a

pseudorandom function based on 32-bit addition, bitwise addition (XOR) and rotation

operations, which maps a 256-bit key, a 64-bit nonce, and a 64-bit stream position to a 512-

bit output (a version with a 128-bit key also exists). This gives Salsa20 the unusual advantage

that the user can efficiently seek to any position in the output stream [12].

It is not patented, and Bernstein has written several public domain implementations

optimized for common architectures. The version selected in the eSTREAM profile has 12

rounds. So, it is called Salsa 20/12. Here it is focused on the stream cipher Salsa20 in

general.There are a lot of active researches going on around the crypto-community to break

this very popular eSTREAM cipher [12]. A complete diagram of Salsa20/12 is given as

below in Figure- 3.8.

23

Figure-3.8: Showing a block Diagram of Salsa20/12 Algorithm [26].

3.2.3.1 Specifications of Salsa20/12

The core of Salsa20 is a hash function with 64-byte input and 64-byte output. The hash

function is used in counter mode as a stream cipher. Salsa20 encrypts a 64-byte block of plain

text by hashing the key, nonce, and block number and XORing the result with the plain text

[12]. A word is an element of the set {0, 1, . . . , 2
32

 − 1}. They are generally represented in

hexadecimal notation. The sum of two words u and v is defined as (u + v) mod 2
32

. Now, step

by step functions as well as algorithm steps are given as below in general form.

 Input: - 64 Bytes Output: - 64 Bytes

Step-1: Quarterround Function.

 Input: - y= {y0, y1, y2, y3}, then quarterround(y) = z = {z0, z1, z2, z3} is defined as

follows:

24

z1 = y1 ⊕ ((y0 + y3)≪ 7),

z2 = y2 ⊕ ((z1 + y0)≪ 9),

z3 = y3 ⊕ ((z2 + z1)≪ 13),

z0 = y0 ⊕ ((z3 + z2)≪ 18).

Step-2: Rowround Function.

Input: - y = {y0, y1, . . . , y15}, then rowround(y) = z = {z0, z1, . . . , z15} is defined as

follows:

(z0, z1, z2, z3) = quarterround(y0, y1, y2, y3)

(z4, z5, z6, z7) = quarterround(y5, y6, y7, y4)

(z8, z9, z10, z11) = quarterround(y10, y11, y8, y9)

(z12, z13, z14, z15) = quarterround(y15, y12, y13, y14).

Step-3: Columnround Function.

Input: - y = {y0, y1, . . . , y15}, then columnround(y) = z ={z0, z1, . . . , z15} is defined

as follows:

(z0, z4, z8, z12) = quarterround(y0, y4, y8, y12)

(z5, z9, z13, z1) = quarterround(y5, y9, y13, y1)

(z10, z14, z2, z6) = quarterround(y10, y14, y2, y6)

(z15, z3, z7, z11) = quarterround(y15, y3, y7, y11).

Step-4: Doubleround Function.

Input: - y = {y0, y1, . . . , y15}, then doubleround(y) = z = {z0, z1, . . . , z15} and defined

as below.

For i=1 to 10

doubleround(y) = rowround(columnround(y))

End for

Step-5: Salsa20 Hash Function.

 Input & Output: - 64 bytes

25

 In short, Salsa20(x) = x + doubleround
10

(x) where, x is a 4-byte word.

 In detail, it can be given as below.

 (Let x = x[0], x[1], ..., x[63])

x0 = littleendian(x[0], x[1], x[2], x[3]),

x1 = littleendian(x[4], x[5], x[6], x[7]),

.

.

x15 = littleendian(x[60], x[61], x[62], x[63])

where, littleendian is a function as littleendian(b) = b0 + 2
8
b1 + 2

16
b2 + 2

24
b3

and b is 4-byte sequence of b=(b0, b1, b2, b3).

Step-6: Salsa 20 Expansion Function

If k is a 32-byte or 16-byte sequence and n is a 16-byte sequence then Salsa20k(n) is a

64-bytesequence defined as follows:

Let

σ0 = (101, 120, 112, 97),

σ1 = (110, 100, 32, 51),

σ2 = (50, 45, 98, 121),

σ3 = (116, 101, 32, 107)

and,

τ0 = (101, 120, 112, 97),

τ1 = (110, 100, 32, 49),

τ2 = (54, 45, 98, 121),

τ3 = (116, 101, 32, 107).

If k0, k1, n are 16-byte sequences, then

Salsa20k0,k1(n) = Salsa20(σ0, k0, σ1, n, σ2, k1, σ3).

Else if k, n are 16-byte sequences, then

Salsa20k(n) = Salsa20(τ0, k, τ1, n, τ2, k, τ3).

26

Encryption is performed as byte wise with the plain text. Finally, it is also bit wise XORed

operation for encryption as well as decryption.

4.2.4 SOSEMANUK

SOSEMANUK is another new synchronous software-oriented stream cipher selected in

eSTREAM project. It uses both basic design principles from the stream cipher SNOW 2.0[5]

and transformations derived from the block cipher SERPENT [4]. It is well-known that snow

snakes do not exist since snakes either hibernate or move to warmer climes during the winter.

Instead Sosemanuk is a popular sport played by the Eastern Canadian tribes. It consists in

throwing a wooden stick along a snow bank as far as possible. Its name means snowsnake in

the Cree language, since the stick looks like a snake in the snow [9, 13].

The Sosemanuk stream cipher is a new synchronous stream cipher dedicated to software

applications. Its key length is variable between 128 and 256 bits. Any key length is claimed

to achieve 128-bit security. It is inspired by the design of SNOW 2.0 which is very elegant

and achieves a very high throughput. Sosemanuk aims at improving SNOW 2.0 from two

respects.

First, it avoids some structural properties which may appear as potential weaknesses, even if

the SNOW 2.0 cipher with a 128-bit key resists all known attacks. Second, efficiency is

improved on several architectures by reducing the internal state size, thus allowing for a more

direct mapping of data on the processor registers [9].

Sosemanuk also requires a reduced amount of static data; this lower data cache pressure

yields better performance on several architectures. Another strength of Sosemanuk is that its

key setup procedure is based on a reduced version of the well-known block cipher

SERPENT, improving classical initialization procedures both from an efficiency and a

security point of view.

An entire Block Diagram of SOSEMANUK is given as below in figure-3.9.

27

Figure-3.9: Showing Block Diagram of SOSEMANUK [9, 13].

Now, in algorithmic way, step by step functions and steps of SOSEMANUK algorithm is

given as below.

Step-1: Key Initialization Process.

It takes SERPENT secret key initialization process where user fed keys are first divided

into 8 32-bits pre keys w-8 to w-1. After this, 132 intermediate keys are generated as

 For i = 0 to 131

 Wi = (wi-8⊕wi-5⊕wi-3⊕wi-1⊕Φ⊕i)<<<11

 End For

 Where wi is an intermediate key, ⊕ is Exclusive OR operation and Φ is golden

 fractional ratio of (5 + 1)/2 or 0x9e3779b9 hexadecimal number. After this, 33

 round keys are generated from these intermediate keys by running them in S-box as

 below.

 {k0, k1, k2, k3}:= S3(w0, w1, w2, w3)

 {k4, k5, k6, k7}:= S2(w4, w5, w6, w7)

 ……………………………………

28

 ……………………………………

 {k128, k129, k130, k131}:= S3(w128, w129, w130, w131)

Step-2: IV Injection (128 bit Value).

SERPENT block cipher consists here of 24 rounds and outputs of 12
th
, 18

th
, and 24

th
 rounds

are used for IV as below.

 Output of 12
th

 round = (Y3
12

, Y2
12

, Y1
12

, Y0
12

)

 Output of 18
th

 round = (Y3
18

, Y2
18

, Y1
18

, Y0
18

)

 Output of 24
th

 round = (Y3
24

, Y2
24

, Y1
24

, Y0
24

)

Now SOSEMANUK internal states are initialized as below.

 (S7, S8, S9, S10) = (Y3
12

, Y2
12

, Y1
12

, Y0
12

)

 (S5, S6) = (Y1
18

, Y3
18

)

 (S1, S2, S3, S4) = (Y3
24

, Y2
24

, Y1
24

, Y0
24

)

 R10 = Y0
18

 R20 = Y2
18

Step-3: - LFSR definition.

The LFSR operates over elements of F2
32

. At time t=0 i.e. initial state, there are 10 32 bit

values s1 to s10. After that, new value is computed as below.

 St+10=St+9⊕ α
-1

St+3⊕ αSt, ˅t>=1

 Step-4: - Finite State Machine

At each step, the FSM (Finite State Machine) takes as inputs some words from LFSR state

and it updates the memory bits and produces output as below at time t.

 FSMt : (R1t-1, R2t-1, St+1, St+8, St+9)―› (R1t, R2t, ft)

 Where

 R1t = (R2t−1 + mux(lsb(R1t−1), st+1, st+1 ⊕ st+8)) mod 2
32

29

 R2t = Trans(R1t−1)

 ft = (st+9 + R1t mod 2
32

) ⊕ R2t

 Where lsb(x) is least significant bit of x, mux(c, x, y) is equal to x if c=0 or y

 if c=1. Similarly, Trans (z) = (M*z mod 2
32

)<<<7, where M is constant

 value 0x54655307 hexadecimal number.

Step-5: - Output Transformation.

The outputs of the FSM are grouped by four, and Serpent1 is applied to each group; the result

is then combined by XOR with the corresponding dropped values from the LFSR, to produce

the output values zt.

 (zt+3, zt+2, zt+1, zt) = Serpent1(ft+3, ft+2, ft+1, ft) ⊕ (st+3, st+2, st+1, st)

Finally, message will be enciphered with zt value which is obtained by XORing Serpent1 and

words dropped by LFSR as shown in the figure-3.9 above.

30

Chapter 4

IMPLEMENTATION & TESTING

4.1 Java Implementation

Java was conceived at Sun Microsystems, in 1991. This language is initially called “OAK”

but it was renamed as java in 1995 with the Virtual Machine being known as the Java Virtual

Machine (JVM). At that time, the use of the World Wide Web was starting to become

widespread. The web involved the communication between all sorts of processors and

systems; just the sort of situation for which Sun Micro system had developed Java. Hence

Java became the preferred language for Web programming [19].

Java compiles the source file (.java) and converts into intermediate file called byte code

(.class) which can be run on several architectures with the help of java virtual machine

(JVM). This beauty of the java programming language motivates to use of java anywhere or

in any type of application development. This makes software developed in java platform

independent.

4.2 Choice of the Programming Language: Java

Most of other language likes C, C++ are designed to be compiled for a specific target

machine. Although it is possible to compile a C++ program for any type of CPU, to do so

requires a full C++ compiler targeted for that CPU. The problem is that compilers are

expensive and time consuming to create, solution was needed, and to find a solution, java was

created which could be used to produce code that can run on a variety of CPUs under

different environment.

The Java security APIs spans a wide range of areas. For developing secure application,

Cryptographic and public key infrastructure (PKI) interfaces are used. Interfaces for

performing authentication and access control enable applications to protect against

unauthorized access to protected resources. The APIs allow for multiple interoperable

implementations of algorithms and other security services. Services are implemented

in providers, which are plugged into the Java platform via a standard interface that makes it

easy for applications to obtain security services without having to know anything about their

implementations. This allows developers to focus on how to integrate security into their

applications, rather than on how to actually implement complex security mechanisms. The

Java platform includes a number of providers that implement a core set of security services. It

31

also allows for additional custom providers to be installed. This enables developers to extend

the platform with new security mechanisms [20].

4.3 Netbeans

NetBeans is an integrated development environment (IDE) for developing primarily

with Java, but also with other languages, in particular PHP, C/C++, and HTML5. It is

developed at Charles University as a student project in 1996. In 1997, it was produced as

commercial versions and bought by Sun Microsystems in 1999.

It is also an application platform framework for Java desktop applications and others. The

NetBeans IDE is written in Java and can run on Windows, OS X, Linux, Solaris and other

platforms supporting a compatible JVM. The NetBeans Platform allows applications to be

developed from a set of modular software components called modules.

Different versions of Netbeans IDE are introduced in last few years. NetBeans IDE 7.0 was

released in April 2011. On August 1, 2011, the NetBeans Team released NetBeans IDE 7.0.1,

which has full support for the official release of the Java SE 7 platform. As passing versions

from NetBeans IDE 6.5 to currently developing version NetBeans IDE 8.0 many more

features are added in newer versions. NetBeans IDE 7.4 was released in October 15, 2013.

NetBeans IDE 8.0 is currently in development. NetBeans IDE 8.0.2 is used for implementing

in this thesis [16, 20].

4.4 Research Methodology

Research Study, here is to find out the technique which is of very high speed i.e. the

algorithm which can encrypt the given message (plaintext) with very high speed than others.

For this, random size of data that is of any kinds, will be collected to feed to individual

algorithm and time taken to encrypt will be calculated.

4.4.1 Data Collection

Various sample messages of different sizes will be fed to the different modules. Messages

may be either text or number or images/graphics etc. But, for easy, plaintext data of different

sizes are taken to input for all algorithms. Secondary data collection method is used here.

Because, no primary data is required in this study.

4.5 Implementation Details of Candidate Algorithms

Four algorithms / techniques are made to run by feeding same size of message at once.

Different classes are created for each algorithm and related coding, functions are kept in

class. Finally, all functions and classes are accessed from the main class. Time taken to

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/HTML5
http://en.wikipedia.org/wiki/Platform_(computing)
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Java_version_history#Java_SE_7_.28July_28.2C_2011.29

32

encrypt the message file is calculated individually. The main thing in stream cipher is to

design and develop key stream which then will be XORed with the message. After generating

key stream, 128 bit size key gets encrypted by XORing with same size of message. Important

Java coding and functions for each algorithm are given as below.

4.5.1 HC-128

Main Java coding/functions for HC-128 algorithm are given as below. Initial Vector and

initial key is directly given in code level. Message encrypting as well as functions converting

into byte code are also given below. Details about coding are mentioned in Appendix section.

 void hc128(String msg) throws java.lang.Exception

 private void init()

 private byte getByte()

 public static byte[] encrypt(HC128 hc, byte[] data)

4.5.2 Rabbit

We can see important functions required in Rabbit Algorithm below. Important functions

involving in this algorithm are key setup function, function for enciphering message etc. are

given. They are as follows. Details about coding are mentioned in Appendix section.

 public void keySetup(byte[] p_key)

 public void cipher(byte[] p_src, byte[] p_dest, long data_size)

 public String encryptMsg(String msg) throws UnsupportedEncodingException etc.

4.5.3 Salsa20/12

In this Algorithm, Java inbuilt functions and classes are used mostly for implementation.

However, some functions like salsa20Encryption and inbuilt classes are given as below.

Details about coding are mentioned in Appendix section.

 void salsa20Encrypt(String filename).

 import org.bouncycastle.crypto.StreamCipher;

 import org.bouncycastle.crypto.engines.Salsa20Engine;

 import org.bouncycastle.crypto.params.KeyParameter;

 import org.bouncycastle.crypto.params.ParametersWithIV;

4.5.4 SOSEMANUK

It contains number of important functions as it actually is integrated by two algorithms

SNOW2.0 (stream cipher) and SERPENT (block cipher). We can see here below some

33

important functions like soSemanuk(msg), SetKey() and SetIV() etc. Details about coding

are mentioned in Appendix section.

 public void soSeManuk(String msg) throws UnsupportedEncodingException

 public void setKey(byte[] key)

 public void setIV(byte[] iv)

4.6 Sample Test Cases

 For testing data input, the different size of text file is taken as input message. Size of 30

bytes file has been taken as smallest size and 10KB as big message. Constant keys as well as

IV given in program, sample of input message and generated ciphers are as follows:

4.6.1 Key

I. HC -128

K = "AAAAAAAAqweAAAAT"

II. Rabbit

 Byte Key[] ={

 (byte)0xa0, (byte)0x33, (byte)0xd6, (byte)0x78,

 (byte)0x6b, (byte)0x05, (byte)0x14,

 (byte)0xac, (byte)0xfc, (byte)0x3d, (byte)0x8e,

 (byte)0x2d, (byte)0x6a, (byte)0x2c, (byte)0x27, (byte)0x1d

 }

III. Salsa20/12

K= "gdsfkhalfjjsfvvh"

IV. SOSEMANUK

 byte key[]= {

 (byte)0xA7, (byte)0xC0, (byte)0x83, (byte)0xFE, (byte)0xB7

 }

4.6.2 Input Message (30 Bytes)

“eSTREAM Project, ENCRYPT, EU”

34

4.6.3 Cipher After Encryption

4.6.4 Input Message (100 Bytes)

4.6.5 Cipher After Encryption

"Performance Analysis of eSTREAM Cipher Finalists: HC-128,

Salsa20/12, Rabbit and SOSEMANUK" by BDD.

35

Chapter 5

RESULT & ANALYSIS

This chapter presents an overview of comparison of the eSTREAM ciphers in terms of

performance and cost. Target Architecture and Specifications are described in this chapter.

Time in system nanosecond needed for encrypting all eSTREAM cipher algorithms

implemented in java is calculated and performance is analyzed as cycle/byte.

5.1 Target Architectures

The main goal of this thesis is to measure the performance of the all eSTREAM cipher

finalists. These candidate algorithms are tested on desktop system. The following system is

used:

 A PC with an Intel Core i3 Processor 2.53GHz having 2GB RAM .the

operating system is Windows7 Ultimate running in 32-bit mode. The system is

running the java VM 22.0 –b10, Java HotSpot(TM) with NetBeans IDE 8.

5.2 Measuring Cost

There is some extra cost which may be added to the absolute cost for encrypting the different

size of messages but this is equally affected to all candidates algorithm on the execution. The

system time in nanosecond is taken just before the execution of code segment for generating

key stream and encrypting the message in each algorithm and the completion of the

execution. The time spending for encrypting message is calculated by subtracting start time

taken before execution from completion time taken after completing execution of specific

code segment [18, 20]. The time required for each algorithm is calculated as follows:

 long startTime = System.nanoTime();

// createKEY and encrypt function call

long timeRequired = System.nanoTime() - startTime;

Various processes may be run in background of system so absolute measurement may not be

carried out. Due to this reason, time needed for encrypting given message in all algorithm

may not be observe same in every run of program. Therefore at least 5 times, the program

implemented in java is run in architecture described as above section and finally average

required time observed in every run is calculated as:

Average required Time =
𝑇𝑖

5

5
𝑖=1 where Ti represent time obtained in i

th
 run of execution.

This average calculated time is used to calculate cycle per byte.

36

5.3 Measuring Performance

Timing cryptographic primitive is useful when analyzing the performance of multiple

algorithms on a single machine. But, it may vary on other machine therefore, cryptographers

prefer to measure how many cycle it takes to process each byte. Different cycle/byte is

calculated in the same box also because of background other process. So to optimize such

extra cost, average is taken running multiple times in same machine for each candidate

algorithms.

In this thesis, Cycle/byte calculation with the following parameters: time in second spent

generating key and encrypting the message (Ts), frequency of the CPU in Hz(F) and message

input in bytes(L). The formula for creating cycle/byte suggested by [19] is:

 Cycle/byte =
𝑇𝑠∗𝐹

𝐿

5.4 Analysis

This section will present the result of the performance tests for various input sizes of each

algorithm. A simple multiple histograms for each candidate algorithms will be presented each

for cycle per byte calculation.

Following table and corresponding charts show the overall performance in the different

encryption algorithm, HC-128, Rabbit, Salsa20/12 and SOSEMANUK. Different sizes of

data like 30 bytes, 100 bytes, 1KB, 5KB, 10KB, 30KB and 60KB are taken by every

candidate algorithms as below. Small size of message is considered to be 30 bytes or less

than that and big size of data means 60KB or bigger than that size of message.

Message Size = 30 Bytes

Table 5.1: Performance of Candidate Algorithms for Small Message Size (30 Bytes)

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average

HC-128 105 250 253 603 367 315.6

Rabbit 100 187 213 500 301 260.2

Salsa20/12 593 859 570 783 645 690

SOSEMANUK 5670 2311 1254 1123 2109 2493.4

Table 5.2: Performance of all the Candidate Algorithms for Small Message Size (30 bytes)

Calculated in Cycle/Byte.

Candidate Algorithms Cycle/Byte

HC-128 26.62

Rabbit 21.94

Salsa20/12 58.19

SOSEMANUK 210.28

37

Figure 5.1: Performance of Candidate Algorithms for small Message Size (30 Bytes) shown

in Bar Diagram.

Message Size = 100 Bytes

Table 5.3: Performance of all the Candidate Algorithms for Message Size (100 Bytes)

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average

HC-128 1134 1578 1504 1375 1301 1378.4

Rabbit 2001 1040 1180 1956 1297 1494.8

Salsa20/12 10523 3843 8891 5361 3769 6477.4

SOSEMANUK 13115 12280 10106 6247 3367 9023

Table 5.4: Performance of Candidate Algorithms for Message Size (100 bytes) in

Cycle/Byte.

Candidate Algorithms Cycle/Byte

HC-128 116.25

Rabbit 126.06

Salsa20/12 546.26

SOSEMANUK 760.94

Figure 5.2: Performance of Candidate Algorithms for Message Size (100 bytes) shown in

Bar Diagram

0.00

50.00

100.00

150.00

200.00

250.00

HC-128 Rabbit Salsa20/12 SOSEMANUK

HC-128

Rabbit

Salsa20/12

SOSEMANUK

0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00

HC-128 Rabbit Salsa20/12 SOSEMANUK

HC-128

Rabbit

Salsa20/12

SOSEMANUK

38

Message Size = 1KB

Table 5.5: Performance of all the Candidate Algorithms for Message Size (1KB)

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average

HC-128 3366 3298 1009 1284 2347 2260.8

Rabbit 7899 4500 3392 1558 1807 3831.2

Salsa20/12 24865 24897 16621 4534 5417 15266.8

SOSEMANUK 56745 56814 32435 25033 23456 38896.6

Table 5.6: Performance of Candidate Algorithms for Message Size (1KB) in Cycle/Byte.

Candidate Algorithms Cycle/Byte

HC-128 190.66

Rabbit 323.10

Salsa20/12 1287.50

SOSEMANUK 3280.28

Figure 5.3: Performance of Candidate Algorithms for Message Size (1KB) shown in Bar

Diagram.

Message Size = 5KB

Table 5.7: Performance of all the Candidate Algorithms for Message Size (5KB)

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average

HC-128 23053 21691 15244 11009 10688 16337

Rabbit 62985 137701 69665 93203 39571 80625

Salsa20/12 51624 33131 76044 45206 47655 50732

SOSEMANUK 432531 194098 242806 124238 191017 236938

Table 5.8: Performance of Candidate Algorithms for Message Size (5KB) in Cycle/Byte.

Candidate Algorithms Cycle/Byte

HC-128 1377.75

Rabbit 6799.38

Salsa20/12 4278.40

SOSEMANUK 19981.77

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

HC-128 Rabbit Salsa20/12 SOSEMANUK

HC-128

Rabbit

Salsa20/12

SOSEMANUK

39

Figure 5.4: Performance of Candidate Algorithms for Message Size (5KB) shown in Bar

Diagram.

Message Size = 10KB

Table 5.9: Performance of all the Candidate Algorithms for Message Size (10KB)

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average

HC-128 27226 9297 9048 17314 10082 14593.4

Rabbit 59248 48334 74097 86689 96834 73040.4

Salsa20/12 49138 30099 11927 29437 33605 30841.2

SOSEMANUK 178104 98988 320633 136681 211990 189279.2

Table 5.10: Performance of Candidate Algorithms for Message Size (10KB) in Cycle/Byte.

Candidate Algorithms Cycle/Byte

HC-128 1230.71

Rabbit 6159.74

Salsa20/12 2600.94

SOSEMANUK 15962.55

Figure 5.5: Performance of Candidate Algorithms for Message Size (10KB) shown in Bar

Diagram

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

HC-128 Rabbit Salsa20/12 SOSEMANUK

HC-128

Rabbit

Salsa20/12

SOSEMANUK

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

16000.00

18000.00

HC-128 Rabbit Salsa20/12 SOSEMANUK

HC-128

Rabbit

Salsa20/12

SOSEMANUK

40

Message Size = 30KB

Table 5.11: Performance of all the Candidate Algorithms for Message Size (30KB)

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average

HC-128 337981 125141 45742 657432 563458 345950.8

Rabbit 95501 99466 240642 765431 4365877 1113383

Salsa20/12 50985 62712 46018 86542 76599 64571.2

SOSEMANUK 7918750 8459876 8996713 5764532 4673423 7162659

Table 5.12: Performance of Candidate Algorithms for Message Size (30KB) in Cycle/Byte.

Candidate Algorithms Cycle/Byte

HC-128 29175.18

Rabbit 93895.33

Salsa20/12 5445.50

SOSEMANUK 604050.89

Figure 5.6: Performance of Candidate Algorithms for Message Size (30KB) shown in Bar

Diagram

Message Size = 60KB

Table 5.13: Performance of all the Candidate Algorithms for Message Size (60KB)

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average

HC-128 322307 230003 465700 313542 140082 294326.8

Rabbit 337806 346900 386750 212321 936834 444122.2

Salsa20/12 19226 120560 50385 29437 83605 60642.6

SOSEMANUK 19387329 2477085 9963301 136681 2211990 6835277

Table 5.14: Performance of Candidate Algorithms for Message Size (60KB) in Cycle/Byte.

Candidate Algorithms Cycle/Byte

HC-128 24821.56

Rabbit 37454.31

Salsa20/12 5114.19

SOSEMANUK 576441.71

0.00

100000.00

200000.00

300000.00

400000.00

500000.00

600000.00

700000.00

HC-128 Rabbit Salsa20/12 SOSEMANUK

Cycle/Byte

HC-128

Rabbit

Salsa20/12

SOSEMANUK

41

Figure 5.7: Performance of Candidate Algorithms for Message Size (60KB) shown in Bar

Diagram

5.5 Result

By the help of above mentioned measuring criteria in the targeted architecture as given in

section-5.1 to 5.3, thus obtained result is analyzed in section-5.4. Cycle/byte measuring unit

is the best way to check the performance of any algorithms. After running the each algorithm

with different sized message, it is observed that performance of Rabbit is better than other

algorithms if the message size is very small.

With the increment of size of message, performance of Salsa20/12 is found to be better.

Rabbit yields 17.58% to 89.28% better performance in small size of message. HC-128 yields

46.37% to 92.39% better performance in some other cases (bigger message size). But finally,

the performance of Salsa20/12 is found to be the best algorithm amongst others for big size of

message. It yields 38.32% to 93.67% better performance in all the huge message size of data.

Therefore, Salsa20/12 eSTREAM cipher algorithm among all finalists is the best algorithm

purposed in this study.

0.00

100000.00

200000.00

300000.00

400000.00

500000.00

600000.00

700000.00

HC-128 Rabbit Salsa20/12 SOSEMANUK

Cycle/Byte

HC-128

Rabbit

Salsa20/12

SOSEMANUK

42

Chapter 6

CONCLUSION & FUTURE WORK

6.1 Conclusions

In this thesis, those eSTREAM cipher finalists (algorithms) are studied, discussed and

implemented using most popular and highly accurate programming language Java. After

implementation, different size messages were feed to encrypt to all the candidate algorithms

and results were observed and analyzed. The result of empirical performance comparison

shows that Salsa20/12 is the best one among other algorithms. But, Rabbit algorithm also

seems to be better in small size of message i.e. in less than 30 bytes message. While message

size gets increased, performance of HC-128 seems to be better in some cases. But, Salsa20/12

seems to be the best for big data size. Hence, Salsa20/12 algorithm shows the best

performance among all other eSTREAM cipher finalists.

6.2 Future Works

Actually, considering and keeping in mind that security as well as all the other parameters are

constant, the thesis work is carried out here. In this thesis, performance analysis among

eSTREAM cipher finalists is done. Selecting Algorithm which can encrypt with high speed

only is not matter but security is also. Security has been a great thread and challenge for

entire field of cryptography. Similarly, there are some other parameters and cases as well

which should be also counted while analyzing these algorithms. So, in future work, it can be

the study to optimize and find better algorithm by improving security issue.

43

REFERENCES

[1] Carlos Cid (RHUL) and Matt Robshaw (FTRD), The eSTREAM Portfolio in 2012.

 Version 1.0, 16 January 2012.

[2] M. Robshaw and O. Billet, editors. New Stream Cipher Designs: The eSTREAM

 Final-ists. LNCS 4986, pp. 267293. Springer 2008.

[3] ECRYPT Network of Excellence. The eSTREAM project, available via

 http://www.ecrypt.eu.org/stream/.

[4] E. Biham, L.R. Knudsen, and R.J. Anderson. Serpent: A New Block Cipher Proposal.

 In S. Vaudenay, editors, Proceedings of FSE 1998, LNCS, volume 1372, pp. 222-

 238, Springer Verlag.

[5] PatrikEkdahl and Thomas Johansson, A New Version of the Stream Cipher SNOW.

[6] D.J. Bernstein. Salsa20 page. http://cr.yp.to/snuffle.html.

[7] C. Berbain1, O. Billet1, A. Canteaut2, N. Courtois3, H. Gilbert1,L. Goubin4, A.

 Gouget5, L.Granboulan6, C. Lauradoux2, M. Minier2,T. Pornin7 and H. Sibert5

 “Sosemanuk, a fast software-oriented stream cipher”.

[8] Hongjun Wu, “The Stream Cipher HC-128”, Katholieke Universiteit Leuven,

 ESAT/SCD-COSIC Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee,

 Belgiumwu.hongjun@esat.kuleuven.be

[9] Martin Boesgaard, Mette Vesterager, Thomas Christensenn and Erik Zenner,” The

 Stream Cipher Rabbit”, CRYPTICOA/S Fruebjergvej 3, 2100 Copenhagen, Denmark,

 info@cryptico.com

[10] Daniel J. Bernstein, Department of Mathematics, Statistics, and Computer

 Science(M/C 249), “Salsa20 speci_cation”, The University of Illinois at Chicago,

 Chicago, IL 60607-7045, snuffle@box.cr.yp.to

[11] Pratyay Mukherjee, “An Overview of eSTREAM Ciphers”, Centre of Excellence in

 Cryptology, Indian Statistical Institute.

[12] C. Paar, J. Pelzl, Understanding Cryptography, DOI 10.1007/978-3-642-04101-3

 2,_c Springer-Verlag Berlin Heidelberg 2010.

 [13] “HC-128 Stream Cipher”, A-Team Deliverables (Michael Burns, Brian Baum).

http://cr.yp.to/snuffle.html
mailto:Belgiumwu.hongjun@esat.kuleuven.be
mailto:info@cryptico.com
mailto:snuffle@box.cr.yp.to

44

 [14] Netbeans ide 7.1 features , May 2010. http://netbeans.org/features/index.html

[15] Petrank, E., Rackoff, C., CBC MAC for real-time data sources. J.Cryptology, vol.

 13, no. 3, pp.315–338, Springer-Verlag, 2000.

[16] Rogaway, P., Black, J., A block- cipher mode operation for parallelizable message

 Authentication. Advances in cryptology – EUROCRYPTO 2002 ,LNCS 2332, pp .

 384-397, Springer – Verlag ,2002.

 [17] http://java.sun.com/javame Sun Microsystems Inc.,

[18] Timing Cryptographic Primitives, http:// etutorials.org

[19] William Stallings Cryptography And Network Security Principles and Practice,

 Prentice all, Fifth Edition, 2010.

 [20] “Performance Analysis of Cipher Block Chaining Message Authentication Code

 (CBC MAC) and its Variants” dissertation by CBC, page no 39 to 41.

 [21] H.C.A.V. Tilborg, Fundamentals of Cryptology, Kluwer Academic Publisher

 Boston , 1988.

http://java.sun.com/javame

45

APPENDIX

Code of Implementation

HC-128

Important functions and java coding are given as below for HC-128 algorithm.

void hc128(String msg) throws java.lang.Exception

 {

 String iv_srt = "@#$$54214AEFDCAE";

 String key_srt = "AAAAAAAAqweAAAAT";

 HC128 hc_enc = new HC128(iv_srt.getBytes(), key_srt.getBytes());

 String s =msg ;

 byte[] ed = encrypt(hc_enc, s.getBytes());

 byte[] ed33 = encrypt(hc_enc, ed);

 System.out.println();

 System.out.println("HC128 Cipher : ");

 System.out.println("***************");

 System.out.println(new String(ed33));

 }

 //To encrypt the message

public static byte[] encrypt(HC128 hc, byte[] data)

 {

 for (int i = 0; i < data.length; i++) {

 data[i] = hc.returnByte(data[i]);

 }

 return data;

 }

46

private void init()

{

 if (key.length != 16) {

 throw new java.lang.IllegalArgumentException("The key must be 128 bit long");

 }

 cnt = 0;

 int[] w = new int[1280];

 for (int i = 0; i < 16; i++) {

 w[i >> 3] |= key[i] << (i & 0x7);

 }

 System.arraycopy(w, 0, w, 4, 4);

 for (int i = 0; i < Math.min(16, iv.length); i++) {

 w[(i >> 3) + 8] |= iv[i] << (i & 0x7);

 }

 System.arraycopy(w, 8, w, 12, 4);

 for (int i = 16; i < 1280; i++) {

 w[i] = f2(w[i - 2]) + w[i - 7] + f1(w[i - 15]) + w[i - 16] + i;

 }

 System.arraycopy(w, 256, p, 0, 512);

 System.arraycopy(w, 768, q, 0, 512);

 for (int i = 0; i < 512; i++) {

 p[i] = step();

 }

 for (int i = 0; i < 512; i++) {

 q[i] = step();

 }

 cnt = 0;

 }

 private byte getByte() {

 if (idx == 0)

 {

 int step = step();

 buf[3] = (byte) (step & 0xFF);

 step >>= 8;

 buf[2] = (byte) (step & 0xFF);

 step >>= 8;

 buf[1] = (byte) (step & 0xFF);

 step >>= 8;

 buf[0] = (byte) (step & 0xFF);

 }

 byte ret = buf[idx];

 idx = idx + 1 & 0x3;

 return ret;

 }

47

Rabbit

We can see important functions required in Rabbit Algorithm below. Important functions

involving in this algorithm are key setup function, function for enciphering message etc. are

given.

public void keySetup(byte[] p_key)

 {

 int k0, k1, k2, k3, i;

 k0 = os2ip(p_key, 12);

 k1 = os2ip(p_key, 8);

 k2 = os2ip(p_key, 4);

 k3 = os2ip(p_key, 0);

 x[0] = k0;

 x[2] = k1;

 x[4] = k2;

 x[6] = k3;

 x[1] = (k3 << 16) | (k2 >>> 16);

 x[3] = (k0 << 16) | (k3 >>> 16);

 x[5] = (k1 << 16) | (k0 >>> 16);

 x[7] = (k2 << 16) | (k1 >>> 16);

 c[0] = rotL(k2, 16);

 c[2] = rotL(k3, 16);

 c[4] = rotL(k0, 16);

 c[6] = rotL(k1, 16);

 c[1] = (k0 & 0xffff0000) | (k1 & 0x0000ffff);

 c[3] = (k1 & 0xffff0000) | (k2 & 0x0000ffff);

 c[5] = (k2 & 0xffff0000) | (k3 & 0x0000ffff);

 c[7] = (k3 & 0xffff0000) | (k0 & 0x0000ffff);

 carry = 0;

 for(i = 0; i < 4; i++)

 {

 next_state();

 }

 for(i = 0; i < 8; i++)

 {

 c[(i + 4) & 7] ^= x[i];

 }

 }

48

public void cipher(byte[] p_src, byte[] p_dest, long data_size)

 {

 int i, j, m;

 int[] k = new int[4];

 byte[] t = new byte[4];

 for(i = 0; i < data_size; i+=16)

 {

 next_state();

 k[0] = os2ip(p_src, i * 16 + 0) ^ x[0] ^ (x[5] >>> 16) ^ (x[3] << 16);

 k[1] = os2ip(p_src, i * 16 + 4) ^ x[2] ^ (x[7] >>> 16) ^ (x[5] << 16);

 k[2] = os2ip(p_src, i * 16 + 8) ^ x[4] ^ (x[1] >>> 16) ^ (x[7] << 16);

 k[3] = os2ip(p_src, i * 16 + 12) ^ x[6] ^ (x[3] >>> 16) ^ (x[1] << 16);

 for(j = 0; j < 4; j++)

 {

 t = i2osp(k[j]);

 for(m = 0; m < 4; m++)

 {

 p_dest[i * 16 + j * 4 + m] = t[m];

 }

 }

 }

 }

49

Salsa20/12

In this Algorithm, Java inbuilt functions and classes are used mostly for implementation.

However, some functions like salsa20Encryption are given as below.

public String encryptMsg(String msg) throws UnsupportedEncodingException

 {

 byte[] key = {

 (byte)0xa0, (byte)0x33, (byte)0xd6, (byte)0x78,

 (byte)0x6b, (byte)0x05, (byte)0x14, (byte)0xac,

 (byte)0xfc, (byte)0x3d, (byte)0x8e, (byte)0x2d,

 (byte)0x6a, (byte)0x2c, (byte)0x27, (byte)0x1d

 };

 byte[] message = msg.getBytes();

 byte[] ciphertext = new byte[16];

 Rabbit rtest = new Rabbit();

 rtest.keySetup(key);

 rtest.cipher(message, ciphertext, 16);

 Rabbit rtest2 = new Rabbit();

 rtest2.keySetup(key);

 byte[] szT = new byte[16];

 for(int i = 0; i < 16; i++)

 {

 szT[i] = 0;

 }

 rtest2.cipher(ciphertext, szT, 16);

 String s = new String(ciphertext, "US-ASCII");

 System.out.print(s);

 String ms = ciphertext.toString();

 return ms;

 }

}

50

SOSEMANUK

It contains number of important functions as it actually is integrated by two algorithms

SNOW2.0 (stream cipher) and SERPENT (block cipher). We can see here below some

important functions like soSemanuk(msg), SetKey() and SetIV() etc.

void salsa20Encrypt(String filename) {

 String key = "gdsfkhalfjjsfvvh";

 if (key.length() != 16 && key.length() != 32) {

 System.out.println("\n *** key must be 16 or 32 bytes, so it will *** ");

 System.out.println(" *** be padded or truncated as appropriate *** \n"); }

 key = padnulls(key, 16);

 byte [] nonce = str2byt("abcdefyt");

 KeyParameter keyparam = new KeyParameter(str2byt(key));

 ParametersWithIV params = new ParametersWithIV(keyparam, nonce);

 byte[] content = loadfmfile(filename+".txt");

 StreamCipher salsa = new Salsa20Engine();

 salsa.init(true, params);

 byte[] ciphertext = new byte[content.length];

 salsa.processBytes(content, 0, content.length, ciphertext, 0);

 String newfilename = "cipher " + filename +".txt";

 savetofile(newfilename, concat(nonce, ciphertext));

 byte[] content2 = loadfmfile(newfilename);

 nonce = extract(content2, 0, 8);

 ciphertext = extract(content2, 8, content2.length);

 KeyParameter keyparam2 = new KeyParameter(str2byt(key));

 ParametersWithIV params2 = new ParametersWithIV(keyparam2, nonce);

 StreamCipher salsa2 = new Salsa20Engine();

 salsa2.init(true, params2);

 byte[] plaintext = new byte[ciphertext.length];

 salsa2.processBytes(ciphertext, 0, ciphertext.length, plaintext, 0);

 System.out.println();

 System.out.println("Salsa20 cipher :");

 System.out.println("*****************");

 System.out.println(byt2str(ciphertext));}

}

51

public void soSeManuk(String msg) throws UnsupportedEncodingException

 {

 byte[] key = {

 (byte)0xA7, (byte)0xC0, (byte)0x83, (byte)0xFE,

 (byte)0xB7

 };

 byte[] iv = {

 (byte)0x00, (byte)0x11, (byte)0x22, (byte)0x33,

 (byte)0x44, (byte)0x55, (byte)0x66, (byte)0x77,

 (byte)0x88, (byte)0x99, (byte)0xAA, (byte)0xBB,

 (byte)0xCC, (byte)0xDD, (byte)0xEE, (byte)0xFF

 };

 SosemanukFast sf = new SosemanukFast();

 sf.setKey(key);

 sf.setIV(iv);

 byte[] tmp = new byte[160];

 sf.makeStream(tmp, 0, tmp.length);

 String keybin ="";

 for (int i = 0; i < 10; i ++) {

 for (int j = 0; j < 16; j ++) {

 int v = tmp[i * 16 + j] & 0xFF;

 }

 }

 byte[] bytes = msg.getBytes();

 StringBuilder binarymsg = new StringBuilder();

 for (byte b : bytes)

 {

 int val = b;

 for (int i = 0; i < 8; i++)

 {

 binarymsg.append((val & 128) == 0 ? 0 : 1);

 val <<= 1;

 }

 binarymsg.append(' ');

 }

52

int sizekey = keybin.length();

 int sizemsg = binarymsg.length();

 int rem = sizemsg%sizekey;

 int padsize = sizekey-rem;

 binarymsg.append(1);

 for(int i=0;i<padsize-1;i++)

 {

 binarymsg.append('0');

 }

 String cipherbinary="";

 int loop = binarymsg.length()/sizekey;

 int k=0;

 for(int j=0 ;j<loop ;j++)

 {

 for (int i = 0; i < keybin.length(); i++)

 {

 if(keybin.charAt(i)!=binarymsg.charAt(k))

 {

 cipherbinary += '1';

 k++;

 }

 else

 {

 cipherbinary += '0';

 k++;

 }

 }

 }

 byte[] bval = new BigInteger(cipherbinary, 2).toByteArray();

 String s = new String(bval, "US-ASCII");

 System.out.println();

 System.out.println("Sosemanuk Cipher :");

 System.out.println("******************");

 System.out.println(s);

 }

}

53

public void setKey(byte[] key)

 {

 if (key.length < 1 || key.length > 32)

 throw new Error("bad key length: " + key.length);

 byte[] lkey;

 if (key.length == 32) {

 lkey = key;

 } else {

 lkey = new byte[32];

 System.arraycopy(key, 0, lkey, 0, key.length);

 lkey[key.length] = 0x01;

 for (int i = key.length + 1; i < lkey.length; i ++)

 lkey[i] = 0x00;

 }……………………..

public void setIV(byte[] iv)

 {

 if (iv == null)

 iv = new byte[0];

 if (iv.length > 16)

 throw new Error("bad IV length: " + iv.length);

 byte[] piv;

 if (iv.length == 16) {

 piv = iv;

 } else {

 piv = new byte[16];

 System.arraycopy(iv, 0, piv, 0, iv.length);

 for (int i = iv.length; i < piv.length; i ++)

 piv[i] = 0x00;

 }…………………………….

//A long coding part is not shown in above (…………..) blank part.

