

Secure query processing by blocking SQL injection attack

 Dissertation

Submitted to:
Central department of Computer Science and Information Technology

Tribhuvan University
Kirtipur, Nepal

In Partial Fulfillment of the Requirements for the Degree of

Master Of Science

In

Computer Science and Information Technology

Submitted by:
Renuka Chitrakar
December, 2012

Tribhuvan University

Institute of Science and Technology

Central department of Computer Science and Information Technology

Date : ……………………

LETTER OF RECOMMENDATION

Mrs. Renuka Chitrakar has carried out this thesis work entitle “Secure query processing

by blocking SQL injection attack” under my supervision and guidance. In my best

knowledge this thesis successfully completed which fulfills the requirements for the

aware of the Degree of Master’s in Computer Science and Information Technology,

therefore I recommended for further evaluation.

…………………………………………
Prof. Dr. Subarna Shakya
Department of Electronics and Computer Engineering
Pulchowk Campus, Pulchowk
(Supervisor)

Tribhuvan University

Institute of Science and Technology

Central department of Computer Science and Information Technology

We certify that we have read this dissertation work and in our opinion it is satisfactory in

the scope and quality as a dissertation as the partial fulfillment of the requirement of

Master of Computer Science and Information technology from Tribhuvan University,

Nepal.

Evaluation Committee

……………………… ………………………….
Mr Nawraj Paudel Prof. Dr. Subarna Shakya
Head, Central Department of Computer Department of Electronics and
Science and Information Technology Computer Engineering
TU, Kritipur Pulchowk Campus, Pulchowk
 (Supervisor)

………………………. …………………………..
(External Examiner) (Internal Examiner)

i

 Abstract

With the rise of the Internet, web applications, such as online banking and web-based email the

web services as an instant means of information dissemination and various other transactions has

essentially made them a key component of today’s Internet infrastructure. Web-based systems

consist of both infrastructure components and of the application specific code. But there are

many reports on intrusion from external hacker which compromised the back end database

system so here introduce briefly the key concepts and problems of information security and here

present the major role that SQL Injection is playing in this scenario. SQL Injection Attacks are a

class of attacks that many of these systems are highly vulnerable to, and there is no known fool-

proof defense against such attacks. Based on the above analysis and on today’s computer

security state-of-the-art, focus on the research especially on the SQLIA’s, which are still one of

the most exploited and dangerous intrusion techniques used to access web applications.

In this research work, here propose a method for determining allowability of a structured query

language (SQL) statement, the method comprising the steps of normalizing the SQL statement

with a predetermined set of allowable statements. The most available solution of that problem

either requires source code modification, which is an overhead to an existing system as well as

which can increase the possibilities of new injection points, or required a computational

overhead at runtime which increase the minimum response time. But in normalization technique

eliminates the need of source code modification along with an improved overall efficiency.

ii

Acknowledgements

This thesis work would not exist without help, advice and encouragement of many people. I

thank my Supervisor, Professor Dr. Subarna Shakya, who taught me much about teaching and

research methodology.

 I am grateful to the professor and lecturer, Prof. Dr. Shahidhar Ram Joshi, Dr. Onkar pd.

Sharma. Mr Sudarshan Karanjit, Mr Min Bahadur Khati, Mr Samujjal Bhandari, Mr Hemanta

G.C., Mr Nawraj Paudel, Mr Arjun Saud and Mr Jagdish Bhatta of Central Department of

Computer Science and Information Technology who, while not being directly involved in my

thesis work, nevertheless influenced me greatly.

Many thanks go to my colleagues, who helped me directly or indirectly to accomplish my work.

I am especially grateful Mr Nawraj Paudel, Head, Central Department of Computer Science and

Information Technology, has also been a positive and encouraging influence on my research

efforts.

I am also indebted to my friends Mr Bikash Balami and Mr Prakash Saud for their interest,

cooperation, worries and complain.

Finally, I thank to my parents and family, who were ultimately the people, who prepared me for

this endeavor. I own you all my success.

Renuka Chitrakar

iii

ABBREVIATIONS

SSL Secure Socket Layer

SQL Structure Query Language

SQLIAs SQL Injection Attacks

RDBMS Relational Database Management System

CIA Confidentiality, Integrity, Availability

AAA Authentication, Authorization and Accounting

CGI Common Gateway Interface

DML Data manipulation Language

DDL Data Definition Language

iv

Table of Content
Description Page Number

ABSTRACT I

ACKNOWLEDGEMENT II

ABBREVIATIONS III

CONTENTS IV

LIST OF TABLES VI

LIST OF FIGURES VI

Chapter 1 Introduction 1-4

 1.1 Background 1

 1.2 Problem 1

 1.3 Objective 2

 1.4 Literature review 2

Chapter 2 Computer and Information Security 4-7

 2.1 Terminology and Formal Definition 4

 2.2. The CIA Paradigm 5

 2.3. The AAA Architecture 6

Chapter 3 Web Applications 8-19

 3.1 Architecture 10

 3.1.1. Client Server 11

 3.1.2. The Client Server Architecture and layer 11

 3.1.3. The Client Server Architecture and Tier 12

 3.2 Input validation based vulnerabilities 13

 3.3 Communication 17

 3.3.1. Information 18

 3.3.2. Context 18

 3.3.3. Protocol 18

 3.3.4. Url Encoding 19

Chapter 4 RDBMs and SQL 20-30

 4.1 RDBMs 20

v

 4.2 SQL 21

 4.2.1 DML 21

 4.2.2 DDL 25

 4.3 Query Techniques 25

 4.3.1. Dynamic SQL 25

 4.3.2. Static SQL 26

 4.4 Error Message 26

 4.5 Security 27

 4.5.1. Computer Based Component 28

 4.5.2. Non Computer Based Component 30

Chapter 5 SQL Injection 31-54

 5.1 Scope 31

 5.2 Basics 32

 5.3 How SQL injection Attacks(SQLIAs) work 34

 5.4 Classification of SQLIA Techniques 37

 5.4.1. Attack intent 37

 5.4.2. Assets 38

 5.5 Methodology for successful SQLIA 40

 5.5.1. Attack Techniques 40

 5.6 Proposed Methodology 50

Chapter 6 Analysis and Testing 55

Conclusion, Limitation and Future Work 58

 References and Bibliography

vi

LIST OF TABLES

1 4.2.1 SQL Syntax 22

2 6.1 List of valid query detected by model 55

3 6.2 List of invalid query which the model detected as valid 56

4 6.3 List of invalid query detected by model 56

5 6.4 List of valid query which the model detected as invalid 57

LIST OF FIGURES
1 3.1 Three tired J2EE web application model 9

2 3.2 Typical Internal World wide web network 10

3 3.2.1 Reported web attack in 2009 14

4 3.2.2 Vulnerability disclosures in first half of each year 2000-2010 15

5 3.2.3 Most attacked organization 16

6 3.2.4 SQL injection attacks monitored by IBM ISS managed security

service

17

7 5.2.1 Security layers in web application 33

1

Chapter 1

Introduction

1.1 Background

Now days our dependence on web application has increased and we continue to integrate

them in our everyday routine activities. Web applications are reliable in online shopping,

reading newspaper, paying bills etc. Many services are provided via the world wide web,

efforts from both academic and industry are striving to create techniques and standards

that meets the sophisticated requirements of today's web application and users. From the

hacker's perspective, web application is divided in to the several layers. Current

technologies such as antivirus software program and network firewalls offer some

security at the host and network levels but not at the application level. Although the

application level firewalls offer immediate assurance of web application security, they

have at least two drawbacks: they do not identify errors.

1.2 Problem

Different researchers have published different papers in the field of web application and

its security mechanism. According to Spett [21] from the hacker's perspective, web

application consists of five layers, ie desktop layer, transport layer, access layer, network

layer and application layer. Current technologies such as antivirus software program and

network firewall offer comparatively secure protection at the host and network levels, but

not at the application level. However, testing processes cannot guarantee identification of

all bugs. Scott and Sharp [18] proposed the use of a gateway that filters invalid and

malicious inputs at the application level.

2

1.3 Objective

Objective of this thesis work is to study the SQL injection attack in the web application

with their prevention technique and then implement them in the ASP.NET. Especially

objective of this thesis is categorized as follows points.

• To show how SQL injection statement can be injected and attack

• To show how the injected query can be prevented from executing on server

1.4 Literature review

Use of web application is increasing rapidly everywhere. In the field of web application,

numerous research works is published whether it may be paper or internet. Companies

and organizations use web applications to provide a broad range of service to users.

Database of web application contain the important information of that organization like

customer and financial record, these applications are frequent target for attacks. There are

numerous attacking technique such as cross site scripting, content spoofing etc, one of

them is SQL injection, can give attackers a way to gain access to the database underlying

web application and with that power to leak, modify and in some time delete information

that is stored in the database. In the other word, SQL -Injection attacks can occur when a

web application receive user input and use it to build a database query without validating

it. Conceptually, SQLIAs could be prevented by a rigorous application of defensive

techniques.

If we closely analyze the code structure of an SQLIA then we found that hacker inject the

user string in a way that could alter the structure of the original query and query injection

is done either at the middle of the query or at the end; means hacker usually append the

query. So if we store all the information of structure of the valid query and cross check it

with the dynamically generated query then we can determine that the dynamically

generated query is a SQLIA or a valid query.

3

Different researchers have published papers in the field of web applications and its

security mechanism. Wasserman and Su[8] proposed an approach that uses a static

analysis combined with automated reasoning. This technique verified that SQL queries

generated in the application usually do not contain a tautology. This technique is effective

only for SQL injections that insert a tautology in the SQL queries, but cannot detect other

types of SQL injections attacks.

Su and Wasserman[27] present grammar-based approach to detect and stop queries

having SQLIAs by implementing SQLCHECK tool. They mark user supplied portions in

queries with a special symbol and augment the standard SQL grammar with production

rule. A parser is generated based on the augmented grammar. The parser successfully

parses the generated query at runtime, if there are no SQLIAs in the generated queries

after adding user inputs. This approach uses a secret key to discover user inputs in the

SQL queries. Thus, the security of the approach relies on attackers not being able to

discover the key. Additionally, this approach requires the application developer to rewrite

code to manually insert the secret keys into dynamically generated SQL queries.

Buehrer[7] secure vulnerable SQL statements by comparing the parse tree of a SQL

statement before and after input and only allowing SQL statements to execute if the parse

trees match. They conducted a study using one real world web application and applied

their SQLGUARD solution to each application. They found that their solution stopped all

of the SQLIAs in their test set without generating any false positives. While it stopped all

of the SQLIAs in their solution required the developer to rewrite all of their SQL code to

use their custom libraries, which is an overhead we are trying to eliminate. However, the

approach is ineffective, if the user supplied input does not appears at the leaf of the tree.

4

Chapter 2

Computer and Information Security: an Overview

2.1 Terminologies and Formal Definitions

 Computer security is a branch of technology known as information security,

applied to computers. Information security is based on the general concept of the

protection of data against unauthorized access. The objective of computer security varies

and can include protection of information from theft or corruption, or the preservation of

availability, as defined in the security policy.

Computer security is the process of preventing and detecting unauthorized use of your

computer. Prevention measures help you prevent unauthorized users, also known as

“intruders", from accessing any part of your computer system. Detection helps you to

determine whether or not someone attempted to break into your system, whether or not

the breach was successful, and the extent of the damage that may have been done. This

makes computer security particularly challenging because it is difficult enough just to

ensure that computer programs do everything they are designed to do correctly [23].

Nowadays most information in the world is processed through computer systems, so it is

common to use the term information security to also denote computer security. This is

quite a common mistake: in fact, academically, the definition of information security

includes all the processes of handling and storing information. Information can be printed

on paper, stored electronically, transmitted by post or by using electronic means, shown

on films, or spoken in conversation. The U.S. National Information Systems Security

Glossary [14] defines Information systems security (INFOSEC) as:

“the protection of information systems against unauthorized access to or modification of

information, whether in storage, processing or transit, and against the denial of service

to authorized users or the provision of service to unauthorized users, including those

measures necessary to detect, document, and counter such threats."

5

It defines computer security as:

“Measures and controls that ensure confidentiality, integrity, and availability of the

information processed and stored by a computer"

This observation on information pervasiveness is especially important in today’s

increasingly interconnected business environment. As a result of important, information

is exposed to a growing number and a wider variety of threats and vulnerabilities, which

often have nothing to do with computer systems at all. In this work, however, we will

deal mostly with computer security and not information systems in general.

2.2 The C.I.A. Paradigm

Information security has held that confidentiality, integrity and availability, known as the

C.I.A. paradigm [23], are the core principles of information security.

Confidentiality is the property of preventing disclosure of information to unauthorized

individuals or systems. For example, a credit card transaction on the Internet requires the

credit card number to be transmitted from the buyer to the merchant and from the

merchant to a transaction processing network. The system attempts to enforce

confidentiality by encrypting the card number during transmission, by limiting the places

where it might appear (in databases, log files, backups, printed receipts, and so on), and

by restricting access to the places where it is stored. If an unauthorized party obtains the

card number in any way, a breach of confidentiality has occurred. Confidentiality is

necessary, but not sufficient for maintaining the privacy of the people whose personal

information a system holds.

Integrity means that data cannot be modified without authorization. Integrity is violated

when a message is actively modified in transit. For example, when someone accidentally

or with malicious intent deletes important data files, when a computer virus infects a

computer, when an employee is able to modify his own salary on a payroll database,

6

when an unauthorized user vandalizes a web site, when someone is able to cast a very

large number of votes in an online poll, and so on.

Availability is the important property that a rightful request to access information must

never be denied, and must be satisfied in a timely manner. In other words, for any

information system to serve its purpose, the information must be available when it is

needed. Ensuring availability also involves preventing denial-of-service attacks.

Authenticity important for authenticity to validate that both parties involved are who

they claim they are. In computing, e-Business and information security it is necessary to

ensure that the data, transactions, communications or documents (electronic or physical)

are genuine.

Non-repudiation implies that one party of a transaction cannot deny having received a

transaction nor can the other party deny having sent a transaction. In law, non-repudiation

implies one's intention to fulfill their obligations to a contract.

Electronic commerce uses technology such as digital signatures and encryption to

establish authenticity and non-repudiation.

Sometimes other goals have been added to the C.I.A. paradigm, such as

authenticity, accountability, non-repudiation, safety and reliability. However, the general

consensus is that these are either a consequence of the three core concepts defined above,

or a means to attain them.

2.3 The A.A.A. Architecture

The A.A.A. architecture and components are specifications of a software and hardware

system architecture which strives to implement those requirements. Then, of course,

security systems are the real world implementations of these specifications. In computer

security A.A.A. stands for Authentication, Authorization and Accounting [24]. These are

the three basic issues that are encountered frequently in many network services where

7

their functionality is frequently needed. Examples of these services are dial-in access to

the Internet, electronic commerce, Internet printing, and Mobile IP. Typically,

authentication, authorization, and accounting are more or less dependent on each other.

However, separate protocols are used to achieve the A.A.A. functionality.

Authentication: Authentication refers to the process where an entity's identify is

authenticated, typically by providing evidence that it holds a specific digital identity such

as an identifier and the corresponding credentials. Examples of types of credentials are

passwords, one-time tokens and digital certificates.

Authorization: Authorization refers to the granting of specific types of privileges (or not

privilege) to an entity or a user, based on their authentication, what privileges they are

requesting, and the current system state. Authorization may be based on restrictions, for

example time-of-day restrictions or physical location restrictions. Most of the time the

granting of a privilege constitutes the ability to use a certain type of service. Examples of

types of service include, but are not limited to: IP address filtering, address assignment,

route assignment and encryption.

Accounting: Accounting refers to the tracking of the consumption of network resources

by users. This information may be used for management, planning, billing, or other

purposes. Real-time accounting refers to accounting information that is delivered

concurrently with the consumption of the resources. Batch accounting refers to

accounting information that is saved until it is delivered at a later time. Typical

information that is gathered in accounting is the identity of the user, the nature of the

service delivered, when the service began, and when it ended.

8

Chapter 3

Web Applications

Web application, or webapp, is the general term that is normally used to refer to all

distributed web-based applications. According to the more technical software engineering

definition, a web application is described as an application accessible by the web through

a network. Many companies are converting their computer programs into web-based

applications. Web Applications are similar to computer based programs but differ only in

that they are accessible through the web, allowing the creation of dynamic websites and

providing complete interaction with the end-user. Web Applications are placed on the

Internet and all processing is done on the server, the computer which hosts the

application [24][25].

Web applications are sets of web pages, files and programs that reside on a

company’s web server, which any authorized user can access over a network such as the

World Wide Web or a local intranet. A web application is usually a three-tiered

construction. Normally, the first tier is a Web browser on the client side, the second is the

real engine on the server-side where the applications core runs, and the third layer is a

database as showed in figure 3.1. The Web browser makes the initial request to the

middle layer, which, in turn, accesses the database to perform the requested task, either

by retrieving information from the database, or by updating it and generating a user

interface. A server processes all user transactions and usually the end-user simply

accesses the web application by a Web browser, interacting with it. Since web

applications reside on a server, they are easy to manage. In fact, they can be updated and

modified at any time by the web applications owner with minimal effort and without any

distribution or installation of software on the clients machines. This is the main reason for

the widespread adoption of Web applications in today’s organizations [25].

9

Nowadays, web applications are becoming increasingly popular and are poised to

become a major player in the overall software market due to the benefits they afford, such

as visibility and worldwide access. They are, without a doubt, essential to the current and

next generation of businesses and they have become part of our everyday online lives. In

fact, a web application is a worldwide gate accessible not only through standard personal

computers but also though different communication devices such as mobile phones and

PDAs (fig. 3.2). The use of web applications is especially beneficial for a company: with

just a little investment, a company can open up a marketing channel that will allow

potential clients easy global access to its business 24 hours a day. A typical example of a

web application is an online questionnaire or user survey. The end-user client simply

completes the online questions by filling in a form that is accessible worldwide through

any kind of network device and submits the responses to the application that then collects

and stores the data in a database on the server side [3].

Web applications are present in all aspects of our daily internet use. Common

examples are those applications used for searching the internet such as “Google"; for

collaborative open source projects as “Source Forge"; for public auctions as “eBay" and

many others as well as blogs, web mail, web-forums, shopping carts, e-commerce,

dynamic contents, discussion boards and social networks.

Figure 3.1 Three tired J2EE Web Application Model

10

The core part of a web application, as stated above, is stored on the server-side

within the application server. This core consists of a real computer software program

coded in a browser supported programming language such as PHP, ASP, CGI, Perl,

Java/JSP, J2EE. Generally, to run the application, you must deploy it in a server and

configure it properly. However, the way you install web applications depends on server

machine you are using and also the particular application used.

3.1 Architecture

From a hacker’s perspective, a corporation’s web application can be viewed as a

horizontal value chain of layers [21].

Figure 3.2 Typical Internal World Wide Web Network

11

3.1.1 Client-Server

According to Connolly et al. [10], the web itself is comprised of a network of computers,

and each computer acts in different roles: as a client, a server or both. In order to

accommodate an increasingly decentralized business environment, web applications

operating on the web use the client-server architecture. The term client-server, as

mentioned by Connolly et al., refers to the processes with which software components

interact to form a system, i.e. client processes require resources provided by server

processes. Combinations of the client-server architecture, or topology, include: (a) single

client, single server; (b) multiple clients, single server; (c) multiple clients, multiple

servers. The client in a web application is usually represented by a web browser like

Internet Explorer or Netscape Navigator. Servers typically include web servers, e.g.

Microsoft Internet Information Server, Apache and Tomcat [3][19][20].

3.1.2 The Client-Server Architecture and Layers

Before proceeding, we stress that the layers we will refer to throughout this thesis

concern responsibilities and task processing in web applications, and not how

communication in networks are organized into abstraction levels. Therefore, we do not

consider the layered approach taken in models such as the Open Systems Interconnection

(OSI) reference model to be relevant in our discussions. In a client-server architecture,

applications can be modeled as consisting of logical layers. While there exist different

conventions for naming those layers, we conclude that the following three different layers

are included [6][11][12][16][18][19][20]:

Presentation: The layer where information is being presented to users and which

constitutes the interaction point between users and the application. This layer is actually

constituted of two parts, where one part is dedicated to the client-side and the other part

concerns the server side. While this layer generates and decodes web pages, it can also be

responsible for presentation logic, meaning that components of this layer can reside both

on the client-side and server-side. Distributed logic needed to connect to a proxy layer on

12

the server-side along with a proxy tier in order to make use of middle-ware, e.g. CORBA

and RMI, could also reside here.

Application logic: The layer where application logic and business logic and rules are

implemented. This layer processes user input, makes decisions, performs data

manipulation and translation into information, including calculations and validations,

manages work flow, e.g. keeping track of session data, and handles data access for the

presentation layer.

Data management: The layer responsible for managing both temporary and permanent

data storage, including database operations.

3.1.3 The Client-Server Architecture and Tiers

We have found several different models which describe how web applications are

composed using the logical layers mentioned in section 3.1.2 [6][11][12][16][18][19][

20]. One main characteristic shared by those models constitutes the combination of

logical layers into a 2, 3 or n-tier architecture [Connolly et al. [19]] in order to provide for

a separation of tasks, where a tier is defined as one of two or more rows, levels and ranks

arranged one above another.

Two-Tier Architecture

In the two-tier client-server architecture, mentioned by Connolly et al. [19] as the basic

model for separating tasks, clients constitute the first tier and servers the second tier. A

client is primarily responsible for presentation services, including handling user interface

actions, performing application logic and presentation of data to the user and performing

the main business application logic. The server is primarily concerned with supplying

data services to the client. Data services provide limited business application logic,

typically validation of the client and access control to data. Typically, the client would

run on end-user desktops and interact with a centralized DBMS over a network.

13

Three-Tier Architecture

In three-tier architecture, the first tier still constitutes the client which is now considered a

thin client, i.e. is only responsible for the application’s user interface and possibly simple

logic processing, such as input validation. The core business logic of the application now

resides in its own tier, the middle tier that runs on a server and is often called the

application server. The third tier constitutes an RDBMS, which stores the data required

by the middle tier, and may run on a separate server called the database server.

N-Tier Architecture

This type of architecture simply implies any number of tiers. One example of this is when

the web server and database server reside in separate computers. Another example is

when several database servers are used and one computer is dedicated responsible of

managing access to each database server, running on separate computers. [16][19]

3.2 Input Validation Based Vulnerabilities

The most prominent class of input validation errors are SQL injections. SQL injections

are the classes of vulnerabilities in which an attacker causes the web application server to

produce HTML documents and database queries, respectively, that the application

programmer did not intend.

14

Figure 3.2.1 shows percentages of reported web attacks for the year 2009(this

data comes from the Web Hacking Incidents Database)[15].Although many attacks go

unreported or even undetected, this chart shows that 19% of the web-based attacks that

made the press in 2009 were SQL injection.

Figure 3.2.1 : Reported Web Attacks in 2009 [15]

15

Vulnerability disclosures up 36% where web applications continue to be the

largest category of disclosure. Increase in vulnerability disclosures due to significant

increases in public exploit releases and to efforts by several vendors to identify and

mitigate security vulnerabilities. The most critical two vulnerabilities disclosed in the first

half of 2010 were remote code execution vulnerabilities in Java Web Start and Microsoft

Windows Help and Support Center. Both were publicly disclosed before patches were

available from the respective vendors.(this is from IBM X-Force®)[10].

Figure 3.2.2 : Vulnerability Disclosures in the First Half of

Each Year 2000-2010 [10]

16

Most Attacked Organization

Another aspect we looked into is the type of organizations attackers chose as

targets. We found that the largest category of hacked organizations is social/web .Besides

this government is prime target due to ideological reasons.(this data comes from the web

hacking incidents database[15]).These statistics, however, are biased, to a degree, as the

public disclosure requirements of government and other public organizations are much

broader than those of commercial organizations.

On the commercial side, Internet-related organizations top the list. This group

includes retail shops, comprising mostly e-commerce sites, media companies and pure

internet services such as search engines and service providers. It seems that these

companies do not compensate for the higher exposure they incur, with the proper security

procedures.

Figure 3.2.3 : Most Attacked Organization [15]

17

3.3 Communication

A typical communication exchange in a business web application, according to Connolly

et al., is initiated by users that request information. The client takes a user’s request,

checks the syntax and generates database requests in e.g. SQL. Then, the client transmits

the message to the server, waits for a response, and formats the response for the end-user.

The server accepts and processes the database requests, then transmits the results back to

the end-user.

Figure 3.2.4: SQL Injection attacks Monitored by IBM ISS Managed Security

Services [10]

18

3.3.1 Information

Information on the web is stored in documents and the formatting language, or system,

most commonly used is the HTML. Using HTML, documents are marked up, or tagged,

to allow for publishing on the web in a platform independent manner. HTML documents

are displayed in web browsers that understand and interpret HTML. [19]

3.3.2 Content

HTML documents stored in files constitute static content, i.e. the content of the document

does not change unless the file itself is changed. However, documents resulting from

requests such as queries to databases need to be generated by the web servers. These

documents are dynamic content and as databases are dynamic, changing as users create,

insert, update, and delete data, the generation of dynamic web pages is a more

appropriate approach than static content, particularly in web applications. [19]

3.3.3 Protocol

The exchange of information in web applications is mainly governed by protocols such as

HTTP or HTTPS, which define how clients, i.e. web browsers, and servers, i.e. web

servers, communicate. HTTP relies on a request-response paradigm and a transaction

consists of the following stages [4][19][20]:

Connection The client establishes a connection with the web server.

Request The client sends a request message to the web server

Response The web server sends a response, i.e. a HTML document, back to the client.

Close The connection is closed by the web server.

Basically, a request in a HTTP connection constitutes an object containing, e.g. a

requested resource. Consequently, a response is the result to be presented in the web

browser. When a user visits a page, web pages, client-side scripts and formatting

components are sent back to the client for rendering and presentation. In the case a user

19

requests data contained in a relational database, user input parameters are typically

embedded in the request. Those parameters can be included as arguments to methods in

application processing components that dynamically build SQL queries.

The response object will contain data for presentation in the web browser. That data may

have been parsed and prepared by either application processing components, server-side

scripts or both for rendering purposes: either for tailoring the graphical design or ease the

rendering process in the web browser.

HTTP brings up several security weaknesses. A HTTP request is composed of different

parts and attackers can manipulate those parts in order to try to bypass security

mechanisms. The web server listens on an open port for incoming requests from clients.

For general web traffic, i.e. HTTP, port 80 is often used as the default port and for

encrypted traffic, i.e HTTPS, port 443 is normally chosen. However, each web server

requires a unique port to listen to and since corporations can have several web servers,

the port of each server has to be configured. Moreover, application servers require open

ports as well. While this means that an attacker cannot always assume that the web server

of choice listens to port 80, the important issue is that there exists an open port through

security mechanisms such as firewalls into a corporation's web server. [21]

3.3.4 URL Encoding

According to OWASP [20], a server can receive input from a client in two basic ways:

either data is passed in HTTP headers or it can be included in the query portion of the

requested Uniform Resource Locator (URL), which uniquely defines where resources can

be found on the Internet. Both methods correspond to two methods used when including

input in client requests: GET and POST. Manipulation of a URL or a form is simply two

sides of the same issue. However, when data is included in a URL, it must be specially

encoded to conform to proper URL syntax. Unfortunately, as OWASP notes, the URL

encoding mechanism allows virtually any data to be passed from a client to the server.

20

Chapter 4

RDBMS and SQL

In this section we give an introduction to Relational Database Management Systems

(RDBMS) and the Structured Query Language (SQL), its syntax and usage. We do not

intend to a give a complete review of these subjects, as we consider this to be outside this

thesis’ boundaries. This section relays heavily on the book written by Connolly et al. [19]

and its comprehensive explanation of SQL.

4.1 RDBMS

Connolly et al. [19] defines a database as “A shared collection of logically related data

(and a description of this data), designed to meet the information needs of an

organization.” A database management system, DBMS, is used to allow user interaction

with the database. Such DBMSs are defined by Connolly et al. as “A software system

that enables users to define, create, and maintain the database and provide controlled

access to this database.”

According to Gollman [4], the most widely used database model in databases

today is the relational model, which is used to organize relational databases. A DBMS

which relies on the relational model (an RDBMS) is a system through which users can

administrate a database which is perceived as a collection of tables. These tables (or

relations) are organized as a two dimensional array containing rows and columns. A

table’s rows (or tuples) are the elements of the table, and its columns (or attributes) are

the names of data that is represented.

As Connolly et al. state, the Structured Query Language (SQL) has become the

standard language used in relational databases and is the only database language to gain

wide acceptance. This language allows users to administrate databases using an RDBMS

as well as communicating with them.

21

4.2 SQL

The SQL standard, according to Connolly et al. [19], was defined by the American

National Standards Institute (ANSI) and was later adopted by the International Standards

Organization (ISO). Its objectives are to allow users to create database and relation

structures, managing tables by inserting, modifying, and deleting data as well as retrieve

information from the database through queries. SQL queries are commands that are

passed to the RDBMS, and specify which data is to be gathered from one or more tables

and how it should be arranged. We intend to follow the ISO SQL standard used by

Connolly et al.[ISO 9075:1992(E)], and will be using it throughout this thesis unless

stated otherwise.

SQL consists of two major components: the Data Manipulation Language (DML)

and the Data Definition Language (DDL). Using the DML, users can manipulate data

stored inside tables in the database, while the DDL allows creating and destroying

database objects such as schemas, domains, tables, views and indices.

4.2.1 DML

The Data Manipulation Language has four available statements, namely SELECT,

INSERT, UPDATE and DELETE. We describe each of these statements according to

Connolly et al. [10] using the syntax described in table 4.2.1.

Symbol Represents
SELECT, INSERT, . . . reserved words
table name, column list, . . . user-defined words
| choice among alternatives
{} required element, for example {a}
[] optional element, for example [a]
. . . optional repetition (zero or more times)

Table 4.2.1: SQL syntax

22

SELECT used for retrieving information from one or more tables in the database and

displaying it.

The syntax of the SELECT statement is given below:

SELECT [DISTINCT|ALL]

{*|column_expression[AS new_name]][,...]}

FROM table_name [alias][,...]

[WHERE condition]

[GROUP BY column_list][HAVING condition]

[ORDER BY column_list]

where column expression represents a column name or expression, newname is a new

temporary name to use for the column expression, table name represents the name of the

database table or view table to select from, alias represents an optional name for the table

name, condition is the condition upon which selection is made or a condition for display

(see HAVING), and column list represents the list of table columns to group or order the

result upon.

The sequence of the SELECT statement processing, and the meaning of the reserved

words are:

FROM specifies which tables to choose from

WHERE filters the selected data rows due to a condition

GROUP BY groups together rows with same column value

HAVING filters the selected groups due to a condition

SELECT specifies which column should appear in the result

23

ORDER BY specifies the order to sort the output upon

INSERT used for adding new data rows in a table.

The syntax of the INSERT statement is given below:

INSERT INTO table_name[(column_list)]

VALUES(data_value_list)

where table name represents the name of the database table or view table, column list

represents the list of table columns to update, and data valuelist represents the list of

values to enter into each column in the new row. The number, position, and type of data

values must correspond to the table’s column list.

UPDATE used for modifying data rows in a table.

The syntax of the UPDATE statement is given below:

UPDATE table_name

SET column_name1 = data_value1

[, column_name2 = data_value2...]

[WHERE search_condition]

where table name represents the name of the database table or view table, column name

represents the column name to modify, and data value represents the new value to enter

into the column. The new given value must correspond to the table’s column. The

WHERE clause specifies which row is to be modified, according to the search

condition. If omitted, the whole table will be affected.

DELETE used for removing data rows from a table.

24

The syntax of the DELETE statement is given below:

DELETE FROM table_name

[WHERE search_condition]

where table name represents the name of the database table or view table, and the

WHERE clause specifies which row is to be modified, according to the search condition.

If omitted, all data in the table will be deleted.

SELECT statements can be used to retrieve data in many different ways. In order to

explain this, we give here a list of different query formulations and the way they are

commonly used according to Connolly et al.

• Simple Queries can be used to retrieve either all or a selection of columns and rows

from one or more tables. A condition can also be specified to minimize the selection.

• Sorting Results can be achieved by using the ORDER BY clause.

• Aggregate Functions are used to retrieve numeric information about the data. The

clauses COUNT, SUM, AVG, MIN and MAX are used to retrieve number of rows, sum

of values, values average, minimum value and maximum value, respectively.

• Grouping Results can be achieved using the GROUP BY clause.

• Sub queries can help creating complex queries wherein result from a secondary query

can used for instance as a condition for the primary query.

• The ANY and ALL Clauses can be used to compare results of a primary query with all

or any of the results of a secondary query.

• Multi-Table Queries are used to combine columns from different tables through usage

of different JOIN clauses.

25

• The EXISTS and NOT EXISTS Clauses can be used to check if a value exists or not

in a table or in a result from a secondary query.

• Combining Result Tables can be made using the UNION, INTERSECT and EXCEPT

clauses.

4.2.2 DDL

Connolly et al. [19] defines the Data Definition Language (DDL) as “A descriptive

language that allows the DBA or user to describe and name the entities required for the

application and the relationships that may exist between the different entities.” Thus, the

DDL is used when manipulating the database’s meta-data, which describes the objects

contained in the database and allows access to them. The DDL does not allow users to

manipulate data stored in the database.

4.3 Query Techniques

An SQL query to be executed in a RDBMS can be constructed using two techniques.

Either the query is allowed to be dynamically tailored with respect of both SQL keywords

and query arguments, or the query syntax is unchangeable, only allowing arguments to be

passed [19].

4.3.1 Dynamic SQL

Dynamic SQL refers to the concept of allowing an SQL query to be dynamically built by

concatenating statements and using variables that supply the query with dynamic values.

According to Connolly et al. [19] and Khatri [9], the query is typically stored in a

variable and the query builders consist of application logic components that adds SQL

syntax and arguments to the variable in a process governed by specified conditions. Such

queries are interpreted and compiled at run-time by the RDBMS, meaning that the query

will be compiled every time it is executed. Since dynamic SQL allows SQL syntax to be

added, both SQL keywords and values may be passed as arguments to queries.

26

4.3.2 Static SQL

Static SQL refers to the concept of using fixed and unchangeable SQL queries. Such

queries are predefined and compiled and are not permitted to add SQL keywords, defined

in DDL or DML. Only arguments to clauses, e.g. WHERE, may be allowed to be passed

to the queries. Either the query is embedded in application logic code in form of prepared

statements or it resides in RDBMS as stored procedures.

Stored procedures are pre-compiled collections of SQL statements, or sub-

routines that reside in the RDBMS. Either they are supplied by the database vendor, i.e.

system stored procedures, or additionally constructed by system developers, database

administrators or application programmers. They allow a developer to access and

manipulate databases quickly and efficiently. Since they are compiled in advance, they

possess the property of being executed faster than dynamic SQL. Another property is that

once created, stored procedures cannot be modified via dynamic SQL. Stored procedures

are executed by invoking a command that includes the procedure identifier. This can be

done either from a command prompt or from application programs written in languages

such as C or Visual Basic. Several RDBMS supports this feature, but the set of stored

procedures that follow with the installation and the syntax for invoking them varies.

[9][17][19]

4.4 Error Messages

RDBMSs have in-built error handling mechanisms that may generate error messages

when for example an SQL query could not be executed. The error message format used

and degree of details embedded in generated messages vary from RDBMS to RDBMS.

Nevertheless, if you run a query and accidentally make a mistake by entering e.g. a table

that does not exist in the database, the RDBMS may return an error message containing

information about the error. Some RDBMSs even react to all errors in the same manner,

whether those errors are generated by users, databases, objects, or the system. [5][13][21]

27

Error messages are typically propagated back to the source that caused the error.

The web server or application server will propagate an error page that displays the

message to the client. Web application developers can take advantage of these messages

for debugging purposes, as noted by Spett [21]. However, as we shall see in section 5, it

is not a wise error-handling approach to let web servers display these error messages in

error pages to users of web applications.

4.5 Security

Database security, according to Connolly et al. [19], concerns “The protection of

the database against intentional or unintentional threats using computer-based or non-

computer-based controls.” Besides the effect that poor database security can have on the

database, it may also threaten other parts of a system and thus an entire organization. The

risks related to database security are:

• Theft and fraud which are activities made intentionally by people. This risk may result

in loss of confidentiality or privacy.

• Loss of confidentiality which refers to loss of organizational secrets.

• Loss of privacy which refers to exposure of personal information.

• Loss of integrity which refers to invalid or corrupt data.

• Loss of availability which means that data or system cannot be reached.

Threats that correspond to those risks are such situations or events in which it is

likely that an action, event or person will harm an organization. Threats can be tangible,

that is, cause loss of hardware or software, or intangible, as in with loss of credibility or

confidence. In order to be able to face threats, a risk analysis should be conducted, in

which a group of people in an organization tries to identify and gather information about

the organization’s assets, the risks and threats that may harm the organization and the

28

countermeasures that can be used to face those risks. Decisions made using such risk

analysis are thereafter used to implement security measures in the system. These security

measures can be computer-based controls or non-computer-based controls.

4.5.1 Computer-Based Controls

According to Connolly et al. [19], computer-based controls are used for protecting

DBMS through means of authorization, views, backup and recovery, integrity, encryption

and associated procedures.

Authorization

Authorization is used to define which activities (or privileges) are granted to different

users (or subjects), which allows them to manipulate or retrieve information from

different database objects. In order to ensure that the user is who she claims,

authentication is used. Usually, a simple mechanism of usernames and passwords is used,

whether in the DBMS or in combination with the operating system where the DBMS

resides. A user is asked to fill her name and password, and the authentication mechanism

confirms that the user is who she claims to be by comparing the password with the

corresponding password in a list it maintains.

The DBMS usually maintains a list of privileges that subjects have on certain

database objects. A DBMS that operates as a closed system, maintains a privileges list in

which users are not allowed to operate on any objects except the ones in the list. A

DBMS that operates as an open system, on the other hand, allows users to operate on all

objects except those that are explicitly removed and listed in the privileges list.

Privileges may also be group-based or role-based. Both users and objects may be

joined in a group and privileges may be given to a group of users or objects. Certain roles

can also be given privileges on objects, and a number of different users may undertake a

certain role.

29

Views

Views are virtual tables that are created through some operations on database objects. By

removing certain columns or rows and combining certain tables, such views can be used

to limit the scope of objects that users can manipulate or retrieve information from.

Backup and Recovery

In order to be able to recover from a failure, a DBMS must regularly make a copy of the

database and log files. Log files are a list of activities made in the database that can be

used to recover the database after a failure. Checkpoints made in certain time intervals

can assure that the backup and log files are synchronized. This allows for safe recovery

since operations that are listed in the log file need only be carried out from the point in

time when the last backup was made.

Integrity

Integrity controls can be used to see to that data in database does not get corrupt. Such

controls are called relational integrity controls, and are rules that some databases

implement internally to maintain data validity. Other database does not implement those

controls and it is up to the application programmer that uses the database to see to that

data validity is being maintained.

Encryption

Encryption is a method that is used for encoding the data so that other programs cannot

read it. Some DBMSs contain an internal encryption mechanism, while other relays on

the operating system or third-party programs.

Associated Procedures

Connolley et al. describe some associated procedures that should be used to further

protect the database:

30

• Authorization and authentication: in order for these mechanisms to work properly, a

password policy should be maintained, which regulates matters like minimum passwords

length, how often they should be replaced, as well as revoking old passwords.

• Backup: procedures should regulate how often backups should be made as well as what

parts of the database backups should include. Furthermore, backups should be kept in a

safe place.

• Recovery: recovery mechanisms should regulate how backups and logs can be used in

case of failure. These procedures should also be tested regularly.

• Audit: audits should be carried out regularly to control the security and to see to that all

mechanisms are adequately functioning.

• Installation of new software: before any new software is to be installed, it should be

properly tested so that it would not harm any data or mechanisms.

• Installation/upgrading of system software: any system upgrades should by

documented and reviewed. Before such upgrades take place, the risks of such an act

should be considered and plans should be made for possible failures and changes.

4.5.2 Non-Computer-Based Controls

The most important countermeasure among non-computer-based controls is the security

policy and the contingency plan. A security policy concerns security maintenance in an

organization, and contains “. . . a set of rules that state which actions are permitted and

which actions are prohibited.” [21] .A contingency plan is a detailed description of the

actions that should be taken in order to deal with unusual events, such as sabotage, fire or

flood.

31

Chapter 5

SQL Injection

SQL injection is a code injection technique that exploits a security vulnerability

occurring in the database layer of an application. The vulnerability is present when user

input is either incorrectly filtered for string literal escape characters embedded in SQL

statements or user input is not strongly typed and thereby unexpectedly executed. It is an

instance of a more general class of vulnerabilities that can occur whenever one

programming or scripting language is embedded inside another.

5.1 Scope

We will view SQL injection as the majority of the authors do: a technique used for

manipulating server-side scripts that send SQL queries to an RDBMS. This is done by

manipulating client-side data, including changing SQL values and concatenations of SQL

statements, which are sent to a web server embedded in HTTP requests. Once the web

server receives a request, it forwards the information in it to a script which uses that

information to build SQL queries. The goal of the attacker who uses SQL injection is to

manipulate with the SQL query used by the script so that it would yield unwanted results,

such as fetching, inserting, manipulating or deleting protected rows or tables in the

database. [21].

Before proceeding, we think that a discussion of the scope of SQL injection is

necessary. Attack methods of SQL injection have by some authors been classified into

direct and indirect attacks.

Using direct attacks, an attacker tries to take control of an RDBMS. The purpose

of such attacks is to further take control of other host computers and compromise a

network. First, attackers scan for open ports that database servers are listening to. If such

32

ports are found, they continue with executing system commands through a command

console, communicating with the RDBMS directly. [21]

Indirect attacks, on the other hand, are performed through web applications. True,

it is possible to execute commands by embedding calls to stored procedures in dynamic

SQL and that may cause devastating results if successful [2][14][21]. However, the main

purpose is to directly attack the RDBMS in general and its stored data in particular

[2][21].

A majority of the authors do not mention or discuss direct attacks. This may stem

from the fact that they either are not aware of such flaws or that they do not consider

them as falling into the scope of SQL injection. Regardless of the reason, direct attacks

are conducted through the RDBMS and aims at the network infrastructure. When

discussing direct attacks, authors refer to direct communication with the RDBMS and not

attacks on the RDBMS itself. It seems to be true that attackers can take advantage of

some aspects of SQL injection when performing such attacks. However, we consider the

concept of direct attacks to be somewhat misleading since it does not relate to web

applications. Furthermore, from a security perspective, we think that direct attacks relate

to network security rather than application security. Flaws like open ports that allow

attackers to communicate with the RDBMS using arbitrary protocols from command

consoles can be prevented by existing network security countermeasures as well as

database security configuration, e.g securing the system administrator account. Therefore,

we consider direct attacks to be outside the scope of this thesis.

5.2 Basics

As noted by Spett [21], a web application can, from a hacker's perspective, be viewed as

consisting of the following layers: desktop layer, transport layer, access layer, network

layer and application layer. At the desktop layer, computers with web browsers acting as

clients are used for accessing a system. The transport layer represents the web, and the

access layer constitutes the entrance point into a corporation’s internal system from the

33

web. The network layer consists of the corporation’s internal network infrastructure and

finally, the application layer includes web servers, application servers, application logic

and data storage. Every layer may have its own implemented countermeasures in order to

detect, prevent and recover from attacks, as

 Desktop Internet Firewall Network Script

Unfortunately, SQL injection attacks can only be prevented in application logic

components such as scripts and programs in the application layer. No matter how many

resources and how much effort a corporation spends in the other layers, if application

security has not been properly applied in the application layer, their web applications may

contain vulnerabilities that SQL injection attackers can exploit. We do not say that

countermeasures like encryption, firewalls, intrusion detection and database security are

not important. They are effective when dealing with other types of attacks. However, they

have been shown insufficient and ineffective regarding SQL injection and therefore we

will not consider them [21]. Encryption for example, only protects stored data or data

during transport in and between lower layers. In the context of web applications, user

input may be encrypted between the client-side and server-side. Furthermore, SQL

queries may be encrypted during transport between components such as scripts and

programs on the server-side. But in order for the server-side to construct SQL queries and

Application
Layer

This is application

This is application

Network
Layer

Access
Layer

Desktop
Layer

Transport
Layer

Antivirus Access ControlEncryption Intrusion
Detection

Application
Protection

Figure 5.2.1: Security layers in web applications [21]

34

for RDBMS to execute them, they must first be decrypted. The data may still be

encrypted but the SQL queries could have been manipulated through SQL injection.

Basically, most web servers are protected by firewalls. However, from a security

perspective, web applications offer users legitimate channels through firewalls into

corporations systems. The reason for this is that when clients request services from

servers on the web, the underlying communication takes place through HTTP, and web

applications are no exceptions. HTTP is firewall-friendly, i.e. it is one of the few

protocols most firewalls allow through. This stems from the fact that HTTP requests are

considered legal, since traffic between clients and servers must be allowed in order for

the web applications to be of any use. SQL injection takes advantage of this property by

embedding attacks in HTTP requests.

5.3 How SQL injection Attacks (SQLIAs) Work

SQL injection refers to a class of code-injection attacks in which data provided by the

user is included in the SQL query in such a way that part of the user’s input is treated as

SQL code. It is a trick to inject SQL query or command as an input possibly via the web

pages. They occur when data provided by user is not properly validated and is included

directly in a SQL query. By leveraging these vulnerabilities, an attacker can submit SQL

commands directly access to the database. There are two major SQL injection techniques:

i) access through login page or user input and ii) access through URL.

 The first technique is the easiest in which it bypasses the login forms where users

are authenticated by using passwords. This kind of technique can be performed by the

attackers through: ‘or’ condition, ‘having’ clause, multiple queries and extended stored

procedure.

 This kind of vulnerability represents serious threats.

35

Select * from users where username = ' " & username & " ' and password = ' " &

password & " ' "

If the username and password as provided by the user are used, the query to be submitted

to the database takes the form:

Select * from users where username = 'guest' and password = 'password'

If the user were to enter [' or 1=1 --] and [] instead of [guest] and [password], the query

would taken form:

Select * from users where username = ' ' or 1=1 --' and password = ' '

 The query now checks for the conditional equation of [1=1] or an empty

password, then a valid row has been found in the users table. The first [‘] quote is used to

terminate the string and the characters [--] mark the beginning of a SQL comment, and

anything beyond is ignored. The query as interpreted by the database now has a tautology

and is always satisfied. Thus an attackers can bypass all authentication modules gaining

unrestricted access to critical information on the server. This attack can be used to gain

confidential information, to bypass authentication mechanisms, to modify the database,

and to execute arbitrary code.

 The second technique can be performed by the attackers through: manipulating

the query string in URL and using the SELECT and UNION statements.

When a user enters the following URL:

http://www.mydoman.com/products/products.asp?productid=123

The corresponding SQL query is executed:

Select productName, productDescription from products where productNumber = 123

36

An attacker may abuse the fact that the productId parameter is passed to the database

without sufficient validation. The attacker can manipulate the parameter’s value to build

malicious SQL statements. For example, setting the value [123 or 1=1] to the productId

variable results in the following URL:

http://www.mydoman.com/products/products.asp?productid=123 or 1= 1

The corresponding SQL statement is:

Select productName, productDescription from products where productNumber = 123 or

1=1

This condition would always be true and all productName and productDescription pairs

are returned. The attacker can manipulate the application evan furthere by inserting

malicious commands. For example, an attacker can request the following URL:

http://www.mydoman.com/products/products.asp?productid=123; drop table products

In this example the semicolon is used to pass the database server multiple statements in a

single execution. The second statement is “drop table products” which causes SQL server

to delete the entire products table .

An attacker may use SQL injection to retrieve data from other tables as well. This can be

done using the SQL UNION SELECT statement. The UNION SELECT statement allows

the chaining of two separate SQL SELECT queries that have nothing in common. For

example, consider the following SQL query:

Select productName, productDescription from products where productNumber = 123

union select username , password from users;

The result of this query is a table with two columns, containing the results of the first and

second queries, respectively. An attacker may use this type of SQL injection by

requesting the following URL:

37

 http://www.mydoman.com/products/products.asp?productid=123 union select username

, password from users;

5.4 Classification of SQLIA Techniques

An SQL injection attack has a set of properties, such as assets under threat, vulnerabilities

being exploited and attack techniques utilized by threat agents. The detail feature of every

property in the SQL injection attack model is identified in this section.

5.4.1. Attack Intent

Attacks can also be characterized based on the goal, or intent, of the attacker. Therefore,

each of the attack type definitions that we provide in Section 4 includes a list of one or

more of the attack intents defined in this section.[22]

Identifying injectable parameters: The attacker wants to probe a Web application to

discover which parameters and user-input fields are vulnerable to SQLIA.

Performing database finger-printing: The attacker wants to discover the type and version

of database that a Web application is using. Certain types of databases respond differently

to different queries and attacks, and this information can be used to “fingerprint” the

database. Knowing the type and version of the database used by a Web application allows

an attacker to craft database specific attacks.

Determining database schema: To correctly extract data from a database, the attacker

often needs to know database schema information, such as table names, column names,

and column data types. Attacks with this intent are created to collect or infer this kind of

information.

Extracting data: These types of attacks employ techniques that will extract data values

from the database. Depending on the type of the Web application, this information could

38

be sensitive and highly desirable to the attacker. Attacks with this intent are the most

common type of SQLIA.

Adding or modifying data: The goal of these attacks is to add or change information in a

database.

Performing denial of service: These attacks are performed to shut down the database of a

Web application, thus denying service to other users. Attacks involving locking or

dropping database tables also fall under this category.

Evading detection: This category refers to certain attack techniques that are employed to

avoid auditing and detection by system protection mechanisms.

Bypassing authentication: The goal of these types of attacks is to allow the attacker to

bypass database and application authentication mechanisms. Bypassing such mechanisms

could allow the attacker to assume the rights and privileges associated with another

application user.

Executing remote commands: These types of attacks attempt to execute arbitrary

commands on the database. These commands can be stored procedures or functions

available to database users.

Performing privilege escalation: These attacks take advantage of implementation errors

or logical flaws in the database in order to escalate the privileges of the attacker. As

opposed to bypassing authentication attacks, these attacks focus on exploiting the

database user privileges.

5.4.2 Assets

Assets are information or data an unauthorized threat agent attempt to gain.

 Database Server Fingerprint: The database server fingerprint contains

information about the database system in use. It identifies the specific type and version of

39

the database, as well as the corresponding SQL language dialect. A compromise of this

asset may allow attackers to construct malicious code specially for the SQL language

dialect in question.

 Database schema: The database scheme describes the server’s internal

architecture. Database structure information such as table names, size, and relationships

are defined in the database schema. Keeping this asset private is essential in keeping the

confidentiality and integrity of the database data. A compromise in the database, schema

may allow attackers to know the exact structure of the database, including table, row, and

column headings.

 Database data: The database data is the most crucial asset in any database

system. It contains the information in the tables described in the database schema, such as

prices in an online store, personal information of clients, administrator passwords, etc. A

compromise in the database data will usually result in failure of the system’s intended

functionality, thus, its confidentiality and integrity must be protected.

 Host: A host is a discrete node in any network, usually uniquely defined with an

IP address. It may have various privileges in a network and may be a database server or a

regular computer terminal.

 Network: A network interconnects numerous hosts together and allows

communication between them. A compromise in a network will most likely compromise

every host in the network. Some networks may also be interconnected with other

networks, furthering the potential damage, should an attack be successful.

40

5.5 Methodology for a Successful SQLIA

Attack techniques are the specific means by which a threat agent carries out attacks using

malicious code. Threat agents may use many different methods to achieve their goals,

often combining of these sequentially or employing them in different varieties.[22]

5.5.1 Attacks Techniques

Tautologies

Attack Intent: Bypassing authentication, identifying injectable parameters, extracting

data.

Description: The general goal of a tautology-based attack is to inject code in one or more

conditional statements so that they always evaluate to true. The consequences of this

attack depend on how the results of the query are used within the application. The most

common usages are to bypass authentication pages and extract data. In this type of

injection, an attacker exploits an injectable field that is used in a query’s WHERE

conditional. Transforming the conditional into a tautology causes all of the rows in the

database table targeted by the query to be returned. In general, for a tautology-based

attack to work, an attacker must consider not only the inject-able/vulnerable parameters,

but also the coding constructs that evaluate the query results. Typically, the attack is

successful when the code either displays all of the returned records or performs some

action if at least one record is returned.

Example: In this example attack, an attacker submits " ' or 1=1 - - " for the login input

field (the input submitted for the other fields is irrelevant). The resulting query is:

SELECT accounts FROM users WHERE login=" or 1=1 -- AND pass=" AND pin=

The code injected in the conditional (OR 1=1) transforms the entire WHERE clause into a

tautology. The database uses the conditional as the basis for evaluating each row and

41

deciding which ones to return to the application. Because the conditional is a tautology,

the query evaluates to true for each row in the table and returns all of them.

Illegal/Logically Incorrect Queries

Attack Intent: Identifying injectable parameters, performing database finger-printing,

extracting data.

Description: This attack lets an attacker gather important information about the type and

structure of the back-end database of a Web application. The attack is considered a

preliminary, information gathering step for other attacks. The vulnerability leveraged by

this attack is that the default error page returned by application servers is often overly

descriptive. In fact, the simple fact that an error messages is generated can often reveal

vulnerable/inject-able parameters to an attacker. Additional error information, originally

intended to help programmers debug their applications, further helps attackers gain

information about the schema of the back-end database. When performing this attack, an

attacker tries to inject statements that cause a syntax, type conversion, or logical error

into the database. Syntax errors can be used to identify injectable parameters. Type errors

can be used to deduce the data types of certain columns or to extract data. Logical errors

often reveal the names of the tables and columns that caused the error.

Example: This example attack’s goal is to cause a type conversion error that can

reveal relevant data. To do this, the attacker injects the following text into input field pin:

“convert(int,(select top 1 name from sysobjects where xtype=’u’))”. The resulting query

is:

SELECT accounts FROM users WHERE login=" AND pass=" AND pin= convert

(int,(select top 1 name from sysobjects where xtype=’u’))

In the attack string, the injected select query attempts to extract the first user table

(xtype=’u’) from the database’s metadata table (assume the application is using Microsoft

SQL Server, for which the metadata table is called sysobjects). The query then tries to

42

convert this table name into an integer. Because this is not a legal type conversion, the

database throws an error. For Microsoft SQL Server, the error would be: ”Microsoft OLE

DB Provider for SQL Server (0x80040E07) Error converting nvarchar value

’CreditCards’ to a column of data type int.”

There are two useful pieces of information in this message that aid an attacker. First, the

attacker can see that the database is an SQL Server database, as the error message

explicitly states this fact. Second, the error message reveals the value of the string that

caused the type conversion to occur. In this case, this value is also the name of the first

user-defined table in the database: “CreditCards.” A similar strategy can be used to

systematically extract the name and type of each column in the database. Using this

information about the schema of the database, an attacker can then create further attacks

that target specific pieces of information.

Union Query

Attack Intent: Bypassing Authentication, extracting data.

Description: In union-query attacks, an attacker exploits a vulnerable parameter to

change the data set returned for a given query. With this technique, an attacker can trick

the application into returning data from a table different from the one that was intended

by the developer. Attackers do this by injecting a statement of the form: UNION

SELECT <rest of injected query>. Because the attackers completely control the

second/injected query, they can use that query to retrieve information from a specified

table. The result of this attack is that the database returns a dataset that is the union of the

results of the original first query and the results of the injected second query.

Example: Referring to the running example, an attacker could inject the text “’ UNION

SELECT cardNo from CreditCards where acctNo=10032 - -” into the login field, which

produces the following query:

43

SELECT accounts FROM users WHERE login=" UNION SELECT cardNo from

CreditCards where acctNo=10032 -- AND pass="AND pin=

Assuming that there is no login equal to “”, the original first query returns the null set,

whereas the second query returns data from the “CreditCards” table. In this case, the

database would return column “cardNo” for account “10032.” The database takes the

results of these two queries, unions them, and returns them to the application. In many

applications, the effect of this operation is that the value for “cardNo” is displayed along

with the account information.

PiggyBacked

Queries

Attack Intent: Extracting data, adding or modifying data, performing denial of service,

executing remote commands.

Description: In this attack type, an attacker tries to inject additional queries into the

original query. We distinguish this type from others because, in this case, attackers are

not trying to modify the original intended query; instead, they are trying to include new

and distinct queries that “piggy-back” on the original query. As a result, the database

receives multiple SQL queries. The first is the intended query which is executed as

normal; the subsequent ones are the injected queries, which are executed in addition to

the first. This type of attack can be extremely harmful. If successful, attackers can insert

virtually any type of SQL command, including stored procedures,1 into the additional

queries and have them executed along with the original query. Vulnerability to this type

of attack is often dependent on having a database configuration that allows multiple

statements to be contained in a single string.

Example: If the attacker inputs “’; drop table users - -” into the pass field, the application

generates the query:

44

SELECT accounts FROM users WHERE login='doe' AND pass="; drop table users

– ' AND pin=123

After completing the first query, the database would recognize the query delimiter

(“;”) and execute the injected second query. The result of executing the second query

would be to drop table users, which would likely destroy valuable information. Other

types of queries could insert new users into the database or execute stored procedures.

Note that many databases do not require a special character to separate distinct queries,

so simply scanning for a query separator is not an effective way to prevent this type of

attack.

Stored Procedures

Attack Intent: Performing privilege escalation, performing denial of service, executing

remote commands.

Description: SQLIAs of this type try to execute stored procedures present in the database.

Today, most database vendors ship databases with a standard set of stored procedures that

extend the functionality of the database and allow for interaction with the operating

system. Therefore, once an attacker determines which backend database is in use,

SQLIAs can be crafted to execute stored procedures provided by that specific database,

including procedures that interact with the operating system.

It is a common misconception that using stored procedures to write Web

applications renders them invulnerable to SQLIAs. Developers are often surprised to find

that their stored procedures can be just as vulnerable to attacks as their normal

applications [22]. Additionally, because stored procedures are often written in special

scripting languages, they can contain other types of vulnerabilities, such as buffer

overflows, that allow attackers to run arbitrary code on the server or escalate their

privileges [16].

45

CREATE PROCEDURE DBO.isAuthenticated

@userName varchar2, @pass varchar2, @pin int

AS

EXEC("SELECT accounts FROM users

WHERE login=’" +@userName+ "’ and pass=’" +@password+ "’ and pin="

+@pin);

GO

Example: This example demonstrates how a parameterized stored procedure can be

exploited via an SQLIA. In the example, we assume that the query string constructed at

lines 5, 6 and 7 of our example has been replaced by a call to the stored procedure

defined in Figure 2. The stored procedure returns a true/false value to indicate whether

the user’s credentials authenticated correctly. To launch an SQLIA, the attacker simply

injects “ ’ ; SHUTDOWN; - -” into either the userName or password fields. This

injection causes the stored procedure to generate the following query:

SELECT accounts FROM users WHERE login=’doe’ AND pass=’ ’; SHUTDOWN;

-- AND pin=

At this point, this attack works like a piggy-back attack. The first query is executed

normally, and then the second, malicious query is executed, which results in a database

shut down. This example shows that stored procedures can be vulnerable to the same

range of attacks as traditional application code.

46

Inference

Attack Intent: Identifying injectable parameters, extracting data, determining database

schema.

Description: In this attack, the query is modified to recast it in the form of an action that

is executed based on the answer to a true/false question about data values in the database.

In this type of injection, attackers are generally trying to attack a site that has been

secured enough so that, when an injection has succeeded, there is no usable feedback via

database error messages. Since database error messages are unavailable to provide the

attacker with feedback, attackers must use a different method of obtaining a response

from the database. In this situation, the attacker injects commands into the site and then

observes how the function/response of the website changes. By carefully noting when the

site behaves the same and when its behavior changes, the attacker can deduce not only

whether certain parameters are vulnerable, but also additional information about the

values in the database. There are two well known attack techniques that are based on

inference. They allow an attacker to extract data from a database and detect vulnerable

parameters. Researchers have reported that with these techniques they have been able to

achieve a data extraction rate of 1B/s .

Blind Injection: In this technique, the information must be inferred from the behavior of

the page by asking the server true/false questions. If the injected statement evaluates to

true, the site continues to function normally. If the statement evaluates to false, although

there is no descriptive error message, the page differs significantly from the normally-

functioning page.

Timing Attacks: A timing attack allows an attacker to gain information from a database

by observing timing delays in the response of the database. This attack is very similar to

blind injection, but uses a different method of inference. To perform a timing attack,

attackers structure their injected query in the form of an if/then statement, whose branch

47

predicate corresponds to an unknown about the contents of the database. Along one of the

branches, the attacker uses a SQL construct that takes a known amount of time to

execute, (e.g. the WAITFOR keyword, which causes the database to delay its response

by a specified time). By measuring the increase or decrease in response time of the

database, the attacker can infer which branch was taken in his injection and therefore the

answer to the injected question.

Example: Using the code from our running example, we illustrate two ways in

which Inference based attacks can be used. The first of these is identifying injectable

parameters using blind injection.

Consider two possible injections into the login field. The first being “legalUser’ and 1=0

- -” and the second, “legalUser’ and 1=1 - -”.

These injections result in the following two queries:

SELECT accounts FROM users WHERE login='legalUser' and 1=0 – ' AND

pass="AND pin=0

SELECT accounts FROM users WHERE login='legalUser' and 1=1 – ' AND pass="

AND pin=0

Now, let us consider two scenarios. In the first scenario, we have a secure

application, and the input for login is validated correctly. In this case, both injections

would return login error messages, and the attacker would know that the login parameter

is not vulnerable. In the second scenario, we have an insecure application and the login

parameter is vulnerable to injection. The attacker submits the first injection and, because

it always evaluates to false, the application returns a login error message. At this point

however, the attacker does not know if this is because the application validated the input

correctly and blocked the attack attempt or because the attack itself caused the login

error. The attacker then submits the second query, which always evaluates to true. If in

48

this case there is no login error message, then the attacker knows that the attack went

through and that the login parameter is vulnerable to injection.

The second way inference based attacks can be used is to perform data extraction.

Here we illustrate how to use a Timing based inference attack to extract a table name

from the database. In this attack, the following is injected into the login parameter:

‘‘legalUser’ and ASCII(SUBSTRING((select top 1 name from sysobjects),1,1)) > X

WAITFOR 5 --’’. This produces the following query:

SELECT accounts FROM users WHERE login='legalUser' and

ASCII(SUBSTRING((select top 1 name from sysobjects),1,1)) > X WAITFOR 5 –

'AND pass=" AND pin=0

In this attack the SUBSTRING function is used to extract the first character of

the first table’s name. Using a binary search strategy, the attacker can then ask a series of

questions about this character. In this case, the attacker is asking if the ASCII value of the

character is greater-than or less-than-or-equal-to the value of X. If the value is greater, the

attacker knows this by observing an additional 5 second delay in the response of the

database. The attacker can then use a binary search by varying the value of X to identify

the value of the first character.

Alternate Encodings

Attack Intent: Evading detection.

Description: In this attack, the injected text is modified so as to avoid detection by

defensive coding practices and also many automated prevention techniques. This attack

type is used in conjunction with other attacks. In other words, alternate encodings do not

provide any unique way to attack an application; they are simply an enabling technique

that allows attackers to evade detection and prevention techniques and exploit

vulnerabilities that might not otherwise be exploitable. These evasion techniques are

49

often necessary because a common defensive coding practice is to scan for certain known

“bad characters,” such as single quotes and comment operators.

To evade this defense, attackers have employed alternate methods of encoding

their attack strings (e.g., using hexadecimal, ASCII, and Unicode character encoding).

Common scanning and detection techniques do not try to evaluate all specially encoded

strings, thus allowing these attacks to go undetected. Contributing to the problem is that

different layers in an application have different ways of handling alternate encodings.

The application may scan for certain types of escape characters that represent alternate

encodings in its language domain. Another layer (e.g., the database) may use different

escape characters or even completely different ways of encoding. For example, a

database could use the expression char (120) to represent an alternately-encoded

character “x”, but char(120) has no special meaning in the application language’s

context. An effective code-based defense against alternate encodings is difficult to

implement in practice because it requires developers to consider of all of the possible

encodings that could affect a given query string as it passes through the different

application layers. Therefore, attackers have been very successful in using alternate

encodings to conceal their attack strings.

Example: Because every type of attack could be represented using an alternate encoding,

here we simply provide an example of how esoteric an alternatively-encoded attack could

appear. In this attack, the following text is injected into the login field: “legalUser’;

exec(0x73687574646f776e) - - ”. The resulting query generated by the application is:

SELECT accounts FROM users WHERE login='legalUser';

exec(char(0x73687574646f776e)) -- AND pass=" AND pin=

This example makes use of the char() function and of ASCII hexadecimal

encoding. The char() function takes as a parameter an integer or hexadecimal encoding

of a character and returns an instance of that character. The stream of numbers in the

second part of the injection is the ASCII hexadecimal encoding of the string

50

“SHUTDOWN.” Therefore, when the query is interpreted by the database, it would result

in the execution, by the database, of the SHUTDOWN command.

5.6 Proposed Methodology

In this method we use "variable normalization" to extract the basic structure of a SQL

statement so that we could use that information to determine if a SQL statement is

allowed to be executed. The methods can be used in most scenarios and does not require

changing the source code of database applications (ie CGI web application). The

presented method can be used for the allowable list of SQL statements, which makes the

system very easy to setup. And since the decision of whether a SQL statement is allowed

is to check if the normalized statement exists in our ready allowable list, the overhead of

the system is very minimal.

Variable Normalization

The variable normalization is tried to strip away the variables and get the basic structure

of the SQL statement, so that although the supplied variables differ every time, the basic

structure remains the same. If SQL injection happens, the injection code will change the

structure of the SQL statement, and we should be able to detect it.

The variable normalization is method of determining allowability of a SQL statement,

including normalization the SQL statement and comparing the normalized SQL statement

with a predetermined set of allowable statements. In the normalization process each

single-quoted string within the SQL statement to a single character, converting all

numbers within the SQL statement to a single character, storing the converted SQL

statement, storing a position of each variable of the converted SQL statement, and storing

a value of each variable of the converted SQL statement.

The predetermined sets of allowable statements contain a set of normalized SQL

statements along with corresponding variable positions, variable types and variable

51

requirements. The set of allowable statements include variable length, allowable

characters, regular expression patterns, minimum values and maximum values. The

comparing includes searching for the SQL statement in the set of allowable statements.

When the allowable list contains the SQL statement, verification of each variable value in

the SQL statement may be determined by checking it against the variable requirements

located in the set of allowable statements. The SQL statement is allowed when each

variable value in the SQL statement is verified.

Example 1

SELECT * FROM customer WHERE customer_name = 'ram'

Normalized SQL SELECT * FROM customer WHERE customer_name = 'a'

In statements table Id = 1 Statement = select * from where customer_name = 'ram'

In parameters table Id=1 Position=51 String type StatementId=1 Original value = "ram"

Example 2

SELECT * FROM customer WHERE customer_id = 101 and customer_city = 'kath'

Normalized SQL
SELECT * FROM customer WHERE customer_id= 'a' and customer_city = 'a'

In statements table
Id =2 SELECT * FROM customer WHERE customer_id = 101 and

customer_city = 'kath'

In parameter table
Id=2
Id=3

Pos=47
Pos = 73

Integer type
String type

StatementId=2
StatementId=2

Original value = 101
Original value = "kath"

52

Example 3

SELECT * FROM loan WHERE amount > 1000

Normalized SQL SELECT * FROM loan WHERE amount > 'a'

In statements table Id = 3 Statement = SELECT * FROM loan WHERE amont > 1000

In parameters table Id=4 Position=38 Integer type StatementId=3 Allowable range 0-1000000

SELECT loan_number FROM account WHERE branch_name = 'kath' and amount > 10000

Normalized SQL SELECT loan_number FROM account WHERE branch_name = 'a' and

amount > 'a'

In statements table Id = 4 SELECT loan_number FROM account WHERE branch_name =

'kath' and amount > 10000
In parameters table Id = 5 Position=62

Position= 86

String type

Integer type

StatementId=4

StatementId=4

Allowable character set[a-z

A-Z] max length8

Allowable list 0-1000000

In performing the normalization procedure, as in example 1, example 2, variables of the

received SQL statement may be modified. For example, as in example 1, in an

embodiment all single-quoted strings in the received SQL statement may be converted to

a single character, letter "a". Similarly, all integers or floating point numbers contained in

the received SQL statement may be converted to a single character, letter "a" as in

example 2.

53

Upon conversion of the variables as described above, the normalized SQL statement

stored in the data structure call a rule. The normalized SQL statement stored in the rule

along with corresponding variable information, including variable type and variable

position after normalization as shown in example1 and example 2. The non-variable

elements of the received SQL statement including SQL comments, carriage returns, white

spaces, and character cases are not modified.

Verification of the normalized SQL statement is performed through comparison of the

normalized SQL statement with a pre-defined allowable list. The allowable list include

set of rules and stored variable requirement as shown in example 3. The allowable list

may be defining each normalized SQL statement along with requirement of the variables

of the normalized SQL statement.

The normalized SQL statement verified by searching the allowable list to determine if the

normalized SQL statement exists in the allowable list as shown in example 4. When the

normalized SQL statement is found to exist in the allowable list, it allowed when the

variables of the normalized SQL statement are within the expected values. When the

variables of the normalized SQL statement are not within the expected values the SQL

statement will be blocked.

54

Example 4

SELECT * FROM customer WHERE customer_name = 'ram'

SELECT * FROM customer WHERE customer_name = 'a'

ALLOWABLE LIST

SELECT * FROM customer WHERE customer_name = …….

SELECT * FROM loanWHERE customer_name = …….

SELECT * FROM customer WHERE customer_id = …….

SELECT * FROM branch__nameWHERE account = …….

SELECT * FROM customer_name WHERE borrower = …….

Input SQL statement Rule found in allowable list

SELECT * FROM customer

WHERE customer_name = 'ram'

Variable1, Integer, value ram

SELECT * FROM customer WHERE

customer_name = 'a'

Variable1, Integer, character set[a-z A-Z] max length8

Normalize

Variable 1 is string type, value = ram

String Search

55

 Chapter 6

Analysis and Testing

During testing the model with different types of valid and invalid queries, the following results

came to be found.[1]

Testing valid query

Number of SQL query SQL statements

1 Select account_number from account

2 Select distinct branch_name from account

3 Select all branch_name from account

4 Select account_number from account where branch_name = ?

5 Select account_number from account where branch_name = ? and balance > ?

6 Select branch_name from account as a, depositor as d where a.account_number

= d.account_number

7 Select account_number from account as a, loan as l where a.branch_name = ?

8 Select loan_number from account as a, loan as l where a.branch_name =

l.branch_name and amount > ?

9 Select branch_name from loan as l, borrower as b where b.customer_name =

l.customer_name

10 Select customer_name ,borrower.loan_number,amount from borrower, loan

where borrower.loan_number = loan.loan_number

11 Select loan_number, branch_name,amount *100 from loan

12 select * from users where username = (SELECT username FROM users

WHERE username = 'gita')"

13 Select * from laon order by amount desc, loan_number asc

14 Select customer_name from depositor

15 (Select customer_name from depositor) UNION (Select customer_name from

borrower)

16 Select distinct customer_name from borrower .loan_number =loan.loan_number

and branch_name = ? order by customer_name

17 Select customer_name from borrower

56

18 Select avg(balance) from account where branch_name = ?

19 Select branch_name, avg(balance) from account group by branch_name

20 Select avg(balance) from account

21 Select count(*) from customer

22 Select loan_number from loan where amount is null

23 Select distinct t.branch_name from branch as t, branch as s where t.assets >

s.assets and s.branch_city = ?

Table 6.1 : List of valid query detected by model

List of invalid query which the model detected as valid = 0

Table 6.2 : List of invalid query which the model detected as valid

Testing invalid query

Number of SQL Injected SQL Statement

1 Select loan_number from loan where branch_name = " or 1 =1 and amount = 1400

2 Select loan_number from loan where branch_name = 'admin' --' and amount = 3456

3 Select loan_number from loan where branch_name = 'admin' /*' and amount > 67888

4 Select loan_number from loan where branch_name = 'brookyln' and amount > 6788 ;

select * from loan

5 Select loan_number from loan where branch_name = 'brookyln' and amount > 6785 ;

drop table loan

6 insert into emp values('app','kath',2);delete from loan--

7 Select loan_number from loan where branch_name = 'brookyln' and amuont > 6778 ;

select laon_file (0X633A5C626F6F742E696E69)

8 Select laon_number from loan where branch_name = ' or 'easy' = 'easy' and amount

>4567

Table 6.3 : List of invalid query detected by model

Number of SQL SQL Statement

1 Select * from emp where sal in (Select max(sal) from emp group by deptno)

2 Select * from emp where sal > any(select max(sal) from emp group by deptno)

3 Select empno, ename, emp.deptno from emp, dept where emp.deptno(+) =

dept.deptno

57

4 Select empno, ename, sal from emp where sal> all(select sal from emp where job =

‘manager’)

5 Select empno, ename, emp.deptno from emp, dept where emp.deptno =

dept.deptno(+)

6 Select loan_number from loan where branch_name = 'freek's'

Table 6.4: List of valid query which the model detected as invalid

Precision, Recall and F-Measure

In a collection of SQL statements S, the tested SQL are grouped into four groups.[26]

True Positive is the number of valid queries that are detected by model as a valid query.

False positive is the number of queries that are recognized as valid even though they are invalid.

True Negative is the number of invalid queries that are detected as invalid.

False Negative is the number of queries that are recognized as invalid even though they are

valid.[26]

True positive (tp) = 23

False positive (fp) = 0

True negative (tn) = 8

False negative (fn) = 6

Precision = = = 1

Recall = = = 0.79

F – measure = = = = 0.88

58

While talking about complexity, the normalization is in fact, very simple, we just need to replace

all quoted string with ‘a’ and all numbers also with ‘a’. So normalization process should be

negligible. As for searching the normalized SQL statements, the searching is O(log n) operation

as we will sort the allowable list before use using binary search algorithm. However, the

performance would be greatly affected if there were many SQL statements need to be authorized

by regular expressions.

Conclusion

Most web applications employ a middleware technology designed to request information from a

relational database in SQL parlance. SQL injection is a common technique attackers employ to

attack these web-based applications. These attacks reshape the SQL queries, thus altering the

behavior of the program for the benefit of the hacker. Here presented “variable normalization”

for SQL statements, which can extract the basic structure of a SQL statement. If SQL injection

happens, the structure of the SQL statement will be altered and hence normalized SQL statement

will also be altered and we will be able to detect it.

Limitation and Future Work
There are some types of SQL statements that cannot be handled by variable normalization

effectively. For example, consider a web page multi-line selection box allowing user to select the

deptno by using a multiline selection box

SELECT * FROM emp WHERE ename LIKE ‘%he%’ AND deptno

in (‘10’, ‘20’, ‘30’)

And the normalized SQL statement will be

SELECT * FROM emp WHERE ename LIKE ‘a’ AND deptno in (‘a’,‘a’, ‘a’)

As there is a limitation of this technique so need to improve our solution which can eliminate all

those problems.

References :

[1] A. K. Silberschtz, H.F and S. Sudarshan, “Database system concept”, McGraw-Hill,

4th edition

[2] C. Anley, “Advanced sql injection in sql server application. Technical report,

NGSSoftware Insight Security Research (NISR)”, 2002.

http://www.nextgenss.com/papers/advanced_sql_injection.pdf

[3] CNET.com “2009 Webware 100 winners”, 2009. http://www.webware.com/100/

[4] D. Gollmann, “Computer Security”, John Wiley & Sons, 2001.

[5] D. Litchfield, “Web application disassembly with odbc error messages. In windows

security 2001”, Las Vegas, USA, jul 2001. Black Hat.

http://www.blackhat.com/presentations/win-usa=01/Litchfield/bh-win-01-

litchfield.doc

[6] Distributed Technologies GmbH. 3- and n-tier architectures. Online Documentation,

1998. http://corba.ch/e/3tier.html

[7] G.Buehrer, B.W. Weide and P.A.G. Sivilotti, “Using Parse Tree Validation to Prevent

SQL Injection Attacks”, 5th international Workshop on Software Engineering and

Middleware, pages 106-113, 2005

[8] G.Wassermann and Z. Su., “An Analysis Framework for security in Web

Applications. In Proceedings of the FSE Workshop on Specification and

Verification of Component-Based Systems (SAVCBS)”, pages 70-78, 2004.

 [9] H. Khatri, “Sql server stored procedures 101. Web advisory”, jun 2002.

http://www.devarticles.com/printpage.php?articleId=142.

 [10] IBM, “IBM Internet Security SystemsX-Force 2008 Trend and Risk report Jan

2009”,http://www-935.ibm.com/services/us/iss/xforce/trendreports/xforce-2008-

annual-report.pdf

[11] I. Sommerville, “Software Engineering”, Addison – Welsey, 2001

[12] J. Wooder, General web architecture. Web advisory, jan 2002.

http://www.wooder.ca/archweb.html

 [13] M. Spenik and O. Sledge, “Microsoft sql server 2000 error messages”, Web

advisory, 2002. http://developer.com/db/article.php/10920_724711_1

 [14] National Information System Security(INFOSEC), www.dtic.mil/cgi-

bin/GetTRDOC?Location=U2&doc=GetTRDOC.pdf

 [15] R. Barnett, “The Web Hacking Incidents Database (WHID): Bi-Annual Report

2009 (January – June)” https://www.owasp.org/images/e/e5/

The_Web_Hacking_Incidents_Database_-_2009_Bi_Annual_Report.pdf

 [16] R. Chartier. “Application architecture : An n-tier approach – part1. Online

Documentation”, 2001. http://www.15seconds.com/issue/011023

 [17] R. Farrow, “Databases under fire”, Web advisory, may 2002.

http://www.dirscanner.com/pubs/sql.pdf

 [18] Scott, D.Sharp, R(2002): “Abstracting Application- level Security”, in processing of

the 11th International Conference on the World Wide Web(WWW) pages 396-407

 [19] T. Connolly, C. Begg, and A. Strachan, “Database Systems – A pratical Approach

to Design, Implementation, and Management”, Addison – Wesley.

 [20] The Open Web Application Security Project, “A guide to building secure web

applications, Version 1.1.1 online Documentation”, sep 2002. http://www.oawsp

 [21] U. B. Landsmann and D. Stromberg “Web Application Security: A Survey of

Prevention Techniques Against SQL Injection",

www.auto.tuwien.ac.at/~chris/teaching/papers/sqlinject.pdf, 2003

 [22] W. G. J. Halfond, J. Viegas, and A. Orso “A Classification of SQL Injection

Attacks and Countermeasures”, 2006

[23] Wikipedia, “Information Security” http://en.wikipedia.org/wiki/Information_security

[24] Wikipedia, “AAA protocol”, http://en.wikipedia.org/wiki//AAA_protocol

[25] Wikipedia, “Web Application”, http://en.wikipedia.org/wiki/Web_appication

[26] Wikipedia, “ Precision and recall”, http://en.wikipedia.org/wiki/Precision_and_recall

[27] Z.Su and G.Wassermann., “The Essence of Command Injection Attacks in Web

Applications. Annual Symposium on Principles of Programming Languages

(POPL)”, pages 372-382, 2006.

Bibliography:

[1] C. Anley ,”Advanced SQL Injection In SQL Server Applications”, 2002

[2] Huang, Y-W., Hang, C., Tsal, C-H., Lee, D and Yu F (May 2004): “Securing Web

Application Code by Static Analysis and runtime Protection”, in processing of the

12th international World Wide Web Conference (WWW), Pages 40-52

[3] M. Dhakal, “Prevention of Web Application Against SQL_Injection Attack”, 2008

[4] Network Working Group, “ Hypertext transfer protocol – http/1.0, request for

comments: 1945”, Online Documentation, may 1996.

http://www.w3.org/Protocols/rfc1945/rfc1945.

[5] S. Friedl, “SQL Injection Attacks by Example”, 2005

[6] Secerno.com, “SQL Injection Attack: A Security Threat”,

http://www.secerno.com/?pg=SQl-Injection#2

