
 i

Tribhuvan University

Institute of Science and Technology

Transaction Processing System for Cooperative Management

Project work

Submitted to

Central Department of Computer Science and Information Technology

Kirtipur, Kathmandu Nepal

In partial fulfillment of the requirements for the Master’s Degree in

Computer Science and Information Technology

By

Dinesh khadka

December, 2019

Supervisor

Asst. Prof. Nawaraj Poudel

 ii

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the

listed here have been used in this work.

… … … … … … …

Dinesh Khadka

December, 2019

 iii

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

Supervisor’s Recommendation

I hereby recommend that this project work prepared under my supervision by Mr. Dinesh

Khadka entitled “Transaction processing system for Cooperative

management” be accepted as partial fulfillment of the requirements for the degree of

M.Sc. in Computer Science and Information Technology. In my best knowledge this is an

original work.

...

Asst. Prof. Nawaraj Poudel

Head of Department

Central Department of Computer Science and

Information Technology(CDCSIT)

Tribhuvan University

Kritipur

(Supervisor)

 iv

Tribhuvan University

Institute of Science and Technology

Central Department of Computer Science and Information Technology

LETTER OF APPROVAL

We certify that we have read this project work and in our opinion it is satisfactory in the

scope and quality as a project work in the partial fulfillment for the requirement of

Masters Degree in Computer Science and Information Technology.

Evaluation Committee

 (External Examiner) (Internal Examiner)

Asst. Prof. Nawaraj Poudel

Head of Department
Central Department of Computer Science and

Information Technology(CDCSIT)
Tribhuvan University

Kritipur

Asst. Prof. Nawaraj Poudel

Head of Department

Central Department of Computer Science and
Information Technology(CDCSIT)

Tribhuvan University
Kritipur

(Supervisor)

 v

ACKNOWLEDGEMENTS

It is a great pleasure for me to acknowledge the contributions of a large number of

individuals to this work. First of all, I would like to thank my supervisor Asst. Prof.

Nawaraj Poudel for giving me an opportunity to work under his supervision and for

providing me guidance and support throughout this work.

I would like to express my gratitude to the respected teachers Dr. Tanka Dhamala, Prof.

Sudarshan Karanjeet, Prof. Dr. Laxmi P. Gewali (University of Nevada, Las Vegas,

USA), Prof. Dr. Srinath Srinivasa (IIIT-B), Hemanta B. G.C. and all other teachers who

have taught us in our Master Degree.

Finally, I am in debt to my friends Hem Raj Aryal, Achyut Pd. Pathak, Kamal Bista,

Dadhi Ghimire for their fruitful discussions. Last but not least, I would like to thank my

family members for their constant support and encouragement.

Dinesh Khadka

 vi

ABSTRACT

Transaction processing system for cooperative management is an application that

coordinates the activities and transactions involved in running and working of cooperative

organization. The system simplify the transaction including the attributes such deposit,

withdraw, interests, loan etc. making it simple for user to work using IT technology. The

system helps medium and small co-operatives around Nepal to perform their transaction

easily and quickly.

 vii

Table of content

ACKNOWLEDGEMENTS v

ABSTRACT vi

Table of content vii

List of figure x

List of table xi

List of abbreviations xii

Chapter 1 1

Introduction 1

1.1 Introduction 1

1.2. Problem Statements 1

1.3. Objectives 2

1.4 Scope 2

1.5 Report Organization 2

Chapter 2 3

Requirement Analysis 3

2. System Requirements 3

2.1 Functional Requirements 3

2.1.1 Identification of Actors 4

2.1.2 Modular Decomposition of System 5

2.1.3 Use-case Diagram of loan product module 6

2.1.4 Use-case Diagram of Deposit module 7

2.1.5 Use-case Diagram of withdraw module 8

 viii

2.2. Non-functional Requirements 8

2.3 Feasibility Assessment 9

Technical Feasibility 9

Operational Feasibility 9

Economic Feasibility 9

2.4. System Modeling 10

2.4.1. Modeling of loan module 10

Activity Diagram 11

2.4.2. Modeling of Withdraw module 12

2.4.3. Modeling of deposit module 13

2.5. Data Modeling 15

Chapter 3 17

System Design 17

3. System Design 17

3.1 Architecture of the system 17

3.2. Schema Design 18

3.2.1 Loan Product Module 19

3.2.2 Deposit Module 20

3.2.1 Withdraw Module 21

Chapter 4 22

Implementation and Testing 22

4.1 Tools Used 22

4.2 Development Methodology 26

4.3 Integration and Testing 26

Test case for Withdraw module 27

 ix

Test case for Add Client 28

Test Case for Add Deposit 29

CHAPTER 5 30

Conclusion and future work 30

Conclusion 30

Future work 30

Bibliography 31

APPENDICES 32

Appendix: 1 Snapshots 32

Appendix: 2 Code 35

 x

List of figure
Figure 2. 1: Use case diagram of Transaction processing system .. 4

Figure 2. 2: Use case diagram of Loan product module ... 6

Figure 2. 3: Use case diagram of Deposit module ... 7

Figure2. 4: Use case diagram of withdraw module .. 8

Figure2. 5: Sequence diagram of loan product module ... 10

Figure2. 6: Activity Diagram of loan product module of Transaction processing system ... 11

Figure2. 7: Sequence diagram for Withdraw Module .. 12

Figure2. 8: Sequence diagram for Deposit Module ... 13

Figure2. 9: Sequence diagram for Deposit Module ... 14

Figure2. 10: ER Diagram for General Transaction Processing .. 15

Figure 3. 1: Architecture of transaction processing system ... 17

Figure 3. 2 Schema Diagram of loan product module .. 19

Figure 3. 3: Schema Diagram of Deposit module .. 20

Figure 3. 4: Schema Diagram of Withdraw module ... 21

Figure 4. 1: Evolutionary Development Method ... 26

 xi

List of table
Table 4.1: Test case for Withdraw ...26

Table 4.2: Test case for add client module ...27

Table 4.3: Test case for Deposit module ..28

 xii

List of abbreviations
CSS : Cascading Style Sheet

CI-CD : Continuous Integrity – Continuous Deployment

CRUD : Create Read Update and Delete

ERD : Entity Relationship Diagram

HTML : Hyper Text Mark-up Language

HTTP : Hyper Text Transfer Protocol

ICT : Information Communication and Technology

IDE : Integrated Development Environment

IT : Information Technology

SQL : Structured Query Language

UI : User Interface

XML : eXtensible Markup Language

 1

Chapter 1

Introduction

1.1 Introduction

Transaction processing system for cooperative management is an application that

coordinates and integrates all the activities and transactions involved in running and working

of cooperative organization. The proposed system will be developed in order to simplify the

transaction and working process of cooperative.

This system provides users with the facility of performing every transaction of work

involved in a cooperative system. The main idea behind developing this project is to

simplify the transaction including the attributes such as credit, debit, deposit, client,

transaction, employees, interests, loan etc. making it secure and simple for user to work

using IT technology. This system not only helps to insure the easy working of entire

organizational work but also helps to ensure the secure and reliable work done.

The employees on cooperative organization can use the application so as to perform the

related banking task avoiding the paper work and helping employees to have their work

done in minimal time as possible. The system not only allow user to do their input and their

work-related task but also keep the record of all the transaction in a secured database.

 This system can also be used for calculating interests to their loans provided. It takes all the

records of account associated to their respective field of attributes. This application keeps

the records of the related account work such as loans, interests and required calculation

needed.

1.2. Problem Statements

In the context of Nepal, there is very few digitization in cooperative system and are more

based on paper work system. Keeping that in mind this system is developed in order to bring

new way of technological system on cooperative field. There were many problems including

loss of paper works, and were vulnerable to natural calamities and also the storing of paper

work system is impossible at times in a proper way. So in order to make the transactions and

work flow of cooperative system using IT technology and making it usable through internet

to simplify the work. Some problems in traditional system are:

 Difficult in accessing and searching specific account and their details.

 2

 Traditional paper work methodology

 Security issues

 Loss and theft of data

 Loss of data due to natural calamities

1.3. Objectives

The main objectives of this project work are:

 To automates the transaction processing of cooperative system.

 To provides simple interface for carrying out transactions easily and quickly.

1.4 Scope

There are thousands of medium and small co-operatives around Nepal that rely on

traditional paper based financial record management and simple spreadsheet based financial

management. This software package will be very handy to this organization. This is robust

and handles all the financial need of a cooperative. It can help to automate the business

process of those organizations and help to carter financial services to their customers

efficiently and overall helps to modernize their service and offerings.

1.5 Report Organization

This report is separated into different chapters for proper readability and organization.

The second chapter consists of system analysis which further defines the requirement

collection process, all necessary system requirements including both functional and non-

functional requirements which are shown using the use case diagram of the system and

feasibility study of the application in order to conduct analysis of how different factors

can affect the development of a project. In addition, this chapter also includes the data

model of the system(ER Diagram) showing the relationships of entity sets stored in a

database. Chapter three consists of system design which includes overall system

architecture, schema diagram etc. Chapter four is Implementation and Testing which

includes development methodology, tools used, test cases etc. Final chapter consists of

concluding remarks about the overall project.

 3

Chapter 2

Requirement Analysis

2. System Requirements

The software system requirements are of two types:

1. Functional requirements

2. Non-functional requirements

2.1 Functional Requirements

The functional requirement documents the operations and activities that a system must be

able to perform. For cooperative transaction management system, the functional

requirements are as follows:

 Cashier should be able to perform daily financial transactions (deposit, withdrawal,

transfer etc).

 Loan officer should be able to design loan products, set criteria and approve loans.

 Manager should be able to design products (Fixed deposit, savings, and currents).

 Each user of the system should be able to log in and log out from the system.

 Each user of the system should be able to update his or her profile change password

etc.

 Accountants should be able to manage financial transactions and generate financial

report.

 Clerk should be able to register new customer and maintain customer records.

 4

Figure 2. 1: Use case diagram of Transaction processing system

The above use case diagram shows the different actors involved in the system in their roles.

There are six actors, they are: Manager. Super admin, clerk, cashier, accountant, loan

officer.

All the users login and out of the system and can update their own profile. The manager

designs the products, the clerk registers new customers and maintains customer records.

Super admin manages the user sand the entire application. Loan officers manages loan

related tasks. The cashier payments, makes transfer, makes withdrawal.

2.1.1 Identification of Actors

An actor is the component that interacts with the system or has some role in the system. The

actors interacting with the system are as follows:

1. Manager

 5

2. Clerk

3. Super Admin

4. Cashier

5. Loan officer

6. Accountant

2.1.2 Modular Decomposition of System

The whole system in modularly decomposed into standalone modules that can seamlessly

integrated into other modules. The major modules of this system are:

 Loan Product Module

 Withdraw Module

 Deposit Module

 6

2.1.3 Use-case Diagram of loan product module

Figure 2. 2: Use case diagram of Loan product module

Client has to fill the form/slip along with official documents for the loan request. The loan

request goes through approval process. If the loan is approved the loan detail is added to the

clients account. The teller gives loan amount to the customer after the loan is approved. The

teller is also responsible for changing product once loan is approved.

 7

2.1.4 Use-case Diagram of Deposit module

Figure 2. 3: Use case diagram of Deposit module

Clients submits voucher to the teller for the cash or cheque deposits. Teller checks the

account and validates the bank account. The corresponding amount is submitted to the

account after the validation process.

 8

2.1.5 Use-case Diagram of withdraw module

Figure2. 4: Use case diagram of withdraw module

Clients submit cheque or withdraw slip to the teller for the cash withdraw process. Teller

checks the account and validates the bank account. The corresponding amount is given to

the customer after the validation process.

2.2. Non-functional Requirements

Nonfunctional requirements are requirements that are not directly concerned with the

specific delivered by the system to its users. They may relate to emergent system

properties such as reliability, response time and store occupancy. The non-functional

requirements may come from required characteristics of the software (product

requirements), the organizational developing the software (organizational

requirements), or from external sources.

1. Product requirements

It specify the behavior of the system. It includes how fast the system must execute

and how much memory it requires, reliability requirements that set out the

acceptable failure rate, security requirements, and usability requirements.

 9

2. Organizational requirements

They are broad system requirements derived from policies and procedures. It

includes operational process requirements, the development process requirements,

the development environment or process standards to be used, and environmental

requirements.

3. External requirements

They cover all requirements that are derived from factors external to the system and

its development process. These may include regulatory requirements, legislative

requirements and ethical requirements.

2.3 Feasibility Assessment

The main objective of feasibility study is to test the Technical, Operational, Economic and

Schedule feasibility. All systems are feasible only if they are given unlimited resources and

infinite time. It helps to determine the benefits of the proposed system in the society and

organization. It also determines if the system can be built successfully with cost, time and

effort.

Technical Feasibility

The technical feasibility assessment is focused on gaining an understanding of the present

technical resources available and their applicability to the expected need of the proposed

system. All the necessary technology such as SpringBoot, MySQL, etc. are already

available. And also, other resources like Laptops, internet, etc. are available.

Operational Feasibility

In this system, all the features will be implemented using its own databases and through

API. And it is compatible for all devices. Therefore, this system will meet the organization‟s

operating requirements.

Economic Feasibility

The technologies and resources needed to build the software, is already available. Users

only need internet facility to access this software. So, this software is economical and can

serve user‟s purpose.

 10

2.4. System Modeling

The diagrams used to design and model a system are as follows:

1. Sequence Diagram

2. Activity Diagram

2.4.1. Modeling of loan module

UML Sequence Diagrams are interaction diagrams that detail how operations are carried

out. They capture the interaction between objects in the context of collaboration.

Figure2. 5: Sequence diagram of loan product module

The above sequence diagram shows the interaction between the different objects of the

loan product module of the Transaction processing system. The client provides

information required for passing the loan, the system verifies it and also updates and

deletes the information and the teller provides the loan if everything is validated.

 11

Activity Diagram

An activity diagram visually represents a series of actions or flow of control in a system

similar to a flowchart or a data flow diagram. The control flow is drawn from one operation

to another. This flow can be sequential, branched or concurrent.

Figure2. 6: Activity Diagram of loan product module of Transaction processing system

Show errors

 12

The above activity diagram shows the flow of the different activities performed in the loan

product module. The client‟s account is validated, then if the validation is positive, they can

fill up the loan form and if the loan form is successfully validated and filled, the loan phase

is successful, else an error message is shown.

2.4.2. Modeling of Withdraw module

Figure2. 7: Sequence diagram for Withdraw Module

 13

Above sequence diagram shows how withdraw of cash takes place. Firstly, the client

presents a cheque to the cashier or teller. The cashier then provides cheque information to

the system. The system then verifies the cheque information and define whether it is

acceptable or not acceptable. If the cheque and every detail in it is valid, the system

performs debit transaction to the account and stores the photo of cheque for future reference.

The success message is displayed to cashier and then the cashier dispenses cash to the client.

In case of invalid cheque, the system displays invalid message to the cashier and then the

cashier marks the cheque as bounced and return to client.

2.4.3. Modeling of deposit module

Figure2. 8: Sequence diagram for Deposit Module

Above sequence diagram shows how Deposit of cash/cheque takes place. Firstly, the client

presents a cash/ cheque deposit voucher to the cashier or teller. The cashier then provides

 14

account information to the system. The system then verifies the information and shows

whether it is acceptable or not acceptable. Finally the deposit is made.

Activity Diagram

Figure2. 9: Sequence diagram for Deposit Module

The above activity diagram shows the flow of the different activities performed in the

deposit module. The client‟s account is validated, and then if the validation is positive, then

the deposit is made, otherwise error message is shown.

 15

2.5. Data Modeling

An entity-relationship diagram (ERD) is a data modeling technique that graphically

illustrates an information system‟s entities and the relationships between those entities. An

ERD is a conceptual and representational model of data used to represent the entity

framework infrastructure.

Figure2. 10: ER Diagram for General Transaction Processing

The above diagram shows various entities and their relationship with another entity. Each

rectangle known as entity represents a table in database. Each oval known as attributes

 16

represents the attribute of the entity which represents the columns of the table. The

underlined attribute represents the primary key. Each diamond represents the relationship

between the entities. The „account‟ entity has some attributes such as id, name and code.

Here „id‟ is the key attribute that is used to link up other entities. It has relationship with

„general_ledger‟ attribute, „account_type‟ attribute and “account” attribute itself. Similarly,

other entities and their relationship with each other shapes up the database. They altogether

define the schema of database.

 17

Chapter 3

System Design

3. System Design

System design is the process of defining the architecture, modules, interfaces, and data for a

system to satisfy specified requirements. System design could be seen as the application of

system theory to product development.

With the detailed study of the requirements, the system architecture was developed. To

develop the system architecture, different tools were used.

3.1 Architecture of the system

Systems Architecture is a generic discipline to handle objects (existing or to be created)

called "systems", in a way that supports reasoning about the structural properties of these

objects. Systems Architecture is a response to the conceptual and practical difficulties of the

description and the design of complex systems.

Figure 3. 1: Architecture of transaction processing system

 18

The system is based on the client server architecture as we see in the diagram above that the

front end connects to the backend of the system through the network connection. The system

can be accessed through any browser by using an URL. The backend consists of server side

application programs and a database. All the clients‟ data and information are stored in

backend database.

3.2. Schema Design

A database schema is the skeleton structure that represents the logical view of the entire

database. It defines how the data is organized and how the relations among them are

associated. It formulates all the constraints that are to be applied on the data. A database

schema defines its entities and the relationship among them. It contains a descriptive detail

of the database, which can be depicted by means of schema diagrams. It‟s the database

designers who design the schema to help programmers understand the database and make it

useful.

 19

3.2.1 Loan Product Module

Figure 3. 2 Schema Diagram of loan product module

The loan product module consists of major entities like loan, loan_product, bank_account,

client and repay_schedule. The attributes of each entity and the relationship between

different entity sets are shown in figure 3.2.

 20

3.2.2 Deposit Module

Figure 3. 3: Schema Diagram of Deposit module

The deposit module consists of major entities like deposit_detail and depost. The attributes

of each entity and the relationship between different entity sets are shown in figure 3.3.

 21

 3.2.1 Withdraw Module

Figure 3. 4: Schema Diagram of Withdraw module

The withdraw module consists of major entities like transaction, withdraw, withdraw_mode,

bank_accoun and client. The attributes of each entity and the relationship between different

entity sets are shown in figure 3.4.

 22

Chapter 4

Implementation and Testing

With inputs form the system design, the system was developed in small modules. The

integration of all the modules forms a complete system. Each module were developed and

tested for their functionality.

4.1 Tools Used

Various tools were used to achieve the desired output. Some important tools used are

explained below:

1) Front end

 HTML

 CSS

 Bootstrap

 Angular 5

2) Java and Spring Boot framework

3) MYSQL

4) JSON

5) XML

6) Postman and Swagger

7) Liquibase

8) Git Lab

1) Front end

Designing front end includes design of responsive system‟s user interface (UI). It is

what the user sees and interacts with. We used following tools to create UI platform

let users communicate with our system:

 23

HTML is the markup language that we use to structure and give meaning to our web

content, for example defining paragraphs, headings, and data tables, or embedding

images and videos in the page.

CSS is a language of style rules that we use to apply styling to our HTML content,

for example setting background colors and fonts, and laying out our content in

multiple columns.

Bootstrap is a free front-end framework for faster and easier web development. It

includes HTML and CSS based design templates for typography, forms, buttons,

tables, navigation, modals, image carousels and many other, as well as optional

JavaScript plugins. It also gives us the ability to easily create responsive designs.

Angular is a platform that makes it easy to build applications with the web. It

combines declarative templates, dependency injection, end to end tooling, and

integrated best practices to solve development challenges. It empowers developers to

build applications that live on the web, mobile, or the desktop. It is used to develop

front-end in this work.

2) JAVA and Spring Boot framework

For the back-end purpose, we used JAVA and Spring Boot framework with MAVEN

as software project management and comprehension tool.

Java is a general-purpose computer-programming language that is concurrent, class-

based, object-oriented, and specifically designed to have as few implementation

dependencies as possible. It is intended to let application developers "write once, run

anywhere" meaning that compiled Java code can run on all platforms that support

Java without the need for recompilation.

Spring Boot is a JAVA framework that makes it easy to create stand-alone,

production-grade Spring based Applications that we can "just run". It provides

 24

opinionated view of the Spring platform and third-party libraries so we can get

started with minimum fuss. Most Spring Boot applications need very little Spring

configuration. It also provides embed Tomcat, Jetty or Undertow directly (no need to

deploy WAR files).

3) MYSQL

MYSQL database is to deal data storage and manipulation operation. MYSQL is the

most popular Open Source SQL database management system that is developed,

distributed, and supported by Oracle Corporation. MYSQL databases are relational.

Its Server is very fast, reliable, scalable, and easy to use. The Server works in

client/server or embedded systems. It is used to create database.

4) JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is

easy for humans to read and write. It is easy for machines to parse and generate. It is

a text format that is completely language independent but uses conventions that are

familiar to programmers of the C-family of languages, including C, C++, C#, Java,

JavaScript, Perl, Python, and many others. These properties make JSON an ideal

data-interchange language.

When exchanging data between a browser and a server, the data can only be text.

JSON is text, and we can convert any JavaScript object into JSON, and send JSON

to the server. We can also convert any JSON received from the server into JavaScript

objects. This way we can work with the data as JavaScript objects, with no

complicated parsing and translations.

5) XML

XML stands for eXtensible Markup Language. It is a markup language much like

HTML. It is designed to store and transport data. It is designed to be self-descriptive.

We used XML for defining liquibase change set.

 25

6) Postman and Swagger

Postman is a powerful HTTP client for testing web services.

Swagger is an open source software framework backed by a large ecosystem of tools

that helps developers design, build, document, and consume RESTful Web services.

While most users identify Swagger by the Swagger UI tool, the Swagger toolset

includes support for automated documentation, code generation, and test case

generation. We used both Postman and Swagger for testing APIs.

7) LIQUIBASE

Liquibase is an open-source database-independent library for tracking, managing and

applying database schema changes. It allows easier tracking of database changes,

especially in an agile software development environment. It provides version

controlling mechanism for database.

8) GIT LAB

GitLab is a web-based Git-repository manager with wiki, issue-tracking and CI/CD

pipeline features, using an open-source license, developed by GitLab Inc.The

Continuous Integration, Delivery and Deployment (CI/CD) goal is pushing code

frequently, and having it tested, built, and deployed.

We used GitLab as a repository management tool and CI/CD feature to get our code

tested, built and deployed and to help locating errors if any.

 26

4.2 Development Methodology

Evolutionary Development methodology was applied for the development of this project.

Figure 4. 1: Evolutionary Development Method

This model is based on the idea developing an initial implementation, exposing this to user

comment and evolving it through several versions until the adequate system has been

developed. Once the prototype is no longer required, it is discarded. It reflects a way to

solve problems. It is a parallel model where backtracking is possible.

4.3 Integration and Testing

All the modules developed in the development phase were integrated together to form the

system. Various modules are being merged together using GitLab interface. The integration

of different modules made various problems to rise up. These errors were tackled with the

use of GitLab CI/CD and also with the help of supervisor. Testing is being done only in

module level.

In unit testing, individual modules or components of the system are tested. It is done to

check that the module is working as intended. Testing of the withdraw module is shown by

 27

the help of test case in the table below. Similarly, unit testing of all the other modules of the

system have been done.

Test case for Withdraw module

Table 4.1: Test case for Withdraw module

The withdraw module was tested to assure that it performs the function it is meant to

perform. The account number is searched in database to make sure it exists. The cheque

number is verified to assure that it is one of the cheque number that was issued to that

particular account holder. The amount is checked to assure that the amount in the account of

account holder is enough to make payment.

Test case id 1

Module to be tested Withdraw module

Assumption Database contains Client and Account related data

Test Data

Account number:10101010

Cheque number: 10000000

Amount:50000

Test steps

Entered data are validated as:

Account number exists

Cheque number matches the one in database

Amount is enough

Expected result Withdrawl will be success

Result Withdrawl successful

Comment Module worked as expected

 28

The module was executed, and mock account number and cheque number were used to

assure the expected output. As the input matches and satisfies the data in database, the

withdraw become success as expected.

Test case for Add Client

Table 4.2: Test case for Add Client Function

Test case id 2

Module to be tested Add client module

Test Data

Name: Ram Kumar Nepal

Gender: male Nationality: Nepal

Date of birth: 12/12/1999

Citizenship no: 1101

Issue date: 01/012016

Place: KTM

Address: Kirtipur-3

Phone: 334576

Test steps All the required field checked

Expected result Client addition will be success

Result Addition successful

Comment Module worked as expected

 29

Test Case for Add Deposit

Table 4.3: Test case for Add Deposit module

Test case id 3

Module Add Deposit

Assumption Database contains Client and Account related data

Test Data

Account Number:10001005

Account Type: Saving

Deposited By: Ram Sharma

Contact: 9844544322

Note: Personal Deposit

Test steps Field Validation for account number account type

Expected result Deposit addition will be success

Result Addition successful

Comment Module worked as expected

 30

CHAPTER 5

Conclusion and future work

Conclusion

Working as scheduled, finally an application was built using the tools such as angular,

spring framework, MYSQL etc. The application provide simple standard UI which makes

easier to perform transaction.

By using the system the cooperative users can add client to the system, design the products

for account such as payroll account, youth account, normal saving account etc. The user can

also design the loan product such as car loan, bike loan, education loan, house loan etc. The

system also allows performing deposit, withdrawal, editing user profile etc. Although

system has limited features, using the application cooperative will be benefitted by

performing the transaction quickly, easily and also by reducing paperwork.

Future work

Since this work was completed within confined time period with limited resources, it will

have some limitation such as it does not support the features of adding the detail of

shareholder and share, employee, user authentication mechanism.

The module that deals with shareholder, share, and user's authentication employee can be

added in future.

 31

Bibliography

[1] (Docs: Angular, 2018), https://angular.io/docs

[2] (Documentation:Bootstrap, 2018), https://getbootstrap.com/

[3] (Spring:JournalDev, 2018), https://www.journaldev.com/

[4] (java: javaTpoint, 2018), https://www.javatpoint.com/

[5] (Docs:Gitlab, 2018), https://docs.gitlab.com/

[6] (CSS-tutorial, 2018), https://www.w3schools.com/css/

[7] (CRUD in a Java App, 2018), https://www.javatpoint.com/crud-create-read-update-

delete-java-app/

[8] (RxJS 6 - What Changed? What's New? , 2018).

https://www.academind.com/learn/javascript/rxjs-6-what-changed/

[9] (Angular-Getting started, 2018), https://angular.io/guide/quickstart

https://docs.gitlab.com/
http://www.w3schools.com/css/
http://www.javatpoint.com/crud-create-read-update-delete-java-app/
http://www.javatpoint.com/crud-create-read-update-delete-java-app/
https://www.academind.com/learn/javascript/rxjs-6-what-changed/

 32

APPENDICES

Appendix: 1 Snapshots

 33

 34

35

Appendix: 2 Code

Withdraw.java

package com.proj.coop.withdraw;

import com.proj.coop.baseapi.BaseEntity;

import com.proj.coop.withdraw.withdraw_mode.WithdrawMode;

import lombok.Data;

import lombok.EqualsAndHashCode;

import javax.persistence.Column;

 import javax.persistence.Entity;

import javax.persistence.JoinColumn;

 import javax.persistence.ManyToOne;

 import javax.persistence.Table;

import java.time.LocalDate;

@Data

@Entity

@Table(name = "withdraw")

@EqualsAndHashCode(callSuper = false)

public class Withdraw extends BaseEntity {

@Column(name = "account_number")

private String accountNumber;

@ManyToOne(optional = false)

@JoinColumn(name = "withdraw_mode_id")

private WithdrawMode withdrawMode;

@Column(name = "cheque_number")

private String chequeNumber;

@Column(name = "withdraw_slip_number")

private String withdrawSlipNumber;

@Column(name = "amount")

private double amounts;

mailto:@Data
mailto:@Entity
mailto:@Table
mailto:@EqualsAndHashCode
mailto:@Column
mailto:@ManyToOne
mailto:@JoinColumn
mailto:@Column
mailto:@Column
mailto:@Column

36

@Column(name = "bearer_name")

private String bearerName;

@Column(name = "contact_number")

private String contactNumber;

@Column(name = "date")

private LocalDate date;

}

WithDrawDto.java

package com.proj.coop.withdraw;

import com.fasterxml.jackson.annotation.JsonFormat;

import com.proj.coop.baseapi.BaseDto;

import lombok.Getter;

import lombok.Setter;

import java.time.LocalDate;

@Getter

@Setter

public class WithdrawDto extends BaseDto {

private String accountNumber;

private BaseDto withdrawMode;

private String chequeNumber; private

String withdrawSlipNumber; private

double amounts;

private String bearerName;

private String contactNumber;

@JsonFormat(pattern = "dd-MM-yyyy")

private LocalDate date;

}

mailto:@Column
mailto:@Column
mailto:@Column
mailto:@Getter
mailto:@Setter
mailto:@JsonFormat

37

WithdrawMapper.java

package com.proj.coop.withdraw;

import com.fasterxml.jackson.annotation.JsonFormat;

import com.proj.coop.baseapi.BaseDto;

import lombok.Getter;

import lombok.Setter;

import java.time.LocalDate;

@Getter

@Setter

public class WithdrawDto extends BaseDto {

private String accountNumber;

private BaseDto withdrawMode;

private String chequeNumber;

private String withdrawSlipNumber;

private double amounts;

private String bearerName;

private String contactNumber;

@JsonFormat(pattern = "dd-MM-yyyy")

private LocalDate date;

}

WithdrawMapper.java

package com.proj.coop.withdraw;

import com.proj.coop.baseapi.mapper.BaseMapper; import

com.proj.coop.baseapi.mapper.ReferenceMapper; import

org.mapstruct.Mapper;

mailto:@Getter
mailto:@Setter
mailto:@JsonFormat

38

@Mapper(componentModel = "spring", uses = {ReferenceMapper.class})

public interface WithdrawMapper extends BaseMapper<WithdrawDto, Withdraw> {

}

WithdrawRepository.java

package com.proj.coop.withdraw;

import com.proj.coop.baseapi.BaseRepository;

public interface WithdrawRepository extends BaseRepository<Withdraw> {

}

WithdrawResource.java

package com.proj.coop.withdraw;

import com.proj.coop.baseapi.BaseResource;

import org.springframework.web.bind.annotation.CrossOrigin;

import

org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

import org.springframework.web.cors.CorsConfiguration;

@RestController

@CrossOrigin(value= CorsConfiguration.ALL)

@RequestMapping(value = BaseResource.BASE_URL

+ WithdrawResource.RESOURCE_URL)

class WithdrawResource extends BaseResource<Withdraw, WithdrawDto> {

public static final String RESOURCE_URL = "/withdraw";

public WithdrawResource(WithdrawService withdrawService, WithdrawMapper

withdrawMapper) {

super(withdrawService, withdrawMapper, Withdraw.class,
QWithdraw.withdraw);

mailto:@Mapper
mailto:@RestController
mailto:@CrossOrigin
mailto:@RequestMapping

39

}

}

WithdrawService.java

package com.proj.coop.withdraw;

import com.proj.coop.baseapi.BaseService;

public interface WithdrawService extends BaseService<Withdraw> {

}

WithdrawService Impl.java

package com.proj.coop.withdraw;

import com.proj.coop.baseapi.BaseServiceImpl;

import org.springframework.stereotype.Service;

import javax.inject.Inject;

@Service

public class WithdrawServiceImpl extends BaseServiceImpl<Withdraw> implements

WithdrawService {

@Inject

public WithdrawServiceImpl(WithdrawRepository withdrawRepository) {

super(withdrawRepository);

}

}

withdraw.component.ts

import { Component, ElementRef, Input, OnInit, Output, ViewChild } from

'@angular/core';

import { Router } from '@angular/router';

import { WithdrawService } from './withdraw.service';

import { Withdraw } from './withdraw.model';

mailto:@Service
mailto:@Inject
mailto:@angular
mailto:@angular

40

import { debounceTime, distinctUntilChanged, switchMap } from 'rxjs/operators';

import { Observable } from 'rxjs/internal/Observable';

import { Subject } from 'rxjs/internal/Subject';

import { BankService } from '../bank-account/bank.service';

import { WithdrawModeService } from './withdraw-mode/withdraw-mode.service';

import { Bank } from '../bank-account/bank.model';

import { WithdrawMode } from './withdraw-mode/withdraw-mode.model';

@Component({

selector: 'app-withdraw',

templateUrl: './withdraw.component.html',

styleUrls: ['./withdraw.component.scss']

})

export class WithdrawComponent implements OnInit {

withdraw: Withdraw = new Withdraw();

checkBoxFlag: boolean = false;

dateFormatFlagChild: boolean;

 futureDateFlagChild: boolean;

pastDateFlagChild: boolean;

accounts$: Observable<Bank[]>;

private searchTerms = new Subject<string>();

searchDisplayFlag = false;

accountNumber = '';

clientName = '';

clientPhoneNumber = '';

mailto:@Component

41

selectedModeValue: number;

withdrawModeValues: WithdrawMode[];

constructor(

private router: Router,

private withdrawService: WithdrawService,

private bankService: BankService,

private withdrawModeService: WithdrawModeService) {

}

getDateFormatFlagChild(flag: boolean): void {

this.dateFormatFlagChild = flag;

}

getFutureDateFlagChild(flag: boolean): void {

this.futureDateFlagChild = flag;

}

getPastDateFlagChild(flag: boolean): void {

this.pastDateFlagChild = flag;

}

createWithdraw(withdraw: Withdraw): void {

this.withdrawService.createWithdraw(this.withdraw).subscribe(data => {

// this.toasterService.pop('success', 'Withdraw', 'Operation Successful :)');

alert("withdrawl successful");

});

this.withdraw.chequeNumber = null;

this.withdraw.withdrawMode.id = null;

this.withdraw.withdrawSlipNumber = null;

this.withdraw.accountNumber = null;

this.withdraw.amounts = null;

this.withdraw.bearerName = null;

42

this.withdraw.contactNumber = null;

this.withdraw.date =null;

this.withdraw.checkBox=false;

}

isChecked(element: HTMLInputElement) {

if (element.checked) { this.checkBoxFlag = true;

this.withdraw.bearerName = this.clientName;

this.withdraw.contactNumber = this.clientPhoneNumber;

}

else

 {

this.checkBoxFlag = false; this.withdraw.bearerName = '';

this.withdraw.contactNumber = '';

}

return this.checkBoxFlag;

}

searchAccount(term: string): void {

this.searchTerms.next(term);

this.searchDisplayFlag = true;

}

getWithdrawMode() {

this.withdrawModeService.getWithdrawMode().subscribe(response =>

this.withdrawModeValues = response);

}

getListValue(accountNumber: string, clientName: string, clientPhoneNumber: string):

void {

this.searchDisplayFlag = false;

this.withdraw.accountNumber = accountNumber;

this.accountNumber = accountNumber;

43

this.clientName = clientName;

this.clientPhoneNumber = clientPhoneNumber;

}

getWithdrawModeValue(modeValue: number) {

this.selectedModeValue = modeValue;

return this.selectedModeValue;

}

validateNumber(event: any) {

if (event.keyCode === 38 || event.keyCode === 40) {

event.preventDefault();

}

}

validateName(event: any) {

if (!(event.keyCode < 48 || event.keyCode > 57)) {

event.preventDefault();

}

}

resetSlipNumber(): void {

this.withdraw.withdrawSlipNumber = null;

resetChequeNumber(): void {

this.withdraw.chequeNumber = null;

}

ngOnInit(): void {

this.accounts$ = this.searchTerms.pipe(

debounceTime(200), distinctUntilChanged(),

switchMap((term: string) => this.bankService.searchAccount(term)),

);

this.searchDisplayFlag = true;

this.getWithdrawMode();

}

}

44

Deposit module

@Data

@Entity

@Table(name = "deposit")

public class Deposit extends BaseEntity {

 @Column(name = "account_number")

 private String accountNumber;

 @Column(name = "deposit_type")

 private String depositType;

 @Column(name = "deposited_by_name")

 private String depositedByName;

 @Column(name = "deposited_by_contact_number")

 private String depositedByContactNumber;

 @Column(name = "deposit_note")

 private String depositNote;

 @Column(name = "deposit_date")

 @CreationTimestamp

 @JsonFormat(pattern = "yyyy-MM-dd, HH:mm:ss")

 private LocalDateTime depositDate;

 @Column(name="receipt_number")

 private String receiptNumber;

 @OneToMany(mappedBy = "deposit", cascade = CascadeType.ALL)

45

 private List<DepositDetail> depositDetail;

 public void setDepositDetail(List<DepositDetail> depositDetail) {

 for (DepositDetail depositDetail1 : depositDetail) {

 depositDetail1.setDeposit(this);

 }

 this.depositDetail = depositDetail;

 }

}

