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ABSTRACT 

The decreasing trend in the Levelized Cost of energy produced from renewable energy 

resources and their widespread potential has motivated towards the distributed 

generation (DG), mainly solar photovoltaic (PV). The DG output variation and 

consumer load variation may cause voltage violation in the distribution feeder. In this 

research, a model-free control algorithm based on reinforcement learning (RL) is 

presented for the regulation of distribution feeders by controlling the reactive power 

output from the smart inverters (SI) with minimum PV generated active power 

curtailment. The SI serves two purposes, generation of the power to supply load demand 

and reactive power generation for the voltage control. An RL, deep deterministic policy 

gradient algorithm is used to train an agent, from training the agent will learn a policy 

to control the output of smart inverters based on a designed reward function and later 

the trained agent was used to determine the setpoint of P, Q output from SI keeping the 

voltage within the desired limit. This algorithm is implemented in the IEEE-33 radial 

distribution feeder. A Load flow program has been developed to get the voltage 

magnitude information of each node, using  Kirchoff's law, where the voltage angle and 

magnitude is the function of total power flowing through the node, branch reactance & 

branch impedance.   

 

Distributed generation is added in the IEEE-33 bus, and load flow analysis is 

performed. The analysis shows that without DG connection and at a low level of DG 

penetration, the line loss increased with the load and node voltage decreased and vice 

versa. However, with the high penetration of the DG, the line losses have increased 

during light load.  

 

The designed  DDPG agent has successfully kept the node voltage within the limit 

under the varying load. Also, the active power curtailment of the model is compared 

with the volt-VAR droop model and results show that the active power curtailment by 

the model is less than the volt-VAR droop control method by 2.41 percent. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

An electric power system is expanding rapidly. With the increased connection of the 

distributed energy resources (DER) such as solar PV, wind, hydropower, etc., the power 

system architecture becomes more complex which creates difficulty in reliable and 

quality operation of the system. During lightly loaded conditions, the presence of the 

local generation sources on the distribution feeder causes overvoltage at the point of 

the coupling and also causes the reverse power flow in the feeder.  

 

The goal of the distribution system operator is to accommodate the maximum 

distributed generation without violating the operational constraints such as reliability, 

frequency, voltage (Klonaria, et al. 2016). The recent development of the data 

management system in the power system is an opportunity for the distribution system 

operator to develop a real-time data-driven system to overcome such operational 

challenges (Hojabri, et al. 2019),. Many researchers have proposed feasible methods to 

control the feeder’s voltage under this condition. 

 

Many researchers have proposed feasible model-based methods to control the feeder’s 

voltage under this condition. However, those methods could not respond to the 

uncertainties in PV generation and energy consumption. In this thesis, a smart inverter 

is controlled using the reinforcement learning algorithm. Reinforcement learning is a 

data-driven control algorithm where the RL agents take action based on the data in an 

environment and receive a reward. Based on the received reward the agent will improve 

its further action. There are several types of reinforcement learning agents, for example, 

Q-learning agents, Deep Q-Network agents (DQN), SARSA agents, PPO agents, 

DDPG agents. For the continuous observation  and continuous action space, a DDPG 

agent is used (Matlab 2021) where the agent will control the reactive power generation 

/ absorption of the smart PV inverters. 

 

The developed  policy, which determines the action of the inverter in the future, will be 

learned through the past data of the system, which do not require any input of the system 

parameter. This developed smart PV inverter control algorithum will achieve better 

voltage regulation, and also reduce the  PV generated active power curtailment, on 

comparison to the existing smart inverter technology. 
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1.2 Problem Statement 

In a conventional power system, in the absence of distributed generation, the power 

flow from the grid end to the consumer end. The voltage of the system drops 

monotonously, i.e., the voltage at the grid side will be higher and decreased along the 

feeder (Jacome, et al. 2019). In such cases, conventional voltage control methods such 

as on-load tap changers (OLTCs), capacitor banks, etc. can regulate the distribution 

feeder voltage.  Over the past years, the high penetration of distributed generation 

energy sources, such as photovoltaic, may cause the reverse power flow i.e., towards 

the grid substation which creates none uniformity in voltage distribution along the line. 

This has made distribution networks faced with the problem of voltage regulation 

(Júnior, Waenga and Pinto 2018).  

 

Conventional voltage control algorithms such as on-load tap changers (OLTCs), shunt 

capacitors, etc., are used for the voltage regulation in distribution feeders whose 

response to the voltage variation is slow and localized. Fast regulatory devices PV 

inverters and static var compensators (SVCs)) need to cut off during the severe voltage 

violation and once the system was restored normal then it will be connected back to the 

system (Singh, 2017). The cut-off of SI causes the DG-generated active power 

curtailments. Also, During this switching process, the system will generate the transient 

voltage and current which results in a decline in the quality of the (Klonaria, et al. 2016). 

Under the new standards/rules by IEEE std-1547, 2018 (IEEE 2018) , PV inverters are 

required to contribute to grid regulation via smart functions.  

 

With the development of communication technology and expansion of data acquisition 

systems such as SCADA, PMU has made the system data readily available to the 

distribution system operators (Hojabri, et al. 2019). Many researchers have proposed a 

droop control also called Volt-Var control method which is a model-free and data-

driven control algorithm. Researchers have suggested that voltage regulation can be 

achieved using the Volt-Var control method. During, voltage variation the SI 

generates/consume the reactive power which reduces the active power generation by 

PV (Lusis, Andrew and Liebman 2020). The optimization of the Volt-Var droop curve 

can be achieved by various optimization techniques such as Genetic algorithm (GA), 

particle swap optimization(PSO) etc. However, still the optimization does not always 

result the best outcome because of uncertainty in the PV generated load and consumer 
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consumption variation (Li, Jin and Sharma 2019). Hence, a model-free control 

algorithm based on reinforcement learning (RL) is presented, for the regulation of 

distribution feeder voltage by controlling the reactive power output from the smart 

inverters (SI) with minimum PV generated active power curtailment 

 

1.3 Research Objectives 

1.3.1 Main Objective:  

To design a system for voltage control of active distribution Network using 

Reinforcement Learning. 

 

1.3.2 Specific objective: 

 To develop a load flow program for a radial distribution system in MATLAB 

and analyze the effect of load variation and DG output variation in system 

voltage & power loss. 

 To develop a reinforcement learning environment and train DDPG agents using 

MATLAB Simulink. 

 To analyze and validate the performance trained agent for voltage control of 

IEEE-33 radial distribution bus with DG. 

 

1.4 Assumptions and Limitations 

 The IEEE 33 node test feeder model is developed and simulated in the 

MATLAB software instead of a real field/practical radial distribution feeder. 

 This thesis is purely technical work, economical analysis shall not be 

performed.  

 The reliability study of the system shall not be performed. 

 

1.5 Outline of the Thesis 

This report is categorized into five chapters: 

Chapter 2: This chapter gives an overview of the effect of load and generation 

variation of the distribution system. It also gives an overview of the methods for 

voltage control and describes reinforcement learning. 

Chapter 3: This chapter describes the methodology used to fulfill the objectives of 

the study. 

Chapter 4: Explain the effect of load variation on voltage and also analyze the 

reinforcement learning-based voltage control. 
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Chapter 5: Summarizes the thesis's main points and contributions., and proposes 

future directions for research. 

Finally, the thesis ends with a list of papers referred for this study. 
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CHAPTER TWO: LITERATURE REVIEW 

2.1 Distributed generation resources 

Conventional power plants such as oil, coal, natural gas, nuclear power plant are located 

remotely. The electrical energy produced from those large-scale conventional power 

plants is transmitted to the grid substation near the major load center. The energy from 

the grid substation shall be distributed to the consumer through a low voltage 

distribution line. During this process, a significant amount of energy loss occurs during 

transmission from a power plant to the consumer (Abdel-Ghany, et al. 2015). On the 

other hand, distributed energy resources are spread over the geographical area. The 

presence of DG nearby the load center benefits the reduction in line losses (Singh 2017). 

 

Distributed generation is a concept of generating electricity through small-scale 

technologies close to the load to be served. Small hydropower, biomass, wind power, 

solar power, wind power, thermal power generated near the customer premises are 

examples of distributed generation. They are often connected at the low voltage 

distribution lines. Since, the generation is nearby the load, even in the absence of the 

grid power, the local generation can serve the load which increases the energy security. 

Also, the reliability will increase.  Moreover, DG sources can use islanding techniques 

to serve the local distribution network even during the outage of the central grid 

(National Planning Commission 2018). The distributed generation also increases the 

economic activity in society. Most of the distributed generation comes to form a clean 

source of the energy, hence preventing the deterioration of the environment. National 

Planning Commission, Nepal proposed a plan for sustainable distributed generation and 

grid access to all by 2022 as shown in table 2 (National Planning Commission 2018). 

 

Table 2-1: Distributed Generation projects 

Distributed Generation projects Number 

Hydropower 221 

Solar PV 481 

Biomass to Electricity 50 

Wind Power 1 
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2.2 Solar Photovoltaic 

Sun is the ultimate source of the energy. The energy coming from the Sun can be 

converted into a useful form using different technologies. Solar energy is renewable 

energy, a source that is not finite or exhaustible. Solar power contributes more than 2 

percent of the current energy demand of the world and is rapidly growing. Nepal got a 

total potential of 50,000 terawatt-hours per year which is 7000 times higher than the 

total hydroelectricity potential in Nepal (Andrew Blakers; Sunil prasad Lohani 2020). 

Solar energy can be converted into electricity using solar PV technology. A solar PV 

cell converts thermal and radiant energy from sunlight into a direct current. Semi-

conductive materials such as silicon, germanium are used to made solar cells. The 

material used in this solar cell is silicon and in nature. The materials are used in mono-

crystalline, poly-crystalline, and amorphous silicon forms. 

 

 

 

Figure 2-1: Solar PV Power Generation 

 

The dc output current and dc voltage vary with irradiation reaching the PV array module 

and surrounding temperature. The DC-DC converter ensures that the dc (U1) fed to the 

dc-ac inverter is stable. The energy from solar PV can be converted into AC  for use 

using a DC-AC converter. 

 

2.2.1 Solar Output Characteristics 

Solar power generation is fluctuating, uncontrollable, and unpredictable and depends 

on resources that are location-dependent. The solar PV output is a function of solar 

irradiance. The solar PV output also depends on the temperature, with the increase in 

cell temperature, the energy output decreases. Also, the shadow due to clouds, 

obstruction of solar radiation by objects sharply decrease solar PV array output.  Figure 

2.2, provides a graphical example of hourly PV power variability.  
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Table 2-2: Location data  

Host institution 

Department of Hydrology and 

Meteorology (DHM) 

Location Lumle, Nepal 

Date 7/1/ 2018 

Elevation (m) 1740 

Latitude (positive north, decimal degrees) 28.2966 

Longitude (positive east, decimal degrees) 83.8179 

 

 

 

Figure 2-2: Irradiance variation with time 

 

2.3 Voltage regulation 

In an electric power system, the voltage magnitude of the sending end voltage and 

receiving end voltage are different. The voltage must be different for the power flow. 

Measurement of this voltage difference is voltage regulation.  
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Figure 2-3: Short Line Model 

 

Voltage regulation (%)  =
VS−VR

VS
X100  ……………………………..  Equation 2-1 

Here; VS=  Sending end voltage magnitude 

VR= Receiving end voltage magnitude 

The voltage variation occurs due to the line impedance between sending end and 

receiving end. The voltage regulation for the ideal line, i.e., line with zero resistance 

and reactance is zero. 

 

The voltage regulation for the distribution line is considered as ±5 percentage or ±10 

percentage. For example, in ANSI C84.1 has set distribution voltage tolerance as ±5 

percentage.  
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Figure 2-4: Voltage Profile in Distribution line 

 

2.4 IEEE-33 Bus 

The IEEE-33 bus system is a radial distribution feeder system is a generic model 

developed by  IEEE to facilitate customization for more specific studies. This radial 

feeder consists of thirty-two line branches and thirty-three buses.  The base voltage is 

12.66kV, the total connected load is  3.715MW, and 2.3MVar (Vita 2017) .  

 

Figure 2-5: Single line diagram of the IEEE 33-bus radial distribution feeder  

 



21 

Table 2-3: Load data of the IEEE 33-bus radial  distribution system 

 

2.5 Voltage Regulation in Power System 

The voltage of the power system varies with the change in the generation and load. The 

voltage of the system will increase when the load decreases and vice versa. To keep the 

power system voltage within the limit additional equipment is required to add to the 

system (Kowsalya 2018). Some of the devices used for the regulation of the power 

system are as follows. 

Load Location (Bus Bar) Real Load (kW) Reactive Load 

(kVAR) 

L2 2 100 60 

L3 3 90 40 

L4 4 120 80 

L5 5 60 30 

L6 6 60 20 

L7 7 200 100 

L8 8 200 100 

L9 9 60 20 

L10 10 60 20 

L11 11 45 30 

L12 12 60 35 

L13 13 60 35 

L14 14 120 80 

L15 15 60 10 

L16 16 60 20 

L17 17 60 20 

L18 18 90 40 

L19 19 90 40 

L20 20 90 40 

L21 21 90 40 

L22 22 90 40 

L23 23 90 50 

L24 24 420 200 

L25 25 420 200 

L26 26 60 25 

L27 27 60 25 

L28 28 60 20 

L29 29 120 70 

L30 30 200 600 

L31 31 150 70 

L32 32 210 100 

L33 33 60 40 

  Total load 3715 2300 
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i) Transformer Tap Changing – The transformer turn ratio is changed to achieve 

the voltage in the desired limit. The transformer tap can be changed with or without 

disconnecting the transformer from the supply. The tap changing can be achieved 

manually or automatically. 

 

ii) Shunt Reactor – The shunt reactor is the inductors that are connected in 

between the line and neutral. The role of the shunt reactor is to compensate for the 

capacitive current generated from the high voltage transmission line and power cables. 

Shunt reactors are connected at the sending and receiving end of the substation.  

 

iii) Shunt Capacitors – The shunt capacitors are connected in parallel with the line. 

Its role is to compensate the reactive power absorbed by the line. Like the shunt reactor, 

it is installed at the switching substations, distribution substations, receiving end 

substations. 

 

iv) Synchronous Phase Modifier – Synchronous phase modifier is a over-excited 

synchronous motor connected with the load at receiving the end of the line, running 

without a mechanical load. Synchronous Phase Modifier not only keeps the voltage 

constant but also improves the power factor. 

 

v) Smart Inverter – IEEE has released a new standard, IEEE std-1547, 2018 

(IEEE, 2018) for inverters that are to be used in PV connection to the grid. Under this 

rule PV inverters are required to contribute to grid regulation via smart functions. To 

allow the smart inverter for the reactive power generation for injection/ absorption on 

the grid, the inverter capacity (S) must be greater than PV produced real power (P) of 

the PV arrays. The smart inverter output curve is shown below. 
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Figure 2-6 : Smart PV Inverter Output Curve 

 

2.6 Voltage Control using Volt–Var Droop of Smart Inverter 

Figure 2.7 shows the concept of the voltage regulation by smart inverter using Volt-Var 

Droop control method.  This method outputs the reactive power depending upon the 

voltage magnitude at the point of the connection. The voltage between V3 and V4 is in 

an acceptable range. During this interval, the reactive power (VAR) generation by SI is 

zero. If the system voltage drops below V3 then the SI will generate the reactive power 

and increase above the V4, the SI will absorb the reactive power. The magnitude of the 

reactive power generation/absorption is determined by the slope of the curve. Similarly, 

if the voltage is less than the V2 it will generate the maximum reactive power and inject 

it into the feeder and if the voltage is greater than V5, it will absorb the maximum 

reactive power from the grid. 
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Figure 2-7: Smart PV Inverter Output Curve 

 

2.7 Reinforcement Learning 

Reinforcement learning is a branch of the machine learning algorithm that learns 

through reward function. A reward function is a judgment of how good or bad is the 

action taken by the agent. The reinforcement learning algorithm will train an agent to 

achieve the maximum reward.  An agent observes the environment and take an action. 

If the action of the agent is good, then it will get a positive reward else it will get a 

negative reward.  The agent stores the information of the observation, action, and 

reward it got. During the training, the agent will take an action that has previously 

provided it a positive reward,  it is very unlikely that the agent will take the bad action 

again. Doing this in a large divergent environment, the agent will explore itself and 

finally learns a policy that will yield large possible rewards.  (Sutton and Barto 2015). 

This is summarized in the figure below. 
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Figure 2-8: Reinforcement Learning Flowchart 

 

2.4.1 Reinforcement Learning Workflow 

To develop a reinforcement learning algorithm for control of the environment parameter, first, 

we have to formulate the problem. During this, we will learn what are the input and outputs of 

the environment, how the agent will interact with the environment. The main objective is to 

know what input will agent take and what goal we have to achieve. Then we will create an 

environment, where the training of agents will occur. To judge the action of the agent we have 

to create a reward function. Then we will create an agent, the selection of the agent type depends 

on the action type and environment type, i.e., continuous or discrete. The agent will then be 

trained in the environment. After the successful training, the agent will training will be validated 

in the environment 

 

 

Figure 2-9 Reinforcement Learning Workflow 

 

2.4.2. Deep Deterministic Policy Gradient (DDPG) Algorithm 

Deep deterministic policy gradient is a model-free off-policy learning algorithm, which 

is also called an actor-critic algorithm (Timothy P. Lillicrap 2015). The objective of the 

DDPG agent is to maximize the expected cumulative long-term reward.  DDPG works 

on continuous action and state space.  
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Observation Space Action Space 

Continuous or discrete Continuous 

 

DDPG agent consist of actor and critic of following types. 

Observation Space Action Space 

Q-value function critic Q(S,A),  Deterministic policy actor π(S), 

 

Deterministic policy is a policy which maps that maps the state into the actions. It is 

used in a deterministic environment where the outcome of the action is known.  

 

The figure below shows the working principle of the DDPG agent. 

 

 

 

Figure 2-10: Working principle of the DDPG agent, an actor-critic architecture. 

 

Initially, the environment is at the initial state St, the actor neural network, which is a 

neural network with wight parameter, φ choose an action µφ (st ). The environment will 

generate a reward rt for this action and environment transit to next state St+1. This 

experience tuple (st, at , rt , st+1 ) is then stored in the replay memory. The critic 

parameter is updated by minimizing the loss L across all sampled experiences. 

 

𝐿 =
1

𝑀
∑ (𝑦𝑖 − 𝑄(𝑆𝑡, 𝐴𝑡; 𝜙))2𝑀

𝑡=1  ……………………………………. Equation 2-2 

Where, M is the mini-batch of experience 

 

yi=Ri+γQt(Si′,πt(Si′;θt);ϕt)   ………………………………………. Equation 2-3 

Where; yi  is value function target  

Ri is the reward of ith Episode  

γ is the discount factor 
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Qt is sum of future reward 

 

Similarly, the actor parameter is updated using sampled policy gradient to maximize 

the expected discounted reward. 

 

∇θJ ≈
1

M
∑ GatGπtM

t=1  …………………………………………………..……. Equation 2-4  

where Gat = ∇AQ(St, A; ϕ) and  Gπt = ∇θπ(St + 1, θ)& A = π(St + 1, θ)   

 

Actor and critic networks are updated until convergence using one of the following 

target update methods.  

 Smoothing, periodic & Periodic smoothing 

 

2.8 Load Flow Analysis  

Load flow analysis also called power flow analysis of a power system is a steady-state 

analysis to determine the operating condition of the system. The objective of load flow 

analysis is to determine node voltage magnitude and phase angle in given load (active 

and reactive) cases and to calculate the power losses etc. Widely used load flow analysis 

methods are the Newton-Raphson method, Gauss-Seidel method,  and fast decoupled 

method  (Sivkumar and Das 2008). The distribution system has a radial structure and 

high line resistance to reactance ratios as compared to a transmission line. So these load 

flow methods take a longer duration for convergence, take more computational memory 

and can not provide good results in the distribution system.  

 

 

  



28 

CHAPTER THREE:      METHODOLOGY 

3.1 Basic 

This section describes the method followed during the research process method. The 

IEEE 33 Bus radial distribution system is used as a test network for obtaining the 

objective of this thesis. The standard IEEE 33 Bus system's data was obtained from the 

standard document of IEEE and load flow was carried out using MATLAB under the 

standard condition. The optimal location and capacity of the Solar units are considered 

to form the published paper, which uses the genetic algorithm to find the optimal size 

and capacity. According to  (Minh Quan Duong 2018), the optimal location for the DG 

connection is  Bus: 09 – Size: 1.0625 MW; Bus: 16 – Size: 1.005 MW; Bus: 24 – Size: 

1.0447 MW; Bus: 30 – Size: 0.9518 MW; Bus. Since the observation space and action 

space are continuous in nature, the DDPG agent was created. The next step is to design 

an environment to train the DDPG agent. The DDPG agent takes the voltage at each 

node as an observation vector and outputs reactive power output of SI’s. The trained 

agent is then used to carry out the simulation under a continuously varying 

environment. 
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The flow chat shown in the figure below expresses the basic methodology of this thesis. 

 

 

Figure 3-1 : Flow Chart of RL based voltage control 

 

Reporting and Documentation

Validation and Verification

Comparision with existing system Comparision with grid codes

Use the trained agent to control node voltage of IEEE-33 Bus

Analyzing and Validate the Train Agent

Training of DDPG agent in the enviroment

Developing DDPG Agent, Enviroment, reward function etc.

Analyzing the Effect of Load & Generation variation on node voltage & line 
losses 

Load Flow Analysis of modefied IEEE-33  feeder

Modeling of IEEE 33 radial distribution feeder

Literature Review
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3.2 Modeling of a distribution system 

Most of the distribution feeder are radial type. In this thesis, the IEEE-33 Bus radial 

distribution feeder is used as a test bus for implementing the concept of the voltage 

control using RL algorithum. The standard IEEE 33 Bus system's data can be get form 

the standard document (The Institute of Electrical and Electronics Engineers, Inc. n.d.). 

The load flow program is developed using the methods stated in chapter 2.8. 

 

3.3 Optimal Location and Sizing of Solar PV 

The optimal size and location for the PV placement in IEEE 33 radial distribution 

system is suggested by (Minh Quan Duong 2018). 

 Bus: 09 – Size: 1.0625 MW  

 Bus: 16 – Size: 1.023 MW  

 Bus: 24 – Size: 1.0447 MW 

 Bus: 30 – Size: 0.9518 MW 

 

3.4 Load Flow 

A load flow program has been developed based on the Kirchhoff’s voltage law and 

Kirchhoff’s Current law.  

 

 

Figure 3-2 : PQ Bus 

 

𝑃2 + 𝑗𝑄2 =  𝑉2𝐼2
∗ ……………………………………………….Equation 2-1 

I2 = (P2 − jQ2)/V2
∗  …………………………………….…….Equation 2-2 

I2 = (V1∠δ1 − V2∠δ2)/(R + jX)    …...…………………….….Equation 2-3 

Here;  

V1∠δ1 is voltage at Bus-1 

V2∠δ2 is voltage at Bus-2 

P2 + jQ2 is power flowing through Bus-2 

I2 is current flowing through Bus-1 to Bus-2 
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Equating equation 1 & 2 and solving we get; 

V2  =  √[{(P2R + Q2X − 0.5|V1|2)2 − (R2 + X2)(P2 + Q2)}
1
2 − (P2R + Q2X − 0.5|V1|2)2] 

…..…...…………………….….….Equation 2-4 

 

δ2 = δ1 −  tan−1{(P2X − Q2 R)/ (|V1|2 + P2R + Q2X)} 

…..…...…………………….….….Equation 2-5 

 

 

 

Figure 3-3 :  Load Flow flowchart 

 

3.5 Voltage Control using Volt–Var Droop of Smart Inverter 

The result of (Lee, et al. 2020) optimization curve has been taken for the Volt-Var 

control. The weight for the figure 2-7 is , Q1=Q2=0.82 Pu; V2=0.9 Pu; V3=0.95Pu, 

V4=1.05 Pu, V5=1.18 PU and Q5=Q6=-0.82Pu. 

 

3.6 Solar PV Output variation 

The solar output variation is modeled by using a random number generator. It output a 

normally (Gaussian) distributed random signal.  
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3.7 RL Controller setup 

A RL controller was designed in MATLAB simulink using the agent in  MATLAB 

reinforcement learning section. A DDPG agent is used because of the need of 

contineous action space. DDPG agent consist of actor and critic model. The actor and 

critic network is created using MATLAB programming function. DDPG Agent 

Simulink block has an observation, reward signal, termination (isdone) input and action 

as output.  

 

3.7.1 Observation Vector 

The voltage output of each node is an observation vector to the agent. In the real field 

application, this data can be obtained form SCADA, PMU. Here, the  observation vector 

is obtained from the load flow, which is carried out in the Power_Flow block.  

 

3.7.2 Reward Function 

In this research, reward function shall be designed using a user-defined MATLAB 

Simulink function. The objective of the reinforcement learning agent is to maintain the 

voltage within the desirable limit and to reduce the PV-generated active power 

curtailment. Based on these objectives the reward function is divided into two parts 

(i) For node voltage limits violation:  a negative reward (Penalty) proportional 

to the voltage deviation. The voltage is categorized into different zones, 

based on the severity of the voltage violation.  

(ii) For active power curtailment:  A penalty for proportional to SI generated 

reactive power. 

The reward for active power curtailment is defined as: 

𝑅𝑄(𝑗) = ∑ 𝐶(1 − 𝑞𝑖); 𝑊ℎ𝑒𝑟𝑒 𝑞𝑖 = (|𝑄𝑖|𝑛
𝑖=1 /𝑆𝑖), also called the utilization factor 

Where , Qi  = Reactive Power output of ith Unit, Si= Capacity of the Inverter 
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Figure 3-4 : :Voltage Zone categorization for reward 

3.7.3 Action 

The RL agent will take an action to achive the desired objective. In this case, the 

reactive power generaiton by SI’s are the action signal. Action vector consist of four 

action signal, which is reactive power output of each SI. 

 

3.7.4 DDPG Training Algorithm 

Figure 3-3, is the flowchart of DDPG training algorithm, which describes the process 

of DDPG training.  Initially, the load flow is solved to get the initial observation and 

this is fed into the DDPG agent. The DDPG agent will take an action and generate the 

new reactive power output. With this new generation value, the load flow is performed 

again at the meantime the reward is evaluated. DDPG will update it action until the 

reward converges or the training reached for maximum episode. 
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Figure 3-5 : DDPG Algorithm 

 

The critic and actor target network is updated using the smoothing technique. The 

target will be updated using the target update parameter, also called target smooth 

factor. 

The actor network is updated by: 
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𝜃𝑡 = 𝜏𝜃 + (1 − 𝜏)𝜃𝑡 

The actor network is updated by: 

∅𝑡 = 𝜏∅ + (1 − 𝜏)∅𝑡 

Here, 

𝜏 𝑖𝑠 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑚𝑜𝑜𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟, ∅ 𝑖𝑠 𝑐𝑟𝑖𝑡𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑛𝑑 𝜃 𝑖𝑠 𝑎𝑐𝑡𝑜𝑟 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

 

3.8 Software and Tools 

Some of the software that will be used for the implementation of this thesis are: 

3.8.1 MATLAB 2021a 

MATLAB is a high-level programming language for programming, mathematical 

computation, visualization. It is used in many fields of scientific and engineering 

applications. MATLAB use includes embedded system, control system, digital signal 

processing, wireless communication, image processing, and computer vision, internet 

of things, FPGA design and Codesign, Mechatronics, test and measurement, 

computation; biology and computational finance, robotics, data analytics, predictive 

maintenance, motor and power control, deep learning, reinforcement learning etc. 

(MathWorks 2018). 

In this research, MATLAB Simulink is used to design an environment, and MATLAB 

deep learning RL agent is used to perform the voltage control action. The Volt-VAR 

droop control algorithm, reward function, etc are designed using MATLAB coding. 
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CHAPTER FOUR: RESULT AND DISCUSSION 

This chapter presents the results and discussion of the study.  

4.1 Load Flow Analysis 

A load flow program for IEEE 33 bus radial distribution system is developed in the 

MATLAB software and load flow analysis is done to validate the simulation result with 

the data provided by the IEEE Distribution System Analysis Subcommittee. 

  

4.1.1 Effect of load variation without DG connection. 

Table 4-1, shows the effect of the load variation without distributed generation on the 

node voltage. The node voltage is calculated on a per-unit scale (PU). The load on the 

feeder is decreased from 150 percent to 25 percent of the load defined by IEEE, which 

is listed in table 2-3. The results show that the node voltage decreases with the increase 

in the load. When the load is 25 percent and 50 percentage, the node voltage is within 

the limit. However, for load greater than 75 percent, the node voltage regulation criteria 

have been violated and the voltage is minimum in node 33. All the node voltages except 

in node 1 are less than one, while node voltage in node 1 is 1 PU.  

 

Table 4-1: Effect of load variation without DG on Node Voltage (PU) 

        Percent  Load 

 

Node 

Voltage of Node in PU 

150 125 100 75 50 25 

1 1 1 1 1 1 1 

2 0.99538 0.99622 0.99703 0.9978 0.99856 0.99929 

3 0.97335 0.97822 0.98289 0.98739 0.99172 0.99592 

4 0.96154 0.96862 0.97538 0.98187 0.98812 0.99415 

5 0.94984 0.95912 0.96796 0.97642 0.98456 0.99241 

6 0.9207 0.93546 0.94948 0.96287 0.97571 0.98807 

7 0.91511 0.93093 0.94595 0.96029 0.97403 0.98725 

8 0.89347 0.91341 0.9323 0.9503 0.96752 0.98406 

9 0.8834 0.90527 0.92597 0.94567 0.9645 0.98259 

10 0.87406 0.89772 0.92009 0.94137 0.96171 0.98122 

11 0.87267 0.8966 0.91922 0.94074 0.9613 0.98102 

12 0.87026 0.89465 0.91771 0.93963 0.96058 0.98067 

13 0.86041 0.8867 0.91153 0.93513 0.95765 0.97924 

14 0.85675 0.88375 0.90924 0.93345 0.95656 0.97871 

15 0.85448 0.88192 0.90782 0.93241 0.95589 0.97838 

16 0.85227 0.88013 0.90643 0.93141 0.95523 0.97806 
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        Percent  Load 

 

Node 

Voltage of Node in PU 

150 125 100 75 50 25 

17 0.84899 0.8775 0.90439 0.92991 0.95426 0.97758 

18 0.84801 0.8767 0.90377 0.92946 0.95397 0.97744 

19 0.99459 0.99556 0.9965 0.99741 0.99829 0.99916 

20 0.9892 0.99108 0.99292 0.99473 0.99651 0.99827 

21 0.98813 0.99019 0.99222 0.9942 0.99616 0.99809 

22 0.98717 0.9894 0.99158 0.99373 0.99584 0.99793 

23 0.96788 0.97371 0.97931 0.98472 0.98996 0.99505 

24 0.95771 0.9653 0.97264 0.97975 0.98667 0.99342 

25 0.95263 0.96111 0.96931 0.97728 0.98504 0.9926 

26 0.91765 0.93299 0.94755 0.96146 0.97479 0.98762 

27 0.91361 0.9297 0.94499 0.95958 0.97356 0.98702 

28 0.89555 0.91505 0.93354 0.95119 0.96809 0.98433 

29 0.88257 0.90451 0.92532 0.94516 0.96416 0.98241 

30 0.87694 0.89995 0.92177 0.94256 0.96245 0.98157 

31 0.87036 0.89462 0.9176 0.93951 0.96047 0.9806 

32 0.86891 0.89344 0.91669 0.93884 0.96003 0.98039 

33 0.86846 0.89308 0.9164 0.93863 0.9599 0.98032 
 

Table 4-2, shows the effect of the load variation without distributed generation on the 

line losses. With the increase in the load, the active power losses and reactive power 

losses both are increased. The load flow data i.e., voltage and line losses for IEEE 

defined load is the same as stated (Vita 2017). 

 

Table 4-2: Effect of load variation without DG on line losses (kW) 

S.N Branch 

Percentage of Load defined in IEEE 

125 100 75 50 

Ploss 

(kW) 
Qloss 

(kVAR) 

Ploss 

(kW) 
Qloss 

(kVAR) 

Ploss 

(kW) 
Qloss 
(kVAR) 

Ploss 

(kW) 
Qloss 
(kVAR) 

1   1- 2 19.87 10.13 12.30 6.27 6.71 3.42 2.90 1.48 

2   2- 3 84.45 43.01 52.08 26.52 28.30 14.41 12.18 6.20 

3   3- 4 32.80 16.70 20.05 10.21 10.81 5.51 4.62 2.35 

4   4- 5 30.88 15.73 18.85 9.60 10.15 5.17 4.33 2.20 

5   5- 6 63.22 54.58 38.57 33.29 20.75 17.91 8.84 7.63 

6   6- 7 3.19 10.55 1.95 6.43 1.05 3.46 0.45 1.48 

7   7- 8 19.54 14.10 11.87 8.57 6.37 4.59 2.71 1.95 

8   8- 9 7.04 5.06 4.27 3.07 2.28 1.64 0.97 0.69 

9   9-10 6.01 4.26 3.63 2.58 1.94 1.38 0.82 0.58 

10  10-11 0.93 0.31 0.57 0.19 0.30 0.10 0.13 0.04 

11  11-12 1.49 0.49 0.90 0.30 0.48 0.16 0.20 0.07 
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S.N Branch 

Percentage of Load defined in IEEE 

125 100 75 50 

Ploss 

(kW) 
Qloss 

(kVAR) 

Ploss 

(kW) 
Qloss 

(kVAR) 

Ploss 

(kW) 
Qloss 
(kVAR) 

Ploss 

(kW) 
Qloss 
(kVAR) 

12  12-13 4.51 3.55 2.72 2.14 1.45 1.14 0.61 0.48 

13  13-14 1.23 1.62 0.74 0.98 0.40 0.52 0.17 0.22 

14  14-15 0.60 0.54 0.36 0.32 0.19 0.17 0.08 0.07 

15  15-16 0.48 0.35 0.29 0.21 0.15 0.11 0.07 0.05 

16  16-17 0.43 0.57 0.26 0.34 0.14 0.18 0.06 0.08 

17  17-18 0.09 0.07 0.05 0.04 0.03 0.02 0.01 0.01 

18   2-19 0.25 0.24 0.16 0.15 0.09 0.09 0.04 0.04 

19  19-20 1.31 1.18 0.83 0.75 0.47 0.42 0.21 0.19 

20  20-21 0.16 0.19 0.10 0.12 0.06 0.07 0.03 0.03 

21  21-22 0.07 0.09 0.04 0.06 0.02 0.03 0.01 0.01 

22   3-23 5.05 3.45 3.18 2.17 1.76 1.21 0.77 0.53 

23  23-24 8.17 6.45 5.14 4.06 2.85 2.25 1.25 0.99 

24  24-25 2.05 1.60 1.29 1.01 0.71 0.56 0.31 0.24 

25   6-26 4.26 2.17 2.60 1.33 1.40 0.71 0.60 0.30 

26  26-27 5.46 2.78 3.33 1.70 1.79 0.91 0.76 0.39 

27  27-28 18.55 16.35 11.31 9.97 6.08 5.36 2.59 2.28 

28  28-29 12.86 11.20 7.84 6.83 4.21 3.67 1.79 1.56 

29  29-30 6.40 3.26 3.90 1.99 2.09 1.07 0.89 0.45 

30  30-31 2.62 2.59 1.59 1.58 0.86 0.85 0.36 0.36 

31  31-32 0.35 0.41 0.21 0.25 0.11 0.13 0.05 0.06 

32  32-33 0.02 0.03 0.01 0.02 0.01 0.01 0.00 0.01 

Total line loss 344.3 233.61 211.00 143.04 113.99 77.22 48.79 33.03 
 

4.1.2 Effect of load variation with DG connection.  

The effect of the load variation with the DG connection has been established here. As 

suggested by (Abdel-Ghany, et al. 2015) DG of capacity 09 –1.0625 MW; Bus: 16 –

1.005 MW; Bus: 24 – 1.0447 MW; Bus: 30 – 0.9518 MW have been connected in the 

feeder. With the DG connection of optimal size, the voltage regulation of the line gets 

improved as shown in figure 4-1.  
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Figure 4-1: Effect of DG Connection on node voltage 

 

Table 4-3 shows the effect of the load variation on node voltage while the DG’s of the 

above-mentioned capacity are connected.  The load has been decreased from 150 

percent to 25 percent. The node voltage gets increased with the decrease in the load and 

all the node voltages are within the limit in all load cases. 

  

Table 4-3: Effect of load variation with DG on node voltage 

        Percent. Load 

 

Node 

Percentage of Load defined in IEEE 

150 125 100 75 50 25 

1 1 1 1 1 1 1 

2 0.9979 0.9987 0.9994 1.0001 1.0008 1.0015 

3 0.9897 0.9939 0.998 1.002 1.0059 1.0097 

4 0.9857 0.9918 0.9976 1.0034 1.0089 1.0144 

5 0.9821 0.99 0.9977 1.0051 1.0123 1.0193 

6 0.9709 0.9834 0.9954 1.007 1.0183 1.0292 

7 0.9682 0.9815 0.9943 1.0067 1.0188 1.0304 

8 0.9705 0.9869 1.0027 1.018 1.0328 1.0471 

9 0.9747 0.9925 1.0096 1.0261 1.0421 1.0577 

10 0.9731 0.9922 1.0106 1.0284 1.0456 1.0624 

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233

V
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        Percent. Load 

 

Node 

Percentage of Load defined in IEEE 

150 125 100 75 50 25 

11 0.9731 0.9924 1.011 1.029 1.0464 1.0633 

12 0.9734 0.993 1.0119 1.0302 1.048 1.0651 

13 0.974 0.9951 1.0153 1.0349 1.0539 1.0722 

14 0.9743 0.9958 1.0166 1.0366 1.056 1.0748 

15 0.9761 0.9979 1.0189 1.0392 1.0589 1.0779 

16 0.9789 1.001 1.0222 1.0428 1.0627 1.082 

17 0.976 0.9987 1.0204 1.0414 1.0618 1.0815 

18 0.9752 0.998 1.0199 1.041 1.0615 1.0814 

19 0.9972 0.998 0.9989 0.9997 1.0005 1.0013 

20 0.9918 0.9936 0.9953 0.997 0.9987 1.0004 

21 0.9907 0.9927 0.9946 0.9965 0.9984 1.0003 

22 0.9898 0.9919 0.994 0.996 0.9981 1.0001 

23 0.9872 0.9923 0.9973 1.0022 1.007 1.0116 

24 0.983 0.9898 0.9964 1.0029 1.0093 1.0155 

25 0.978 0.9857 0.9932 1.0005 1.0077 1.0147 

26 0.9694 0.9824 0.9949 1.0069 1.0186 1.03 

27 0.9675 0.9811 0.9942 1.0069 1.0192 1.0311 

28 0.9576 0.9742 0.9901 1.0055 1.0204 1.0349 

29 0.9509 0.9696 0.9875 1.0049 1.0216 1.0379 

30 0.949 0.9686 0.9874 1.0056 1.0231 1.0402 

31 0.943 0.9636 0.9835 1.0027 1.0213 1.0392 

32 0.9416 0.9625 0.9827 1.0021 1.0208 1.039 

33 0.9412 0.9622 0.9824 1.0019 1.0207 1.039 
 

Table 4-4, shows the effect of the load variation on line losses with DG connection. 

With the decrease in the load from 125 percent to 100 percent, the active power losses 

and reactive power losses have been decreased. However, when the load further 

decreased from 100 percent to 75 percent and to 50 percent there is an increase in the 

active power losses and reactive power losses. If we look closer, during this period the 

branch losses have been increased in between branch 6-16; further, if we check the node 

voltage, the voltage is higher in node 16  and decreased towards node 7. 
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Table 4-4: Effect of load variation with DG on line loss 

S.N Branch 

Power Loss 

Active Power (kW) Reactive Power (kVA) 

50% 75% 100% 125% 50% 75% 100% 125% 

1   1- 2 3.202 2.557 3.249 1.632 1.632 1.304 1.67 2.741 

2   2- 3 19.32 14.645 15.458 9.843 9.843 7.459 7.942 11.327 

3   3- 4 8.806 7.029 7.273 4.485 4.485 3.580 3.743 4.967 

4   4- 5 9.519 7.519 7.388 4.848 4.848 3.829 3.801 4.753 

5   5- 6 20.89 16.510 15.920 18.03 18.036 14.252 13.881 16.876 

6   6- 7 2.321 1.716 1.272 7.672 7.672 5.673 4.204 3.316 

7   7- 8 23.93 18.951 14.833 17.27 17.270 13.677 10.706 8.420 

8   8- 9 16.18 13.722 11.516 11.62 11.625 9.858 8.275 6.891 

9   9-10 2.885 2.026 1.463 2.045 2.045 1.436 1.038 0.873 

10  10-11 0.586 0.431 0.320 0.194 0.194 0.143 0.106 0.085 

11  11-12 1.177 0.889 0.667 0.389 0.389 0.294 0.221 0.172 

12  12-13 4.953 3.894 3.021 3.897 3.897 3.064 2.377 1.854 

13  13-14 1.959 1.605 1.296 2.579 2.579 2.112 1.706 1.367 

14  14-15 2.449 2.171 1.907 2.179 2.179 1.932 1.697 1.477 

15  15-16 3.309 3.054 2.807 2.416 2.416 2.230 2.051 1.878 

16  16-17 0.047 0.109 0.202 0.062 0.062 0.145 0.269 0.439 

17  17-18 0.010 0.023 0.043 0.008 0.008 0.018 0.033 0.054 

18   2-19 0.040 0.090 0.160 0.038 0.038 0.086 0.153 0.240 

19  19-20 0.205 0.464 0.828 0.185 0.185 0.418 0.746 1.171 

20  20-21 0.025 0.056 0.100 0.029 0.029 0.066 0.117 0.184 

21  21-22 0.011 0.024 0.043 0.014 0.014 0.032 0.057 0.090 

22   3-23 0.930 0.575 0.591 0.636 0.636 0.393 0.404 0.678 

23  23-24 2.069 1.263 1.049 1.634 1.634 0.997 0.829 1.148 

24  24-25 0.298 0.680 1.226 0.233 0.233 0.532 0.96 1.522 

25   6-26 0.616 0.743 1.166 0.314 0.314 0.379 0.607 0.978 

26  26-27 0.906 1.057 1.586 0.461 0.461 0.538 0.816 1.291 

27  27-28 3.552 4.032 5.787 3.131 3.131 3.555 5.103 7.909 

28  28-29 2.830 3.148 4.347 2.465 2.465 2.742 3.788 5.693 

29  29-30 1.935 2.052 2.604 0.986 0.986 1.045 1.327 1.856 

30  30-31 0.321 0.750 1.387 0.318 0.318 0.742 1.371 2.232 

31  31-32 0.043 0.100 0.186 0.050 0.050 0.117 0.216 0.352 

32  32-33 0.003 0.006 0.011 0.004 0.004 0.010 0.018 0.029 

Total line loss 
135.3 111.89 109.70 130.89 99.678 135.3 111.89 109.70 

 

When the load on the feeder decreases from 100 percent to the 75 percent, there is an 

increase in the loss which is the opposite in the case without DG. This is because of an 

increase in the reverse current flow in the section between 16 to 8. If we see the load 

profile, we can see that the voltage at these nodes are greater than 1 and also voltage 

magnitude, as well as angle increases, from node 8 to node 16, which suggests the 



42 

reverse power flow. Also, the voltage magnitude difference is greater while the load 

percentage is 75 percent than in 100 percent.  

 

4.1.3 Effect of DG output variation with constant load 

Table 4-5, shows the effect of the DG generation on the node voltage. The DG 

generation is varied from 100 percent (full capacity) to zero (no generation). With the 

DG generation the node voltage becomes greater than one in node 8-11, which shows 

that in that section, the load demand is less than the DG generation. With the decrease 

in the DG generation, the node voltages have been decreased. When the generation is 

at 25 percent, the node voltage is violated in node 9-18 and 28-33, and the node voltage 

further decrease with a decrease in a generation. 

 

Table 4-5 : Effect of DG output variation on node voltage. 

      Percent Capacity 

 

Node 

Node Voltage in PU 

100 75 50 25 0 

1 1 1 1 1 1 

2 0.9994 0.99885 0.99828 0.99767 0.99703 

3 0.99802 0.99451 0.99084 0.98697 0.98289 

4 0.99765 0.99251 0.98711 0.98142 0.97538 

5 0.99767 0.99082 0.98363 0.97603 0.96796 

6 0.9954 0.98487 0.97378 0.96202 0.94948 

7 0.99434 0.9833 0.97163 0.95923 0.94595 

8 1.0027 0.98665 0.96967 0.95162 0.9323 

9 1.00957 0.99048 0.97031 0.94889 0.92597 

10 1.01061 0.98996 0.96814 0.94494 0.92009 

11 1.01103 0.99009 0.96795 0.94442 0.91922 

12 1.01195 0.99045 0.96773 0.94358 0.91771 

13 1.01534 0.99168 0.96666 0.94004 0.91153 

14 1.01658 0.99212 0.96625 0.93873 0.90924 

15 1.01891 0.99359 0.96682 0.93834 0.90782 

16 1.02224 0.99584 0.96793 0.93824 0.90643 

17 1.02042 0.99397 0.96601 0.93626 0.90439 

18 1.01988 0.99342 0.96543 0.93567 0.90377 

19 0.99888 0.99833 0.99775 0.99714 0.9965 

20 0.99531 0.99475 0.99417 0.99356 0.99292 

21 0.9946 0.99405 0.99347 0.99286 0.99221 

22 0.99397 0.99341 0.99283 0.99222 0.99158 

23 0.99734 0.99312 0.98872 0.98413 0.97931 
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      Percent Capacity 

 

Node 

Node Voltage in PU 

100 75 50 25 0 

24 0.99644 0.99081 0.98498 0.97893 0.97264 

25 0.9932 0.98755 0.9817 0.97563 0.96931 

26 0.99485 0.984 0.97257 0.96045 0.94755 

27 0.99423 0.98292 0.97101 0.9584 0.94499 

28 0.99014 0.9771 0.9634 0.94892 0.93354 

29 0.98752 0.97316 0.95809 0.94219 0.92532 

30 0.9874 0.97223 0.95631 0.93954 0.92177 

31 0.98352 0.96828 0.9523 0.93546 0.9176 

32 0.98266 0.96742 0.95142 0.93456 0.91669 

33 0.9824 0.96715 0.95114 0.93428 0.9164 
 

Table 4-6, shows the effect of the DG generation on the line losses. The DG generation 

is varied from 100 percent (full capacity) to zero (no generation). The line losses has 

been an increase with the decrease in the DG generation. 

 

Table 4-6 : Effect of DG output variation on line loss 

S.N Branch 

DG Output (Percentage of Full Capacity) 

100 75 50 25 

P 

(kW) 
Q 

(kVAR) 

P 

(kW) 
Q 

(kVAR) 

P 

(kW) 
Q 

(kVAR) 

P 

(kW) 
Q 

(kVAR) 

1   1- 2 3.28 1.67 3.56 1.81 5.05 2.58 7.91 4.03 

2   2- 3 15.59 7.94 14.37 7.32 19.51 9.94 31.76 16.18 

3   3- 4 7.35 3.74 6.17 3.14 7.62 3.88 12.09 6.16 

4   4- 5 7.46 3.80 5.82 2.96 6.89 3.51 11.07 5.64 

5   5- 6 16.08 13.88 12.10 10.45 13.94 12.03 22.40 19.34 

6   6- 7 1.27 4.20 0.53 1.76 0.34 1.11 0.77 2.54 

7   7- 8 14.84 10.71 6.06 4.37 2.10 1.52 3.71 2.68 

8   8- 9 11.52 8.28 5.05 3.63 1.37 0.99 0.93 0.67 

9   9-10 1.46 1.04 0.69 0.49 0.69 0.49 1.60 1.14 

10  10-11 0.32 0.11 0.14 0.05 0.10 0.03 0.23 0.08 

11  11-12 0.67 0.22 0.27 0.09 0.15 0.05 0.33 0.11 

12  12-13 3.02 2.38 1.22 0.96 0.44 0.35 0.86 0.67 

13  13-14 1.30 1.71 0.54 0.71 0.15 0.20 0.19 0.25 

14  14-15 1.91 1.70 0.89 0.79 0.24 0.21 0.04 0.03 

15  15-16 2.81 2.05 1.40 1.02 0.45 0.33 0.04 0.03 

16  16-17 0.20 0.27 0.21 0.28 0.23 0.30 0.24 0.32 

17  17-18 0.04 0.03 0.05 0.04 0.05 0.04 0.05 0.04 

18   2-19 0.16 0.15 0.16 0.15 0.16 0.15 0.16 0.15 

19  19-20 0.83 0.75 0.83 0.75 0.83 0.75 0.83 0.75 

20  20-21 0.10 0.12 0.10 0.12 0.10 0.12 0.10 0.12 
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S.N Branch 

DG Output (Percentage of Full Capacity) 

100 75 50 25 

P 

(kW) 
Q 

(kVAR) 

P 

(kW) 
Q 

(kVAR) 

P 

(kW) 
Q 

(kVAR) 

P 

(kW) 
Q 

(kVAR) 

21  21-22 0.04 0.06 0.04 0.06 0.04 0.06 0.04 0.06 

22   3-23 0.59 0.40 0.68 0.46 1.13 0.77 1.96 1.34 

23  23-24 1.05 0.83 0.97 0.76 1.60 1.26 2.98 2.36 

24  24-25 1.23 0.96 1.24 0.97 1.26 0.98 1.27 0.99 

25   6-26 1.19 0.61 1.26 0.64 1.50 0.76 1.94 0.99 

26  26-27 1.60 0.82 1.64 0.83 1.92 0.98 2.47 1.26 

27  27-28 5.79 5.10 5.71 5.03 6.53 5.76 8.36 7.37 

28  28-29 4.35 3.79 4.13 3.60 4.59 4.00 5.79 5.05 

29  29-30 2.60 1.33 2.26 1.15 2.33 1.19 2.86 1.46 

30  30-31 1.39 1.37 1.43 1.42 1.48 1.46 1.53 1.52 

31  31-32 0.19 0.22 0.19 0.22 0.20 0.23 0.21 0.24 

32  32-33 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 

Total 110.23 80.23 79.70 56.05 82.99 56.03 124.74 83.55 
 

4.2 Training of DDPG Agent   

A DDPG based agent is made and simulated in a MATLAB environment. The 

actor/critic network was designed in MATLAB. A suitable reward function is designed 

using MATLAB Simulink user-defined function. The MATLAB code for the training 

of DDPG agent in user-defined environment, reward function are attached in the 

appendix below. 

 

Figure 4-2 : A Model for Voltage control using RL 

 

4.2.1 Actor Network 

The actor network consists of an input layer of thirty-three nodal voltage, two fully 

connected layers and two reluLayer layers, which is an activation function. The 
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reluLayer, also called Rectifier, outputs the positive value and the negative value will 

be returned as zero. The output of the actor network is action, i.e., reactive power output 

of the smart inverter. 

 

4.2.2 Critic Network 

The critic network consists of a two paths, one for the action output from the actor-

network and another layer for the observation input. The action path consists of a input 

layer and a fully connected layer. The observation path consists of an input layer, fully 

connected layer, relu layer and a fully connected layer. The common path consists of a 

common relu layer and an output layer  

 

4.2.3 Training Data 

 Sample time (Ts) = 1.0    

 Simulation Length (Tf) = 200   

 Critic LearningRate = 1e-02 

 Actor Learning Rate  = 1e-03 

 Discount factor (Gamma) = 0.90 

 Batch Size = 128 

 Target smooth factor 𝜏 =  1e-03 

 

4.2.3.1 Exploration Parameters 

In DDPG algorithm, the policy is deterministic. The agent might not try a wide variety 

of actions to determine the useful learning signal. To achieve a good policy for DDPG 

agents, we add noise to the action during the training process. Following  are the noise 

parameter 

 

 DDPG Variance Decay Rate = 1e-5; To get a better quality for training, the 

noise variance should be reduced as the process goes. It is the general practice 

to take value which reduce the variance to half percentage if 1e-5 Half-life of 

1,000 episodes. Half life = log(0.5)/log(1-StandardDeviationDecayRate); For 

training of the maximum 200 episode; decay rate will be 3.5e-5. 

 

 Noise Variance = [100;100;100;100]; The variance should be selected such that, 

Variance *sqrt(sample time) must be between 1 & 10 % of action range. 
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4.2.4 Training process 

The DDPG object is trained for the total 200 episode. During the start of the each 

episode, the critic network will calculate Q0, which is the measure of the how well the 

object was trained. If the agent is well trained then the value of Q0 should overlap with 

the episode reward. As shown in figure below, towards the end of the training episode, 

the Q0 value nearly coincide with the episode reward, which shows that the object is 

well trained. Since, the agent has used the pretrained agent data, the training converges 

in few episode. The training process is shown in figure 4-3. 

 

 

Figure 4-3 : A Model for Voltage control using RL 

 

4.3 Simulation for voltage control 

4.3.1 Reward Design 

The reward signal consist of two part. First part is penalty for voltage limit violation 

(r1) is assigned as shown in figure below and the  

Table 4-7 : Penalty for voltage violation 

Node 

Voltage 

Reward 

(r1) 

Node 

Voltage 

Reward 

(r1) 

Node 

Voltage 

Reward 

(r1) 

0.1 -200 0.85 -6.04475 1.6 -78.2143 

0.15 -166.667 0.9 -0.48919 1.65 -90.7143 
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Node 

Voltage 

Reward 

(r1) 

Node 

Voltage 

Reward 

(r1) 

Node 

Voltage 

Reward 

(r1) 

0.2 -141.667 0.95 0 1.7 -105 

0.25 -121.667 1 0 1.75 -121.667 

0.3 -105 1.05 0 1.8 -141.667 

0.35 -90.7143 1.1 -0.48919 1.85 -166.667 

0.4 -78.2143 1.15 -6.04475 1.9 -200 

0.45 -67.1032 1.2 -11.9271     

0.5 -57.1032 1.25 -18.1771     

0.55 -48.0123 1.3 -24.8438     

0.6 -39.6789 1.35 -31.9866     

0.65 -31.9866 1.4 -39.6789     

0.7 -24.8438 1.45 -48.0123     

0.75 -18.1771 1.5 -57.1032     

0.8 -11.9271 1.55 -67.1032     
 

A polynomial regression is used to represent those data. Higher the degree of the 

polynomial it represents the more data which is shown by R-square value. Regression 

analysis has been done to derive the polynomial equation that best fits the penalty for 

the voltage violation. The curve was fit in MATLAB using  and the result of the fitting 

is as follows: 

 

Polynomial of 2nd Degree 

Coefficients (with 95% confidence bounds): 

    p1 =      -227.9  (-234.8, -221) 

   p2 =       455.8  (441.6, 470) 

p3 =      -228.3  (-234.5, -222.1) 

Goodness of fit:   SSE: 937.4;   R-square: 0.9925;   Adjusted R-square: 0.9921;   

RMSE: 5.251; DFE=34 

These data show that the line was a general fit, so that it is not required to go for the 

higher degree of a polynomial. Fitting a higher degree of the polynomial case the 

overfitting (ie, fitting of noise). 
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Figure 4-4 : DDPG Algorithm 

 

In order to prevent the overfitting of the cure, here second degree of polynomial is 

chosen. The equation is y = - 227.9x2 + 455.8x – 228.3 

 

The second part of the reward (r2) is for the reduction of active power curtailment.  

r2= (1-abs(Q/S)); Q is the reactive power generation and S is the inverter capacity. 

The total reward (r) = r1+r2 

 

4.3.2 Voltage Control  

To perform the simulation for the control of voltage of modified IEEE-33 bus, the SI 

of capacity 2000 kVA, with AC/DC ratio of 1.2 is considered. That means the PV active 

power output capacity is 1667.67 kW. The reactive power generation capacity of the 

inverter is also supposed 1666.67 kVAR. For this inverter, if the reactive power 1666.67 

kVAR is generated by SI, the active power will be curtailed to 1105 kW. 

 

To check the performance of the DDPG agent for node voltage control, the load on the 

system was generated as shown in figure 4-5. A similar load curve as NEA load curve 

was generated in MATLAB and fed into the RL simulation block.  
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Figure 4-5 : Load Variation 

When the load is at 225 percent i.e., at hour 20, the node voltage was below 0.95 PU in 

node 28, 29, 30, 31, 32, 33. With the reinforcement learning control, the voltage of 

those nodes are within the limit. When the load is 175 percent, without RL controller, 

the node voltage is within the limit, however, the use of the RL controller enhanced the 

node voltage. 
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Table 4-8 : Node Voltage  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to regulate the voltage in the distribution feeder, the SI’s has 

generated/absorved the reactive power, which is shown in Table 4-9. When the load is 

high, the SI’s has generated reactive power. At 225 percent of the load, the total reactive 

power generated from four SI’s was 3029.25 kVAR. This value  get decreased as the 

load decrese. When the load is 125 perecent, the SI start to absorb the reactive power 

from network, at 125 percent the total load absorbed is -1377.49 kVAR and this value 

 
Without  

RL With RL 
Without  

RL 
Without  

RL 
Without  

RL With RL 
Without  

RL With RL 
Without  

RL With RL 

75.00% 25.00% 25.00% 
1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2 0.997 0.998 0.999 0.999 1.000 1.000 0.999 1.000 1.003 1.001 
3 0.984 0.990 0.995 0.995 1.003 0.999 0.995 1.004 1.018 1.005 
4 0.978 0.986 0.993 0.993 1.005 0.999 0.993 1.005 1.026 1.007 
5 0.974 0.984 0.992 0.992 1.007 1.000 0.992 1.007 1.035 1.009 
6 0.959 0.979 0.987 0.986 1.010 0.997 0.987 1.006 1.053 1.006 
7 0.955 0.981 0.984 0.984 1.009 0.990 0.984 1.000 1.055 0.997 
8 0.961 0.994 0.997 0.998 1.027 0.998 0.997 1.011 1.083 1.001 
9 0.970 1.006 1.008 1.009 1.041 1.005 1.008 1.019 1.101 1.005 

10 0.968 1.005 1.009 1.011 1.044 1.004 1.009 1.018 1.109 1.004 
11 0.969 1.005 1.009 1.011 1.045 1.004 1.009 1.019 1.110 1.005 
12 0.969 1.006 1.011 1.013 1.047 1.005 1.011 1.020 1.113 1.006 
13 0.972 1.008 1.016 1.019 1.055 1.006 1.016 1.020 1.125 1.005 
14 0.973 1.008 1.018 1.021 1.057 1.004 1.018 1.018 1.130 1.003 
15 0.976 1.011 1.022 1.025 1.062 1.005 1.022 1.019 1.135 1.003 
16 0.981 1.016 1.027 1.031 1.067 1.008 1.027 1.021 1.141 1.004 
17 0.977 1.012 1.024 1.028 1.065 1.006 1.024 1.019 1.141 1.003 
18 0.975 1.011 1.023 1.027 1.065 1.005 1.023 1.019 1.141 1.003 
19 0.996 0.997 0.998 0.998 0.999 0.999 0.998 1.000 1.003 1.000 
20 0.987 0.988 0.991 0.991 0.995 0.994 0.991 0.997 1.002 0.999 
21 0.986 0.987 0.990 0.990 0.994 0.994 0.990 0.997 1.002 0.998 
22 0.984 0.985 0.989 0.989 0.993 0.993 0.989 0.996 1.001 0.998 
23 0.978 0.987 0.993 0.994 1.003 0.999 0.993 1.006 1.022 1.008 
24 0.969 0.981 0.991 0.992 1.004 1.000 0.991 1.010 1.029 1.013 
25 0.962 0.974 0.986 0.986 1.000 0.995 0.986 1.007 1.028 1.011 
26 0.957 0.978 0.985 0.985 1.010 0.996 0.985 1.006 1.054 1.007 
27 0.954 0.976 0.984 0.983 1.010 0.996 0.984 1.006 1.057 1.008 
28 0.940 0.969 0.976 0.974 1.007 0.995 0.976 1.003 1.064 1.009 
29 0.930 0.964 0.971 0.968 1.006 0.994 0.971 1.002 1.070 1.010 
30 0.928 0.963 0.970 0.967 1.007 0.995 0.970 1.003 1.074 1.013 
31 0.919 0.954 0.964 0.960 1.003 0.990 0.964 1.000 1.074 1.011 
32 0.917 0.952 0.962 0.959 1.002 0.989 0.962 1.000 1.073 1.010 
33 0.916 0.951 0.962 0.958 1.001 0.989 0.962 0.999 1.073 1.010 

225.00% 175.00% 125.00% 

Node Voltage (PU) 

Node 75.00% 
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further increses as the load decresed. At the 25 percent of the load the total reactive 

power absorbed is -3752 kVAR. 

 

Table 4-9 : Reactive Power Output from SI  

SI at Node 

Percentage of Load 

225% 175% 125% 75% 25% 

9 1667.67 -21.09 -269.32 -204.12 -1211.51 

16 -247.63 127.21 -999.01 -1234.7 -1405.61 

24 -60.71 94.11 -207.41 -110 -255.31 

30 1667.67 -178.54 97 -925.93 -880.53 

Total Reactive Power 

generation 3029.25 23.44 -1377.49 -2473.97 -3752.71 

 

The reactive power generation / absorption by the SI is shown in figure 4-6. 

 

 

Figure 4-6 : Reactive Power output of SI’s 

 

4.3.3 Reduction of active power curtailment 

If the system voltage increases, the traditional PV source reduces the power generation 

to bring the voltage within the limit. Since the AC-DC ratio of the traditional converter 

is fixed, the SI will reduce the active power generation (Tonkoski and Lopes 2011). 

Instead of reducing the active power, the SI can absorb the reactive power resulting in 

the active power curtailment. To verify the reduction in active power curtailment by the 

SI’s, the active and reactive power generation by SI using RL controller, under different 
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load conditions was compared with the active and reactive power output using Volt-

VAR droop control method. The following case is considered 

 

The load in the feeder is considered 50 percent and the SI maximum rating is considered 

as 2000 kVA and the AC-DC ratio of the inverter is considered as 1. Without the control 

algorithm, the system voltage exceeds the upper limit. Under this criterion, the active 

power, and reactive power form SI’s using Volt-VAR control algorithm and 

reinforcement learning control algorithm is as follows. 

 

Table 4-10: Effect of DG output variation on node voltage & loss 

 SI 9 16 24 30 

Volt-

VAR 

Reactive Power (kVAR) -1066.49 -1519.09 -295.146 -748.662 

Active Power (kW) 1691.922 1300.913 1978.102 1854.59 

RL 

Controller 

Reactive Power (kVAR) -1050.13 -1391.98 -186.239 -733.531 

Active Power (kW) 1702.124 1436.105 1991.31 1860.627 

 

Table 4-10 shows that the active curtailment is less in the reinforcement learning 

controller than in the Volt-VAR droop control method. The total active power 

generation in Volt-Var control method is 6825.527 Watt and 6990.166 Watt in 

reinforcement learning-based control algorithm, which is 2.412 percentage higher.  
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CHAPTER FIVE: CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

 The designed load flow program has been tested in the IEEE 33-bus radial 

feeder system defined by IEEE. The node voltage and line losses calculated 

from the designed load flow without DG connection at the defined load by IEEE 

are, active power loss 210 kW and reactive power loss 143 kVAR which is same 

as mentioned in the IEEE feeder datasheet. The load flow result shows that, 

when the load is high as compared to the generation, the system line losses 

increased with the increase in load. With the DG connection, the active power 

and reactive power loss at 75 percent load is 111.9 kW and 79.9 kVAR where 

as when the load is reducred to 50 percent the active and reactive losses are 

increased to 135.3 kW and 82 kW, which shows that with high penetration of 

DG, during the lightly loaded condition, the line loss in the feeder may increase 

with the decrease in the load due to the increase in the reverse current flow. 

With the DG   The node voltage gets increased during light loading of line and 

high penetration of the DG and vice-versa.  

 

 The DDPG agent gets trained in the created environment with feeder node 

voltage as observation signal and SI reactive power generation as an action of 

the DDPG agent. The training of the DDPG agent using the pre-trained model 

shows that the use of the pre-trained data makes the training process fast and 

effective. During the training the agent performs, the coordination between the 

SI’s resulted in better simulation output. 

 

 The trained DDPG agent was used for simulation for voltage control of the 

IEEE-33 radial distribution bus. During the load variation, the DDPG agent 

keeps the voltage within the preset limit. The active power curtailment using 

reinforcement learning controller is 2.41 percent less than as compared to Volt-

Var droop control method. 
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5.2 Recommendation 

 This study has considered a single reinforcement learning agent for the voltage 

controller design. The use of multiple agents may make the coordination 

between DG more effective. 

 

 Transient analysis and stability analysis are not included in this study therefore, 

it is recommended to perform those studies. 

 

 This study is not carried out on real distribution feeders. So, it is suggested to 

carry out the study in real distribution feeder and also recommended to perform 

the financial analysis. 
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APPENDICES 

Appendix-A.: Simulation Output 

Appendix-A.1: Actor-Network 

 

 

Appendix-A.2: Actor-Network 
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Appendix-A.3: Simulation Environment 
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Appendix-B. MATLAB Source Code 

Appendix-B.1: DDPG Training 

 

%%DDPG training 

%% Voltage Control using Reinforcement Learning  

clc; 

clear; 

 %%Set initial Variable 

Pout=0; 

Qout=0; 

Vin= fcn(Pout,Qout); 

%% Model Path and Version 

PATH_MODEL = 'results/'; 

VOLTAGE_CONTROL_MODEL = 'SL_DDPG_MODEL'; % Simulink DDPG 

Training Circuit 

open_system(VOLTAGE_CONTROL_MODEL); 

%%% Training start 

start_time= datetime(); 

today_date = datetime(); 

%% Set training parameters 

AGENT_SAVE_THRESHOLD = 0;     %% Save an agent if the reward of the 

episode is greater than 0 

TRAINING_STOP = 70000;            %% Stop training at maximum reward of given 

value here 

REWARD_MAX = TRAINING_STOP;     % Stop model training at this avg. reward 

 %% MODEL parameters 

% Epsiode and time related 

MAX_EP = 1000; 

Ts = 1.0;   % Ts: Sample time (secs) 

Tf = 200;   % Tf: Simulation length (secs) 

 AVERAG_WINDOW = 50;        % Average over 50 time-steps  

% DDPG trainng parameter for actor and ciritic 

Critic_Learn_Rate = 1e-03; %%%  less than the actor 
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Actor_Learn_Rate  = 1e-04; %%% because of large number of parameter in critic 

network 

GAMMA = 0.90; %%% Discount rate 

BATCH = 128; %%% Batch size from buffer 

 RL_AGENT = [VOLTAGE_CONTROL_MODEL '/RL Agent']; 

%%% RL_MODEL_FILE = strcat(PATH_MODEL, 'RL_Model_', VERSION, 

'.mat'); 

 % Observation  

%  (1) V(k), node voltage of 33 nos of node 

 obsInfo = rlNumericSpec([33 1],'LowerLimit', 

zeros(33,1),'UpperLimit',2*ones(33,1)); 

obsInfo.Name = 'observations'; %% Name 

obsInfo.Description = 'controlled_volt'; 

numObservations = obsInfo.Dimension(1); 

 actInfo = rlNumericSpec([4 1],'LowerLimit',[-1667,- 1667,- 1667,- 

1667]','UpperLimit',[ 1667, 1667, 1667, 1667]'); %%% Define the RL agent action 

limits 

actInfo.Name = 'RectPower'; %%% Action Name 

numActions = actInfo.Dimension(1); %%% Action Dimension 

 %% Creating Enviroment  

 env = rlSimulinkEnv(VOLTAGE_CONTROL_MODEL,RL_AGENT, obsInfo, 

actInfo); 

 %% Reset function, To inisilize the observation value at the start of each episode 

env.ResetFcn = @(in)localResetFcn(in, VOLTAGE_CONTROL_MODEL); 

rng(0); 

% Critic network  

 % State Path is also called observation path 

% Neurons of Critic network: OP-Observation Path, AP-ACtion Path  

statePath = [ 

    featureInputLayer(33, 'Normalization', 'none', 'Name', 'Voltage') %% Observation 

input 

    fullyConnectedLayer(256, 'Name', 'Critic_StateFC1') %% Hidden layer 

    reluLayer('Name', 'Critic_Relu1') %%Activation function 
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    fullyConnectedLayer(128, 'Name', 'Critic_StateFC2')]; %% Hidden layer 

actionPath = [ 

    featureInputLayer(4, 'Normalization', 'none', 'Name', 'Action') %%% Action path, 

input to critic 

    fullyConnectedLayer(128, 'Name', 'Critic_ActionFC1')]; %%% Hidden layer 

commonPath = [ 

    additionLayer(2,'Name', 'addition')     %%% Add two layer 

    reluLayer('Name','Critic_CommonRelu') %%% activation layer 

    fullyConnectedLayer(1, 'Name', 'Critic_Output')]; %%% Critic output 

%%% Critic Option 

Critic_Option = rlRepresentationOptions('LearnRate', Critic_Learn_Rate, 

'GradientThreshold',1); 

 critic = 

rlQValueRepresentation(criticNetwork,obsInfo,actInfo,'Observation',{Voltage},'Actio

n',{'Action'},critic_Option); %% Create critic network 

%% Actor Network 

actorNetwork = [featureInputLayer(33, 'Normalization', 'none', 'Name', 'Voltage')  

    fullyConnectedLayer(400,"Name","actor_FC1") %% Hiden layer1 

    reluLayer("Name","actor_Relu1") %% Activation function layer 1 

    fullyConnectedLayer(300,"Name","actor_FC2") %% Hiden layer2 

    reluLayer("Name","actor_Relu2") %% Activation function layer 2 

    fullyConnectedLayer(4,"Name","Action_actor") %% Output layer 

    ]; 

%% Actor Option 

 actorOptions = 

rlRepresentationOptions('LearnRate',Actor_Learn_Rate,'GradientThreshold',1); %% 

actor option 

 actor = 

rlDeterministicActorRepresentation(actorNetwork,obsInfo,actInfo,'Observation',{'Vol

tage'},'Action',{'Action'},actorOptions); %% Create actor 

 agentOpts = rlDDPGAgentOptions(... 

    'SampleTime', Ts,... 

    'TargetSmoothFactor', 1e-3,... 
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    'DiscountFactor', GAMMA, ... 

    'MiniBatchSize', BATCH ... 

    'ExperienceBufferLength', 1e7, ... 

    'ResetExperienceBufferBeforeTraining', true, ... 

    'SaveExperienceBufferWithAgent', false);  

 %% Exploration Parameters 

% ---------------------- 

% Default: 1e-5 

 DDPG_VarianceDecayRate = 1e-5; % if 1e-5 Half-life of 1,000 episodes 

agentOpts.NoiseOptions.Variance = [55;55;55;55]; 

agentOpts.NoiseOptions.VarianceDecayRate = DDPG_VarianceDecayRate;  

 agent = rlDDPGAgent(actor, critic, agentOpts); % Create agent 

 MAX_ST = ceil(Tf/Ts); 

 %%% For parallel computing: 'UseParallel',true, ... 

%%%% criticOptions.UseDevice = 'gpu'; 

 % To enable save 

trainOpts = rlTrainingOptions(... 

    'MaxEpisodes', MAX_EP, ... 

    'MaxStepsPerEpisode', MAX_ST, ... 

    'ScoreAveragingWindowLength', AVERAG_WINDOW, ... 

    'Verbose', false, ... 

    'Plots','training-progress',... 

    'SaveAgentDirectory', PATH_MODEL, ... 

    'SaveAgentValue', AGENT_SAVE_THRESHOLD, ... 

    'SaveAgentCriteria','AverageReward', ... 

    'StopTrainingCriteria','AverageReward',... 

    'StopTrainingValue', TRAINING_STOP); 

 % To plot network architectures 

% Show neural network architecture 

actorNet = getModel(getActor(agent)); 

criticNet = getModel(getCritic(agent)); 

%plot(actorNet); title("Actor Network"); 

%plot(criticNet); title("Critic Network"); 
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% % Print parameters 

actorNet; actorNet.Layers; 

% % Print parameters 

criticNet; criticNet.Layers; 

 %if USE_PRE_TRAINED_MODEL     

    % Load experiences from pre-trained agent     

    %sprintf('- Voltage control model: Loading pre-trained model: %s', 

%PRE_TRAINED_MODEL_FILE) 

   % RL_MODEL_FILE = strcat(PATH_MODEL, PRE_TRAINED_MODEL_FILE);                 

   % load(RL_MODEL_FILE,'agent'); 

%else 

   % agent = rlDDPGAgent(actor, critic, agentOpts); 

%end 

 % Train the agent or Load a pre-trained model and run in Suimulink 

sprintf ('\n\n ==== RL for Voltage Control ====================') 

 %if (USE_PRE_TRAINED_MODEL) 

 %   sprintf (' ---- Graded Learning in progress. Using pre-trained model: %s', 

PRE_TRAINED_MODEL_FILE) 

%end 

%% Train the agent 

doTraining = true;  %% true or false 

if doTraining     

    % Train the agent. 

    trainingStats = train(agent, env, trainOpts); 

    %% Save agent 

    nEpisodes = length(trainingStats.EpisodeIndex); 

    %fname = strcat(PATH_MODEL, VERSION, '.mat'); 

    %sprintf ('Saving file: %s', fname) 

    save("VOltControlagent", "agent"); 

    display("End training: ")  

    tend = datetime(); 

    display("Elapsed time:") 

    telapsed = tend - start_time; 
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    telapsed 

else 

    % Load a pretrained agent for the example. 

    load('VOltControlagent_2.mat','agent')        

end 

 %% Simulate DDPG Agent 

%% = 

simOptions = rlSimulationOptions('MaxSteps',MAX_ST); %% Simulation option 

experience = sim(env,agent,simOptions); %% Simulation  

 % ------------------------------------------------------------------------ 

% Environment Reset function  

%%Load Variation for each episode  

% ------------------------------------------------------------------------ 

function in = localResetFcn(in, VOLTAGE_CONTROL_MODEL) 

block_Actual_Volt = strcat(VOLTAGE_CONTROL_MODEL,'/Power_Flow/Load');      

Load_value = 1+0.4*(1-2*rand(1)); %% Value between 0-2 

in = setBlockParameter(in, block_Actual_Volt, 'Value', num2str(Load_value)); 

end 
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Appendix-B.2: Reset function for DDPG Training 

 

%% Termination Function 

%% Terminate the episode training if voltage of all node are within the limit 

%% If output is 1, RL will start new training episode 

function y = fcn(v) 

%% Initialize variable 

total=0; 

a=0; 

for i=1:33 

     if v(i)<0.95 || v(i)>1.05 

        a=0; 

        break; %%% If the voltage of any node is not in limit then for loop will 

terminate 

        else 

        a=1; 

     end 

        total=a+total; 

end 

if total == 33 

    y=1; 

else 

    y=0; 

end  
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Appendix-B.3: Reward function for DDPG Training 

%%% Reward function 

%%% Takes node voltage and Reactive Power generation as input 

  

function r = fcn(V,Q9,Q16,Q24,Q30 ) 

Si=2000; %%% Inverter Capacity 

%% Initialize the reward variable 

r1=0; 

%% For all node voltage 

for i=1:33 

r1=-58.15*power(V(i),4)+232.6*power(V(i),3)-534.28*power(V(i),2)+603.37*V(i)-

247.57; %% y = -58.15x4 + 232.6x3 - 534.28x2 + 603.37x - 247.57 

end   

 

%%%r2=0;r3=0;r4=0;r5=0; 

%% Reward function for less active power curtailment  

r2=10*(1-(abs(((Q9))/Si))); 

r3=10*(1-(abs(((Q16))/Si))); 

r4=10*(1-(abs(((Q24))/Si))); 

r5=10*(1-(abs(((Q30))/Si))); 

r =r1+r2+r3+r4+r5; %%% Total reward of the episode 
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Appendix-B.3: Load Flow function 

%% Load Flow for IEEE 33 Bus system 

%% Input to this funciton is Load & PV Generation 

%%  

function Vout = fcn(PQ_data, Load) 

busdata_33bus=load('IEEE33busdata.m'); 

bus_data =  Load*busdata_33bus - PQ_data;                     

line_data=      [1    1    2   0.0922   0.0470 

             2    2    3   0.4930   0.2511 

             3    3    4   0.3660   0.1864 

             4    4    5   0.3811   0.1941 

             5    5    6   0.8190   0.7070 

             6    6    7   0.1872   0.6188 

             7    7    8   1.7114   1.2351 

             8    8    9   1.0300   0.7400 

             9    9   10   1.0440   0.7400 

            10   10   11   0.1966   0.0650  

            11   11   12   0.3744   0.1238  

            12   12   13   1.4680   1.1550 

            13   13   14   0.5416   0.7129 

            14   14   15   0.5910   0.5260 

            15   15   16   0.7463   0.5450 

            16   16   17   1.2890   1.7210  

            17   17   18   0.7320   0.5740 

            18    2   19   0.1640   0.1565 

            19   19   20   1.5042   1.3554 

            20   20   21   0.4095   0.4784 

            21   21   22   0.7089   0.9373 

            22    3   23   0.4512   0.3083 

            23   23   24   0.8980   0.7091 

            24   24   25   0.8960   0.7011 

            25    6   26   0.2030   0.1034 

            26   26   27   0.2842   0.1447 

            27   27   28   1.0590   0.9337 
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            28   28   29   0.8042   0.7006 

            29   29   30   0.5075   0.2585 

            30   30   31   0.9744   0.9630 

            31   31   32   0.3105   0.3619 

            32   32   33   0.3410   0.5302 ]; 

% Calculation of  per Unit  

base_KVA=1000; %1MVA 

base_KV=12.66;    %33KV 

tolerance=0.0001;  %%% Maximum Error 

dimension=size(line_data); %%% Feeder Size 

n=dimension(1)+1; 

ml_data=line_data(1:dimension(1),2:dimension(2)); 

%%Sending node 

snd_node=ml_data(:,1); 

%% Receiving node  

rcv_node=ml_data(:,2); 

%% Line resistance 

line_rest=ml_data(:,3); 

%% Line Reactance 

line_react=ml_data(:,4); 

%% Starting node of the feeder 

for i=1:1:n 

    if((max(i==rcv_node))==0)          

        Snd=i; 

        break; 

    end 

end 

%% ending node of the feeder 

no_end=4; 

end_node=[18,22,25,33]; 

%% Precedance node of the feeder 

pcd=zeros(n,1); 

for i=1:1:n 
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    if(i~=1) 

        pcd(i)=sdn_node(find(i==rcv_node),1);      

    end 

end 

 %Node in decending order 

dcu=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18; 

    1,2,19,20,21,22,0,0,0,0,0,0,0,0,0,0,0,0;1,2,3,23,24,25,0,0,0,0,0,0,0,0,0,0,0,0; 

    1,2,3,4,5,6,26,27,28,29,30,31,32,33,0,0,0,0]; 

%Brances in Decending order 

ubd=[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17; 

    1,18,19,20,21,0,0,0,0,0,0,0,0,0,0,0,0; 

    1,2,22,23,24,0,0,0,0,0,0,0,0,0,0,0,0;1,2,3,4,5,25,26,27,28,29,30,31,32,0,0,0,0]; 

%Finding n-matrix 

nmat=[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1; 

    0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;…… 

bp=bus_data(:,2); 

bq=bus_data(:,3); 

%%%%%%%%%%%%%% 

max_error=1; 

base_Z=bKV*bKV*1000/bKVA;; 

S=complex(bp,bq); 

S_pu=S/bKVA; 

bp_pu=bp/base_KVA; 

bq_pu=bq/base_KVA; 

real=sum(bp_pu); 

Reactive=sum(bq_pu); 

lr_pu=lr/(base_Z); 

lx_pu=lx/(base_Z); 

% initialization 

v_n1=1; 

V2=0; 

del_n1=0; 

delta2=0; 
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Ploss_pu=0; 

Qloss_pu=0; 

Ploss_branch=zeros(1,n-1); 

Qloss_branch=zeros(1,n-1); 

iteration_no=0; 

nv_pu0=zeros(1,n)+1; 

nv_pu=nv_pu0; 

tmpd0=zeros(1,n); 

tmpd=zeros(1,n); 

mm=0; 

flag1=0; 

%%  end of initialization 

while (max_error>tolerance) 

    Ploss_pu=0; 

    Qloss_pu_pu=0; 

   iteration_no = iteration_no+1; 

    v_n1=1; 

    del_n1=0;  

    n_bu=[17,5,5,13]; 

    for m=1:1:ne 

        for k=1:n_bu(m)   % no of node foe each branch 

            cb_n=ubd(m,k); 

            cr_n=rn(cb_n); 

            csn=sdn_node(cb_n); 

            if((nv_pu(cr_n)==nv_pu0(cr_n))&&(tmpd(cr_n)==tmpd0(cr_n))) 

                v_n1=nv_pu(csn); 

                del_n1=tmpd(csn); 

                V2=nv_pu(cr_n); 

                delta2=tmpd(cr_n);  

                P2=0; Q2=0; 

                coder.varsize('P2'); 

                coder.varsize('Q2'); 

                row=nmat(cr_n,:); 
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                for l=1:1:n % also from l= k to n 

                    if(l==cr_n) 

                        P2=P2+bppu(l); 

                        Q2=Q2+bqpu(l); 

                        else if(row(l)==1) 

                                %%% Total load flowing through branch 

                                AddP2=Ploss_branch(find(l==rn));  

                                coder.varsize('AddP2'); 

                                P2new = AddP2; 

                                P2=P2+bppu(l)+P2new; % from the current node l>k 

                               Q2=Q2+bqpu(l)+Qloss_branch(find(l==rn)); 

                            end 

                    end 

                end % end of for loop made for summation at a node 

                A(cr_n)=P2*lr_pu(cb_n)+Q2*lx_pu(cb_n)-0.5*v_n1^2; %%%  

                %%% Calculation of the voltage 

                img=(A(cr_n))^2-((lr_pu(cb_n))^2+(lx_pu(cb_n))^2)*(P2^2+Q2^2); 

                if (img<0) 

                    fprintf('\n LF: imaginary voltage '); 

                    flag1=1; 

                    break; 

                end 

                 

                B(cr_n)=sqrt(img); 

                imgg=B(cr_n)-A(cr_n); 

                if (imgg<0) 

                    fprintf('\n LFF: imaginary voltage '); 

                    flag1=1; 

                    indlfnc=1; 

                    break; 

                end 

                %% Voltage magnitude 

                V2=sqrt(imgg); 
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                %%% Voltage angle 

                dd=(P2*lx_pu(cb_n)-

Q2*lr_pu(cb_n))/(P2*lr_pu(cb_n)+Q2*(lr_pu(cb_n)+V2^2)); 

                delta2=del_n1-atan(dd); 

     % loss  of branchs calculation 

                Ploss_branch(cb_n)=lr_pu(cb_n)*(P2^2+Q2^2)/V2^2; 

                Qloss_branch(cb_n)=lx_pu(cb_n)*(P2^2+Q2^2)/V2^2 

     % Arranging the data 

                nv_pu(cr_n)=V2; 

                tmpd(cr_n)=delta2; 

                Ploss_pu=Ploss_pu+Ploss_branch(cb_n); 

                Qloss_pu=Qloss_pu+Qloss_branch(cb_n); 

            end  %end of calculation of node 

        end     %end of calculation of lateral 

        if (flag1==1) 

            %%%%fprintf('\n LF1: load flow not converged imaginary voltage '); 

            flag1=2; 

            indlfnc=1; 

            break; 

        end 

    end         %end of calculation of iterationation 

    if (flag1==2) 

            fprintf('\n LF2: load flow not converged imaginary voltage '); 

            flag1=3; 

            indlfnc=1; 

            break; 

    end   

   % end of for loop for each bus load flow 

   maxr=zeros(1,1); 

   max_error=zeros(1,1); 

   v_err=abs(nv_pu0-nv_pu); 

   del_err=abs(nv_deg0-nv_deg); 

   maxr=max(v_err); 
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   max_error=maxr; 

   nv_pu0=nv_pu; 

   nv_deg0=nv_deg;% Error of this iteration assign 

  

end ; %%% end of while loop 

del_deg=nv_deg*180/3.1416; 

V_act=nv_pu*bKV; 

%% Node voltage to be transferred by the function 

Vout=nv_pu; 

%% Calculation of actual power loss form the per unit value 

Pbranch_act=Ploss_branch*bKVA; 

Qbranch_act=Qloss_branch*bKVA; 

Ploss_act=Ploss_pu*bKVA; %%% Feeder Active power loss 

Qloss_pu_act=Qloss_pu*bKVA; %%% Feeder reactive power loss 

%% Displaying result 

%% Total number of iteration 

fprintf('\n\n\n Maximum error deviation=%8.7f\t\t\t\n\n',max_error); 

fprintf('\n\n\t\t total iteration  number=%g\t\t\t\t\n\n', iteration_no); 

heading_voltage =['    Result showing voltage profile of the line              ' 

          '   Bus        Magnitude of Voltage          Voltage Angle' 

          '  Number               (pu)                    (rad)     '];      

 disp(heading_voltage); 

    for m=1:n 

        fprintf('\n%5g\t\t\t\t%8.7f\t\t\t\t%8.7f\t\t\t\t%8.7f\t\t\t\t',m,nv_pu(m),nv_deg(m)); 

    end  

fprintf('\n\n'); 

heading_powerloss =['Active and reactive power losses in the branch' 

        '   Branch       SBranch-RBranch           Branch Losses          ' 

        '   Number           SBN-RBN         RealPL(kW)   ReactivePL(kVAR)'];      

 disp(heading_ powerloss); 

    for bn=1:n-1 
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        fprintf('\n %5g\t\t\t\t %2g-

%2g\t\t\t\t%5.3f\t\t\t\t%5.3f\t\t\t\t',bn,sdn_node(bn),rn(bn),PL(bn)*1000,Qloss_branch

(bn)*1000); 

end  

fprintf('\n\nTotal Real power Loss of System(kW)    = 

%5g\t\t\t\t\t\t\n',Ploss_pu*1000);  

fprintf('\nTotal Reactive power Loss of System(kVar)= 

%5g\t\t\t\t\t\n',Qloss_pu*1000);   

end; 
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Appendix-B.4: Volt-VAR Droop Control 

%% Volt-Var droop control 

%%  

clc; 

clear; 

%% Inverter capacity must be greater than the PV output generation 

S_09=2000; 

S_16=2000; 

S_24=2000; 

S_30=2000; 

P9=1666.67; P16=1666.67; P24=1666.67; P30=1666.67; %%%% P/S ratio of 1.2  

Q9=0; Q16=0; Q24=0; Q30=0; 

busdata=     [1    0     0 

              2    0     0 

              3    0     0 

              4    0     0 

              5    0     0 

              6    0     0 

              7    0     0 

              8    0     0 

              9    P9    Q9 %%% Generation Capacity 

             10    0     0 

             11    0     0 

             12    0     0 

             13    0    0 

             14    0    0 

             15    0    0 

             16    P16  Q16 

             17    0    0 

             18    0     0 

             19    0     0 

             20    0     0 

             21    0     0 

             22    0     0 

             23    0     0 

             24    P24   Q24 

             25    0     0 

             26    0     5 

             27    0     5 

             28    0     0 

             29    0     0 

             30    P30  Q30 

             31    0     0  

             32    0     0 

             33    0     0 ]; 

busdata_droop=load('IEEE33busdata.m')-busdata; 

Vout=loadflow_droop(busdata_droop); %%%% Load flow withour 

V_09=Vout(1,09); 

V_24=Vout(1,24); 
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V_16=Vout(1,16); 

V_30=Vout(1,30); 

fprintf('\nVotage at node 09 = %g\n',V_09); 

fprintf('\nVOtage at node 16 = %g\n',V_16); 

fprintf('\nVOtage at node 24 = %g\n',V_24); 

fprintf('\nVOtage at node 30 = %g\n',V_30); 

%% Setting for volt-VAR loop 

Q2=0.44;v2=0.92;v3=0.98;v4=1.02;v5=1.08;  

%% Optimal Volt–Var Curve Setting of a Smart Inverter for Improving Its 

Performance in aDistribution System 

%% For Node 09 

if (V_09<=v2) 

    Q_09=1*Q2; 

    elseif (V_09>v2 && V_09<v3) 

         Q_09=Q2*(V_09-v3)/(v2-v3); %%% Q2 in per unit 

            else if (V_09>=v3 && V_09<=v4) 

             Q_09=0; 

                else if (V_09>v4 && V_09<v5) 

                     Q_09=-Q2*(V_09-v4)/(v5-v4); 

                    else 

                         Q_09=-1*Q2; 

                    end 

                end 

end 

%% %% For Node 16 

if (V_24<=v2) 

    Q_24=1*Q2; 

    elseif (V_24>v2 && V_24<v3) 

         Q_24=Q2*(V_24-v3)/(v2-v3); 

            else if (V_24>=v3 && V_24<=v4) 

             Q_24=0; 

                else if (V_24>v4 && V_24<v5) 

                     Q_24=-Q2*(V_24-v4)/(v5-v4); 

                    else 

                         Q_24=-1*Q2; 

                    end 

                end 

end 

%% For Node 24 

if (V_16<=v2) 

    Q_16=1*Q2; 

    elseif (V_16>v2 && V_16<v3) 

         Q_16=Q2*(V_16-v3)/(v2-v3); 

            else if (V_16>=v3 && V_16<=v4) 

             Q_16=0; 

                else if (V_16>v4 && V_16<v5) 

                     Q_16=-Q2*(V_16-v4)/(v5-v4); 

                    else 

                         Q_16=-1*Q2; 
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                    end 

                end 

end 

%% For Node 30 

if (V_30<=v2) 

    Q_30=1*Q2; 

    elseif (V_30>v2 && V_30<v3) 

         Q_30=Q2*(V_30-v3)/(v2-v3);  %%% Reactive power generation  

            else if (V_30>=v3 && V_30<=v4) 

             Q_30=0; 

                else if (V_30>v4 && V_30<v5) 

                     Q_30=-Q2*(V_30-v4)/(v5-v4); 

                    else 

                         Q_30=-1*Q2; 

                    end 

                end 

end 

%% Actual active and reactive power by SI in node 09 

Q_9A=Q_09*S_09; 

P_9A=sqrt(S_09*S_09-Q_9A*Q_9A); 

fprintf('\nActual Active at node 09 is %g\t and Reactive power at 09 = 

%g\n',P_9A,Q_9A); 

%% Actual active and reactive power by SI in node 16 

Q_16A=Q_16*S_16; 

P_16A=sqrt(S_16*S_16-Q_16A*Q_16A); 

fprintf('\nActual Active at node 16 is %g\t and Reactive power at 16 = 

%g\n',P_16A,Q_16A); 

%% Actual active and reactive power by SI in node 24 

Q_24A=Q_24*S_24; 

P_24A=sqrt(S_24*S_24-Q_24A*Q_24A); 

fprintf('\nActual Active at node 24 is %g\t and Reactive power at 24 = 

%g\n',P_24A,Q_24A); 

%% Actual active and reactive power by SI in node 30 

Q_30A=Q_30*S_30; 

P_30A=sqrt(S_30*S_30-Q_30A*Q_30A); 

fprintf('\nActual Active at node 30 is %g\t and Reactive power at Node 30 = 

%g\n',P_30A,Q_30A); 

  

%%%%% Voltage after the load droop control 

%% Checking the effect of the volt-VAR droop control 

  

busdata=     [1    0     0 

              2    0     0 

              3    0     0 

              4    0     0 

              5    0     0 

              6    0     0 

              7    0     0 

              8    0     0 



78 

              9    P9    Q_9A %%% Generation Capacity 

             10    0     0 

             11    0     0 

             12    0     0 

             13    0    0 

             14    0    0 

             15    0    0 

             16    P_16A  Q_16A 

             17    0    0 

             18    0     0 

             19    0     0 

             20    0     0 

             21    0     0 

             22    0     0 

             23    0     0 

             24    P_24A   Q_24A 

             25    0     0 

             26    0     5 

             27    0     5 

             28    0     0 

             29    0     0 

             30    P_30A  Q_30A 

             31    0     0  

             32    0     0 

             33    0     0 ]; 

busdata_droop=load('IEEE33busdata.m')-busdata; 

Vout=loadflow_droop(busdata_droop); %%%% Load flow withour 

V_09=Vout(1,09); 

V_24=Vout(1,24); 

V_16=Vout(1,16); 

V_30=Vout(1,30); 

fprintf('\nVotage at node after droop control 09 = %g\n',V_09); 

fprintf('\nVOtage at node after droop control 16 = %g\n',V_16); 

fprintf('\nVOtage at node after droop control24 = %g\n',V_24); 

fprintf('\nVOtage at node after droop control 30 = %g\n',V_30); 
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Appendix-C: IEEE 33 radial feeder data 

Line Data 

Line Name From Bus To Bus 

Lime Impedance 

Resistance 

(Ohm) 

Reactance 

(Ohm) 

Branch-1 1 2 0.0922 0.047 

Branch-2 2 3 0.493 0.2511 

Branch-3 3 4 0.366 0.1864 

Branch-4 4 5 0.3811 0.1941 

Branch-5 5 6 0.819 0.707 

Branch-6 6 7 0.1872 0.6188 

Branch-7 7 8 1.7114 1.2351 

Branch-8 8 9 1.03 0.74 

Branch-9 9 10 1.044 0.74 

Branch-10 10 11 0.1966 0.065 

Branch-11 11 12 0.3744 0.1238 

Branch-12 12 13 1.468 1.155 

Branch-13 13 14 0.5416 0.7129 

Branch-14 14 15 0.591 0.526 

Branch-15 15 16 0.7463 0.545 

Branch-16 16 17 1.289 1.721 

Branch-17 17 18 0.732 0.574 

Branch-18 2 19 0.164 0.1565 

Branch-19 19 20 1.5042 1.3554 

Branch-20 20 21 0.4095 0.4784 

Branch-21 21 22 0.7089 0.9373 

Branch-22 3 23 0.4512 0.3083 

Branch-23 23 24 0.898 0.7091 

Branch-24 24 25 0.896 0.7011 

Branch-25 6 26 0.203 0.1034 

Branch-26 26 27 0.2842 0.1447 

Branch-27 27 28 1.059 0.9337 

Branch-28 28 29 0.8042 0.7006 

Branch-29 29 30 0.5075 0.2585 

Branch-30 30 31 0.9744 0.963 

Branch-31 31 32 0.3105 0.3619 

Branch-32 32 33 0.341 0.5302 
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