

Tribhuvan University

Institute of Science and Technology

 Automated Live Migration of Virtual Machines in Cloud Data Center

A Dissertation

Submitted To

Central Department of Computer Science & Information Technology

Tribhuvan University,

Kirtipur, Kathmandu, Nepal

In Partial Fulfillment of the Requirements for the Master’s Degree of Science

in

Computer Science & Information Technology

By:

Ramesh Tamang

(15th September 2019)

Tribhuvan University

Institute of Science and Technology

 Automated Live Migration of Virtual Machines in Cloud Data Center

A Dissertation

Submitted To

Central Department of Computer Science & Information Technology

Tribhuvan University, Kirtipur, Kathmandu, Nepal

In Partial Fulfillment of the Requirements for the

Master’s Degree in Computer Science & Information Technology

By:

Ramesh Tamang

(15th September 2019)

Supervisor

Prof. Dr. Shashidhar Ram Joshi (IOE, TU)

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and no sources other than the listed here

have been used in this work.

………………………

Ramesh Tamang

Date: 15th September 2019

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

Supervisor’s Recommendation

I hereby recommend that this dissertation prepared under my supervision by Mr. Ramesh Tamang

entitled “Automated Live Migration of Virtual Machines in Cloud Data Center” in partial

fulfilment of the requirements for the degree of M.Sc. in Computer Science and Information

Technology.

Prof. Dr. Shashidhar Ram Joshi

Department of Electronics and Computer Engineering

Institute of Engineering,

Pulchowk, Lalitpur, Nepal.

Date: 15th September 2019

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science & Information Technology

LETTER OF APPROVAL

We certify that we have read this dissertation work and in our opinion it is satisfactory in the scope

and quality as a dissertation in the partial fulfilment for the requirement of Master’s Degree in

Computer Science and Information Technology.

Evaluation Committee

______________________________ ________________________________

 Asst. Prof. Nawaraj Paudel Prof. Dr. Shashidhar Ram Joshi

Central Department of Computer Science Department of Electronics & Computer

 & Information Technology, Engineering, Institute of Engineering,

Tribhuvan University, Kathmandu, Nepal Pulchowk, Kathmandu, Nepal

 (Head of Department) (Supervisor)

____________________________ _______________________________

 Mr. Lochan Lal Amatya Mr. Bal Krishna Subedi

 (External Examiner) (Internal Examiner)

Date: 15th September 2019

i

Acknowledgement

Firstly, I would like to express my sincere gratitude to my respected supervisor Prof. Dr.

Shashidhar Ram Joshi of Institute of Engineering (IOE) for his generous advice, inspiring

guidance and encouragement throughout my research work. His guidance helped me in all the time

of research and writing of this dissertation. Without his kind and patient review of this work, it is

impossible to complete my research.

Beside my supervisor, I would also like to thank Mr. Jagdish Bhatta, faculty member of Central

Department of Computer Science and Information Technology (CDCSIT) for his insightful

comments and valuable suggestions.

Similarly, I would like to extend my gratitude to Asst. Prof. Nawaraj Paudel (HOD) CDCSIT,

faculties Prof. Dr. Subarna Shakya, Mr. Dheeraj Kedar Pandey, Mr. Sarbin Sayami, Mr. Bikash

Balami, Mr Arjun Saud and Mrs. Lalita Sthapit of Central Department of Computer Science and

Information Technology, Tribhuvan University.

Last but not the least, I would like to thank my parents and to my sister Anju Tamang for supporting

me spiritually throughout writing this dissertation and my life in general.

ii

Abstract

The thesis entitled “Automated Live Migration of Virtual Machines in Cloud Data Center”

involves the study and implementation of load balancing algorithm for Virtual Machine

Management in the cloud infrastructure. The study is focused on dynamic resource scaling and

live migration algorithm of virtual machines to achieve the load balancing in the cloud

infrastructure. As data centers grow sharply, they find themselves accommodating an increasing

number of Physical Machines and Virtual Machines. This development requires an effective

resource management in data centers. As a result, the load is evenly distributed and service level

agreements (SLAs) are met. From this point of view, load balancing and live migration are

becoming essential processes for data center management. In cloud, computing resources are

provided as a service to its clients across the globe based on demand. Huge demand for cloud

resources results in overutilization by degrading the performance of the servers whenever there is

a heavy load. It is necessary to distribute the load across the servers in cloud by taking into

consideration of allocating the right amount of resources dynamically based on the load to improve

the performance of applications running inside virtual machines. Experiment is conducted on Xen

servers in the real physical hardware and in the virtualized environment and implemented dynamic

resource scaling and live migration technique to manage load in the virtual machines running on

those Xen servers. The response time of virtual machine is used as a metric to measure the

performance of algorithms. After the implementation of dynamic resource scaling and live

migration technique, the improved performance of virtual machine in terms of response time and

efficient utilization of Xen server resources is observed.

Keywords:

Cloud Computing, Virtualization, Virtual Machine, Hypervisor, Automated Live Migration,

XenServer, Credit Scheduler, Resource Scaling, Load Balancing

iii

To my dear family

iv

Table of Contents

Acknowledgment i

Abstract ii

List of Figures viii

List of Tables x

Abbreviations xi

CHAPTER 1 INTRODUCTION AND BACKGROUND 1

 1.1 Cloud Computing 1

 1.2 Virtualization 1

 1.3 Virtual Machine Migration 2

 1.3.1 Off-line Migration 2

 1.3.2 Live Migration 2

 1.4 Automating Live Migration Process 4

 1.5 Load Balancing 4

 1.6 Problem Definition 5

 1.7 Objectives 6

CHAPTER 2 LITERATURE REVIEW 7

CHAPTER 3 METHODOLOGY 8

 3.1 Xen 8

 3.2 CPU Scheduler in Xen 8

 3.2.1 Borrowed Virtual Time 8

v

 3.2.2 Simple Earliest Deadline First 8

 3.2.3 Credit Scheduler 8

 3.3 System Architecture 9

 3.3.1 Resource Scaling Down Activity 10

 3.3.2 Resource Scaling Up Activity 11

 3.3.3 Live Migration Activity 12

 3.4 Algorithm 12

 3.4.1 Load Balancing and Live Migration Algorithm 12

 3.4.2 Algorithm for Scaling 15

CHAPTER 4 IMPLEMENTATION 17

 4.1 Experimental Setup 17

 4.2 System Specifications 19

 4.3 Oracle VM VirtualBox 21

 4.4 XenServer 21

 4.4.1 Introduction to XenServer 21

 4.4.2 Installing XenServer in Physical Hardware and Virtual Box 22

 4.5 Citrix XenCenter 26

 4.5.1 Introduction to XenCenter 26

 4.5.2 Installation 27

 4.6 Network File System 27

 4.6.1 Introduction to NFS 27

vi

 4.6.2 Installation 27

 4.7 VM install and Management in XenServer 28

 4.7.1 Using XenCenter GUI 28

 4.7.2 Using CLI 34

 4.7.3 XenServer and VM Management Commands in XenServer 35

 4.8 Apache 36

 4.9 Httperf 37

 4.10 Stress 38

 4.11 Implementation of Algorithms 38

 4.11.1 Shell Script 38

 4.11.2 Functions 39

CHAPTER 5 EXPERIMENT AND OBSERVATION 40

 5.1 Response Time in One-Minute Load Average from Physical Test Environment 41

 5.2 Response Time in Five-Minute Load Average from Physical Test Environment 42

 5.3 Response Time in One-Minute Load Average from Virtualized Test Environment 43

 5.4 Response Time in Five-Minute Load Average from Virtualized Test Environment 44

 5.5 Total Migration Time Calculation 44

 5.6 Evaluation 45

CHAPTER 6 CONCLUSION AND FUTURE WORK 47

 6.1 Conclusion 47

 6.2 Future Work 47

vii

References 48

Appendix A Screen Shots 50

Appendix B Source Code 58

viii

List of Figures

Figure 3.1: System Architecture………...…………………………………………………….….10

Figure 3.2: Sequence of activities to scale down the resources………………….………….……11

Figure 3.3: Sequence of activities to migrate VM to suitable target server………..…………….12

Figure 4.1: Experimental set up of XenServer cloud platform in physical hardware…………….17

Figure 4.2: Experimental set up of XenServer cloud platform in virtual environment…………..18

Figure 4.3: XenServer Installation Start Console………………………………………………...22

Figure 4.4: XenServer Installation Progress Bar…………………………………………………23

Figure 4.5: XenServer Installation Completion…………………………...……………………..24

Figure 4.6: XenServer System Configuration Console………………………………………......25

Figure 4.7: Xen Server Login Console…………………………….………………………….….26

Figure 4.8: XenCenter Download from Xenserver………………………………………....……27

Figure 4.9: Start Ctirix XenCenter software……………………………………....……………..29

Figure 4.10: XenCenter VM Management Menu…………………………………………..……29

Figure 4.11: VM Selection Template………………………………………………………….…30

Figure 4.12: Enter the name of the operating system……………………………………………30

Figure 4.13: Selection of installation media………………………………… ………………….31

Figure 4.14: CPU and Memory allocation………………………………………………………32

Figure 4.15: Disk information for VM……………………………………… ………………….32

Figure 4.16: Configure Network Settings…………………………………… ……………........33

Figure 4.17: VM Console in XenCenter……………………………………………………...…34

Figure 5.1 Response Time in One-Minute Load Average from Physical Test Environment…....41

ix

Figure 5.2 Response Time in Five-Minute Load Average from Physical Test Environment……42

Figure 5.3 Response Time in One-Minute Load Average from Virtualized Test Environment....43

Figure 5.4 Response Time in Five-Minute Load Average from Virtualized Test Environment…44

x

List of Tables

Table 4.1: Resource Allocation for XenServer Platform Setup on dedicated hardware..................20

Table 4.2: Resource Allocation for XenServer Platform in VirtualBox...20

Table 5.1: Total Migration Time Calculation of VM live migration in Physical Test Environment….45

Table 5.2: Total Migration Time Calculation of VM live migration in Virtual Test Environment……45

xi

Abbreviations

CLI Command Line Interface

CSP Cloud Service Provider

DNS Domain Name System

GUI Graphical User Interface

IAAS Infrastructure as a Service

IP Internet Protocol

NFS Network File System

NUC Next Unit of Computing

PAAS Platform as a Service

SAAS Software as a Service

SLA Service Level Agreement

VM Virtual Machine

1

CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Cloud Computing

Cloud Computing is a new paradigm where computing resources are made available to the users

on demand in the pay as you go model. Cloud Computing provides computing resources mainly

in three forms which are: Software as a Service (SaaS), Platform as Service (PaaS) and

Infrastructure as a Service (IaaS). In SaaS, a Software application is made available to the users.

One of the examples of SaaS is Salesforce. In PaaS, application development platform is made

available to the users. Microsoft Azure is one of the examples for PaaS. In IaaS, an Infrastructure

is provided as a service to the users. Amazon, Rackspace are some of the providers who offer IaaS

service to the users.

Cloud based services play a major role in collaborative computing on the Internet across the globe.

Managing the computing and network resources to serve dynamic demands of the tenants of an

infrastructure-as-a-service (IaaS) cloud is a major challenge for the cloud service provider (CSP).

Accommodating the custom resource requirements often result in the migration of virtual

machines (VMs) already executing on a server. Live VM migrations, which relocates a VM

without halting, helps the CSP to achieve this objective [1].

The essential characteristics of cloud computing are rapid elasticity, on-demand self-service,

resource pooling, broad network access, and measured service [2]. Cloud Computing Deployment

Model refers to the location and management of the infrastructure cloud services. The deployment

models of cloud computing are Private Cloud, Community Cloud, Public Cloud and Hybrid Cloud.

The key technology behind cloud computing is virtualization and it provides a means for migration

of virtual machines from one server to another.

1.2 Virtualization

Virtualization in cloud computing is the ability to run multiple operating systems on a single

physical system and share the underlying hardware resources. Some of the benefits of

virtualization are Server Consolidation, Resource Load Balancing, Backup and Restore, Security

and Scaling. The way a virtualized server functions is that it introduces an abstraction layer

2

between the hardware and the operating system. This abstraction layer is called the hypervisor [2].

The main characteristics of virtual machine are isolation, ease of testing and mobility.

Hypervisor are divided into two types which are Bare Metal Hypervisor and Hosted Hypervisor.

The Bare Metal Hypervisor is installed on the hardware itself which has a significantly higher level

of control over the resources available to it because it does not have to go through an intermediary

to access the resources. Some of the examples of bare metal hypervisor are Xen, VMware and

Hyper-V. The Hosted Hypervisor is not installed on the hardware itself, but within an operating

system on the server, and thus it is under the control of that operating system. Some of the example

of Hosted Hypervisor are VMware Player, VirtualBox.

1.3 Virtual Machine Migration

Virtual machine migration is the process of moving virtual machine from one physical host to

another physical host with minimal impact on the operation of other virtual machines. The virtual

machine migration includes migration of entire operating system and all of its applications as one

unit between physical machines. The migration of VM can be divided into two categories which

are Off-line VM Migration and Live VM Migration.

1.3.1 Off-line Migration

Off-line migration is also called Non-Live Migration where VM is paused at the source host and

all the states of VM is transferred to destination host and then finally resuming of VM is done at

the new physical host. The advantage of offline migration is that the process is simple, but the

disadvantage is larger down time.

1.3.2 Live Migration

Live Migration is a key feature of virtualization. It is the process of moving the VM from one

physical host to another without interrupting any of the VM running services. The key advantage

of live migration is user-invisible down time with fast network.

The live migration process requires transfer of the complete states of a VM from source host to

destination host. The complete state of VM includes all the resources that are used in the source

host by the VM such as volatile storage, permanent storage, internal state of the virtual CPUs, and

3

network state. The network attached storage provides the permanent storage in the data centre, so,

it is not required to move the permanent storage during the migration of VM. The internal states

of the virtual CPUs are very small amount of data which can be only a few kilobytes in size, so it

does not take a considerable amount of time to be transferred. Longer periods are required to

transfer the volatile memory contents which affect the performance of the live migration process.

More attention is given therefor to improve the transfer of volatile memory from the source to the

destination [3].

The live migration process involves four main stages:

1. Setup stage: This stage involves selecting the migrated VM along with destination physical host.

It also involves setting up a transfer control protocol (TCP) connection to migrate VM’s

configuration data between the source and the destination host. Finally, during this stage the

memory is allocated and the skeleton of the VM is set up on the destination physical host.

2. Memory transfer stage: This stage includes the pre-copy of memory of the migrated VM to the

new allocated memory on the destination host.

3. Storage transfer stage: This stage includes transfer of an up-to-date copy of the virtual hard disks

from the source physical host to the destination physical host.

4. Network clean-up stage: This is the last stage of live migration process which involves updating

all network switches to make sure that all the connections that were opened before the migration

remain opened after the migration.

The performance of live migration of VM is measured by four metrics. They are as follows:

1. Downtime: This is the time period during which the VM is completely shut down.

2. Total migration time: This is the time period between the start of live migration until the resource

of the source host are released.

3. Time-to-responsiveness: This represents the time span after the resume phase has ended until

the VM achieves a certain guaranteed minimal utilization.

4

4. Amount of transferred data: This is the measurement of the amount of data received at the

destination host from the different sources.

The benefits of live migration are as follows:

1. Live VM migration finds its importance in load balancing among different physical servers.

When load of physical server increases, then VMs running onto it will be migrated to lightly loaded

servers for load balancing.

2. Transparent movement of Virtual Machine.

3. Live migration removes the problem of residual dependencies of Virtual machines [4].

1.4 Automating Live Migration Process

When the number of customers increases, the capacity of data centre should be increased by

increasing the physical infrastructure to accommodate the increased load. The addition of more

physical servers and other infrastructure is a continuous process in the data centre. So, managing

the entire datacentre running with large number of physical servers and virtual servers becomes

cumbersome task. The manual migration of VM to different host becomes difficult task in case

there is sudden change in workload. So, the live migration process should be automated which

helps to balance the workload in the data centre by distributing load to different system uniformly

and avoids performance degradation maintaining SLA with the customers.

First and foremost, priority of any organisation is to make sure that their customers are happy with

their strategy and trusting them, because customer is their source of income. So, organisations

always provide best and efficient techniques for their customers. The idea is to identify overloaded

host and underutilised host then pick a virtual machine from overloaded host and migrate it to

underutilised one having enough physical resources to accommodate it [4].

1.5 Load Balancing

Load balancing in the cloud is the process of distributing workloads and computing resources

efficiently across multiple computers, networks or server clusters to ensure that the resources are

optimally assigned and utilized. To achieve the load balancing condition on the cloud, there are

5

load balancing algorithm and live migration of VMs algorithm which are discussed in more detail

in the methodology section. The load balancing algorithm incorporates CPU and RAM scaling of

the cloud infrastructure and if it becomes inevitable then migration of VMs occurs to achieve load

balancing condition in the cloud.

1.6 Problem Definition

In Cloud Computing, dynamic resource allocation and load balancing is an interesting issue which

is open for research. The success of this rising model is dependent on the effectiveness of

techniques used to allocate the resources in most optimal way. To optimally allocate resources to

virtual machines and perform load balancing, need to determine a precise estimation of the load

that a particular virtual machine can handle. As the virtual machines seek more resources on the

go, the load experienced by the virtual machines increases exponentially. In some situation, the

virtual machine may be under-utilizing the allocated resources, in that situation, scaling down of

the resources is necessary. If the virtual machine is overloaded, in that situation scaling up of

resources is needed. If the virtual machine is overloaded and is beyond the scope of scaling,

migration of that particular virtual machine to a new host node will have to be performed which

can accommodate the resource demand of that virtual machine.

For the above problem definition, the following scenario has been taken up as the problem

statement.

Let C = {S1, S2, ..., Sn}, where C is a cloud and S1, S2, ., Sn are the servers. Let Sj = {Vj1, Vj2,,

Vjl} where Vj1, Vj2, ..., Vjl are the virtual machines in the server Sj . Let Vji = {Vid, Vcpu, Vram}

where Vid is the virtual machine Id, Vcpu is the speed of the processor and Vram is the RAM size

of the virtual machine. Let CPUmaxi and RAMmaxi be the changeable maximum CPU and RAM

respectively that can be allocated to the virtual machine Vi. Let R1, R2, R3, ...Rm be the response

time of the applications running in virtual machines and m is the total number of virtual machines

in the cloud. The problem is to allocate the right amount of CPUsci and RAMrmi with the help of

scaling and migration to each virtual machine Vi to ensure that the response time Ri is within the

acceptable range [5].

6

1.7 Objectives

The objectives of this research to improve the performance of applications running inside virtual

machine using dynamic resource scaling and automated live migration of virtual machine in the

cloud. The main objectives are listed below:

1. Implement load balancing in the Cloud through dynamic resource scaling and live migration of

Virtual Machines.

2. Performance analysis of Virtual Machines after load balance implementation in the Cloud.

7

CHAPTER 2

LITERATURE REVIEW

There has been some research work towards resource allocation and load balancing in the cloud.

In paper [5], authors present an algorithm which dynamically and efficiently allocate resources

based on the need and distribute the load across the servers. They presented an architecture which

consists of Xen Cloud Platform and they have used response time of virtual machines as a metric

for the algorithms. The authors showed that the proposed algorithms improved the performance of

applications running in virtual machines significantly by using the feature scaling and live

migration. In paper [6] author presents an architecture and algorithm named compare and balance.

The architecture uses a cron job to execute scripts on each host to monitor the resources like CPU

and IO load, and log their usage to the log directory on the shared storage. The algorithm runs on

each physical machine and dynamically migrates virtual machines from one node to another node

based on resource usage. In paper [7] author presents a mechanism for load balancing of virtual

machine resources based on genetic algorithm. The author considers historical data and current

state of the system and uses tree structure to mark the chromosome of genes and every mapping

solution is considered as one tree. Here scheduling node of the system in the first level is the root

node, all nodes in the second level represents physical nodes and all nodes in the third level

represents virtual machines. In paper [8], the author presents a mechanism based on weighted least

connection algorithm. For this, author considers the webservers running long-connectivity

applications. Exponential smoothing forecasting method is used as prediction algorithm and it

takes historical data and distinguishes them through the smoothing factor to let recent data make a

greater impact on the predictive value than long-term data. In paper [9] authors present dynamic

and integrated resource scheduling algorithm for Cloud datacentres. Here author considers the

factors like CPU, memory and network bandwidth and develops an integrated measurement for

the total imbalance level of a cloud datacentre as well as the average imbalance level of each server.

In paper [10] author presents a load balance model for the public cloud based on the cloud

partitioning concept with a switch mechanism to choose different strategies for different situations.

In paper [11], author presents a dynamic load balancing algorithm based on virtual machine

migration. The algorithm uses trigger strategy based on fractal methods. The strategy determines

the timing of the virtual machine migration through forecasting.

8

CHAPTER 3

 METHODOLOGY

This chapter describes the methodology used in order to achieve the objectives of this dissertation

work. For the problem that has been mentioned in the problem statement section, algorithms tested

in XenServer cloud environment which was setup in both dedicated hardware and in the virtualized

environment.

3.1 Xen

Xen is a hypervisor which allows the execution of multiple virtual machines on a single physical

machine. It is responsible for CPU scheduling of the all virtual machines running on the hardware

[5]. Xen abstracts the hardware for the virtual machines and also controls the execution of virtual

machines. Domain U (DOM U) are the virtual machines which has no direct access to physical

hardware on the machine. Domain 0 (DOM 0) is a virtual machine running on the Xen hypervisor

which has special rights to access physical I/O resources as well as interact with the other virtual

machines (DOM U). All Xen virtualization environments require DOM 0 to be running before

starting any other virtual machines.

3.2 CPU Scheduler in Xen

Xen has a variety of CPU schedulers in the past and Xen developers went through various CPU

scheduling algorithms. But among various algorithms, three algorithms: BVT (Borrowed Virtual

Time), SEDF (Simple Earliest Deadline First), and Credit scheduler utilized for a longer time due to

their efficiency.

3.2.1 Borrowed Virtual Time (BVT)

This algorithm was introduced in Xen 2.0 which is a virtual time-based fair-share CPU Scheduler

for Xen 2.0 and Xen 3.0 and the shares of CPU time were determined by their weights which is

known as context switch allowance.

3.2.2 Simple Earliest Deadline First (SEDF)

This algorithm was introduced in Xen 3.0 which provides weighted CPU sharing in an intuitive way

and uses real-time algorithms to ensure time guarantees but it was removed from Xen 4.6.

3.2.3 Credit Scheduler

The Credit scheduler is a fair share scheduler designed to divide CPU time between domains by

9

relative weight. It works in conjunction with SMP hardware to distribute load amongst multiple

virtual CPUs abstractions or VCPUs. While using the credit scheduler, each physical CPU manages

a queue of VCPUs which sorted by priority. Priority calculated with the number of credits consumed

by a given VCPU. The administrator defines credits. A VCPU can execute while it is under its limit.

When all credits have been consumed, it is considered over its limit. When credits are balanced, it

is under the limit [13]. VCPU is nothing but the share of physical CPU (PCPU) provided to guest

operating system or domain (VM). The credit scheduler algorithm sets two parameters weight and

cap for each guest operating system which are described as below:

Weight: Each virtual machine uses CPU with the ratio of weight values. For example: A guest

operating system with weight equal to 512 means, it is time to take up physical CPU is twice than

guest operating system with weight equal to 256. We can set weight values from a range between 1

and 65535.

Capacity [Cap]: Cap is a limit that how much maximum time a guest operating system can get

CPU. A guest operating system with cap equal to 100 means it occupies a physical CPU time, a

guest operating system with a cap equal to 50 takes only half that time. The default value of cap is

0 which means there is no limit.

3.3 System Architecture

The basic architecture consists of N number of XenServers, NFS, requester (client) and cloud

controller which is shown in the figure 3.1. Each XenServer has a Xen hypervisor to run multiple

virtual machines. The requester sends request for computing resources through cloud controller

and the required computing resources are provided in the form of virtual machines.

10

Figure 3.1: System Architecture [5]

3.3.1 Resource Scaling Down Activity

The figure 3.2 shows the interaction among various components of Xenserver when applications

are running inside a virtual machine. During the interaction, the DOM_0 sends a

Req_ResourceStatus message to the virtual machine, requesting the details of resource usage.

If the resources granted to the virtual machine is underutilized, the virtual machine sends a

Res_Underloaded message back to the DOM_0 via the hypervisor. The DOM_0 makes use of the

existing scaling methods to indicate the level to which the resources must be scaled down. The

information provided by the DOM_0 is then sent to the hypervisor which performs the job of scaling

down of the resources, the result of which is reflected in the operation of the virtual machine.

11

Figure 3.2: Sequence of activities to scale down the resources [5]

3.3.2 Resource Scaling Up Activity

The figure 3.3 shows the interaction among various components of Xenserver where the virtual

machine is overloaded, and which requires more resources to accommodate the load. The DOM_0

sends a Req_ResourceStatus message to the virtual machine through the hypervisor requesting

the details of resource utilization. The virtual machine sends a Res_Overloaded message back

to the DOM_0 stating that resources are overloaded. The DOM_0 searches for resources that are not

used or wasted by other virtual machine in the cloud pool. When resources are found, the resources

are allocated to the virtual machine as per requirements which is the process of scaling up of

resources.

12

Figure 3.3: Sequence of activities to migrate VM to suitable target server [5]

3.3.3 Live Migration Activity

In case if there are no enough resources that can be provided in the current Xenserver, the virtual

machine needs to be migrated to a suitable server. The DOM_0 identify the suitable target server in

the cloud pool and migrates the virtual machine to that target server. The server to which the virtual

machine is migrated is decided based on the selection criteria provided in the algorithm. Based on

this, hypervisor initiates the migration of the virtual machine to the suitable target server.

3.4 Algorithm

There are two algorithms which perform resource allocation, resource scaling and live migration of

virtual machine which are described as below.

3.4.1 Load Balancing and Live Migration Algorithm

The Load Balancing algorithm verifies if the CPU usage and RAM usage are in the defined limits.

After the verification process is completed, the algorithm initially scales the resources in an upward

or downward manner based on resource availability. If the resources required for scaling are not

available, then algorithm performs live migration of relevant virtual machines from that specific

13

XenServer node to another suitable XenServer node.

This algorithm [5] combines the processes of scaling and migration by calling the relevant functions.

 Input: CPU utilization

Output: Scaling or Migration

Algorithm:

Amt ← Resource in Percentage

T ← Time in second

CPU ← CPU Utilization

RAM ← RAM Utilization

while VM is running do

 if CPU > UpperThreshold1 and CPU < UpperThreshold2

 then

 Scale Resource up by Amt

 Wait for duration T

 if CPU > UpperThreshold1 and CPU < UpperThreshold2

 then

 Scale Resource up by Amt

 Wait for duration T

 if CPU > UpperThreshold1 and < UpperThreshold2

 then

 MigrateToServer()

 end if

14

 end if

else if CPU > UpperThreshold2 then

 Scale Resource up by 2*Amt

if CPU > UpperThreshold2 then

 MigrateToServer()

end if

else if CPU < LowerThreshold then

 Scale Resource down by Amt

 Wait for duration T

if CPU < LowerThreshold then

 Scale Resource down by Amt

Wait for duration T

 if CPU < LowerThreshold then

 MigrateToServer

 end if

 end if

end if

if RAM > UpperThreshold1 and RAM < UpperThreshold2

then

 Scale Resources up by Amt

 Wait for duration T

15

if RAM > UpperThreshold1 and RAM < UpperThreshold2

then

 Scale Resource up by Amt

 Wait for duration T

if RAM > UpperThreshold1 and < UpperThreshold2

 then

 MigrateToServer()

 end if

 end if

else if RAM > UpperThreshold2 then

 Scale Resource up by 2*Amt

 if RAM > UpperThreshold2 then

 MigrateToServer()

 end if

end if

end while

3.4.2 Algorithm for Scaling

This algorithm [5] performs the process of scaling of CPU or RAM according to the input parameters

supplied to it. The credit scheduler is used to scale the CPU and Xen API based command xe vm-

param-set has been used to scale RAM as required.

Algorithm:

Amt ← Resource in Percentage

if Resource Name = CPU and Scale Type = UP then

16

 Cap ← Current CPU cap value of VM

 if Cap < 100 then

 Scale up the CPU by Amt

 end if

else if Resource Name = CPU and Scale Type = DOWN

then

 Cap ← Current CPU cap value of VM

 if Cap < 20 then

 Scale down the CPU by Amt

 end if

 else if Resource Name = RAM then

 SMin ← Static min value of RAM

 SMax ← Static max value of RAM

 DMin ← Dynamic min value of RAM

 DMax ← Dynamic max value of RAM

if Scale Type = DOWN and DMax < SMin then

 Scale down RAM by Amt

else if Scale Type = UP and DMax < SMin then

 Scale up RAM by Amt

 end if

end if

17

CHAPTER 4

IMPLEMENTATION

 This chapter describes about the implementation details of the methodology presented in the

previous chapter. Experiment was performed setting up Xen Cloud platform in physical hardware

and in the virtualized environment in virtual box as Xenserver supports Para-virtualization.

4.1 Experimental Set-up

Figure 4.1: Experimental set up of XenServer cloud platform in physical hardware

Mikrotik Router
RB750Gr3

(Switch Mode)

XenCenter
IP: 192.168.254.5

NFS Server
IP:192.168.254.150

0

Client
IP: 192.168.254.4

VM1

XenServer1
(Intel NUC7i3BNH)
IP: 192.168.254.90

XenServer2
(Intel NUC7i3BNH)
IP: 192.168.254.91

XenServer3
(Intel NUC7i3BNH)
IP: 192.168.254.92

VM1

IP: 192.168.254.160

VM3

IP: 192.168.254.161

VM4

IP: 192.168.254.162

Huawei HG8245
GPON Router

192.168.254.0/24

18

Figure 4.2: Experimental set up of XenServer cloud platform in virtual environment

Figure 4.1 shows XenServer cloud architecture setup in physical hardware. The set up consists of

three XenServers installed on three identical Intel NUC hardware having configuration Intel i3 7th

generation 2.40 Ghz processor, 8GB RAM on two servers and 4GB RAM in one server. NFS is

created on another machine (Dell Laptop) having configuration Intel i3 6th generation 2.0Ghz

processor, 1TB storage and 4GB RAM with CentOS 7 operating system. The setup also consists

of XenCenter enabled system to manage XenServer and Virtual Machines through GUI which was

installed in another machine (Dell Laptop) having configuration Intel i5 6th generation processor

with Windows 10 operating system. Another machine MacBook Pro with configuration Intel i5

processor having MacOS as operating system was used as a client test machine. All the above

machines were connected to a network 192.168.254.0/24 by using Huawei HG8245 GPON Router

and Mikrotik Router RB750Gr3 in switch mode as shown in the figure 4.1. Three virtual machines

having configuration of 1GB RAM and 10GB hard disk were created and assigned to Xenservers

as shown in the figure 4.1 above.

VirtualBox
Network

192.168.56.0/24

XenCenter
IP: 192.168.56.1

NFS Server
IP:192.168.56.10

2

Client
IP: 192.168.56.5

VM
1

XenServer1
IP: 192.168.56.13

XenServer2
IP: 192.168.56.14

XenServer3
IP: 192.168.56.15

VM1

IP: 192.168.56.20

VM2

 IP: 192192.168.56.21

VM3

 IP: 192.168.56.22

19

The figure 4.2 shows XenServer cloud architecture setup in virtualized environment. The setup is

exactly same as the physical one, but the environment was setup in the single machine having

configuration intel i3 7th generation processor, 12GB of RAM and Windows10 as operating

system. In the system, VirtualBox was installed and on top of that three XenServers, one NFS

server, three VMs, one client test VM were setup. Also, XenCenter was installed in the same

Windows10 host and all the servers were interconnected in the network of 192.168.56.0/24

provided by VirtualBox. The details of resource allocation are given in the table 4.2 and table 4.3

for physical and virtualized environment setup.

In both test environment, the load balancing algorithm is stored locally in the Xenservers and begin

execution as when load is generated on the test VMs. The load balancing algorithm, then decides

on whether to scale the resources for the virtual machines or decides on live migration of virtual

machines if necessary, thereby reducing the response time of the virtual machines. The availability

of resources is checked by a Xen api called xentop.

4.2 System Specifications

The system specifications used to establish the experimental setup are as follows:

Hardware Model:

1. Intel NUC: Intel NUC7i3BNH, Processor: Intel® Core ™ i3-7100U CPU @ 2.40GHz, RAM:

8GB DDR4, Hard Disk: 1TB

2. Dell Inspiron 3467: Processor: Intel® Core™ i3-6006U Processor @2.00 GHz, RAM: 4 GB

RAM, Hard Disk: 1TB

3. Dell Inspiron 5559: Processor: Intel Core i5-6200U Processor @2.3Ghz. RAM: 8GB, Hard

Disk: 1TB

4. Apple MacBook Pro: Processor: Intel Core i5 processor @ 2.3Ghz, RAM: 8GB, Hard Disk:

256GB SSD

5. Huawei HG8245 GPON Router

6. Mikrotik Router RB750Gr3

20

From the above hardware system, following resources are assigned to XenServer Platform as

shown in the table below:

Table 4.1: Resource Allocation for XenServer Platform Setup on dedicated hardware

S.N. Host IP Address Disk (GB) RAM

(GB)

CPU OS

1 XenServer1 192.168.254.90 1000 8 Intel® i3-7100U XenServer7.0

2 XenServer2 192.168.254.91 1000 8 Intel® i3-7100U XenServer7.0

3 XenServer3 192.168.254.92 500 4 Intel® i3-7100U XenServer7.0

4 NFS 192.168.254.150 1000 4 Intel® i3-6006U CentOS 7.3

5 Client 192.168.254.4 256 8 Intel Core i5 MacOS

6 XenCenter 192.168.254.5 1000 8 Intel® i5-6200U Windows 10

Table 4.2: Resource Allocation for XenServer Platform in VirtualBox

S.N. Host IP Address Disk (GB) RAM

(MB)

CPU (Virtual) OS

1 XenServer1 192.168.56.13 65 2048 Intel® i3-7100U XenServer7.0

2 XenServer2 192.168.56.14 65 2048 Intel® i3-7100U XenServer7.0

3 XenServer3 192.168.56.15 65 2048 Intel® i3-7100U XenServer7.0

4 NFS 192.168.56.102 65 512 Intel® i3-7100U CentOS 7.3

5 VM1 192.168.56.20 10 512 Intel® i3-7100U CentOS 6.9

6 VM2 192.168.56.21 10 512 Intel® i3-7100U CentOS 6.9

7 VM3 192.168.56.22 10 512 Intel® i3-7100U CentOS 6.9

8 Client VM 192.168.56.5 10 512 Intel® i3-7100U CentOS 7.3

9 XenCenter 192.168.56.1 500 3584 Intel® i3-7100U Windows 10

21

4.3 Oracle VM VirtualBox

VirtualBox is a general-purpose full virtualizer for x86 hardware, targeted at server, desktop and

embedded use [17]. It is a powerful x86 and AMD64/Intel64 virtualization product for enterprise

as well as for home lab environment use which is freely available as Open Source Software under

the terms of the GNU General Public License (GPL) version 2. It runs on Windows, Linux,

Macintosh, and Solaris hosts and supports a large number of guest operating systems. It has a

feature of extending the capabilities of computer so that it can run multiple OSes, inside multiple

virtual machines, at the same time.

4.4 XenServer

 4.4.1 Introduction to XenServer

The XenServer is an open source virtualization platform that allows the building of both private

and public clouds. The XenServer includes Xen Hypervisor, selected Xen API based tools and an

integrated solution package for storage and networking in cloud. The additional functionality

offered by XenServer platform are:

i. Virtual Machine Lifecycle: This functionality includes the features of screen snapshots,

migration of the virtual machines and creation of checkpoints.

ii. Resource Pools: Resource pools can be created, thereby enabling flexible storage and

networking.

iii. Event Tracking: Particular events of interest can be tracked by using the progress and the

notification features.

iv. Performance Monitoring: The XenServer offers real time performance monitoring and

alerting.

v. XenMotion Live Migration: XenMotion is a feature than enables the migration of a virtual

machine from one server to another server. This functionality also enables cross pool

migration.

22

4.4.2 Installing XenServer in Physical Hardware and Virtual Box

The installation steps of XenServer on physical hardware and VirtualBox are exactly same except

booting process of XenServer OS for the first time while installing. In case of physical hardware,

a USB bootable device of Xenserver 7.0 was created and booted it into the machine. In case of

VirtualBox, ISO image file of XenServer 7.0 was used and booted it via Virtual CD drive. In both

cases, the remaining installation steps are same, so VirtualBox based installation steps are given

below:

i. Create virtual machine with appropriate resource allocation in VirtualBox and start it. Then

select XenServer installation image ISO file from computer on virtual CD drive of virtual

box which will boot the virtual machine with ISO image.

ii. After the initial boot messages, the installer does some hardware detection and

initialization.

iii. Then Welcome to XenServer Setup screen is displayed. Choose OK to proceed.

Figure 4.3: XenServer Installation Start Console

iv. The next screen asks to specify the source of the installation packages. Select Local media

and choose OK to proceed.

23

v. Provide Hostname, IP Address, Subnet, Gateway and DNS for XenServer in Network

Configuration Section. Need to provide static IP for XenServer host node.

vi. In the next prompt, set a root password. Enter the desired password and enter it again to

verify it.

vii. Now installation is ready to proceed, ignore any warning messages which says erasing data

from current disk etc. Choose Install XenServer to proceed. A progress bar is displayed as

the installation starts.

Figure 4.4: XenServer Installation Progress Bar

24

viii. Once the installation is completed successfully, then screen is displayed as shown in the

figure 4.5. Then need to click OK to reboot server for first boot up process. Hence,

installation of Xenserver node is completed. Need to follow same steps to install other

XenServer nodes, but IP Address and hostname change for other nodes.

Figure 4.5: XenServer Installation Completion

25

ix. The Xenserver Console after booting up looks like as below:

Figure 4.6: XenServer System Configuration Console

26

x. The local shell access console looks like shown in figure 4.7.

Figure 4.7: Xen Server Login Console

4.5 Citrix XenCenter

 4.5.1 Introduction to XenCenter

Citrix XenCenter is a graphical user interface on the windows platform which is used to manage

virtual machines on XenServer. Some of the features of XenCenter include the following:

• Full virtual machine installation, configuration and lifecycle management.

• Dynamic memory management.

• VM snapshot management.

• Full memory snapshots and VM rollback.

• Performance metrics display.

• Long term metrics gathering and analysis.

27

4.5.2 Installation

1. Open the web browser and type IP address of any one Xen Server which will show a

webpage with link to download XenCenter.

2. Click on XenCenter Installer link and download it

Figure 4.8: XenCenter Download from Xenserver

3. Open downloaded Setup file XenCenterSetup.exe and then follow the steps to install it.

4. There is no specific requirement for installation, just click Next, Next and finish it.

4.6 Network File System

4.6.1 Introduction to NFS

Network File System (NFS) is a distributed file system protocol which allows the user to access

files over a network similar to how files are accessed locally. The NFS has been used as a shared

storage for VMs where storage is allocated while creating VM in XenServer. The main reason for

implementing NFS shared storage is due to live migration of virtual machines which requires

shared storage system.

4.6.2 Installation

The operating system used for NFS server was CentOS7.3 which supports NFS. The installation

steps are as follows:

28

As the first step, the following packages were installed on the CentOS server with yum:

yum install nfs-utils

Created shared storage for virtual hard disk and ISO images for VMs with following command:

#mkdir /nfsfileshare

#mkdir /iso

Shared NFS directories over network so that XenServer and Virtual Machines can access those

directories, adding following lines in /etc/exports file:

vi /etc/exports

/nfsfileshare *(rw,sync,no_root_squash)

/iso *(rw,sync,no_root_squash)

Given appropriate permissions to those shared directories from NFS server so that XenServer can

access shared directory:

#chmod -R 755 /nfsfileshare

#chmod -R 755 /iso

NFS has been restarted with following command:

#systemctl restart nfs-server

4.7 VM install and Management in XenServer

Both XenCenter client software and CLI were used for virtual machine installation and

management inside XenServer node which are descried as below:

4.7.1 Using XenCenter GUI (Graphical User Interface)

i. Search installed XenCenter App from Windows Search Box and Open it.

29

Figure 4.9: Start Ctirix XenCenter software

ii. Go to VM menu from XenCenter and Click on New VM.

Figure 4.10: XenCenter VM Management Menu

iii. Select an operating system template for new virtual machine and then click Next.

30

Figure 4.11: VM Selection Template

iv. Enter a name and description for the new virtual machine.

Figure 4.12: Enter the name of the operating system

v. Enter the location of the guest operating system on installation Media section. The ISO

images were setup on NFS, so VM OS is chosen from NFS ISO Library for installation.

31

Figure 4.13: Selection of installation media

vi. Allocate hardware resources: Number of virtual CPUs and size of Memory to a new

VM which is being created.

vii. On the storage section, a hard disk for virtual machine on NFS shared storage is created

in NFS server.

32

Figure 4.14: CPU and Memory allocation

Figure 4.15: Disk information for VM

33

viii. Add available virtual network interface for new VM. Click Next and then Finish.

Figure 4.16: Configure Network Settings

ix. New Virtual Machine boots up with provided information for installation. Installation

steps depends on Operating System chosen. After installation completion and rebooting

VM, XenCenter VM console looks like as below:

34

Figure 4.17: VM Console in XenCenter

4.7.2 Using CLI (Command Line Interface)

i. To make an ISO library available to XenServer Hosts, create a NFS shared directory. The

NFS server must be set to allow root access to the share.

 # xe-mount-iso-sr host:/volume

ii. Install virtual machine from a template with following command:

xe vm-install new-name-label=<VM_NAME> template=<TEMPLATE NAME>

iii. List the ISOs available:

 xe cd-list

iv. Place the ISO into the virtual CD drive

xe vm-cd-ad vm=<VM_NAME> cd-name=<NAME_ISO.iso> device=3

v. Start and install the OS:

xe vm-start vm=<VM-NAME>

35

4.7.3 XenServer and VM Management Commands in XenServer

• xe host-list - Standard object listing command to list XenServer host objects

 name-label – The name of the XenServer host

• xe vm-list - Standard object listing command to list VM objects

 resident-on - The XenServer Host on which a VM is currently resident

 power-state - Current power state; always halted for a Template

• xl sched-credit – Used to set or get weight and cap values of VMs

 -d - specify the domain

 -w - specify the weight value

 -c - specify the cap value

• xe vm-param-get – Gets the values for all the parameters of the VM

 uuid - unique ID of the VM

 param-name - name of the parameter whose value is required

• xe vm-param-set - Sets the values for the specified parameter of the VM

 uuid - unique ID of the VM

 memory-dynamic-max - to set value for dynamic max

• xe vm-migrate – Migrate the specified VMs between physical hosts

 vm - uuid of the VM to be migrated

 destination – name of the server from where the VM is migrated

 host - name of the server where the VM is migrated to

• xentop - Displays real-time information about a Xen system and domains

 -v - output version information and exit

 -b - output data in batch mode

 -I - maximum number of iterations xentop should produce before ending

36

• To Start a VM:

xe vm-start vm=<VM-NAME>

• To get information regarding the VM:

 # xe vm-list name-label=<VM-NAME>

• To shut down VM:

xe vm-shutdown vm=<VM-NAME>

• To perform force migration of VM:

 # xe vm-migrate vm=<VM-UUID> destination=<host-server>

host=<destination-server>

• To suspend VM:

 # xe vm-suspend vm=<VM-NAME>

4.8 Apache

The Apache HTTP Server (httpd) was launched in 1995 and it has been the most popular web

server on the Internet since April 1996. It provides a secure, efficient and extensible server that

provides HTTP services in sync with the current HTTP standards [14]. This software has been

used as an application running inside virtual machine and observed the performance of this web

server at different load condition of virtual machine.

Downloaded httpd package along with its dependencies using following command:

#yum install --downloadonly --downloaddir=/root/packages httpd

Then packages are copied to each virtual machine via Secure Copy command scp and then

installed using following command:

rpm –ivh *

Apache server has been started with following command:

#service httpd start

37

4.9 Httperf

Httperf is a tool to measure web server performance. The most basic operation of httperf is to

generate a fixed number of HTTP GET requests and to measure how many replies (responses)

came back from the server and at what rate the responses arrived [15]. This tool was used to obtain

the response time of the apache web server running inside virtual machine which was installed on

client test virtual machine with the following steps:

The following commands were used to install httperf on the system:

#wget

http://ftp.tu.chemnitz.de/pub/linux/dag/redhat/el7/en/x86_64/rpmforge/RPMS/rp

mforge-release-0.5.3-1.el7.rf.x86_64.rpm

#rpm -Uvh rpmforge-release-0.5.3-1.el7.rf.x86_64.rpm

#yum install httperf

The operation of httperf can be controlled through several options. The following command was

used from client machine to request root document from running virtual machine.

#httperf --server 192.168.56.21 --port 80 --num-conns 10 --rate 1

The above command causes httperf to create a connection to a host 192.168.56.21, sends a

request for the root document, receives the reply, closes the connection, and then prints some

performance statistics, where

-- server – Specifies hostname or IP address of webserver

-- port - Specifies the port number of web server listening for request from client, in the test

case it was http port 80 on which apache webserver’s default page is available.

--num-conns – Specifies the total number of connections to create.

--rate – Specifies the rate of connection request to server

38

 4.10 Stress

Stress is a workload generator for POSIX system. It imposes a configurable amount of CPU,

memory, I/O, and disk stress on the system. It is written in C, and is a free software licensed under

the GPLv2 [16]. The stress package is downloaded from yum repository on client test machine

which has internet access, copied the downloaded packages to each virtual machine and installed.

The command used to download package is as below:

#yum install --downloadonly --downloaddir=/root/packages stress

The package is copied to each virtual machine via Secure Copy command scp and then installed

using following command:

#scp stress-1.0.4-4.el6.x86_64.rpm root@192.168.56.20:/root/

#rpm –ivh stress-1.0.4-4.el6.x86_64.rpm

The following command was used to generate workload on virtual machines:

#stress --cpu 4 --io 3 --vm 2 --vm-bytes 256M --timeout 3000s

The workload was imposed on virtual machines initially by specifying four CPU-bound processes,

three I/O-bound processes, and two memory allocator processes for 3000 seconds as shown in the

above command. Then increased number of CPU bound processes to increase the load on virtual

machines to observe the response time of apache web server running inside virtual machine at

different load average.

4.11 Implementation of Algorithms

4.11.1 Shell Script

A shell script is a scripting language which is popular in Unix/Linux operating system. It provides

a command-line interpreter for Unix system and provides the features of general-purpose

programming language, such as control-flow constructs, variables, loops, functions, arrays,

subroutines and so on.

39

The shell translates the commands and sends them to the system. Most Linux distributions are

shipped with many shells. Every shell has its own features, and some of them are very popular

among developers today. Some of the popular shells are sh shell, bash shell, ksh shell and Csh

shell [17].

4.11.2 Functions

The algorithms presented on methodology section of this dissertation work has been implemented

on the shell script and the source code is provided on Appendix B. The script consists of different

functions to perform different operation like calculating resource usage, scaling resources and

migrating VM from one host to another host.

40

CHAPTER 5

EXPERIMENT AND OBSERVATION

The experiment consists of two different testing environments where first was in physical hardware

and the second was in virtualized environment which are described in detail in the implementation

section of this dissertation work. In case of physical environment, three identical XenServers were

setup with configuration of 7th generation intel i3 processor and having 8GB RAM on two servers

and one having 4GB of RAM. The three identical VMs are created and assigned 1GB of RAM and

10GB of hard disk and all of them have apache web server installed and running. The NFS server

was created in hardware having configuration i3 6th generation intel processor, 4GB of RAM and

1 TB hard disk. The client test machine and XenCenter enabled system are also configured and all

the machines are assigned static IP and connected to the network.

In case of virtualized environment, three identical XenServers were setup in a single machine

having configuration of Intel i3 7th generation processor, 12GB of RAM and Windows10 as

operating system where Virtualbox was installed and on top of that created three XenServers and

assigned 2GB RAM on each node. The three identical VMs, one NFS server and one client VM

are also created and each of them have been allocated 512MB of RAM and all of them including

XenServers are in the same virtual network and each of them have static IP address assigned and

are reachable from each other. All the three VM have apache web server installed and running.

To perform experiment on algorithm, distributed three virtual machines across three different

Xenserver nodes, the first node contains two virtual machines, second node contains one virtual

machine and the third node contains no virtual machines as shown in the block diagram of figure

4.1 and figure 4.2 of the implementation section of this dissertation work. The objective of the

experiment is to scale CPU resources efficiently and to perform automated live migration of virtual

machines in case there is no further resource scaling is possible to optimize resource provisioning

there by reducing the response time of the application running inside virtual machines.

In both testing environment, httperf ran from client machine to one of the VM requesting document

root for apache web server running inside VM and observed the response (reply) time of it received

by client machine via httperf. The experiment was performed to obtain the response time of apache

webserver running on a VM at different load conditions. The load generator tool stress was used

41

to generate load dynamically for the VMs. The load to be generated can be varied to the required

amount by using stress load generator imposing varying load to the virtual machine. The response

time of apache web server running on a VM at one-minute and five-minute load average varying

load from 0 to 25 with interval of 5 were observed and noted. The response time was observed

initially without implementing the algorithm and then implementing the algorithm.

5.1 Response Time in One-Minute Load Average from Physical Test Environment

Figure 5.1: Response Time vs Load for One-Minute Load Average – Physical Test Environment

In one-minute load average, imposed load on a VM using stress tool and checked one-minute load

average inside VM, once the load average reached the required state, httperf was ran from client

VM and observed the response time. Httperf sends total of 10 requests to the web server with the

speed of one request per second. As keeping stress imposing load on the VM, the load average

increases and once the load reaches next state, httperf was again ran and observed the response

time at that state and continued till load average reaches 25 and respective response time were

noted. The experiment was conducted two times, initially without algorithm implementation and

next with algorithm implemented. From the data obtained, response time in millisecond (ms), it is

0 5 10 15 20 25

3.3

719.8
841

1126

1336.6

1925

3.2

197.7

419.2
535.6

889.7

1406.9

0

500

1000

1500

2000

R
es

p
o

n
se

 T
im

e
 (

m
s)

Load

Response time vs Load

Without Algorithm

With Algorithm

42

found that with algorithm implemented, response time of apache web server is better and relatively

lower than without implementing the algorithm.

5.2 Response Time in Five-Minute Load Average from Physical Test Environment

Figure 5.2: Response Time vs Load for Five-Minute Load Average – Physical Test Environment

In five-minute load average, load was imposed on a VM using stress and checked five-minute load

average inside VM, once the load average reached the required state, httperf was ran from client

VM and observed the response time. Httperf sends total of 10 requests to the web server with the

speed of one request per second. As keeping stress imposing load on the VM, the load average

increases and once the next interval of load average is reached, httperf was ran again and observed

the response time at that state and continued till load average reaches 25 and respective response

time were noted. The experiment was conducted twice, initially without algorithm implementation

and next with algorithm implemented. From the response time obtained which was in millisecond

(ms), it is found that with the algorithm implemented, response time of apache web server is better

and relatively lower than without implementing the algorithm.

0 5 10 15 20 25

5.4

177.3

793.6

1516.5

1728.4

1903.3

3.2

157.1

427.8

608.1

1471.5

1569.3

0

500

1000

1500

2000

R
es

p
o

n
se

 T
im

e
 (

m
s)

Load

Response time vs Load

Without Algorithm

With Algorithm

43

 5.3 Response Time in One-Minute Load Average from Virtualized Test Environment

Figure 5.3: Response Time vs Load for One-Minute Load Average – Virtual Test Environment

In case of virtualized environment, the same experiment was repeated as in physical environment

and noted the response time for one-minute load average. In the test, it is found that response time

has the similar pattern as in case of physical test but with higher latency than the physical one and

the graph between load vs response time is shown in figure 5.3 above.

0 5 10 15 20 25

107.5

675.1

1528.8

1835.7

2140.4

2947.8

56.5

284.7

973 1071.3 1058.8

1445.1

0

500

1000

1500

2000

2500

3000

3500

R
es

p
o

n
se

 T
im

e
 (

m
s)

Load

Response time vs Load

Without Algorithm

With Algorithm

44

5.4 Response Time in Five-Minute Load Average from Virtualized Test Environment

Figure 5.4: Response Time vs Load for Five-Minute Load Average – Virtual Test Environment

In case of virtualized environment, the same experiment was performed as in physical environment

and noted the response time for five-minute load average. In the test, it is found that response time

has the similar pattern as in case of physical test but with higher latency than the physical one and

the graph between load vs response time is shown in figure 5.4 above.

5.5 Total Migration Time Calculation

The total migration time of virtual machines was calculated while it was being live migrated from

one Xenserver host to another Xenserver host. The migration time was calculated with and without

load conditions of VM with two different RAM size allocated to virtual machine in both physical

and virtualized environments.

0 5 10 15 20 25

1.8

240.7

938.3

1514.2

2733.2 2810.6

1.6 84.4

211.5

908.1

2094.2

2312.5

0

500

1000

1500

2000

2500

3000

R
es

p
o

n
se

 T
im

e
 (

m
s)

Load

Response time vs Load

Without Algorithm

With Algorithm

45

Table 5.1: Total Migration Time Calculation of VM live migration in Physical Test Environment

S.N. Virtual Machine

(OS)

RAM Size

(MB)

Total Migration Time

Without Load

Total Migration Time

With Load

1 CentOS 6.9 512 51 Sec 68 Sec

2 CentOS 6.9 1024 97 Sec 242 Sec

Table 5.2: Total Migration Time Calculation of VM live migration in Virtual Test Environment

S.N. Virtual Machine

(OS)

RAM Size

(MB)

Total Migration Time

Without Load

Total Migration Time

With Load

1 CentOS 6.9 512 13 Sec 20 Sec

2 CentOS 6.9 1024 17 Sec 28 Sec

From the results obtained from both test environment, it is observed that total migration time in

case of virtual machine hosted in XenServer in virtual environment is less than compared to virtual

machine hosted in physical XenServer. It is because all three XenServers (source and destination

host) were in the same hardware machine hosted in VirtualBox and all of them are connected

virtually in virtual test environment which has better speed than physical network.

5.6 Evaluation

From the experiment conducted in both cases physical and virtualized environment, it is found that

the performance of the virtual machines is dependent on the amount of resources allocated to that

particular VM. The response time of the virtual machines has been found increasing while

increasing the load by stress load generator thereby decreasing the overall performance of the

virtual machine. Also, it is noticed that background process running inside VM also affecting the

performance of Virtual Machine. But with the algorithm implemented, the response time was

comparatively better than without algorithm implementation.

Similarly, during the live migration of VM in both cases physical and virtualized environment, it

is noticed that the complete down time or timeout of VM was only a single packet drop while

doing continuous ping to VM being live migrated. But the total migration time was dependent on

46

the size of RAM allocated and load generated to the VM. It took longer time to migrate VM having

1GB RAM than having 512 MB. Also, it took longer time to migrate VM having high load than

VM with low load. But while comparing the results between physical and virtual environment test,

it is found that total migration time of VM is better in case of VM being hosted in Virtual

XenServer host and response time is better in case of VM hosted in physical XenServer host.

 In summary, dynamic resource scaling and live migration algorithm have been successful in

deciding the situations in which migration is inevitable and the situations in which scaling of the

resources is imminent.

47

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this dissertation work, dynamic resource scaling and live migration of Virtual Machines in a

cloud architecture was implemented which consists of Xen Servers, VMs, NFS and a client test

machine. The experiment was conducted by generating load using stress tool and measured the

performance of web server which was installed and running on a VM hosted on Xen Server. Httperf

tool was installed on a client test machine which was used to measure the response time of web

server running on a VM hosted on XenServer. Based on the experiments conducted, it is observed

that implementing dynamic resource scaling and live migration in the cloud has considerably

improved the performance of the virtual machine in terms of response time.

It has been successful to perform automated live migration of virtual machine from one XenServer

to another XenServer in both physical and virtualized environments. The major problem faced

while setting up the physical test environment was to fulfil the requirement of three identical

physical servers with exactly same CPU specifications for XenServes to meet the live migration

criteria.

6.2 Future Work

For the future work, as live migration is the recent and most important topic in cloud computing,

an important future work is to perform live migration of VM in cloud computing without identical

CPU architecture and without shared storage which will enable the live migration in heterogeneous

network architecture in cloud data centre.

48

References

[1] M P Gilesh, Sanjay Satheesh, Athul Chandran, S.D. Madhu Kumar, Lillykutty Jacob,

“Parallel Schedule of Live Migrations for Virtual Machine Placements,” 2018 IEEE 4th

International Conference on Collaboration and Internet Computing

[2] Gulshan Soni, Mala Kalra, “Comparative Study of Live Virtual Machine Migration

Techniques in Cloud,” International Journal of Computer Applications (0975-8887), Volume

84 - No 14, December 2013

[3] Ahmed M. Mahfouz, Md Lutfar Rahman, Sajjan G. Shiva, “Secure Live Virtual Machine

Migration through Runtime Monitors,” Proceeding of 2017 Tenth International Conference on

Contemporary Computing (IC3), 10-12 August, Noida, India

[4] Anupam Tamrakar, “Security in Live Migration of Virtual Machine with Automated Load

Balancing,” International Journal of Engineering Research & Technology (IJERT), ISSN:

2278-0181, Vol. 3, Issue 12, December-2014

[5] Achar R., Thilagam P. S., Soans N., Vikyath P. V., Rao S., A.M. V., (2013). "Load Balancing

in Cloud Based on Live Migration of Virtual Machines”, 2013 Annual IEEE India Conference

(INDICON), IEEE

[6] Yi, Z. and Wenlong, H. (2009). “Adaptive Distributed Load Balancing Algorithm based on

Live Migration of Virtual Machines in Cloud.” Proceedings of Fifth International Joint

Conference on INC, IMS and IDC, pp. 170-175, IEEE.

[7] Jinhua, H., Jianhua, G., Guofei, S. and Tianhai, Z. (2010). “A Scheduling Strategy on Load

Balancing of Virtual Machine Resources in Cloud Computing Environment.” Proceedings of

International Symposium on Parallel Architectures, Algorithms and Programming, pp. 89-96,

IEEE.

[8] Xiaona, R., Rongheng, L. and Hua, Z. (2011). “A Dynamic Load Balancing Strategy for

cloud computing platform based on exponential smoothing forecast.” Proceedings of

International Conference on Cloud Computing and Intelligence Systems, pp. 220-224, IEEE

[9] Wenhong, T., Yong, Z., Yuanliang, Z., Minxian, X. and Chen, J. (2011). “A Dynamic and

Integrated Loadbalancing Scheduling Algorithm for Cloud Datacenters.” Proceedings of

International Conference on Cloud Computing and Intelligence Systems, pp. 311-315, IEEE.

49

[10] Gaochao, X., Junjie P. and Xiaodong, F.(2013).“ Load Balancing Model Based on Cloud

Partitioning for the Public Cloud.” Proceedings of Tsinghua Science and Technology, pp. 34-

39, IEEE

[11] Haozheng, R., Yihua L.,Chao Y.(2012) “The Load Balancing Algorithm in Cloud

Computing Environment.” International Conference on Computer Science and Network

Technology, pp. 925-928, IEEE.

[12] Jun Wu, Chen-Yuan Wang and Jian-Fu Li, "LA-Credit: A Load-Awareness Scheduling

Algorithm for Xen Virtualized Platforms", 2016 IEEE 2nd International Conference on Big

Data Security on Cloud, IEEE International Conference on High Performance and Smart

Computing, IEEE International Conference on Intelligent Data and Security

[13] Rajendra H. Bele, Dr. Chitra G.Desai, “Optimization of Default Credit Scheduler of Xen

Virtualization Technology”, IICMR Research Journal I4, Vol.11-0 Issue1, December 2016,

ISSN No.0975 2757, SJIF 2015: 4.27

[14] “Apache,” [Online]. Available: https://httpd.apache.org/ [Accessed 26 05 2019].

[15] “Httperf,” [Online]. Available: https://linux.die.net/man/1/httperf [Accessed 26 05 2019]

[16] “Stress,” [Online]. Available: https://people.seas.harvard.edu/~apw/stress/ [Accessed 26

05 2019]

[17] “VirtualBox,” [Online]. Available: https://www.virtualbox.org/wiki/VirtualBox

[Accessed 26 05 2019]

[18] Ebrahim Mokhtar, Mallett Andrew, Mastering Linux Shell Scripting: A practical guide to

Linux command-line, Bash scripting, and Shell programming (Packt Publishing, Second

Edition, 2018 April, Birmingham, UK).

50

Appendix A

Screen Shots

1. Picture taken during XenServer Cloud Environment setup in Physical hardware

51

2. XenCenter GUI showing XenServer and VM info

52

3. Xen commands in action showing XenServer and VM info

53

4. Stress is generating load on VM, Checking Load Average and Running httperf in Physical

Environment

54

5. Live Migration Script running in one of the Xenserver showing resource scaling and live

migration in Physical Environment

55

6. Stress is generating load on VM, Checking Load Average and Running httperf in Virtualized

Environment

56

7. Live Migration Script running in one of the Xenserver showing resource scaling and live

migration in virtualized environment

57

8. Required software (Apache and stress) installation in one of the virtual machine

9. Shared storage mounted to XenServer

58

Appendix B

Source Code

#!/usr/bin/sh

#set -xv #Set while debugging

current_date=`date +%Y-%m-%d`

echo "Running Live Migration Script by $USER at $current_date"

if [-z "$1"]

then

 echo "ERROR: Argument Missing: Please run script as ./livemigration.sh <XenServer ID>"

 echo "For Example: ./livemigration.sh 8"

 exit 1

else

hostnode_ID=$1

host_node="xennode$1"

fi

Variable Initialization

rm -f /root/xen_logs/*

count=0

cpu=0

i=0

init_cpu=0

init_ram=0

no_nodes=8

#candidate_vm=0

vm_uuid=0

host_UUID=$(xe host-list name-label=$host_node |grep -a uuid|cut -c 29-100)

echo "XenServer $host_node has id $host_UUID"

num_VM=$(xe vm-list resident-on=$host_UUID power-state=running|grep name|wc -l|cut -c 1-2)

Need to substract count of Xenhostnode to get exact number of VM with power state running

num_VM=$((num_VM - 1))

echo "Total number of VM running on $host_node is $num_VM"

59

running_VM=$(xe vm-list resident-on=$host_UUID power-state=running|grep vm|head -n $num_VM|cut
-c 24-100)

echo "$running_VM" >> /root/xen_logs/vm_name.txt

while read vm_reschedule

do

 xl sched-credit -d $vm_reschedule -c 10

 echo $vm_reschedule

 xl sched-credit

done < /root/xen_logs/vm_name.txt

Function takes 4 arguments: 1: Scaling amount in percentage 2: Scaling Rule 3: VM Name 4:
RAM or CPU Resource to scale

function Scale_Resource()

{

 case $4 in

 1)

 if [$2 -eq 1]

 then

 echo "Scaling up CPU of $3 by $1 % "

 scale_pct=$(xl sched-credit|grep -a $3|cut -c 48-50)

 if [$scale_pct -lt 100]

 then

 cpu_cap1=$((scale_pct * $1))

 cpu_cap2=$((cpu_cap1 / 100))

 recap=$((scale_pct + cpu_cap2))

 if [$recap -lt 100]

 then

 xl sched-credit -d $3 -c $recap

 echo "Scaling Complete"

 else

 xl sched-credit -d $3 -c 100

 echo "Reached maximum hardware performance of Xen Server, further scaling is not
possible"

 fi

60

 fi

 fi

 if [$2 -eq 0]

 then

 echo "Scaling down CPU of $3 by $1 % "

 scale_pct=$(xl sched-credit|grep -a $3|cut -c 48-50)

 if [$scale_pct -gt 20]

 then

 cpu_ucap1=$((scale_pct * $1))

 cpu_ucap2=$((cpu_ucap1 / 100))

 recap=$((scale_pct - $cpu_ucap2))

 xl sched-credit -d $3 -c $recap

 echo "Scaling Complete"

 return 1

 fi

 fi

 ;;

 2)

 vm_uuid=$(xe vm-list name-label=$candidate_vm power-state=running|grep uuid|cut -c 24-59)

 static_mem_min=$(xe vm-param-get uuid=$vm_uuid param-name=memory-static-min)

 static_mem_max=$(xe vm-param-get uuid=$vm_uuid param-name=memory-static-max)

 dynamic_mem_min=$(xe vm-param-get uuid=$vm_uuid param-name=memory-dynamic-min)

 dynamic_mem_max=$(xe vm-param-get uuid=$vm_uuid param-name=memory-dynamic-max)

 if [$2 -eq 0]

 then

 echo "Scaling down RAM of $3 by $1 % "

 if [$dynamic_mem_max -lt $static_mem_min]

 then

 pc=$(($1 / 100))

 rt=$(($dynamic_mem_max * $pc))

 dynamic_static_max=$(($dynamic_mem_max + $rt))

 xe vm-param-set uuid=$vm_uuid memory-dynamic-max=$dynamic_static_max

61

 fi

 fi

 if [$2 -eq 1]

 then

 echo "Scaling up RAM of $3 by $1 % "

 if [$dynamic_mem_max -lt $static_mem_min]

 then

 pc=$(($1 / 100))

 rt=$(($dynamic_mem_max * $pc))

 dynamic_static_max=$(($dynamic_mem_max + $rt))

 xe vm-param-set uuid=$vm_uuid memory-dynamic-max=$dynamic_static_max

 fi

 fi

 ;;

 esac

}

Function to migrate VM to suitable XenServer Host

function MigrateToServer()

{

 inc_id=$(($hostnode_ID + 1))

 dec_id=$(($hostnode_ID - 1))

 if [$inc_id -gt $no_nodes] && [$dec_id -lt $no_nodes] && [$inc_id -gt 0] && [$dec_id
-gt 0]

 then

Find Available Free Memory of Suitable XenServers

 free_mem_inc_id=$(xe host-list name-label=xennode$inc_id params=memory-free --minimal)

 free_mem_dec_id=$(xe host-list name-label=xennode$dec_id params=memory-free --minimal)

 vm_uuid=$(xe vm-list name-label=$candidate_vm power-state=running|grep uuid|cut -c 24-59)

 fi

 echo "Migrating VM..."

#Compare Free Memory Available

 if [$free_mem_inc_id -gt $free_mem_dec_id]

62

 then

 xe vm-migrate vm=$vm_uuid destination="$host_node" host="xennode$inc_id" --live

 echo "$candidate_vm has been migrated from $host_node to xennode$inc_id successfully."

 else

 xe vm-migrate vm=$vm_uuid destination="$host_node" host="xennode$dec_id" --live

 echo "$candidate_vm has been migrated from $host_node to xennode$dec_id successfully."

 fi

 }

Function to calculate CPU utilization

function Calc_CPU_usage()

{

cpu=$(xentop -v -b -i 2|grep $candidate_vm|cut -c 32-35)

echo "$cpu" >> /root/xen_logs/cpu_val$i.txt

act=$(cut -c 1-2 /root/xen_logs/cpu_val$i.txt|head -n 2|tail -n 1)

sc=$(xl sched-credit|grep -a $candidate_vm|cut -c 48-50)

if [-z "$sc"]; then

if value of variable $sc is zero, i.e no running VM, need to exit from loop

break

else

pac=$((act * 100))

init_cpu=$((pac / sc))

fi

}

function Calc_RAM_usage()

{

ram="$(xentop -v -b -i 1|grep $candidate_vm|cut -c 50-54)"

echo "$ram" >> /root/xen_logs/ram_val$i.txt

init_ram=$(cut -c 1-2 /root/xen_logs/ram_val$i.txt|head -n 1)

}

Main function starts from here

Run script in infinite loop ###

while [$count -lt 2]

63

do

num_VM=$(xe vm-list resident-on=$host_UUID power-state=running|grep name|wc -l|cut -c 1-2)

Need to substract count of Xenhostnode to get exact number of VM with power state running

num_VM=$(($num_VM - 1))

if [$num_VM -gt 0]

then

while read candidate_vm

do

temp=$(xl sched-credit|grep -a $candidate_vm|cut -c 48-50)

if [$temp -eq 0]

then

 xl sched-credit -d $candidate_vm -c 10

 echo "VM CAP value modified"

fi

echo "********* Candidate VM for resource scaling: $candidate_vm ***********"

Calc_CPU_usage

echo "Comparing CPU usage $init_cpu"

if ["$init_cpu" -gt 70] && ["$init_cpu" -lt 95];

 then

 Scale_Resource 10 1 $candidate_vm 1

 sleep 3

 Calc_CPU_usage

 if ["$init_cpu" -gt 70] && ["$init_cpu" -lt 95];

 then

 Scale_Resource 10 1 $candidate_vm 1

 sleep 3

 Calc_CPU_usage

 fi

 if ["$init_cpu" -gt 70] && ["$init_cpu" -lt 95];

 then

 MigrateToServer

 fi

64

fi

Calc_CPU_usage

if [! -z "$init_cpu"] && ["$init_cpu" -gt 95];

then

 Scale_Resource 20 1 $candidate_vm 1

 sleep 3

 Calc_CPU_usage

 if [! -z "$init_cpu"] && ["$init_cpu" -gt 95];

 then

 MigrateToServer

 fi

fi

Calc_CPU_usage

if [! -z "$init_cpu"] && ["$init_cpu" -le 10]

then

 Scale_Resource 20 0 $candidate_vm 1

 sleep 3

 Calc_CPU_usage

 if [! -z "$init_cpu"] && ["$init_cpu" -le 10]

 then

 Scale_Resource 20 0 $candidate_vm 1

 sleep 3

 Calc_CPU_usage

 if [! -z "$init_cpu"] && ["$init_cpu" -le 10]

 then

 MigrateToServer

 fi

 fi

fi

Calc_RAM_usage

if [-z "$init_ram"]; then

break

65

echo "Comparing RAM usage $init_ram"

if ["$init_ram" -gt 70] && ["$init_ram" -lt 95];

 then

 Scale_Resource 20 1 $candidate_vm 2

 sleep 3

 Calc_RAM_usage

 if ["$init_ram" -gt 70] && ["$init_ram" -lt 95];

 then

 Scale_Resource 20 1 $candidate_vm 2

 sleep 3

 Calc_RAM_usage

 fi

 if ["$init_ram" -gt 70] && ["$init_ram" -lt 95];

 then

 MigrateToServer

 fi

fi

Calc_RAM_usage

if [! -z "$init_ram"] && ["$init_ram" -gt 95];

then

 Scale_Resource 40 1 $candidate_vm 2

 Calc_RAM_usage

 if [! -z "$init_ram"] && ["$init_ram" -gt 95];

 then

 MigrateToServer

 fi

fi

Calc_RAM_usage

if [! -z "$init_ram"] && ["$init_ram" -lt 10]

then

 Scale_Resource 20 0 $candidate_vm 2

 sleep 3

66

 Calc_RAM_usage

 if [! -z "$init_ram"] && ["$init_ram" -lt 10]

 then

 Scale_Resource 20 0 $candidate_vm 2

 sleep 3

 Calc_RAM_usage

 if [! -z "$init_ram"] && ["$init_ram" -lt 10]

 then

 MigrateToServer

 fi

 fi

fi

fi

i=$(($i + 1))

echo "$init_cpu" >> /root/xen_logs/xenserver.log

done < /root/xen_logs/vm_name.txt

fi

rm -f /root/xen_logs/vm_name.txt

num_VM=$(xe vm-list resident-on=$host_UUID power-state=running|grep name|wc -l|cut -c 1-2)

num_VM=$(($num_VM - 1))

if [$num_VM -lt 1]

then

 echo "No running VM found on this server"

 echo "Server is ready to accept VMs"

else

echo "Number of VM running on $host_node is " $num_VM

fi

running_VM=$(xe vm-list resident-on=$host_UUID power-state=running|grep vm|head -n $num_VM|cut
-c 24-100)

echo "$running_VM" >> /root/xen_logs/vm_name.txt

done

