
  

 

 

 

 

 

Tribhuvan University 

Institute of Science and Technology 

 

Performance Analysis of Stream Cipher RC4 Variants: VMPC & 
SPRITZ 

 

Dissertation  

 

Submitted to: 

Central Department of Computer Science and Information Technology 

Tribhuvan University, Kirtipur, Nepal 

 

In partial fulfillment of the requirements  

For the Master’s Degree in Computer Science & Information Technology 

 

By  

Santosh Sharma 

Mar 18, 2018 

 



 

 

 

 

Tribhuvan University 

Institute of Science and Technology 

 

Performance Analysis of Stream Cipher RC4 Variants: VMPC & 

SPRITZ 

 

Dissertation  

Submitted to: 

Central Department of Computer Science and Information Technology 

Tribhuvan University, Kirtipur, Nepal 

 

In partial fulfillment of the requirements  

For the Master’s Degree in Computer Science & Information Technology 

 

By  

Santosh Sharma 

Mar 18, 2018 

 

Supervisor 

Mr. Nawaraj Paudel 

 



 

 

 

 

Tribhuvan University 

Institute of Science and Technology 

Central Department of Computer Science and Information Technology 

 

 

Declaration  

 

I, Santosh Sharma, declare that the thesis entitled “Performance Analysis of Stream Cipher 

RC4 Variants: VMPC & SPRITZ” contains no sources other than listed, this thesis is my own 

work. 

 

 

 

 

………………………………………. 

Santosh Sharma 

Mar 18, 2018 

 



 

 

 

 

Tribhuvan University 

Institute of Science and Technology 

Central Department of Computer Science and Information Technology 

 

Supervisor’s Recommendation  

I hereby recommend that this dissertation prepared under my Supervision by Santosh 

Sharma entitled  “Performance Analysis of Stream Cipher RC4 Variants : 

VMPC & SPRITZ” in partial fulfillment of the requirements for the Master’s Degree in 

Computer Science & Information Technology be processed for the evaluation. 

 

 

 

………………………………………………………. 

Mr. Nawaraj Paudel 

Head of Department (HOD) 

Central Department of Computer Science & Information Technology 

Kritipur, Kathmandu, Nepal 

(Supervisor) 

Date: ………………… 

 



 

 

 

 

Tribhuvan University 

Institute of Science and Technology 

Central Department of Computer Science & Information Technology 

LETTER OF APPROVAL 

We certify that we have read this dissertation and in our opinion it is satisfactory in the scope and 

quality as a dissertation in partial fulfillment of the requirements for the Master’s Degree in 

Computer Science & Information Technology. 

Evaluation Committee  

 

………………………………………………………. 

Mr. Nawaraj Paudel 

Central Department of Computer Science and Information Technology 

Kritipur, Kathmandu, Nepal 

  (HOD) 

 

 

…………………………..                  ……………………… 

(External Examiner)      (Internal Examiner) 

 

Date: ………………… 

 

DELL
Textbox
……………………………
Mr. Nawaraj Paudel
Central Department of Computer Science 
and Information Technology
Kritipur, Kathmandu, Nepal
(HOD)

DELL
Textbox
………………………….
Mr. Nawaraj Paudel
Central Department of Computer Science 
and Information Technology
Kritipur, Kathmandu, Nepal
(Supervisor)








i 
 

ACKNOWLEDGMENTS 

 

It’s a pleasure for me to thank my Supervisor, Mr. Nawaraj Paudel, Head of Central 

Department of Computer Science & Information Technology, Tribhuwan University, Kirtipur 

Kathmandu, Nepal, for his constant encouragement, support and advices. 

I greatly acknowledge to respected Professors and Lecturers: Prof. Dr. Shashidhar Ram Joshi, 

Prof. Dr. Subarna Shakya, Mr. Dheeraj Kedar Pandey, Mr. Sarbin Sayami, Mrs. Lalita 

Sthapit, Mr. Jagdish Bhatta, Mr. Arjun Singh Saud, Mr. Bishnu Gautum, Mr. Bikash Balami, 

Mr. Yog Raj Joshi & Mr. Tej Bahadur Shahi of CDCSIT-TU, for providing valuable 

suggestions and huge knowledge as well as inspirations. I would like to thank my friends and 

family for their encouragement and support. I would like to give my special thanks to my 

friends Mr. Chhetra Bahadur Chhetri & Mr. Dil Bahadur Budhathoki for helping to provide 

necessary resources to complete this work. 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

ABSTRACT 

 

Stream cipher algorithms are most powerful tools in symmetric cryptography. These 

algorithms perform either bit wise or byte wise encryption in a simple way just doing XOR 

operation between key and message (plain text). Stream cipher algorithms are about 5 to 10 

times faster than AES, TDES (block cipher). In stream cipher, creating key stream by 

randomizing the bits is most important thing. These algorithms are useful normally in GSM 

mobile communication, Hard disk encryption, Multimedia encryption and fast Software 

encryption, standard web application, network protocols etc. In this thesis, stream cipher RC4 

variants VMPC & SPRITZ are studied, analyzed the performance and implemented in Java 

Programming using NetBeans 8.0.2 considering their other parameters constant.  

The empirical performance shows that VMPC cipher is found to be better if the message size 

is bigger. With small size of message stream cipher RC4 variants VMPC & SPRITZ shows 

worst performance. The speed of stream cipher SPRITZ is much slower due to cryptographic 

function “sponge function”, where different functions are used for the additional layer of security in 

RC4 variants, although performance of SPRITZ also increases with increment of size of 

message. While the message size gets increased, performance of stream cipher VMPC is 

better in all size of messages .Therefore, while inputting different and big size of message, 

performance of stream cipher VMPC gets increased and it is found to be the better algorithm 

for the large size message in the targeted architecture computer. 

 

 

 

 

 

 

 

 

 



iii 
 

TABLE OF CONTENTS 

 

Acknowledgement                                           i 

Abstract                   ii 

Table of Contents                               iii 

List of Figures                    v 

List of Tables                    vi 

List of Abbreviations                               vii 

1 INTRODUCTION……………………………………………………………. 1 

1.1 RC4 variants………………………………………………………………      1 

1.2 Motivation…………………………………………………………….…...     2 

1.3 Problem Definition..……………………………………………..…….…...    2 

1.4 Objective  ……………………………………………………….….....……    3 

1.5 Thesis Organization …………………………………………………….….    3 

2  BACKGROUND STUDY……………………………….……………….……   4 

2.1 Cryptography…………………………………………………………….……4 

2.2 Cryptosystem…………………………………………………………….……5 

2.2.1 Components of Cryptosystem…………………………………….…….6 

2.3 Type of cryptosystem…………..…………………………….………….……7 

2.3.1 Symmetric Key Encryption………………………………………….….7 

2.3.2 Asymmetric Key Encryption………….……………………...…………9 

3 LITERATURE REVIEW…………………………..…………………………...11 

3.1 Modern Symmetric Key Encryption………………………………………….11 

3.1.1 Stream Ciphers………………………..………………………………...11 

3.1.2 Stream and Block Cipher……………………………………………….13 

3.1.3 Encryption and Decryption in Stream Cipher…………………………..15 

3.1.4 Random Numbers, Nonce and OTP in Stream Ciphers………………...16 

3.2 Candidate Algorithms………………………………………………...………17 

3.2.1 VMPC……………….……………………………………………….   17 

3.2.1.1 Description of VMPC Stream Cipher…………………………….18 

3.2.1.2 Description of VMPC Key Scheduling Algorithm…………........ 18 

3.2.2   SPTRITZ……………… ……………..………………….…….……...19 



iv 
 

3.2.2.1 Description of the SPRITZ Stream Cipher……….…………….....20 

3.2.2.2 Sponge functions………………………………………….…..…..22 

3.2.2.2.1 AbsorbStop Function……………..…………………………23 

3.2.2.2.2 Encryption………………………….……………………..…23 

3.2.2.2.3 Hash function………………………………………………..24 

4 IMPLEMENTATION & TESTING   ……………………………………........   25 

4.1 Java Implementation……………………………………………………….. 25 

4.2 Choice of the Programming Language: Java………………………....…….   25 

4.3 Netbeans……………………………………………………………….........  26 

4.4 Implementation Details of Candidate Algorithms………………………… 26 

4.4.1 VMPC………………………………………………………..…….. 27 

4.4.2 SPRITZ………………………………………………………………... 27 

4.5 Research Methodology……………………………………………………. 27 

4.5.1    Data Collection……………………………………………………… 28 

4.6 Sample Test Cases   ……………………………………………………....... 28 

4.6.1 Key ………………………………………………………………........  28 

4.6.2 Input message(30 Bytes)……………………………………………... 28 

4.6.3 Cipher After Encryption……………………………………………… 29 

4.6.4 Input message(100 Bytes)…..………………………………………… 29 

4.6.5 Cipher After Encryption……………………………………………… 29 

5 RESULT & ANALYSIS…………………….………………..………………... 30 

5.1 Target Architectures ………………………………………………........…... 30 

5.2 Measuring Cost …………………………………………………….............. 30 

5.3 Measuring Performance …………………………………………………….  31 

5.4 Analysis………………………………………………………………..........  31 

5.5 Result ……………………………………………………………………….  36 

6 CONCLUSION & FUTURE WORK…………..………………………………  37 

6.1 Conclusions…………………………………………………………………   37 

6.2 Future Work…………………………………………………………….….. 37 

7   REFERENCES…………………………………………………………………… 38 

8   APPENDIX ……………………………………………………………………… 40 

 



v 
 

LIST OF FIGURES 

 

2.1 Cryptosystem………………………..……………………………………………....6 

2.2       Simplified Model of Symmetric Encryption…..…………………….…...…… ……8 

2.3 Encryption with public key………………………………..…………......................10 

3.1       General Structure of a Stream Cipher………………………………………………12 

3.2       Showing Cryptographic Branches…………………………………………………..12 

3.3 Principles of encrypting b bits with a stream (a) and a block (b) cipher …………...13 

3.4 Asynchronous Stream Cipher Generation …………………..……………………...13 

3.5 General Structure of Block Cipher ……………….………………………………...14 

5.1 Performance of Candidate Algorithms for small Message Size (30 Bytes)  

 shown in Bar Diagram …………………………………………………………….  32 

5.2 Performance of Candidate Algorithms for Message Size (100 bytes)  

 shown in Bar Diagram …………………………………………………………….  33 

5.3 Performance of Candidate Algorithms for Message Size (1KB) shown  

 in Bar Diagram …………………………………………………………………….  34 

5.4 Performance of Candidate Algorithms for Message Size (5KB) shown  

 in Bar Diagram …………………………………………………………………….  35 

5.5 Performance of Candidate Algorithms for Message Size (10KB)  

 shown in Bar Diagram …………………………………………………………….. 36 

 

 

 

 

 

 



vi 
 

LIST OF TABLES 

 

5.1        Average Time in Nanosecond Spent by Candidate Algorithms to Generating 

             Key and    Encrypting the Message of Small Size (30 Bytes)...……...…………..   31 

5.2 Performance of all the Candidate Algorithms for Small Message 

  Size (30 bytes) calculated in Cycle/Byte.…………..…………………………...     32 

5.3 Average Time in Nanosecond Spent by Candidate Algorithms to Generating 

              Key and Encrypting the Message of Size (100 Bytes)...…………………………. 32 

5.4         Performance of Candidate Algorithms for Message Size (100 bytes) 

    in Cycle/Byte …..………………….…………………………………………….. 32 

5.5 Average Time in Nanosecond Spent by Candidate Algorithms to Generating 

              Key and Encrypting the Message of Size (1KB)…………………..……………. 33 

5.6 Performance of Candidate Algorithms for Message Size (1KB) in  

  Cycle/Byte...……………………………………………………………………… 33 

5.7 Average Time in Nanosecond Spent by Candidate Algorithms to Generating 

              Key and Encrypting the Message of Size (5KB)………………………………… 34 

5.8 Performance of Candidate Algorithms for Message Size (5KB) in  

  Cycle/Byte……………………....………………..…………………………........ 34 

5.9  Average Time in Nanosecond Spent by Candidate Algorithms to Generating 

              Key and Encrypting the Message of Size (10KB)……………………….............. 35 

5.10 Performance of Candidate Algorithms for Message Size (10KB)  

  in Cycle/Byte.…..………………….……………………………………………....36 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

LIST OF ABBREVIATIONS 

 

AES    Advanced Encryption Standard 

ANSI   American National Standards Institute 

API   Application Programming Interface  

CSPRNGs   Cryptographically Secure Pseudorandom Number Generators  

DES   Data Encryption Standard 

ECRYPT  European Network of Excellence in Cryptology 

FSM   Finite State Machine 

GSM   Global System for Mobile communication 

IDE    Integrated Development Environment 

IV   Initialization Vector 

JVM   Java Virtual Machine 

LANs  Local Area Networks 

OTP   One Time Pad 

PKI   Public Key Infrastructure 

PRGA  Pseudo-Random Number Generation Algorithm 

PRNGs   Pseudo Random Number Generators 

RC4    Ron's Cipher Four 

RSA   Rivest - Shamir - Adleman 

SHA   Secure Hash Function 

SSL    Secure Socket Layer 

SQL   Structure Query Language 

TDES  Triple Data Encryption Standard 

TLS   Transport Layer Securities 

TRNGs   True Random Number Generators 

VMPC  Variably Modified Permutation Combination 

WEP  Wired Equivalent Privacy 

XOR   Exclusive OR 

 

 

 



1 
 

Chapter 1 

INTRODUCTION 

1.1 RC4 Variants:   

The cryptographic stream cipher RC4 was designed by Ronald L. Rivest in 1987 for RSA 

data security. RC4 was first trade secret but algorithm was leaked & published in 1994 [15]. 

It has been said that Rc4 was the most widely used stream cipher in the world. The simplicity 

in design & extremely fast has been hit in the software industry for decades & has been 

adopted as the core cipher in numerous web & software application like Microsoft Windows, 

Lotus Notes, Apple OCI, Oracle secure SQL, web & network protocol such as SSL (Secure 

Socket Layer)/TLS (Transport Layer Security) , WEP(Wired Equivalent Privacy) etc. 

The main factor in RC4 [9] success over such a wide range of application have been its speed 

simplicity & efficient implement in both software & hardware were very easy to develop. 

Apart from its popularity in commercial uses it has also become one of the most involved 

topics of research for cryptologists because it felt to different cryptanalysis [8][1].            

Then different stream cipher RC4 variants has been proposed such as RC4A [19], VMPC [3], 

RC4+ [18], & SPRITZ [14]. 

 

VMPC (Variably Modified Permutation Composition) is a stream cipher variant of RC4. The 

core of the cipher is VMPC one way function [3], which is a combination of triple 

permutation composition & integer addition. The cipher generate a stream of 8-bit value from 

an internal state consists of 256-byte permutation two 8-bit integer variable. The generated 

values should be X-ored with the plain text to derive the ciphertext. The initial value of 

cipher’s internal state is determined by the VMPC Key Scheduling Algorithm. PRGA 

(Pseudo-Random Number Generation Algorithm) of VMPC has more resistance against the 

different attack applied to RC4.This encryption is suitable for encryption of files & folder, 

encrypted book, encryption of emails, easy encrypted on-line conversation, unrecoverable 

wiping of files from disk with up 99 rounds [21]. 

 

RC4 like stream cipher “SPRITZ” [14], variant of RC4, attempts to repair weakness of RC4 

while remaining true to its general design principles. SPRITZ provides additional 

cryptographic capabilities, such as hashing, derived from its reformulation with sponge like 

construction [5].It is intended SPRITZ to be replacement of RC4,hence the design of SPRITZ 



2 
 

was chosen with special attention given to the fact that known weakness of RC4[9][10],it can 

be used. 

1.2  Motivation  

 

RC4 stream is developed by Ronald - L- Rivest in 1987 for RSA data security. It was the 

most widely used stream cipher in the world .It is simplicity in design & extremely fast has 

attracted everyone towards this cipher. Apart from its popularity in commercial uses it has 

become one of the most involved topics of research for cryptologists because it felt 

cryptanalysis.[8][1]. 

Then the different RC4 variants’ has been proposed such as VMPC, RC4+, & SPRITZ 

[14].Among them VMPC (Variably Modified Permutation Composition) is presented in 2004 

at fast software conference [2] & SPRITZ is presented in ramp session of CRYPTO 

2014[14].Performances of these algorithms are depending upon number of parameters. One 

can easily ask the question what the performance of these techniques will be if different sizes 

of message are input to them considering other factors constant. This question is the sign of 

motivation in this thesis that the performance of the algorithms is observed by inputting small 

to large (variable) sizes of textual message.   

 

1.3 Problem Definition  

 

Although weakness [9] [1] discovered in RC4  make it less ideal choice of new application, 

the novel internal structure, continue to make it interesting topic of research while RC4 is still 

usable(with care using variants). The algorithm is 25 years old & deserves retirement & 

replacement by newer, stronger variants.  

 

After the disclosure of its algorithm in 1994, RC4 has attracted intensive cryptanalytic efforts 

over past 20 years. Finally, in 2013, practical plaintext recovery attacks on RC4 in SSL/TLS 

were proposed [9] [1]. In the response to these results, usage of RC4 has drastically 

decreased, especially in TLS, and major companies such as Google, Microsoft, and Mozilla 

announced that they will officially remove the RC4 from web browsers by early 2016. 

 



3 
 

At the same time, there has been extensive research in recent years to come up with RC4-like 

stream ciphers that while marginally slower in software, would fulfill the weakness of RC4. 

Many such stream ciphers like RC4A [19], VMPC [3], RC4+ [18], SPRITZ [14], variants of 

RC4 have been proposed. 

 

Time is the key factor for encryption as well as decryption in cryptography. So that, the better 

& fastest algorithm among these two variants of RC4 stream cipher with good performance 

will be purposed in this study .For this performance analysis is required to select the better 

approach stream cipher.  

 

 

1.4 Objective  

 

The objective of this dissertation work is:  

 To implement and analyze the performance of stream cipher RC4 variants VMPC & 

SPRITZ.  

 To perform the Cycle/Byte calculations. 

 

1.5 Thesis Organization  

 

The rest of the content in this thesis is organized into subsequent five chapters. Chapter 2 

provides background study required for dissertation. In this chapter the problem of different 

stream cipher algorithms are mentioned, problem statement is formulated and how this study 

response those issues is mentioned. Chapter 3 contains previous literature related to this work 

in detail under literature review.  

Chapter 4 provides an implementation overview of different stream cipher RC4 variants in 

Java Programming language integrated in NetBeans 8.0.2 version. The implementation 

details with major coding functions are provided in this chapter. Chapter 5 includes the 

analysis of time required for creating keystream and encrypting messages and finally with the 

help of average time needed for encrypting for candidates algorithms, cycle per byte is 

calculated. The result of the study is shown in tabular form as well as in graphs. Finally, the 

concluding remarks and further recommendations are outlined in chapter 6. 

 



4 
 

Chapter 2  

BACKGROUND STUDY 

Today, the internet has virtually become the way of doing business as it offers a powerful 

widespread medium of commerce and enables greater connectivity of disparate groups 

throughout the world. So, it may have many risks like loss of privacy, loss of data integrity, 

denial of service and identify spoofing. To the solution of these threads in internet many 

secure cryptographic algorithms are needed for providing services such as confidentiality, 

data integrity and authentication to handle packets which may vary in size over a large range.  

The size of the message has a significant impact on the performance of such algorithms. 

Hence the messages have to be prepared by padding the required amount of zero bits to get 

an integer number of blocks. This process becomes a considerable overhead when the short 

messages are more dominant in the message stream.  

 

Since all the study require the basic terms and terminology related to that study. In this 

context, basic study related to this work is outlined in the following sections.  

 

2.1 Cryptography  

 

Cryptography is the art & science of making cryptosystem that is capable of providing 

information security. It is art of protecting information by encrypting it into an unreadable 

format, called cipher text. Only those who possess a secret key can decipher (or decrypt) the 

message into plaintext. Encrypted messages can sometimes be broken by cryptanalysis, also 

called code breaking, although modern cryptography techniques are virtually unbreakable. [5] 

 Cryptography enables one to store sensitive information or transmit it across insecure   

networks so that it cannot be read by anyone except the intended recipient. While 

cryptography is the science of securing digital data, cryptanalysis is the science of analyzing 

and breaking cipher text .It involves the study of cryptographic techniques to test their 

security strengths. 

Until 1970’s cryptography was considered the domain of military & government only [5]. 

However the worldwide use of computers & the rise of internet have made it an integral part 

of our daily lives .Today cryptography is at the heart of many secure applications such as 

http://www.webopedia.com/TERM/E/encryption.htm
http://www.webopedia.com/TERM/C/cipher_text.htm
http://www.webopedia.com/TERM/D/decryption.htm
http://www.webopedia.com/TERM/P/plain_text.htm


5 
 

online banking, online shopping, online government services such as filling personal income 

taxes, cellular phones, & wireless LANs etc. 

Cryptography is generally used in practice to provide four services: privacy, authentication, 

data integrity, & non-repudiation .The goal of privacy is to ensure that communication 

between two parties remain secret. This often means that the contents of the communication 

are secret; however in certain situation that very fact that communication took place must be 

a secret as well .Encryption is generally used to provide privacy in modern communication. 

Authentication of one or both parties during a communication is required to ensure that 

information is being exchanged with the authorized party. Passwords are common example of 

one-way authenticate them to gain access to a system.  

 Classical cryptanalysis involves an interesting combination of analytical reasoning, 

application of mathematical tools, pattern finding, patience, determination, and luck. 

Cryptanalysts are also called attackers and represented as Darth. Cryptology embraces both 

cryptography and cryptanalysis. The modern cryptography can be divided into two main 

branches [22]: 

 Symmetric Cryptography, where the same key is used to encrypt a message and 

decrypt data. 

 Asymmetric cryptography, where two different keys are used for encryption and 

decryption. 

 

2.2 Cryptosystem 

 

A cryptosystem [5] is an implementation of cryptographic techniques & their accompanying 

infrastructure to provide information security services. It is also known cipher system. The 

given figure is simple model of cryptosystem that provides the confidentiality to the 

information being transmitted. The basic model of cryptosystem is given below: 

 

 

 

 

 

 

 



6 
 

 

 

 

                                                                                                                                     

 

                                                                                                                   Plaintext 

  

     Plain text                                                                                                 

 

 

 

 

 

                                                       Figure-2.1: Cryptosystem [5] 

 

The above figure shows a sender (Bob) who wants to transfer some sensitive data to receive 

(Alice) in such a way that any party intercepting or eves dropping on the communication 

channel cannot extract the data. An interceptor (or attacker) is an unauthorized entity who 

attempts to determine the plaintext. The objective of this simple cryptosystem is that at the 

end of the process, only the sender & receiver will know the plaintext. 

 

2.2.1 Component of Cryptosystem 

 

 Plaintext  

It is the data to be protected during transmission. 

 Encryption Algorithm: 

It is cryptographic algorithm that takes plain text & encryption key as input and 

produces cipher text. 

 Cipher text: 

It is the scrambled version of the plaintext produced by encryption algorithm using a 

specific the encryption key. It flows in public channel, which is not guarded. It can be 

intercepted compromised by anyone who has access to the communication channel. 

 

  Sender 

   (Bob)  

Receiver 

  (Alice) 

Encryption  

Algorithm 

Decryption 

Algorithm 

Interceptor 

    (Darth) 



7 
 

 Decryption Algorithm: 

It is a cryptographic algorithm that takes cipher text & a decryption key as input & 

output a plaintext. The decryption algorithm essentially reverses of the encryption 

algorithm. 

 Encryption Key: 

It is a value that is known to the sender. The sender inputs encryption key into the 

encryption algorithm along with the plaintext in order to compute the cipher text. 

 Decryption Key: 

It is a value that is known to be receiver. The decryption key is related to the 

encryption key, but is not always identical to it. 

 

2.3 Type of cryptosystem 

 

There are two types of cryptosystems [5] based on the manner in which encryption-

decryption is carried out in the system. 

 Symmetric Key Encryption 

 Asymmetric Key Encryption 

 

2.3.1 Symmetric Key Encryption 

 

The encryption process where same keys are used for, encrypting & decrypting the 

information is known as symmetric key encryption. The study of symmetric cryptosystem is 

referred to as symmetric cryptography or secret key cryptosystem or private key 

cryptosystem.  

In symmetric key encryption a secret key is shared between the sender & the receiver. The 

word “symmetric” refers to the fact that both sender & receiver use same key to encrypt & 

decrypt the information. The secret key must be shared over a secure channel before the 

communication. Symmetric cryptosystem was the only type of encryption technique in use 

prior to the development of public key cryptosystem. Which can be defined as: Let M denotes 

the set of all possible plaintext messages, C the set of all possible cipher text, K the set of all 

possible keys, k: M → C is the encryption function, and k: C → M, is decryption function, 

such that k(k(m)) = m for all m ε M and k ε K. In this cryptosystem, sender and receiver have 

to initially agree upon a secret key k ε K. After that, whenever sender wishes to send a 



 

message m ε M to receiver, sender sends the cipher

receiver can recover m by applying the decryption

private key cryptosystem is depicted in Figure 2.1.

                                                       

Figure-2.2

 

The effectiveness of private key cryptosystems relies on the requirement of strong encryption 

algorithm which would be like the algorithm to be 

algorithm and has access to one or more cipher

text or find out the key and another requirement is that sender and receiver must have 

obtained copies of the secret key in a se

techniques used in private key cryptosystem are XOR Cipher

Cipher: S-box, Transposition Cipher: Data Encryption Standard (DES), Advanced Encryption 

Standard (AES) and so on. T

encryption are: 

 Persons using symmetric key encryption must share a common key encryption must 

share a common key prior to exchange of information.

 Keys are recommended to be changed 

 Length of key (number of bits) in this encryption is smaller & hence process of 

encryption- decryption is

 Require less processing power of computer system to run symmetric 

 In a group of n people, to enable two

the number of keys required for group is n*(n

 

8 

message m ε M to receiver, sender sends the cipher text C = k (m) to receiver, from which 

receiver can recover m by applying the decryption function as m = k(C) [

private key cryptosystem is depicted in Figure 2.1.    

                                                 

-2.2: Simplified Model of Symmetric Encryption [

The effectiveness of private key cryptosystems relies on the requirement of strong encryption 

algorithm which would be like the algorithm to be such that an opponent who knows the 

algorithm and has access to one or more cipher texts would be unable to decipher the cipher

text or find out the key and another requirement is that sender and receiver must have 

obtained copies of the secret key in a secure fashion and must keep the key secure. Modern 

techniques used in private key cryptosystem are XOR Cipher, Rotation Cipher, Substitution

box, Transposition Cipher: Data Encryption Standard (DES), Advanced Encryption 

The silent features of cryptosystem based on the symmetric key 

Persons using symmetric key encryption must share a common key encryption must 

share a common key prior to exchange of information. 

Keys are recommended to be changed regularly to prevent any attack on the system.

number of bits) in this encryption is smaller & hence process of 

decryption is faster than asymmetric key encryption. 

Require less processing power of computer system to run symmetric 

In a group of n people, to enable two-party communication between any two persons, 

the number of keys required for group is n*(n-1)/2. 

text C = k (m) to receiver, from which 

function as m = k(C) [7]. The notion of 

 

Encryption [22]. 

The effectiveness of private key cryptosystems relies on the requirement of strong encryption 

such that an opponent who knows the 

texts would be unable to decipher the cipher 

text or find out the key and another requirement is that sender and receiver must have 

cure fashion and must keep the key secure. Modern 

, Rotation Cipher, Substitution 

box, Transposition Cipher: Data Encryption Standard (DES), Advanced Encryption 

he silent features of cryptosystem based on the symmetric key 

Persons using symmetric key encryption must share a common key encryption must 

to prevent any attack on the system. 

number of bits) in this encryption is smaller & hence process of 

Require less processing power of computer system to run symmetric algorithm. 

party communication between any two persons, 



9 
 

 As mentioned in [22], private key cryptosystems have numerous limitations which are 

outlined below: 

  

 Key distribution problem: Two parties that want to communicate each other need to 

set up a shared secrete key before starting communicate over an insecure channel.  

 Key management problem: Every pair of users must share a secret key leading to a 

total of n*(n-1)/2 keys. Where n be the users in a network. If n is large, then the 

number of keys become unmanageable and traffic in network may be increased. It 

makes difficult to manage key. 

 No signatures possible: A digital signature is an authentication mechanism that 

enables the creator of the message to attach a special token that acts as a signature. A 

digital signature allows the receiver of a message to convince any third-party that the 

message in fact originated from the sender.  

  

2.3.2 Asymmetric key Encryption 

 

The encryption process where different keys are used for encryption and decryption the 

information is known as asymmetric key encryption. Encryption and decryption are 

performed using the different key- one a public key and one a private key. It is also known as 

public-key encryption. Asymmetric encryption transforms plaintext into cipher text using a 

one of two keys and an encryption algorithm. Using the paired key and a decryption 

algorithm, the plaintext is recovered from the cipher text.    

Asymmetric encryption can be used for confidentiality, authentication, or both. The most 

widely used public-key cryptosystem is RSA. Public-key algorithms are based on 

mathematical functions rather than on substitution and permutation. More important, public-

key cryptography is asymmetric, involving the use of two separate keys, in contrast to 

symmetric encryption, which uses only one key. The use of two keys has profound 

consequences in the areas of confidentiality, key distribution, and authentication. 



 

 

Figure

 
 

 
 
 
 
 
 
 
 
 
 
 

10 

ure-2.3: Encryption with Public Key [22]. 

 
 
 
 

 

 

 

 



11 
 

Chapter 3 

LITERATURE REVIEW 

 

3.1 Modern Symmetric Key Encryption 

Digital data is represented in strings of binary digits (bits) unlike alphabets. Modern 

cryptosystems need to process these binary strings to convert in to another binary string. 

Based on how these binary strings are processed, a symmetric encryption schemes can be 

classified into: 

 Stream Cipher 

 Block Cipher     

 
 

3.1.1 Stream Ciphers 

 

Stream ciphers are an important class of encryption algorithms and are defined as the ciphers 

in which plaintexts are encrypted by XORing between secret key and plaintexts to obtain 

ciphers. They encrypt individual characters (usually binary digits) of a plaintext message one 

at a time. Stream ciphers are generally faster than block ciphers in software as well as 

hardware applications [4]. They are more appropriate in some telecommunications 

applications, where buffering is limited or characters must be individually processed as they 

are received. A prominent example for a stream cipher is the A5/1 cipher, which is part of the 

GSM mobile phone standard and is used for voice encryption. However, stream ciphers are 

sometimes also used for encrypting Internet traffic, especially the stream cipher RC4.  

Stream ciphers encrypt individual digits of plaintext using a time-varying transformation. Fig 

.3.1 shows the general structure of a stream cipher. The size of the digit can vary depending 

on the design constrains, application & underlying platform. A stream cipher usually consists 

of pseudo-random sequence of digits known as running keystream .The keystream digits are 

X-ORed with the plaintext digits to obtain ciphertext digits. 

 

 

 



12 
 

        

 

             Secret key 

 

                                                                         Running Keystream 

.        

        

                Plaintext                                                                       Ciphertext 

                                                                                

Figure-3.1. General Structure of a Stream Cipher [23] 

If it is look at the types of cryptographic algorithms that exist in a little bit more detail, it can 

be seen that the symmetric ciphers can be divided into stream ciphers and block ciphers, as 

shown in Fig-3.2. 

 

 

 

 

 

 

Figure-3.2: Showing Cryptographic Branches [4]. 

3.1.2 Stream and Block Ciphers 

Symmetric cryptography is split into block ciphers and stream ciphers, which are easy to 

distinguish. Figure 3.3 depicts the operational differences between stream [Fig. 3.3(a)] and 

block [Fig. 3.3(b)] ciphers when we want to encrypt b bits at a time, where b is the width of 

the block cipher. 

 

Cryptography 

Symmetric Ciphers Asymmetric Ciphers 

Stream Ciphers Block Ciphers 

 

Keystream Generator 



13 
 

 

 

 

Figure-3.3: Principles of Encrypting b bits with a stream (a) and a block (b) cipher [4]. 

Stream ciphers encrypt bits individually. This is achieved by adding a bit from a keystream to 

a plaintext bit. There are synchronous stream ciphers where the key stream depends only on 

the key, and asynchronous ones where the key stream also depends on the cipher text. 

 If the dotted line in Fig. 3.4 is present, the stream cipher is an asynchronous one. Most 

practical stream ciphers are synchronous ones. An example of an asynchronous stream cipher 

is the cipher feedback (CFB) mode [4].  

 

 

 

 

 

 

Figure-3.4: Showing Asynchronous Stream Cipher Generation [4]. 

Block ciphers encrypt an entire block of plaintext bits at a time with the same key. This 

means that the encryption of any plaintext bit in a given block depends on every other plain 

text bit in the same block. In practice, the vast majority of block cipher, either have a block 

length of 128 bits (16 bytes) such as the advanced encryption standard (AES), or a block 

length of 64 bits (8 bytes) such as the data encryption standard (DES) or triple DES (3DES) 

algorithm. 

A block cipher is the symmetric key cryptography primitives which take as input n –bit block 

of cipher text using a fixed transformation. Fig 3.5 shows the general structure of block 

cipher. The common block sizes are 64-bit, 128 bit & 256 bits. For a fixed key the block 

cipher defines a permutation on the n-bit input. The building blocks of modern blocks are 

 

          k     x0          k            y0 

       x1    y1 

x0  x1….. xb   y0  y1…yb 

Stream Cipher Block Cipher 



14 
 

substitutions & permutations. A substitution is generally performed to provide non linearity   

in the output & permutation are used to diffuse the input and the key. These substitution & 

permutation operations in cipher are repeated several times to obtain highly non linear 

transformation of output bits. 

 

 

 

                               

 

 Key 

                      

 

 

 

 

                                    Fig-3.5: General Structure of Block Cipher [23] 

 

The most famous block ciphers DES (Data Encryption Standard) & AES (Advanced 

Encryption Standard). DES was designed in 1970 & has been extensively used in the past 

three decades. It has a block size of 64 bits & secret key of 56 bits. AES was standardized in 

2002 to replace DES since 56 bit key is too small for the computing power of today 

computer.AES has an increased key length of 128,192,256 bits and block size of 128 bits. 

 Some differentiation points between stream ciphers vs. block ciphers are as below: 

1. In practice, particularly for encrypting computer communication on the Internet, block 

ciphers are used more often than stream ciphers. 

Plaintext Block 

 

Block Cipher 

Ciphertext Block 



15 
 

2. Because stream ciphers tend to be small and fast, they are particularly relevant for 

applications with little computational resources, e.g., for cell phones or other small 

embedded devices.  

3. It is assumed that stream ciphers tended to encrypt more efficiently than block 

ciphers. Efficient for software-optimized stream ciphers means that they need fewer 

processor instructions (or processor cycles) to encrypt one bit of plaintext.  

3.1.3 Encryption and Decryption in Stream Ciphers 

Example: Alice wants to encrypt the letter A, where the letter is given in ASCII code. The 

ASCII value for B is 6610 = 10000102. Let’s furthermore assume that the first key stream bits 

are (s0, . . . , s6) = 0101100. 

Sender: - Alice, Receiver: - Bob 

x0, . . . , x6 = 1000010 = B 

 ⊕ 

s0, . . . , s6 = 0101100 

y0, . . . ,y6 = 1101110 = m 

. 

. 

. 

. m= 1101110 → 

y0, . . . ,y6 = 1101101 

 ⊕ 

s0, . . . , s6 = 0101100 

x0, . . . ,x6 = 1000010 = B 

 

According to above mentioned example, bitwise XORing between message and key is carried 

out for encryption as well as decryption. 

 

 



16 
 

3.1.4 Random Numbers, Nonce and OTP in Stream Cipher 

Random numbers and its generation play very important role in stream ciphers since 

generating key is major thing and encryption and decryption is simply the XOR operation. 

Random number can be generated by three ways: TRNG, PRNG and CSPRNG [4, 20].  

True random number generators (TRNGs) are characterized by the fact that their output 

cannot be reproduced. For instance, if we flip a coin 100 times and record the resulting 

sequence of 100 bits, it will be virtually impossible for anyone on Earth to generate the same 

100 bit sequence. The chance of success is 1/2100, which is an extremely small probability. 

TRNGs are based on physical processes. Examples include coin flipping, rolling of dice etc 

[4]. 

Pseudorandom number generators (PRNGs) generate sequences which are computed from an 

initial seed value. Often they are computed recursively in the following way: 

    s0 = seed 

    si+1 = f (si), i = 0,1, . . . 

A widely used example is the rand() function used in ANSI C. A common requirement of 

PRNGs is that they possess good statistical properties, meaning their output approximates a 

sequence of true random numbers. There are many mathematical tests, e.g., the chi-square 

test for PRNG [4]. 

Cryptographically secure pseudorandom number generators (CSPRNGs) are a special type of 

PRNG which possess the following additional property: A CSPRNG is PRNG which is 

unpredictable. Informally, this means that given n output bits of the key stream si, si+1, . . . , 

si+n 1, where n is some integer, it is computationally infeasible to compute the subsequent bits 

si+n, si+n+1, . . .. A more exact definition is that given n consecutive bits of the key stream, 

there is no polynomial time algorithm that can predict the next bit sn+1 with better than 50% 

chance of success.  

Another property of CSPRNG is that given the above sequence, it should be computationally 

infeasible to compute any preceding bits si 1, si 2, . . .. Note that the need for unpredictability 

of CSPRNGs is unique to cryptography. Virtually, in all other situations where 

pseudorandom numbers are needed in computer science or engineering, unpredictability is 

not needed [20, 2]. 



17 
 

Many aspects of cryptography require random numbers, for example: Key generation, nonce, 

one-time pads etc. The "quality" of the randomness required for these applications varies. For 

example, creating a nonce in some protocols needs only uniqueness. On the other hand, 

generation of a master key requires a higher quality. In cryptography, a nonce is an arbitrary 

number that may only be used once. It is similar in spirit to a nonce word. They can also be 

useful as initialization vectors and in cryptographic hash function [2]. 

In cryptography, the one-time pad (OTP) is an encryption technique that cannot be cracked if 

used correctly [13]. In this technique, a plaintext is paired with a random secret key (also 

referred to as a one-time pad). Then, each bit or character of the plaintext is encrypted by 

combining it with the corresponding bit or character from the pad using modular addition. If 

the key is truly random, is at least as long as the plaintext, is never reused in whole or in part, 

and is kept completely secret, then the resulting cipher text will be impossible to decrypt or 

break. It has also been proved that any cipher with the perfect secrecy property must use keys 

with effectively the same requirements as OTP keys [13].  

 

3.2 Candidate Algorithms 

3.2.1 VMPC 

VMPC (Variably Modified Permutation Composition) is a stream cipher variant of RC4.It 

was designed by Bartosz Zoltak, presented in 2004 at Fast Software Encryption conference 

[3].The core of the cipher is VMPC one way function [3], which is a combination of triple 

permutation composition & integer addition. The cipher generate a stream of 8-bit value from 

an internal state consists of 256-byte permutation two 8-bit integer variable. The generated 

values should be X- ORed with the plain text to derive the cipher test. The initial value of 

cipher’s internal state is determined by the VMPC Key Scheduling Algorithm.  

 

Description of the VMPC Stream Cipher 

The algorithm generates a stream of 8-bit values. 

Variables: 

P : 256-byte table storing a permutation initialized by the VMPC KSA 

s : 8-bit variable initialized by the VMPC KSA 

n : 8-bit variable 

https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Key_generation
https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/Cryptographic_nonce
https://en.wikipedia.org/wiki/Cryptographic_protocol
https://en.wikipedia.org/wiki/Key_%28cryptography%29
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Nonce_word
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Key_%28cryptography%29
https://en.wikipedia.org/wiki/Modular_addition
https://en.wikipedia.org/wiki/Random
https://en.wikipedia.org/wiki/Secret
https://en.wikipedia.org/wiki/Ciphertext


18 
 

L : desired length of the keystream in bytes                                  

 

 

 The Core Algorithm of VMPC Stream Cipher [3] 

1. n = 0 

2. Repeat steps 3-6 L times: 

3. s = P[(s + P[n]) modulo 256 ] 

4. Output P [(P [P[s]] + 1) modulo 256] 

5. Swap(P[n] , P[s]) 

   Temp = P[n] 

   P[n] = P[s] 

   P[s] = Temp 

 6. n = (n + 1) modulo 256 

 

 

 

 

Description of the VMPC Key Scheduling Algorithm 

 

The VMPC Key Scheduling Algorithm (KSA) transforms a cryptographic key and 

(optionally) an Initialization Vector into a 256-element permutation P and initializes variable 

s. 

Variables as, with: 

 

c : fixed length of the cryptographic key in bytes, 16 <= c <= 64 

K : c-element table storing the cryptographic key 

z : fixed length of the Initialization Vector in bytes, 16 <= z <= 64 

V : z-element table storing the Initialization Vector 

m : 16-bit variable 

 

 

 

 



19 
 

VMPC Key Scheduling Algorithm [3] 

 

1. s = 0 

2. for n from 0 to 255: P[n] = n 

3. for m from 0 to 767: execute steps 4-6: 

4. n = m modulo 256 

5. s = P[(s + P[n] + K[m modulo c]) modulo 256 ] 

6. Temp = P[n] 

P[n] = P[s] 

P[s] = Temp 

7. If Initialization Vector is used: execute step 8: 

8. for m from 0 to 767: execute steps 9-11: 

9. n = m modulo 256 

10. s = P[(s + P[n] + V [m modulo z]) modulo 256 ] 

11. Temp = P[n] 

P[n] = P[s] 

P[s] = Temp 

 

 

3.2.2 SPRITZ 

 

SPRITZ is a stream cipher variant of RC4 proposed by Rivest and Schuldt at the rump 

session of CRYPTO 2014[16]. It is intended to be a replacement of the popular RC4 stream 

cipher.      

    The Core Algorithm of SPRITZ Stream Cipher [14] 

 

 

1:   i = i + w 

 2:   j = k + S[j + S[i]] 

 2 a):  k = i + k + S[j] 

 3:  SWAP(S[i],S[j]) 

 4: z = S[j + S[i + S[z + k]]] 

 5: Return z 



20 
 

S is an 8-bit permutation. In theory, it can be any size, which is nice for analysis, but in 

practice, it's a 256-element array. RC4 has two pointers into the array: i and j. SPRITZ adds a 

third: k. The parameter w is basically a constant. It's always 1 in RC4, but can be any odd 

number in SPRITZ (odd because that means it's always relatively prime to 256). It has a 

single swap of two elements of the array & produces an output byte, z, a function of all the 

other parameters. In SPRITZ, the previous z is part of the calculation of the current z. There 

are also functions for turning the key into the initial array permutation, using this as a stream 

cipher, using it as a hash function, and so on. It's basically a sponge function, so it has a lot of 

applications. 

 

Description of the SPRITZ Stream Cipher 

 

SPRITZ consists of a permutation S over the set {0, 1, 2,…, N – 1} (default value of N is 

256) and six pointers i, j, k, w, a, z, where i, j, k are index pointers, w gives the step distance 

for i, a is a nibble counter, and z stores the output byte. The design specifies a number of 

modules that are executed for producing a key stream as defined in pseudocode given below. 

There are number of modes of operation using the SPRITZ structure like a stream cipher, 

hash function, MAC etc. In the stream cipher mode of operation the key stream is produced 

in the following manner. First the permutation is initialized using the INITIALIZESTATE 

(N) routine. The secret key K is then absorbed into the state using the ABSORB (K) module. 

Additionally, if an IV is to be used, then the ABSORBSTOP ( ) module is invoked and the IV 

is absorbed by calling the ABSORB (IV) function. Thereafter, the SQUEEZE module is 

invoked to produce keystream bytes. 

 

INITIALIZESTATE (N) 

1       i = j = k = z = a = 0 

2     w = 1 

3       for v = 0 to N - 1 

4       S[v] = v 

 

ABSORB (I) 

1    for v = 0 to I. length - 1 

2     ABSORBBYTE (I [v]) 

 



21 
 

ABSORBBYTE (b) 

1     ABSORBNIBBLE (LOW (b)) 

2     ABSORBNIBBLE (HIGH (b)) 

 

ABSORBNIBBLE(x) 

1    if a = [N/2] 

2    SHUFFLE ( ) 

3    SWAP(S[a], S [[N/2] + x]) 

4     a = a + 1 

 

ABSORBSTOP ( ) 

1      if   a = [N/2] 

2       SHUFFLE ( ) 

3       a = a + 1 

SHUFFLE ( ) 

 

1      WHIP (2N) 

2       CRUSH ( ) 

3        WHIP (2N) 

4        CRUSH ( ) 

5       WHIP (2N) 

6        a = 0 

 

WHIP(r) 

1      for v = 0 to r - 1 

2       UPDATE ( ) 

3      do   w = w + 1 

4      until GCD (w, N) = 1 

 

CRUSH ( ) 

1    for v = 0 to [N/2] -1 

2    if S[v] > S [N - 1 - v] 

3     SWAP(S[v]  , S [N -1 -v]) 

SQUEEZE(r) 



22 
 

1        if   a > 0 

2             SHUFFLE ( ) 

3       P = ARRAY.NEW(r) 

4       for v = 0 to r - 1 

5               P[v] = DRIP ( ) 

6       return P 

 

DRIP ( ) 

1    if a > 0 

2   SHUFFLE ( ) 

3    UPDATE ( ) 

4   return OUTPUT ( ) 

 

UPDATE ( ) 

1   i = i + w 

2   j = k + S [j + S[i]] 

3   k = i + k + S[j] 

4   SWAP(S[i], S[j]) 

 

OUTPUT ( ) 

1    z = S [j + S [i + S [z + k]]] 

2     return z 

 

Pseudocode for Spritz.[14] 

 

The main interface routines are INITIALIZESTATE, ABSORB (and ABSORB-STOP), and 

SQUEEZE. The state consists of byte registers i, j, k, z, w, and a, and an array S containing a 

permutation of {0, 1,….., N – 1}. 

 

3.2.2.2 Sponge functions 

One objective of` RC4 redesign is to reformulate RC4 as a “sponge function." RC4 is a 

natural fit for adaptation to the sponge function paradigm, as it already has a large state space. 

As proposed by Bertoni [6], a sponge function has a function ABSORB that absorbs variable-

length input into the state, and a function SQUEEZE that produces variable-length output 



23 
 

from the state. Both functions may change the state, using a single state-space permutation 

function f. 

 

In Spritz, the SHUFFLE procedure corresponds to the state-space permutation of the sponge 

function. However, SHUFFLE is not a state-space permutation, but a many-to-one map (due 

to its invocations of CRUSH), so the correspondence is not precise. SHUF-FLE does invoke 

procedure WHIP, however, which is such a state-space permutation. The sponge-like 

character of SPRITZ, based on SHUFFLE, WHIP & CRUSH procedure. SPRITZ in the 

sponge function framework, additional evaluation is definitely needed regarding the use of 

SPRITZ in these additional sponge function modes. 

 

3.2.2.2.1 AbsorbStop function 

The sponge function interface extended by introducing the function ABSORBSTOP ( ) to 

provide a simple clean way to separate different inputs being absorbed. 

3.2.2.2.2 Encryption 

Here is pseudocode illustrating the use of a sponge function for encryption and 

decryption.[14] 

 

ENCRYPT (K, M) 

1 KEYSETUP (K) 

2 C = M + SQUEEZE (M. length) 

3 RETURN C 

 

DECRYPT (K, C) 

1 KEYSETUP (K) 

2 M = C – SQUEEZE (M. length) 

3 RETURN M 

 

KEYSETUP (K) 

1 INITIALIZESTATE ( ) 

2 ABSORB (K) 

 

ENCRYPT uses key-setup algorithm KEYSETUP to initialize the state and absorb the key K, 

then adds modulo N each byte of the message M with the corresponding byte of the output of 



24 
 

SQUEEZE, yielding cipher text C. Procedure DECRYPT is identical, except for switching M 

and C, and replacing addition modulo N with subtraction modulo N. Note that the key, 

message, and cipher text are all byte sequences (sequences of values modulo N). 

Addition/subtraction modulo N are used instead of the more traditional exclusive-or, for 

consistency with the design goal that SPRITZ should work for all N, not just N that are 

powers of 2. Of course, when N is a power of 2, one could use exclusive-or rather than 

addition/subtraction. 

To encrypt with an IV (initialization vector or nonce) IV, one should, after the key is input, 

call ABSORBSTOP procedure to separate the two fields, and then input the IV, as follows. 

 

ENCRYPTWITHIV (K, IV, M) 

1 KEYSETU P (K); ABSORBSTOP ( ) 

2 ABSORB (IV) 

3 C = M + SQUEEZE (M. length) 

4 return C 

3.2.2.2.3 Hash function 

The following procedure Hash produces an r-byte hash of the input message (byte sequence) 

M. 

Hash (M, r) 

1 INITIALIZESTATE ( ) 

2 ABSORB (M); ABSORBSTOP ( ) 

3 ABSORB(r) 

4 return SQUEEZE(r) 

HASH first absorbs the input message M (a byte sequence). Next, it call ABSORBSTOP to 

signal the end of the message M, and the beginning of the next input, which is the desired 

hash length, r. 

 

 

 
 



25 
 

Chapter 4 
 

IMPLEMENTATION & TESTING 
 

4.1 Java Implementation 
 
 
Java was conceived at Sun Microsystems, in 1991. This language is initially called “OAK” 

but it was renamed as java in 1995 with the Virtual Machine being known as the Java Virtual 

Machine (JVM). At that time, the use of the World Wide Web was starting to become 

widespread. The web involved the communication between all sorts of processors and 

systems; just the sort of situation for which Sun Micro system had developed Java. Hence 

Java became the preferred language for Web programming [17]. 

Java compiles the source file (.java) and converts into intermediate file called byte code 

(.class) . This beauty of the java programming language motivates to use of java anywhere or 

in any type of application development. This makes software developed in java platform 

independent.  

 

4.2 Choice of the Programming Language: Java 
 
 
Most of other language likes C, C++ are designed to be compiled for a specific target 

machine. Although it is possible to compile a C++ program for any type of CPU, to do so 

requires a full C++ compiler targeted for that CPU. The problem is that compilers are 

expensive and time consuming to create, solution was needed, and to find a solution, java was 

created which could be used to produce code that can run on a variety of CPUs under 

different environment.  

The Java security APIs spans a wide range of areas. For developing secure application, 

Cryptographic and public key infrastructure (PKI) interfaces are used. Interfaces for 

performing authentication and access control enable applications to protect against 

unauthorized access to protected resources. The APIs allow for multiple interoperable 

implementations of algorithms and other security services. Services are implemented 

in providers, which are plugged into the Java platform via a standard interface that makes it 

easy for applications to obtain security services without having to know anything about their 

implementations. This allows developers to focus on how to integrate security into their 

applications, rather than on how to actually implement complex security mechanisms. The 



26 
 

Java platform includes a number of providers that implement a core set of security services. It 

also allows for additional custom providers to be installed. This enables developers to extend 

the platform with new security mechanisms. 

 

4.3 Netbeans 
 
NetBeans is an integrated development environment (IDE) for developing primarily 

with Java, but also with other languages, in particular PHP, C/C++, and HTML5. It is 

developed at Charles University as a student project in 1996. In 1997, it was produced as 

commercial versions and bought by Sun Microsystems in 1999. 

It is also an application platform framework for Java desktop applications and others. The 

NetBeans IDE is written in Java and can run on Windows, OS X, Linux, Solaris and other 

platforms supporting a compatible JVM. The NetBeans Platform allows applications to be 

developed from a set of modular software components called modules.  

Different versions of Netbeans IDE are introduced in last few years. NetBeans IDE 7.0 was 

released in April 2011. On August 1, 2011, the NetBeans Team released NetBeans IDE 7.0.1, 

which has full support for the official release of the Java SE 7 platform. As passing versions 

from NetBeans IDE 6.5 to currently developing version  NetBeans IDE 8.0 many more 

features are added in newer versions. NetBeans IDE 7.4 was released in October 15, 2013. 

NetBeans IDE 8.0 is currently in development. NetBeans IDE 8.0.2 is used for implementing 

in this thesis [15].   

 

4.4 Implementation Details of Candidate Algorithms 
 

Two algorithms / techniques are made to run by feeding same size of message at once. 

Different classes are created for each algorithm and related coding, functions are kept in 

class. Finally, all functions and classes are accessed from the main class. Time taken to 

encrypt the message file is calculated individually. The main thing in stream cipher is to 

design and develop key stream which then will be XORed with the message. After generating 

key stream, 128 bit size key gets encrypted by XORing with same size of message. Important 

Java coding and functions for each algorithm are given as below. 

 

 

 
 

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/HTML5
http://en.wikipedia.org/wiki/Platform_(computing)
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Software_component
http://en.wikipedia.org/wiki/Java_version_history


27 
 

4.4.1 VMPC 
 
Main Java coding/functions for VMPC algorithm are given as below. Initial Vector and initial 

key is directly given in code level. Message encrypting as well as functions converting into 

byte code are also given below. Details about coding are mentioned in Appendix section. 

 

 public void init(boolean forEncryption, CipherParameters params) 

 protected void initKey(byte[] keyBytes, byte[] ivBytes) 

 public int processBytes(byte[] in, int inOff, int len, byte[] out, int outOff) 

 public void reset() 

 public byte returnByte(byte in)  

 
4.4.2 SPRITZ 
 
We can see important functions required in SPRITZ algorithm below. Important functions 

involving in this algorithm are Sponge function, ABSORBSTOP function, are given. They 

are as follows. Details about coding are mentioned in Appendix section. 

 

 private static final int IV_SIZE=10 

 public spritz () 

 public static final in gcd(int x1,int x2) 

 private void update() 

 private void whip(int r) 

 private void crush() 

 private void shuffle() 

 private void absorb_nibble(int x){ 

 private void absorbe_byte(byte b) 

 private void absorb(byte[]) 

 private void absorb_stop() 

 private byte drip() 

 

4.5  Research Methodology 

 

Research Study, here is to find out the technique which is of very high speed i.e. the 

algorithm which can encrypt the given message (plaintext) with very high speed than other. 



28 
 

For this, random size of data that is of any kinds will be collected to feed to individual 

algorithm and time taken to encrypt will be calculated. 

 

4.5.1 Data Collection 

 

Various sample messages of different sizes will be fed to the different modules. Messages 

may be either text or number or images/graphics etc. But for easy plaintext data of different 

sizes are taken to input for all algorithms. Secondary data collection method is used here, 

because no primary data is required in this study. 

 

4.6 Sample Test Cases 
 
 For testing data input, the different size of text file is taken as input message. Size of 30 

bytes file has been taken as smallest size and 10KB as big message. Constant keys as well as 

IV given in program, sample of input message and generated ciphers are as follows: 

 

4.6.1 Key  

I. VMPC 

 

K =  "AAAAAAAAqweAAAAT" 

 

II. SPRITZ 

 

            Byte [] key = { 

(byte)0xa0, (byte)0x33, (byte)0xd6, (byte)0x78, (byte)0x6b, (byte)0x05,                     

(byte)0x14,   (byte)0xac,  (byte)0xfc, (byte)0x3d, (byte)0x8e, (byte)0x2d,  (byte)0x6a,      

(byte)0x2c,   (byte)0x27,     (byte)0x1d 

      } 

 

4.6.2 Input Message (30 Bytes) 

 

 

  

  

"Tribhuvan University Santosh" 



29 
 

4.6.3   Cipher After Encryption 

 

 

 

 

 

 

 

 

 

 

 

4.6.4 Input Message (100 Bytes) 

 

 

 

 

 

 

4.6.5 Cipher After Encryption 

 

 

 

 

 

 

 

 

 

 

 

 

 

" Performance Analysis of Stream Cipher RC4 Variants: VMPC and SPRITZ "    

by Santosh Sharma CDCSIT-TU. 

 

 

 



30 
 

Chapter 5 

RESULT & ANALYSIS 
 

This chapter presents an overview of comparison stream cipher RC4 variants in terms of 

performance and cost. Target Architecture and Specifications are described in this chapter. 

Time in system nanosecond needed for encrypting all stream cipher RC4 variants algorithms 

implemented in java is calculated and performance is analyzed as cycle/byte. 

 

5.1 Target Architectures 

 

The main goal of this thesis is to measure the performance of stream cipher RC4 variants. 

These candidate algorithms are tested on laptop. The following system is used: 

 A PC with an Intel Core i5 Processor 2.50 GHz having 4GB RAM .The operating 

system is Windows 8 running in 64-bit mode. The system is running the JDK (Java 

Development Kit) with NetBeans IDE 8.0.2.  

 

5.2 Measuring Cost 
 

There is some extra cost which may be added to the absolute cost for encrypting the different 

size of messages but this is equally affected to all candidates algorithm on the execution. The 

system time in nanosecond is taken just before the execution of code segment for generating 

key stream and encrypting the message in each algorithm and the completion of the 

execution. The time spending for encrypting message is calculated by subtracting start time 

taken before execution from completion time taken after completing execution of specific 

code segment [ 22]. The time required for each algorithm is calculated as follows: 

 long     startTime = System.nanoTime(); 

//  createKEY and encrypt function call 

long     timeRequired  =  System.nanoTime() -  startTime; 

Various processes may be run in background of system so absolute measurement may not be 

carried out. Due to this reason, time needed for encrypting given message in all algorithms 

may not be observe same in every run of program. Therefore at least 5 times, the program 

implemented in java is run in architecture described as above section and finally average 

required time observed in every run is calculated as:  



31 
 

Average required Time =  ∑
��

�

�
���       where Ti represent time obtained in ith run of   execution. 

This average calculated time is used to calculate cycle per byte. 

 

5.3 Measuring Performance 

 

Timing cryptographic primitive is useful when analyzing the performance of multiple 

algorithms on a single machine. But, it may vary on other machine therefore, cryptographers 

prefer to measure how many cycle it takes to process each byte. Different cycle/byte is 

calculated in the same box also because of background other process. So to optimize such 

extra cost, average is taken running multiple times in same machine for each candidate 

algorithms.  

In this thesis, Cycle/byte calculation with the following parameters: time in second spent 

generating key and encrypting the message (Ts), frequency of the CPU in Hz(F) and message 

input in bytes(L). The formula for creating cycle/byte suggested by [22] is: 

     Cycle/byte =
�� �

�
 

 

5.4 Analysis 
 

This section shows the result of the performance tests for various input sizes of each 

algorithm. A simple multiple histograms for each candidate algorithms will be presented each 

for cycle per byte calculation. 

Following table and corresponding charts show the overall performance in the different 

encryption algorithms, VMPC & SPRITZ. Different sizes of data like 30 bytes, 100 bytes, 

1KB, 5KB and 10KB are taken by every candidate algorithms as below. 

 

Message Size = 30 Bytes 

 

 

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average 
VMPC 1520297 10354 9561 8408 8490 311422 
SPRITZ 1818724 121933 121932 107974 121111 458334.8 
Table 5.1:  Average Time in Nanosecond Spent by Candidate Algorithms to Generating Key 

and Encrypting the Message of Small Size (30 Bytes) 

 



32 
 

 

Candidate Algorithms Cycle/Byte 
VMPC 25951.83 
SPRITZ 38194.56 

Table 5.2: Performance of the Candidate Algorithms for Small Message Size (30 bytes) 

calculated in Cycle/Byte. 

   

                        

 
Figure 5.1:  Performance of Candidate Algorithms for Small Message Size (30 Bytes) shown 

in Bar Diagram. 

 

 

 

Message Size = 100 Bytes 

 

 

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average 

VMPC 2156464 10670 9163 8945 9738 438996 

SPRITZ 1713624 584619 540690 533711 949595 864447.8 
  Table 5.3: Average Time in Nanosecond Spent by Candidate Algorithms to Generating Key 

and Encrypting the Message of Size (100 Bytes) 

 

 

Candidate Algorithms Cycle/Byte 

VMPC 1097.49 
SPRITZ 21611.19 

Table 5.4:  Performance of Candidate Algorithms for Message Size (100 bytes) in 

Cycle/Byte. 

25951.83

38194.56

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

C
yc

le
/B

yt
e

VMPC

SPRITZ



33 
 

 

Figure 5.2:  Performance of Candidate Algorithms for Message Size (100 bytes) shown in 

Bar Diagram 

 

 

Message Size = 1KB 

 

 

Candidate Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average 
VMPC 1527805 14369 36748 18244 11220 321677.2 
SPRITZ 4470858 1785470 6787986 1318677 1057158 3040298 
Table 5.5:  Average Time in Nanosecond Spent by Candidate Algorithms to Generating Key 

and Encrypting the Message of Size (1KB) 

 

 

 

Candidate Algorithms Cycle/Byte 
VMPC 785.34 

SPRITZ 7529.36 
Table 5.6:  Performance of Candidate Algorithms for Message Size (1KB) in Cycle/Byte. 

1097.49

21611.19

0

5000

10000

15000

20000

25000

C
yc

le
/B

yt
e

VMPC

SPRITZ



34 
 

 

Figure 5.3:  Performance of Candidate Algorithms for Message Size (1KB) shown in Bar 

Diagram. 

 

 

 

 

Message Size = 5KB 

 

Candidate 
Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average 
VMPC 1624075 37068 343505 35943 13100 348907.2 

SPRITZ 11532482 12955439 17697044 15230280 13091633 14101375.6  
Table 5.7: Average Time in Nanosecond Spent by Candidate Algorithms to Generating Key 

and Encrypting the Message of Size (5KB) 

 

. 

 

Candidate Algorithms Cycle/Byte 
VMPC 170.36 
SPRITZ 6885.43 

Table 5.8:  Performance of Candidate Algorithms for Message Size (5KB) in Cycle/Byte. 

 

 

 

785.34

7529.36

0

1000

2000

3000

4000

5000

6000

7000

8000

C
yc

le
/B

yt
e

VMPC

SPRITZ



35 
 

 
 

Figure 5.4:  Performance of Candidate Algorithms for Message Size (5KB) shown in Bar 

Diagram. 

 

 

 

Message Size = 10KB 

 

Candidate 
Algorithms 1st Run 2nd Run 3rd Run 4th Run 5th Run Average 
VMPC 1404284 51244 29900 28348 15929 30594 

SPRITZ 30177677 30793087 15594222 14507503 17645726 21743673 
Table 5.9:  Average Time in Nanosecond Spent by Candidate Algorithms to Generating Key 

and Encrypting the Message of Size (10KB) 

 

 

 

Candidate Algorithms Cycle/Byte 

VMPC 74.69 
SPRITZ 5308.50 

Table 5.10: Performance of Candidate Algorithms for Message Size (10KB) in Cycle/Byte.  

 

170.36

6885.43

0

1000

2000

3000

4000

5000

6000

7000

8000

C
yc

le
/B

yt
e

VMPC

SPRITZ



36 
 

 
 

Figure 5.5:  Performance of Candidate Algorithms for Message Size (10KB) shown in Bar 

Diagram 

 

5.5 Result 
 

 

By the help of above mentioned measuring criteria in the targeted architecture as given in 

section-5.1 to 5.4, thus obtained result is analyzed. Cycle/byte measuring unit is the best way 

to check the performance of any algorithms. After running the each algorithm with different 

sized message, it is observed that performance of VMPC is better than SPRITZ algorithms if 

the message size is very large.  

With the increment of size of message, performance of VMPC is found to be better than 

SPRITZ. The speed of stream cipher SPRITZ is much slower, although performance of 

SPRITZ also increases with the increment of size of message. With the small size of message 

these algorithms VMPC & SPRITZ shows worst performance. In bigger size messages (5KB, 

10KB) SPRITZ yields (6885.43 cycle/byte, 5308.50 cycle/byte) respectively & VMPC yields 

(170.36 cycle/byte, 74.69 cycle/byte) respectively. Therefore VMPC stream cipher algorithm 

is better algorithm purposed in this study.  

 

 

74.69

5308.5

0

1000

2000

3000

4000

5000

6000

C
yc

le
/B

yt
e

VMPC

SPRITZ



37 
 

Chapter 6 

CONCLUSION & FUTURE WORK 

 

6.1 Conclusions  

In this thesis, stream cipher RC4 variants (algorithms) are studied, discussed and 

implemented using most popular and highly accurate programming language Java. After 

implementation, different size messages were feed to encrypt to the candidate algorithms and 

results were observed and analyzed. With the small size of message these stream cipher RC4 

variants VMPC & SPRITZ shows low performance. The result of empirical performance 

comparison shows that VMPC is the better than SPRITZ .The speed of SPRITZ is much 

slower due to cryptographic function “sponge like construction”, where different functions 

are used for the additional layer of security in RC4 variants, although performance of 

SPRITZ also increases with increment of size of message. While message size gets increased, 

performance of VMPC is better in all the size of messages. Hence, stream cipher VMPC 

shows the better performance in large size message than stream cipher SPRITZ.  

 

6.2 Future Works 

 

Actually, considering and keeping in mind that securities as well as all the other parameters 

are constant, the thesis work is carried out here. In this thesis, performance analysis among 

stream cipher RC4 variants is done.  Selecting algorithm which can encrypt with high speed 

only is not matter but security is also. Security has been a great thread and challenge for 

entire field of cryptography. Similarly, there are some other parameters and cases as well 

which should be also counted while analyzing these algorithms. So, in future work, it can be 

the study to optimize and find better algorithm by improving security issue. 

 

 

 

 

 

 

 



38 
 

REFERENCES 

 

[1] ‘‘A. Maximov and D. Khovratovich. “New State Recovery Attack on RC4.” In              

CRYPTO   2008, LNCS, Vol. 5157, pp. 297-316.              

[2] “A note on random number generation”, [online] available: https://cran.r-

project.org/web/packages/randtoolbox/vignettes/fullpres.pdf                       

[3]  B. Zoltak. “VMPC One-Way Function and Stream Cipher.” In proceedings of FSE                          

2004, LNCS, Springer, Vol. 3017, pp. 210{225, 2004.              

[4] C. Paar, J. Pelzl, Understanding Cryptography, DOI 10.1007/978-3-642-04101-

32,_c  Springer-Verlag Berlin Heidelberg 2010                                           

[5] “Cryptography just for beginners”, [online] available: http://www.tutorialspoint.                    

.com/              

[6] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche.     

“Cryptographic sponge functions.” http://sponge.noekeon.org/, January14, 2011. 

Version 0.1.                                                              

[7] H.C.A.V. Tilborg, Fundamentals of Cryptology, Kluwer Academic Publisher Boston 

, 1988                                               

[8] I. Mantin and A. Shamir. “A Practical Attack on Broadcast RC4.” In FSE 2001,         

LNCS, Vol. 2355, pp. 152-164.                  

[9] Mantin, “Analysis of the stream cipher RC4, Master’s thesis”, The Weizmann 

Institute of Science, 2001      

[10] M. Bellare, P. Rogaway, and D. Wagner. EAX “A conventional authenticated-

encryption mode.” (rev. 2003/9/9). Cryptology ePrint Archive, Report 2003/069, 

April 13, 2003. eprint.iacr. org/2003/069.       

[11] NIST. “Recommendation for random number generation using deterministic 

random bit generators.” Technical Report SP 800-90 A Rev. 1 (Draft), NIST, 

2013.http://csrc.nist.gov/publications/drafts/800-90/draft_sp800_90a_rev1.pdf.    14 

[12]  “Netbeans IDE Features”,[online]available: http://netbe-ans.org/features/index.html        

[13] “One-Time-Pad”,[online]available: https://www.ranum.com/security/computer_secu 

rity/papers/otp-faq/                               

[14] R. Rivest and J. Schuldt. “Spritz - a Spongy RC4-like Stream Cipher and Hash                    

Function.”,[online] available : https://people.csail.mit.edu/rivest/pubs/RS14.pdf     



39 
 

[15] Ronald L. Rivest. “RSA security response to weaknesses in key scheduling 

algorithm of RC4”. Technical note, RSA Data Security, Inc., 2001.    

[16]   Rogaway, P., Black, J., A block- cipher mode operation for parallelizable message 

Authentication. Advances in cryptology – EUROCRYPTO 2002, LNCS 2332, pp. 

384-397, Springer – Verlag, 2002.         

[17]  “Sun Microsystems Inc.”,[online] available : http://java.sun.com/javame     

[18] S. Maitra and G. Paul. “Analysis of RC4 and Proposal of Additional Layers for 

Better Security Margin.” In INDOCRYPT 2008, LNCS, Vol. 5365, pp. 27{39, 2008             

[19] S. Paul and B. Preneel. “A New Weakness in the RC4 Keystream Generator and an 

           Approach to Improve the Security of the Cipher.” In FSE 2004, LNCS, Vol. 3017,          

pp.      

[20] “True Random number generation”, [online] available : https://koclab.cs.ucsb.edu/d 

               oc/ koc/b08.pdf                                      

[21] “VMPC stream cipher“,[online] available: http://www.vmpcfunction.com/function. 

   htm                                 

[22] William Stallings Cryptography And Network Security Principles and Practice,     

Prentice hall , Fifth Edition ,2010          

[23] Yashir Nawaz , Design of stream Ciphers & Cryptographic Properties of Nonlinear                          

functions, Doctor of Philosophy thesis in Electrical & Computer Engineering, 

University of Waterloo, Waterloo Canada,(2007)        

 

 

 

 

 

 

 

 

 

 



40 
 

APPENDIX 

Code of Implementation 

VMPC 
 

Important functions and java coding are given as below for VMPC algorithm. 

 

    public void init(boolean forEncryption, CipherParameters params) 

    { 

        if (!(params instanceof ParametersWithIV)) 

        { 

            throw new IllegalArgumentException( 

                "VMPC init parameters must include an IV"); 

        } 

 

        ParametersWithIV ivParams = (ParametersWithIV) params; 

 

        if (!(ivParams.getParameters() instanceof KeyParameter)) 

        { 

            throw new IllegalArgumentException( 

                "VMPC init parameters must include a key"); 

        } 

 

        KeyParameter key = (KeyParameter) ivParams.getParameters(); 

 

        this.workingIV = ivParams.getIV(); 

 

        if (workingIV == null || workingIV.length < 1 || workingIV.length > 768) 

        { 

            throw new IllegalArgumentException("VMPC requires 1 to 768 bytes of IV"); 

        } 

        this.workingKey = key.getKey(); 

 

 



41 
 

        initKey(this.workingKey, this.workingIV); 

    } 

 

    protected void initKey(byte[] keyBytes, byte[] ivBytes) 

    { 

        s = 0; 

        P = new byte[256]; 

        for (int i = 0; i < 256; i++) 

        { 

            P[i] = (byte) i; 

        } 

 

        for (int m = 0; m < 768; m++) 

        { 

            s = P[(s + P[m & 0xff] + keyBytes[m % keyBytes.length]) & 0xff]; 

            byte temp = P[m & 0xff]; 

            P[m & 0xff] = P[s & 0xff]; 

            P[s & 0xff] = temp; 

        } 

        for (int m = 0; m < 768; m++) 

        { 

            s = P[(s + P[m & 0xff] + ivBytes[m % ivBytes.length]) & 0xff]; 

            byte temp = P[m & 0xff]; 

            P[m & 0xff] = P[s & 0xff]; 

            P[s & 0xff] = temp; 

        } 

        n = 0; 

    } 

 

    public int processBytes(byte[] in, int inOff, int len, byte[] out, 

        int outOff) 

    { 

        if ((inOff + len) > in.length) 



42 
 

        { 

            throw new DataLengthException("input buffer too short"); 

        } 

 

        if ((outOff + len) > out.length) 

        { 

            throw new OutputLengthException("output buffer too short"); 

        } 

 

        for (int i = 0; i < len; i++) 

        { 

            s = P[(s + P[n & 0xff]) & 0xff]; 

            byte z = P[(P[(P[s & 0xff]) & 0xff] + 1) & 0xff]; 

            // encryption 

            byte temp = P[n & 0xff]; 

            P[n & 0xff] = P[s & 0xff]; 

            P[s & 0xff] = temp; 

            n = (byte) ((n + 1) & 0xff); 

 

            // xor 

            out[i + outOff] = (byte) (in[i + inOff] ^ z); 

        } 

 

        return len; 

    } 

 

    public void reset() 

    { 

        initKey(this.workingKey, this.workingIV); 

    } 

 

    public byte returnByte(byte in) 

    { 



43 
 

        s = P[(s + P[n & 0xff]) & 0xff]; 

        byte z = P[(P[(P[s & 0xff]) & 0xff] + 1) & 0xff]; 

        // encryption 

        byte temp = P[n & 0xff]; 

        P[n & 0xff] = P[s & 0xff]; 

        P[s & 0xff] = temp; 

        n = (byte) ((n + 1) & 0xff); 

 

        // xor 

        return (byte) (in ^ z); 

    } 

} 

 

 

 

SPRITZ 

 

Important functions and java coding are given as below for VMPC algorithm. 

 

public class Spritz { 

 

  private static final int SPRITZ_N=256; 

 

  private int i; 

  private int j; 

  private int k; 

  private int z; 

  private int a; 

  private int w; 

 

  private int[] S = new int[SPRITZ_N]; 

 

  private static enum ProgramMode { 



44 
 

    ENCRYPT, 

    DECRYPT 

  }; 

 

  private static final int IV_SIZE=10; 

 

  public Spritz() { 

 

    i = 0; 

    j = 0; 

    k = 0; 

    z = 0; 

    a = 0; 

    w = 1; 

   

    for(int v=0; v < SPRITZ_N; v++) { 

      S[v] = v; 

    } 

     

  } 

 

  private int low(byte b) { 

    return (b & 0x0F); 

  } 

 

  private int high(byte b) { 

    return ((b & 0xFF) >>> 4); 

  } 

 

  private void swap(int a, int b) { 

    int tmp = S[a]; 

    S[a] = S[b]; 

    S[b] = tmp; 



45 
 

  } 

 

  public static final int gcd(int x1,int x2) { 

     

    if(x1<0 || x2<0) { 

      throw new IllegalArgumentException("Cannot compute the GCD if one integer is 

negative."); 

    } 

 

    int a1,b1,g1,z1; 

 

    if(x1>x2) { 

      a1 = x1; 

      b1 = x2; 

    } else { 

      a1 = x2; 

      b1 = x1; 

    } 

 

    if(b1==0) return 0; 

 

    g1 = b1; 

    while (g1!=0) { 

      z1= a1%g1; 

      a1 = g1; 

      g1 = z1; 

    } 

    return a1; 

  } 

 

  private void update() { 

    i = ((byte) (i + w)) & 0xff; 

    j = ((byte) (((byte) (k + S[(byte)(j + S[i]) & 0xff]) & 0xff))) & 0xff; 



46 
 

    k = ((byte) (i + k + S[j])) & 0xff; 

    swap(i, j); 

  } 

 

  private void whip(int r) { 

    for(int v = 0; v < r; v++) { 

      update(); 

    } 

 

    do { 

      w = ((byte) (w + 1)) & 0xff; 

    } while(gcd(w, SPRITZ_N) != 1); 

 

  } 

 

  private void crush() { 

    for(int v=0; v < (SPRITZ_N / 2); v++) { 

      if((S[v]) > S[SPRITZ_N - 1 - v]) { 

        swap(v, SPRITZ_N - 1 - v); 

      } 

    } 

  } 

 

  private void shuffle() { 

    whip(SPRITZ_N * 2); 

    crush(); 

    whip(SPRITZ_N * 2); 

    crush(); 

    whip(SPRITZ_N * 2); 

    a = 0; 

  } 

 

  private void absorb_nibble(int x) { 



47 
 

    if(a == (SPRITZ_N/2)) { 

      shuffle(); 

    } 

 

    swap(a, (byte) ((SPRITZ_N/2) + x) & 0xff); 

     

    a = ((byte) (a + 1)) & 0xff; 

  } 

 

  private void absorb_byte(byte b) { 

    absorb_nibble(low(b)); 

    absorb_nibble(high(b)); 

  } 

 

  private void absorb(byte[] I) { 

    for(int v=0; v < I.length; v++) { 

      absorb_byte(I[v]); 

    } 

  } 

  

  private void absorb_stop() { 

    if(a == SPRITZ_N/2) { 

      shuffle(); 

    } 

 

    a = ((byte) (a + 1)) & 0xff; 

  } 

 

  private byte drip() { 

    if(a != 0) { 

      shuffle(); 

    } 

 



48 
 

    update(); 

 

    z = S[(byte)(j + S[(byte)(i + S[(byte)(z + k) & 0xff]) & 0xff]) & 0xff]; 

 

    return (byte) z; 

  } 

 

  public static void print_usage() { 

    System.out.println("Usage:\n" + 

           "  spritz [mode] [key] [input file] [output file]\n" + 

           "\n" +  

           "Options: \n" + 

           "  mode: encrypt / decrypt\n" +  

           "  key: encryption key, may be up to 245 bytes long\n" + 

           "  input file: the input to read\n" +  

           "  output file: the input to write"); 

 

  } 

 

  public static void main(String[] args) {  

 

    if(args.length < 3) { 

      print_usage(); 

      System.exit(0); 

    } 

    

    ProgramMode program_action = null; 

    byte[] key; 

    byte[] iv = new byte[IV_SIZE]; 

    Spritz spritz; 

    InputStream in = null; 

    OutputStream out = null; 

    int c=0; 



49 
 

 

    if(args[0].equals("encrypt")) { 

      program_action = ProgramMode.ENCRYPT; 

    } else if(args[0].equals("decrypt")) { 

      program_action = ProgramMode.DECRYPT; 

    } else { 

      System.out.println("Unknown mode " + args[0] + "."); 

      print_usage(); 

      System.exit(0); 

    } 

 

    key = args[1].getBytes(); 

 

    if(args.length >= 3) { 

      try { 

        in = new FileInputStream(args[2]); 

      } catch(Exception ex) { 

        System.out.println("Input file " + args[2] + " not found."); 

        System.exit(0); 

      } 

    } 

 

    if(args.length >= 4) { 

      try { 

        out = new FileOutputStream(args[3]); 

      } catch(Exception ex) { 

        System.out.println("Output file " + args[3] + " not found."); 

        System.exit(0); 

      } 

    } 

 

    if(program_action == ProgramMode.ENCRYPT) { 

      SecureRandom random = new SecureRandom(); 



50 
 

      random.nextBytes(iv); 

      try {  

        out.write(iv);  

      } catch(Exception ex) { 

        ex.printStackTrace(System.out); 

        System.exit(0); 

      } 

    } else if (program_action == ProgramMode.DECRYPT) { 

      int r = 0; 

      try { 

        r = in.read(iv); 

      } catch(Exception ex) { 

        ex.printStackTrace(System.out); 

        System.exit(0); 

      } 

      if(r != IV_SIZE) { 

        System.out.println("Could not read initialisation vector."); 

        System.exit(0); 

      } 

    } 

 

    spritz = new Spritz(); 

    spritz.absorb(key); 

    spritz.absorb_stop(); 

    spritz.absorb(iv); 

 

    try { 

 

      c = in.read(); 

 

      while(c != -1) { 

        byte r=0; 

   



51 
 

        if(program_action == ProgramMode.ENCRYPT) { 

          r = (byte)(c + (spritz.drip() & 0xff)); 

        } else if (program_action == ProgramMode.DECRYPT) { 

          r = (byte)(c - (spritz.drip() & 0xff)); 

        } 

   

        out.write(r); 

        c = in.read(); 

   

      } 

 

      in.close(); 

      out.close(); 

    } catch(Exception ex) { 

      ex.printStackTrace(System.out); 

      System.exit(0); 

    } 

 

    System.exit(0); 

  } 

 

} 




