

1

CHAPTER 1

INTRODUCTION

The scheduling theory concerns the optimum allocation of limited resources like money, tools,

energy, machines, and manpower over time to perform a set of activities (operation) in some

processes like computation and manufacturing.

The first scheduling algorithms were appeared in the mid fifties, while the area developed as its

own specific field during the year 1960’s with many industrial applications. The computer

scientists in the year 1970’s accelerated investigations of scheduling as a tool for improving the

performance of computer systemsOne of the simplest ways to understand the scheduling problem

is to find the answer for following question:

Given a number of jobs that have to be processed on a machine consisting of a certain number of

processor, find for each job a processor assignment for a certain time interval so that the

completion time of the last finishing job is minimal. This time is called makespan of the schedule

and it is one of many objective functions one could be interested in minimizing or maximizing.

Consider the processor of a computer as a resource tasks arrive over time needing to be

processed. In which order shall these tasks be accomplished in order to minimize the average

time a task is in the system?

Consider a hospital; every patient - from the doctor’s perspective a task - needs a bunch of

different medical treatments (like surgery, x-raying, etc.). Each treatment symbolizes a scarce

resource - in most cases due to limited staff. In which order shall a given number of patients with

individual needs for medical treatments be served in order to minimize the average waiting time?

Consider a certain machine within a manufacturing process as a resource, there is a set of jobs

that must be processed on this machine - like semi-finished goods waiting to be completed. Each

job has individual characteristics - it takes a certain time to be completed, should be finished

before a certain instant of time, etc. How the jobs shall be scheduled in order to meet certain

objectives?

 All these scenarios have in common that a decision must be made concerning the assignment of

patients, tasks, jobs to the available resources and concerning the sequence to process them on

2

each of those resources in order to “best” fulfill a certain predetermined objective; in other

words, optimal schedule must be determined.

Most of the difficulties of optimal solution processes in scheduling theory lie on the fact that an

examination of the solution space in combinatorial optimization is very much time consuming

even it is a finite set.

A definition is quoted by Carlier and Chretienne: “Scheduling is to forecast the processing of a

work by assigning resources to tasks and fixing their start times. The different components of

scheduling problem are the tasks, the potential constraints, the resources and the objective

function. The tasks must be programmed to optimize a specific objective function. Of course,

often it will be more realistic in practice to consider several criteria.”, Carlier and Chretienne

[1].

Another definition put forward by Pinedo: “Scheduling concerns the allocation of limited

resources to task over time. It is decision-making process that has a goal the optimization of one

or more objectives.”,Pinedo [2].

In the above definitions, the task (or operation) is the entity to schedule. In this dissertation work

we deal with jobs to schedule. When all jobs contain only a single operation we term mono

operation problem. Else we say multi-operation problem. The operation of a job may be

connected by precedence constraints. We deal with the resource or machine. We consider two

types of resources: renewable resource (which is available after use e.g. machine, file, processor,

personnel etc.) and non renewable resources (which disappear after use e.g. money, raw

materials etc.). There are two types of optimality criteria those relating to completion time and

those relating to costs. In the category of completion time related criteria we find for example

those which measure the completion time of whose schedule and those which measure the

tardiness of jobs in relation to their due date. In the category of cost related criteria we may cite

those which represent cost of machine use and those which represent cost allied to waiting time

of operations before and/or after they are processed.

Now days, the scheduling theory has become the most desirable concept in the computing

environment; the hardware configuration of computer such as processor management, memory

management, I/O Management and other resource management, and software development

structure such as modular programming, object oriented, aspect oriented concepts. Today’s most

3

popular computer processing such as on-line processing, data communication over the network

and Artificial Intelligence (AI) technology are also characterized by scheduling theory[3].

Research in scheduling theory has evolved over the past forty years and has been the subject of

much significant literature which uses techniques ranging from unrefined dispatching rules to

highly sophisticate parallel branch and bound algorithms and bottleneck based heuristics.

 An extensive literature search is done scheduling jobs on a single machine and some traditional

approaches to solve like the famous Moore-Hodgson’s Algorithm for minimizing the number of

tardy jobs is presented. We studied a heuristic algorithm and branch and bound algorithm to

solve this problem. The results obtained are compared. In this chapter introduction of machine

scheduling, scheduling environment and scheduling problem are briefly discussed. The notation

used and significance of the current problem dealt in this thesis is also given.

This thesis is dedicated to the problem of scheduling n jobs on a single machine. The scope is

limited to deterministic problems with objective of minimizing the weighted number of tardy

jobs. A job is finished on time as long as it is completed before its due date, otherwise it is said

to be tardy. Satisfying due dates is necessarily crucial, since tardiness is typically connected with

extra costs.

1.1 Machine Scheduling

The problem of scheduling arises in several areas like production management, computer

networks, operating systems and many fields having resource constraints. Scheduling concerns

the allocation of limited resources to tasks over time. The general scheduling problem can be

formulated in this way: We are given m machines, Mi i = 1,2,...,m and n number of jobs j, j =

1,2,…,n. Besides, there is an objective function, which gives the cost of scheduling. The problem

is to assign the jobs an allocation of one or more time intervals on one or more machines,

minimizing the total objective value. The terms ‘machine’ and ‘job’ are very general. For

example machine can be a microprocessor, a water pump, or even office personnel. Similarly,

jobs can be of any type. If the machine is a microprocessor, then job means a program.

1.2 Three field notation

Scheduling problems can be described by a three field notation α|β|γ where α describes the

machine environment, β describes job characteristics, and γ describes the objective functions to

4

be minimized, Graham et al [4]. A field may contain more than one entry but may also be empty.

Latter, it is described in Chapter 3. Our problem is a single machine scheduling to minimize

weighted number of tardy jobs with release time constant is denoted by in three field notations as

1||∑WjUj

1.3 Significance of the problem

The problem considered in this research deals with scheduling n jobs on a single machine to

minimize the weighted number of tardy jobs with release time constant ,each job to completed

have different processing time, due date and associated with weight. This is proved to NP-Hard

problem and is only solvable in pseudo polynomial time and has very much importance in

computer science.

1.4 Notations and Definitions

Let n be the number of jobs to be processed with jє{1,……..,n} denoting a typical job.

Alternatively, a job is denoted Ji and the set of jobs to be processed is given by

{J1,……....,Jn}.Let i є {1,…………,m} be a certain machine of a set of m machines available.

There are a terms related to scheduling problems which are used throughout this dissertation [5]

1.4.1 Machine

A machine is available to execute jobs and tasks. Different machine environments exist. Such as

single machine and parallel machines. Generally we use in this dissertation as single machine

scheduling.

1.4.2 Release Time/Date

The point in time when a job j is ready to be processed. It is denoted by rj. It is also known as

arrival or ready time/date.

1.4.3 Processing Time

It is defined as the length of time to process a job or task. It is denoted by pj

1.4.4 Completion Time

The time at which a job is finished. It is denoted by Cj

5

1.4.5 Due Date

The point in time at which job should be completed. It is denoted by dj.

1.4.6 Waiting Time

Length of time between the ready time of a job and beginning of processing of a job. It is

denoted by W.

1.4.7 Weight (Priority)

A weight can be added to the jobs to express relative urgency or priority between them. It is

denoted by wj.

1.4.8 Job

A job can be made up of any number of tasks. It is easy to think of a job as making a product and

each task as an activity that contributes to making that product, such as a painting task,

assembling task and so on.

1.4.9 Lateness

Difference between completion time and due date i.e. Lj=Cj-dj where Cj is the completion time

job j and dj is the due date of job j.

1.4.10 Tardiness

The tardiness of job j Tj is defined as Tj=max (0,Cj-dj) where Cj is the completion time of job j

and dj is the due date of job j.

1.4.11 Flow time

Amount of time job j spends in the system .Fj=Cj-rj, where Cj is the completion time of job j and

rj is the release date of job j.

1.4.12 Earliness

Difference between the due date and the completion time i.e Ej=dj-Cj, where dj is the due date of

job j and Cj is the completion time of job j.

1.4.13 Preemption

The preemption (or job splitting) is allow during the processing of a job, if the processing of the

job can be interrupted at any time (preempt) and resumed at a later time, even on a different

machine. The amount of processing already done on the preempted job is not lost. In this case we

consider only the non preemption.

1.4.14 Slack Time

Time until a jobs due date minus the processing time of a jobs.

6

1.4.15 Precedence

Some jobs must be done before the other jobs. In addition, each job also has a specific order of

performing the tasks of that job. This order is referred to as a precedence constraint.

1.5 Organization of the thesis

Thesis is organized as follows:

Chapter 2 describes algorithm and computational complexity. The theoretical basis of computer

science has been formulated. Computational resources and complexity classes are described.

Chapter 3 describes the scheduling problems as encountered in the literature. It presents the

representation of schedule, Graham’s law of scheduling problem, types of scheduling problems

and some application areas of scheduling problems in operating system is also provided.

Chapter 4 describes the different solution strategies for scheduling problems.

Chapter 5 describes the single machine scheduling and its importance in scheduling and also

describe the list of solution mentioned in past.

Chapter 6 describes the problem and some solution approach related to problem.

Chapter 7 describes the methodologies used in our dissertation and describes the comparison of

two enumerative algorithm dynamic programming and branch and bound algorithm input is

given by random number generator.

Chapter 8 describes the conclusion and further research.

7

CHAPTER 2

COMPUTATIONAL COMPLEXITY

2.1 Complexity Theory

Complexity theory is a part of theory of computation dealing with the resources required during

computation to solve a given problem. The most common resources are time (how many steps

does it takes to solve a problem) and space (how much memory does it take to solve a

problem).Other resources can also be considered, such as how many parallel processors are

needed to solve a problem in parallel. Complexity theory differs from computability theory,

which deals with whether a problem can be solved at all, regardless of the resources required [6].

One of the major goals of complexity theory and algorithm analysis is to measure the

performance of algorithms with respect to their computation time. The time complexity of an

algorithm is the number of steps that it takes to solve an instance of the problem as a function of

input size using the most efficient algorithm. The running time of an algorithm is said to be

O(h(n)) if for a positive number c>0 there exists an implementation that terminates after at most

c.h(n) for all n≥𝑛0.The time complexity of an algorithm is the smallest function such that the

algorithm has running time O(h(n)).The time complexity T(k) of a problem ∏ is the minimal

time complexity of all algorithms so that for some c>0 and 𝑘0є𝑧+ it holds T(k)≤c.h(k) for all

k≥𝑘0.Remark that, the existence of this minimality in general is not guarantee and it is in fact

one of the focal points of research in complexity theory. Obtaining the lower bounds for the

complexity of a problem is harder; however upper bounds are usually obtained.

A polynomial algorithm is the one whose time complexity function T(k) є O(h(n)),where h is

some polynomial and n is the input length of an instance I.A computational problem is called

polynomially solvable if there is a polynomial time algorithm solving it.

If time complexity function cannot be bounded by polynomial function, it is called exponential

time algorithm.

The complexity theory provides a framework in which computation problems are studied so that

they can be classified as “easy” or “hard”. Here we focus the main points of such theory.

8

A polynomial time (polynomial) algorithm is one whose time complexity function is O (p (k)),

where p is some polynomial and k is the input length of an instance. Each algorithm whose time

complexity function cannot be bounded in that way is called exponential time algorithm.

Generally the problems with polynomial time algorithm are called easy problems with

exponential time complexity are called hard problems [7].

2.2 Algorithms and Complexity

If computer problem solving can be summed up in one word, it is demanding! Problem solving is

an intricate process requiring much thought, careful planning, logical precision, persistence and

attention to detail. At the same time, it can be challenging, exciting and satisfying experience

with considerable room for personal creativity and expression. If computer problem solving is

approached in this sprit, then the chances of success are greatly amplified.

The computer solution to a problem is a set of explicit and unambiguous instructions

expressed in a programming language. This set of instruction is called a program. Program may

also be thought of as an algorithm expressed in programming language. An

algorithm therefore corresponds to a solution to a problem.

2.2.1 Algorithm

An algorithm is a procedure for solving a problem (i.e. giving an answer).we will say that an

algorithm solve the search problem, if it finds a solution for any instances I. In order to keep the

representation of algorithms easily understandable, we follow a structural programming such as

case statement, or loop of various kinds. Functions or procedures may also be called an

algorithm. Parameter may be used to import data or to export data from the algorithm. Besides

these, we also use mathematical notations such as set theoretic notations. In general, an

algorithm consists of two parts: a head and a method. The head starts with the keywords

algorithm followed by identifying number and optimality, a descriptor (a name or a description

of the purpose of algorithm) references to the authors of the algorithm. Input and output

parameters are omitted in case where they are clear from the context. In other case, they are

specified as a parameter list. In even more complex case, two fields input (instances) and output

9

(Answer) are used to describe the main idea of the algorithm. The method part is block of the

instructions.

2.2.2 Computational Resources

Complexity theory analyzes the difficulty of computational problems in terms of many different

computational resources. The same problem can be explained in terms of the necessary amounts

of many different computational resources, including time, space, randomness, and other less-

intuitive measures. A complexity class is the set of all of the computational resource.

The most well-studied computational resources are time and space. The time complexity of a

problem is the number of steps that an algorithm takes to solve an instance of the problem. The

space complexity of a problem measures the amount of space, or memory required by the

algorithm. A good algorithm always takes less time and less space. A better algorithm in bad

machine may appear insufficient compared to bad algorithm in good machine. To minimize

effect of these considerations, computational complexity deals with instances whose input size is

very large, so that machine size can be neglected. To describe behavior of algorithm for large

input the concept of asymptotic order is useful.

2.2.3 Time and Space Complexities of Algorithms

Time requirement is counted in units of steps. Space requirement is counted in units of memory

cells. For any algorithm, one may have not specified time or space complexity or both for

example, if an algorithm has time complexity of O (f (n), then it means that the number of steps

required by the algorithm is bounded above by f (n). Space complexity can be stated similarly.

Usually in computational complexity theory, one considers time complexity. In the following

discussions; the term ‘complexity’ is used to denote time complexity unless explicitly

mentioned.

2.3 Decision /Recognition Problem

Optimization problems can rearranged in such a way that the solution is a “yes” or “no” answer

(e.g. “is there a schedule for a given set of jobs that generates a number of tardy jobs less than a

predetermined number say |L|?”).

10

If the recognition version of the problem is answered with “yes”, the underlying instance is

called a certificate (for the above example the certificate would be the schedule that achieves a

number of tardy jobs less than |L|).

In other words, much of complexity theory deals with decision problems. A decision problem is

a problem where answer is always YES/NO. For example a problem PATH related to shortest

path problem is, “Given a path G= (V, E), two vertices u, vV and non-negative integer k, does

a path in G between u and v whose length is at most k?”. If I = (G, u, v, k) is an instance of this

shortest path problem, then PATH (I) = “yes” if a shortest path from u to v has length at most k,

and PATH (I) = “no” otherwise, [7].

2.4 Optimization Problems

We encounter many problems where there are many feasible solutions and our aim is to find the

feasible solution with best value. This kind of problem is called optimization problem. For

example given the graph G, and the vertices u and v find the shortest path from u to v with

minimum number of edges. The NP completeness does not deal with optimization problems;

however we can translate the optimization problem to the decision problem. Discrete

optimization problems are also known as combinatorial optimization problems. Large classes of

combinatorial optimization problems are important tools to solve problems in computer science

and interpretation technology.

2.5 Abstract Problems and Encoding

Abstract problem A is the binary relation on set I of problem instances, and the set S of problem

solutions. For example minimum spanning tree of a graph G can be viewed as a pair of the given

graph G and MST graph T. Many abstract problems are not decision problems, but rather

optimization problems in which some value must be minimized or maximized.

Encoding of a set S is a function e from S to the set of binary strings. With the help of encoding,

we define the concrete problem as a problem with problem instances as the set of binary strings

i.e. if we encode the abstract problem, then the resulting encoded problem is concrete problem.

11

So, encoding as a concrete problem assures that every encoded problem can be regarded as a

language i.e. subset of {0, 1}*.

2.6 Reducibility

A useful tool in studying the relationship between members of a class is the translation or

mapping of one to another. If we can translate one set into another, we can often deduce

properties of one by the properties that we know the other processes. A problem A1 can be

reduced into another problem A2 if any instances of A1 can be rephrased as an instances of A2,the

solution to which provides a solution to the instances of A1 [8].For example, the problem of

solving linear equation in an indeterminate x reduces to the problem of solving quadratic

equations. Given an instance ax +b=0, we transform it to 0x2 +ax +b=0, whose solution provides

to the solution to ax +b=0.Thus if problem A1 reduces to another problem A2, then A1 is , in

sense, no harder to solve than A2. This notion can be represented as A1 pA2. The fig 3.1 below

shows this strategy.

A1 A2 Yes

Instances In Instances

 No

 Figure 2.1: Problem reduction[8]

2.7 Complexity Classes

2.7.1The Class P

The class P consist of all those decision problems that can be solved on a deterministic sequential

machine in an amount of time that is polynomial in size of input i.e. the time complexity function

is polynomial [7].In other word, a decision problem is in the class P if there exists an algorithm

that solves any instances of size n in O (nk) time, for some integer k. So P is just the set of

tractable decision problem: the decision problem for which we have polynomial time algorithms.

Construct

Decide

12

Example 2.1 the problem of sorting n numbers can be done in O (n2) time using the quick sort

algorithm in worst case. Thus all sorting problems are in P.

2.7.2The Class NP

The complexity class NP is the set of decision problem that can be solved by non-deterministic

polynomial time. Equivalently we can say that class NP consists of all those decision problems

whose positive solution can be verified in polynomial time. The important of this class of

decision problems is that it contains many interesting searching and optimization problems

where we want to know if there exists a certain solution for a certain problem or whether there

exists a better solution.

Example 2.2 The Travelling salesman problem where we want to know if there is a shorter route

that goes through all the nodes in a certain formula in propositional logic with propositional

variables is satisfiable or not.

2.7.3 PNP

A P problem is always also NP. If a problem is known to be NP and a solution the problem is

some how known, then demonstrating the correctness of the solution can always be reduced to a

single P verification. If P and NP are equivalent, then the solution of NP problems requires an

exhaustive search.

2.7.4 Big Question: Is P=NP?

The question of whether P is the same set as NP is the most open question in theoretical

computer science and modern mathematics. The question of the equality of these two classes was

originally posed in a letter from Kurt Gödel to J. von Neumann. There is even a $ 1,000,000

prize for solving it [6].

If any problem A є P, then A є NP, since there is a polynomial time algorithm to decide A, the

algorithm can be easily converted to a two argument verification algorithm that simply ignores

any certificate and accepts exactly those input it determines to be in A. Thus, we can say PNP.

The definition of NP-completeness leads to the sense that the NP-complete problems are ones

most likely not to be in P. The reason is that if we could find a way to solve an NP-complete

problem quickly, then we could use that algorithm to solve all NP problems quickly. Most

13

theoretical computer scientist believes that P≠NP, which leads to the relationships among P, NP,

NP-complete exist in following figure. But if someone finds a polynomial time algorithm for

NP-complete problem, it will prove P=NP. Nevertheless, no polynomial time algorithm for any

NP complete has yet been discovered.

Figure 2.2: Relationship between P, NP and NP-complete

If P=NP,P would encompass the NP and NP-complete areas.

2.7.5 NP-complete problems

NP-complete problems are the hardest problems in NP. It is also defined as a decision problem D

is NP-complete if it is in NP and if every other problem in NP is reducible to it [8].”Reducible”

here means that for every NP problem L, there is a polynomial time algorithm which transforms

instances of L into instances of D, such that two instances have the same truth values. As a

consequence, if we had a polynomial time algorithm for D, we could solve all NP problems in

polynomial time.

Example 2.3 Boolean satisfiability problem

The Boolean satisfiability problem (SAT) is a decision problem considered in complexity theory.

An instance of the problem is defined by Boolean expression written using only AND, OR,

NOT, variables and parentheses. The question is: given the expression, is there some assignment

of TRUE and FALSE values to variable that will make the entire expression true? The SAT is

NP-complete. In fact it was first known NP-complete problem [8].

 NP

 P

NP-

complete

14

2.7.6 NP-hard problem

A problem is NP-hard (non-deterministic polynomial time hard) if solving it in polynomial time

would make it possible to solve all problems in class NP in polynomial time. That is a problem is

NP-hard if an algorithm for solving it can be translated into one for solving any other NP

problem.NP hard therefore means “at least as any NP problem”.

2.7.7 Co-NP class

Co-NP is the set containing the complement problems (i.e. problems with the YES/NO answers

reserved) of NP problems. It is believed that the two classes are not equal; however it has not yet

been proven. It has been shown that if these two complexity classes are not equal, then it follows

that no NP-complete problems can be in Co-NP and no Co-NP complete problems can be in NP.

2.7.8 Co-NP-complete problems

In complexity theory, the complexity class Co-NP-Complete is the set of problems that are

hardest problems in Co-NP, in the sense that they are the ones most likely not to be in P. If we

can find a way to solve a Co-NP-Complete problem quickly, then we can use that algorithm to

solve all Co-NP problems quickly.

A more formal definition: A decision problem A is Co-NP-Complete if it is in Co-NP and if

every problem in Co-NP is many-one reducible to it. This means that for every Co-NP problems

L, there exists a polynomial time algorithm which can transform any instances of L into an

instance of A with the same truth values. As a consequence, if we had a polynomial time

algorithm for A, we could solve all Co-NP problems in polynomial time.

2.7.9 Famous Complexity Classes

The following are the some of the classes of problems considered in complexity theory, along

with informal definitions.

P Solvable in polynomial time

NP YES answers checkable in polynomial time

15

Co-NP No answers checkable in polynomial time

NP-Complete The hardest problems in NP

Co-NP-Complete The hardest problem in Co-NP

NP-hard Either NP-Complete or harder

Table 2.1 Famous Complexity Classes

16

CHAPTER 3

 SCHEDULING THEORY

In more general we say that scheduling is an allocation of one or more time intervals to each job

on one or more machines. A scheduling is called optimal if it minimized a given objective

function mean to establish an assignment of resources to consumers for a certain period of time

in a way that a certain objective is optimized. And the policy used to determine this assignment

is called scheduling algorithm.

Scheduling theory is excessively used in computer manufacturing to schedule the jobs in CPU,

memory, printing buffer, spooling and other devices for processing jobs. The multiprogramming

characteristics of computer due to the good scheduling jobs in the CPU because of the CPU can

only process one job at a time. In this case the objective function is to maximize the CPU

utilization [9].

3.1 Representation of Scheduling Problem

Let there be m number of machines, Mi, i=1,2,..,m which have to process n jobs, Ji, i=1,2,…,n.

The problem is to assign each job one or more time intervals on one or more machines. Such an

assignment is called a schedule in general term. A schedule is often represented by Gantt chart.

Which may be machine oriented or job oriented. Below is an example of schedule for a single

machine. The schedule of jobs can be represented as a sequence of jobs. For example, the

schedule shown in Figure: 3.1 can be written as the sequence s= (J1, J4, J2, J3). The machine may

remain idle for some time interval. We specify idle intervals by writing ‘idle’ for that time

interval.

M1

 Time

Figure 3.1: Gantt chart for schedule of four jobs in single machine

J1 J4 J2 J3

17

3.2 Classes of Schedules

Certain classes of schedules are introduced [10].

 A schedule is called non-delay if no machine is kept idle when there exists a job

available for processing.

 A schedule is called active, if no operation can be completed earlier by changing the job

orders without delaying any other operation.

 A schedule is called semi-active, if no operation can be completed earlier without

changing the sequence.

Therefore the following properties hold:

Non-delay schedule ⇒ active schedule ⇒ Semi-active schedule

 (⇍) (⇍)

The following figure illustrates the connection between the above introduced classes of

schedules.

Figure 3.2 Classes of schedule[10]

3.3 Types of Scheduling Problem

Scheduling problems can be classified in terms of number of machines, flow discipline, job

availability (in case of batching), and so on.

Semi-active

Active

Non-delay

18

 3.3.1 Single Machine

Single machine models are important for various reasons. The single machine environment is

very simple and a special case of all other environments. Single machine models often have

properties that neither machine in parallel nor machine in series has. The results can be

obtained for single machine models not only provide insights into the single machine

environments, they also provide a basis for heuristics that are applicable to more complicated

machine environments are often decomposed into sub problems that deal with single machines.

For example a complicated machine environment with a single bottleneck may give rise to a

single machine model [2].

3.3.2 Parallel Machine

Multiple machines are available to process jobs. The machines can be identical, of different

speeds, or specialized to only processing specific jobs. Each job has a single task.

3.3.3 General Shop Scheduling Problem

In this section we will discuss general shop scheduling problems like open shop problem, job

shop problem, mixed shop problem and super shop problems. Which are widely used for

modeling production processes? All of these problems are special cases of general shop

problems [5].

3.3.4 Flow Shop Problems

The most well known shop scheduling problem is the flow shop. Here it is assumed that each job

Jj consists of M operations O1j, O2j, ……….., Omj with processing times Pij to be performed in

this order, operation Oij being processed on machine Mj. In other words, each job Jj is first

processed on machine M1, then on machine M2,and so on, until it is processed on machine Mm.

In what follows, the order in which a job has to pass the machine is called the processing route.

Thus, in the flow shop all jobs are given the same processing route (M1, M2,…………,Mm). The

problem is to find a job order for each machine.

19

3.3.5 Job Shop Problem

 In the general job shop model, there are a set of machines indexed by k, jobs indexed by i, and

tasks indexed by j. Each task on a machine is indicated by a set of three indices i, the job that the

task belongs to, j, the number of the task itself, and k, the machine that this particular task needs

to use. The flow of the tasks in a job does not have to be unidirectional. Each job may also use a

machine more than once.

3.3.6 Open Shop Problem

An open shop problem is a special case of the general shop in which each job i consists of m

operations Oij (j=1, 2,……,m) where Oij must be processed on machine Mj and there are no

precedence relation between the operation.

A schedule is said to be non-preemptive if each operation is executed continuously from start to

completion. A schedule is preemptive if the execution of any operation may arbitrarily often be

interrupted and resumed at a time, the periods in which the operation of a given jobs are

performed may be interleaved in time.

3.3.7 Mixed Shop Problem

These three basic models can be generalized by combining some or all of them. For example,

combining the flow shop and open shop, we obtain the model which is known as mixed shop.

More precisely, for the mixed shop, it is assumed that the set J of jobs is partitioned into two

non-empty subsets J0 and J1. The jobs of the set J0 have non fixed orders of their operations (as in

an open shop), while all jobs of the set J1 have the processing route (M1,M2,………,Mm) (as in a

flow shop).

3.3.8 Super Shop Problem

One of the most general shop scheduling models, which covers all the previous ones, is called

the super shop. This is obtained as a result of combining the open shop and the job shop.

According to that model, set J is partitioned into r+1 subsets J0, J1, J2, ………., Jr. The jobs of set

of J0 have non fixed orders of processing their operations (as in an open shop), while the jobs of

a set Jq, 1≤ q ≤r, have the processing route Lq; some machines of set M may not occur in a

20

sequence Lq, while, on the other hand, some of them may occur more than once (as in a job

shop).

3.3.9 Static and Dynamic

If all the data of the problem are known at the same time we speak of a static problem. For some

problems a schedule may have been calculated and being processed when new operations arrive

in the system. Then the foregoing schedule has to re-establish in real-time. These problems are

said to be dynamic. In other words static and dynamic are defined as follows: Depending on the

release times, a model (problem) is referred to as a static model if the release times of all jobs are

zero (rj=0 for every j). Problems with varying nonzero release times are called dynamic.

3.3.10 Stochastic and Deterministic

A models that assume some of data to be randomly fluctuating (e.g. defects, break-downs, set-

ups, etc as stochastic date [16].

A model is deterministic if all data defining a problem is available and known with certainty.

3.4 Classification (The Three Field α|β|γ Notation)

There are varieties of classes of scheduling problems, which differ in their complexity. Also the

algorithms developed are quite different for different class of scheduling problems. Classes of

scheduling problems are specified in terms of a three field classification α|β|γ, where

 α specifies the machine environment.

 β describing the job and resource characteristics.

 γ denoting the optimality criteria.

This classification scheme was introduced by Graham et al in 1979 [5]

3.4.1 Machine Environment (α):

The machine environment is characterized by a string α=α1•α2 where,

 α1 describing the type of machine used or their arrangement , respectively

 α2 describing the number of machines or the number of processing steps, respectively.

21

3.4.1.1 Machine Types and Arrangements

The possible values of α1 are Φ,P,Q,R,PMPM,QMPM,G,X,O,J,F. If α1є

(Φ,P,Q,R,PMPM,QMPM),where Φ denotes the empty symbols(thus α=α2 if α1= Φ),then each job

Jj consists of a single operation.

If α1= Φ, then each job must be processed on a specified (dedicated) machine, single machine.

If α1є (Φ,P, Q, R),then we have parallel machines.

If α1=P, then we have identical parallel machine.

If α1=Q, then there are uniform parallel machine.

If α1=R, then there are unrelated parallel machine.

If α1=PMPM, then we have multi-purpose machine and identical speed.

If α1=QMQM, then we have multi-purpose machine with uniform speed.

If α1є (G, X, O, F, J) we have the multi-operational model.

If α1=G, then it represent a general shop model.

If α1=J, then it represent the job shop model, there are m dedicated machine available. Each job

has its identical flow pattern.

If α1=O, then it represent the open shop model. The machine orders and the job orders can be

chosen arbitrarily.

If α1=F, then it represent the flow shop model. All jobs have identical flow patterns and each job

has to seize each machine exactly once.

If α1=X, then it represent mixed shop model.

In my dissertation we consider only single machine model.

22

3.4.1.2 Machine Number

Parameter α2є{Φ,M} describes either the number of machines, in case of parallel processors and

one operation, or the number of processing steps , in case of dedicated processors with more than

one operation.

If the number of machines is arbitrary we set α2=Φ.

3.4.2 Job Characteristics (β)

The job characteristics are specified by a set β containing at most six elements β1, β2, β3, β4, β5,

β6.

 β1 indicates whether preemption is allowed. If preemption is allowed the processing of a

job on a machine can be interrupted and continued later on, and we set β1=pmtn, otherwise

β1 does not appear in β.

 β2 describes precedence relation between jobs which may be represented by an acyclic

directed graph and we set β2=prec. Sometimes we will consider the scheduling problems

with restricted precedence given by chains, an intree, an outtree, a tree or a series parallel

directed graph. In these cases we set β2 equals to chains, intree, outtree, and sp-graph.

 If β3=rj then release dates may be specified for each job. If rj=0 for all jobs then β3 does

not appear in β.

 β4 specifies restriction on the processing times or on the number of operations. If β4

equals to Pij=1 then each job (operation) has unit processing requirements.

 If β5=dj then a deadline dj is specified for each job Jj ,i.e job Jj must finish not later than

time di

 β6=bath indicates a batching problem. A batch is a set of jobs, which must be processed

successively on a machine and batching problem is to group the jobs into batches and to

schedule these batches.

3.4.3 Optimality Criteria (γ)

The scheduling problem is to find a feasible schedule which minimizes the total cost

function. We denote the finish time of job Jj by Cj and associated cost by fj(Cj).If the function

fj are not specified ,we set γ=fmax or γ=∑fj. The most common are the makespan

23

max{Cj|j=1,……..,n}, total flow time∑ 𝐶𝑛
𝑗=1 j and weighted (total) flow time ∑ 𝑊𝑛

𝑗=1 jCj.In

these case we write γ=Cmax,γ=∑Cj,and γ=∑WjCj respectively. Following are the main

objectives function in scheduling for each job Jj,let release time be rj, due date be dj and

weight be wj.

Completion time Cj

Flow time Fj=Cj-rj

Lateness Lj=Cj-dj

Tardiness Tj=max{0,Cj-dj}

Earliness Ej=max{0,dj-Cj}

Unit penalty 𝑈𝑗 = {
0, 𝑖𝑓 𝐶𝑗 ≤ 𝑑𝑗 ,

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Other objective functions are

Total completion time ∑Cj

Total tardiness ∑Tj

Total weighted completion time ∑WjCj

Total weighted tardiness ∑WjTj

Number of tardy jobs ∑Uj

Weighted number of tardy jobs ∑WjUj

In my dissertation we consider the ∑WjUj objective function and my aim is to minimize the

weighted number of tardy jobs.

24

In γ field, the formula or a short symbol for denoting the objective function is simply written.

For example we can write ∑WjUj to indicate the weighted number of tardy jobs has to be

minimized. Here are some example of three field notation 1|rj|∑Uj denote the single machine

schedule where release date is given and the objective to minimize the number of tardy jobs.

But in my dissertation we consider the problem in three field notation as 1||∑WjUj, a single

machine problem with no release time and objective function is to minimize the weighted

number of tardy jobs.

Another example is that J3|Pij=1|Cmaxis the problem of minimizing maximum completion

time in three machine job shop with unit processing times.

3.5 Simple Reduction between Scheduling Problems

If in description of scheduling problem we replace F by J, we get a simple reduction because the

flow shop is a special case of job shop. Similarly we get a simple reduction, if we replace tree by

prec. These simple reduction are shown by the reduction graph Gi (i=1,…..,7) in fig 3.3

R

U

MU

P
MP

0

G

X

O J

F

O

K

2 3 4

25

 G1 G2

 G5 G6 G7 G8

 G3

 G4

 Fig 3.3 Reduction between scheduling problem [5]

There are similar reductions between objective functions. These relation are shown in figure

3.3∑fj reduces to ∑Wjfj by setting Wj=1 for all j,Lmax,∑Cj and ∑WjCj reduces to Lmax, ∑Tj and

∑WjTj respectively by setting dj=0,for all j.

Figure 3.4 Relation between objective functions [5]

O Pmtn

Prec

Sp-graph

Tree

Outtree Intree

 0

rj

0

dj

0

0

Pij=1

batch

0

∑WjCj

∑Cj

∑WjTj

∑Tj

Lmax

Cmax

∑WjUj

∑Uj

26

3.6 Some Application Areas of Scheduling Problem

Scheduling plays an important role in most manufacturing and production system as well as in

most information processing environments. Scheduling problems are encountered at all levels

and in all sectors of activity. Scheduling can be difficult from a technical as well as from

implementation point of view. Generally we can distinguish between those of manufacturing

production and those in computer in computer systems or project management

3.6.1 Problems Related To Production

We encounter scheduling problems in Flexible Manufacturing System (FMS).Numerous

definitions of an FMS are found in the literature. Lu and MacCarthy [12], states: “An FMS

comprises three principal elements: computer controlled machine tools, an automated transport

system and a computer control system”. Besides, this very broad problem encompasses other

problem related to Robotic Cell Scheduling and Scheduling of Automated Guided Vehicles

(AGV). Electroplating and chemical shops have their own peculiarities in scheduling problems.

The shops are characterized by the presence of one or more traveling cranes sharing the same

physical area and which are ordered to transport the products for treatment in tanks. In general,

the soaking time in a tank is bounded by a minimum and maximum , transport time is not

negligible and the operation must be carried out without waiting time. These problems are very

common in industry and the “simple” cases (mono-robot, single batch tanks, etc) have been

solved by now.

Scheduling problems in car production line, so called Car Sequencing Problems, are encountered

in assembly shops where certain equipment must be assembled in the different models of

vehicles. These problems have constraints and peculiarities of their own. Knowing a sequence of

vehicles undergoing treatment, the problem is to determine the type of next vehicle programmed.

We have to take account of a group of constraints connected principally to assembly options for

these vehicles and to the limited movement of the tools along the production line.

3.6.2 Scheduling Problem in Operating System

Scheduling is a fundamental operating–system function. Almost all computer resources are

scheduled before use. The CPU is, of course, one of the primary computer resources. Thus, its

27

scheduling is central to operating–system design. Whenever the CPU becomes idle, the operating

system must select one of the processes in the ready queue to be executed. The selection process

is carried out by the short–term scheduler (or CPU scheduler). The scheduler selects from among

the processes in memory that are ready to execute, and allocates the CPU to one of them.

For detail we refer [13].

Scheduling problems posed by Operating Systems (OS) are online versions of various scheduling

problems. In an online version, one does not know processing time and other relevant

information of a job until it actually arrives in the system. In an OS, a machine is a processor,

and jobs are processes (a process is a program ready for execution). The machine environment

has a vast variety. There can be multiple processors, preemption may or may not be allowed, and

in almost all situations, the scheduling problems are resource constrained. OS designers take

engineering approach due to this variation. The scheduling algorithms are selected on the basis

of simulation experiments. Objective function for OS oriented scheduling is different than those

for manufacturing companies. A manufacturing company aims to reduce production cost, where

as an OS aims to provide a fair service to all user processes. This leads objective functions like:

1. Processor utilization: This is the average function of time during which the processor is

busy.

2. Throughput: This is the number of processes executed per unit time. Throughput is

computed by dividing number of processes by schedule length.

 3. Average turnaround time: The time that elapses from the moment a program released

until it is completed by the system.

 4. Average waiting time: The time that a process spends waiting for the processor or some

other resources.

 5. Average response time: The time taken by a process to response after it is released.

Scheduling problems in computer system is mostly based on the analysis of queuing theory.

The basic queuing model is given below.

28

 Preemption (if allowed)

Job arrival Job departure

 Figure 3.5 The basic queuing model [13]

Jobs arrive and wait in a queue. The queue is the main memory for an OS. Every scheduling

algorithms of an OS follows this model. Some basic algorithms used in OS for uni-processor

computers are given below.

1. First come First Serve (FCFS): At any instant when machine is idle, select available job

having least release date.

2. Shortest processing Time(SPT): When the machine is idle select the available job having

least processing time, This rule is also called Shortest Job First(SJF).

3. Shortest Remaining Time Next (SRTN): Select an unfinished job which is having the

smallest remaining processing time.

4. Rounds Robin: Available jobs are stored in a queue according to release dates, unit

processing time is given to each job in a queue in the sorted order. The newly arrived job

is appended to the queue; Completed jobs are removed from the queue.

3.6.3 Other Problems

We encounter scheduling problems in computer systems. These problems are studied in different

forms by considering mono or multi processor systems, with the constraints of synchronization

of operations and resource sharing. In these problems, certain operations are periodic others are

not; some are subject to dates, others to deadlines. The objective is to find a feasible solution i.e.

a solution which satisfied the constraints. In fact, in spite of appearances they are very close to

those encountered in manufacturing systems, Blazewicz et al [14].

 Queue Processor

29

Timetable scheduling problems concern all educational establishments or universities, since they

involve timetabling of courses assuring the availability of teachers, students and classrooms.

These problems are just as much the object of studies.

Project scheduling problems comprise a vast literature. We are interested more generally in

problems of scheduling operations which use several resources simultaneously (money,

personnel, equipment, raw materials etc.), these resources being available in known amounts. In

other words, we deal with the multi-resource scheduling problem with cumulative and non-

renewable resources.

3.7 Just-In-Time and Real-Time System

Just-In-Time (JIT) is the name used to describe as manufacturing system where the parts which

are needed to compute the finished products are produced or arrive at the assembly site as they

are needed. Just-In-Time is a Japanese manufacturing management method developed in 1970s.It

was first adopted in Toyota manufacturing plants by Taiichi Ohno. The main concern at that time

was to meet consumer demands.

The main concept of penalizing jobs both for being tardy and for being early has proven one of

the most important and fertile research topic in operations research. Sequencing different

products with even distribution under Just-In-Time production for minimization of earliness and

tardiness penalties is a challenging non-linear integer programming problem. The purpose of

Just-In-Time is to reduce cost by eliminating waste. In sales the Just-In-Time concept is realized

by producing only solvable products or part in salable quantities. The main goal of Just-In-Time

approach is to sequence small batches of variety of parts types in order to satisfy customers

demand for them without holding excessive inventories or incurring large shortage. A sequence

with this goal is termed as a balanced schedule, Miltenburg and Sinnamon [16]. In some special

cases, this sequence will be optimal for level schedule problem for mixed model assembly line,

Monden [16]. The level schedule problem is concerned with keeping as constant as possible the

rate of usage of component parts going into part type being assembled.

A special type of just in time scheduling is due date scheduling. Basically; there are two versions

of this problem. In the first version, a common due date is given for all jobs; one has to find

schedule minimizing lateness and tardiness penalties with respect to this due date. The second

version is reverse of the first one, here, one has to determine a common due date such that the

30

penalties are minimized. The symbols‘d’ and ‘dopt’ are added in the β field of the three field

notation to indicate first and second versions due date scheduling, respectively. Unlike other

scheduling problems, usually due date scheduling considers positional weights. This means,

weight wj does not correspond to job Jj, but to any job that occurs in position j of the

schedule.[17], [11].

Real-time computing system plays a vital role in our society-controlling laboratory experiments,

automobile engines, nuclear power plants, flight systems, and manufacturing processes and the

spectrum of their complexity varies widely from the very simple to very complex. Real-time

scheduling problems are principally online versions of just-in-time scheduling problems, but

popularly, the nomenclature ‘real-time’ refers to computer related problems. These types of

scheduling problems occur in real –time systems. Generally a real –time system is an operating

system embedded in some electronic devices. In a real-time system, the correct functioning of

the system depends on the time when jobs are completed. In a soft real-time system, early/tardy

jobs degrade the quality of the output, while in a hard real-time system; such jobs make the

output invalid. The book of Tanenbaum [13] provides an introduction for real-time scheduling

problems in operating systems.

31

CHAPTER 4

ANALYZING AND SOLVING SCHEDULING PROBLEMS

Since numerous techniques for analyzing and solving scheduling problems under different

constraints are known, a complete overview and description is cumbersome. The main aim of

this section is to introduce a general scheme of how much to approach scheduling problems, to

roughly classify the most common solving techniques and to give some examples of certain

frequently used methods.

Efficient optimal methods

 Heuristics Enumerative optimal methods

Figure 4.1 Analyzing scheduling problems [12]

Scheduling Problems

(Complexity analysis)

Easy problem
NP-hard problem

Relaxation Approximation

algorithms

Exact

enumerative

algorithm

32

Figure 4.1 shows a schematic approach of how to analyze scheduling problems proposed by

Blazewicz et al.[14].The three typical groups which – according to MacCarthy and Liu [12]-

comprise most of the solving technique are outlined.

Referring to the above mentioned groups of solving methods, it is distinguished between:

4.1 Efficient optimal methods

This group includes the methods/algorithms typically used for the class of polynomially solvable

problems. Thus, they guarantee an optimal solution within polynomial time even for large

problems. Most of the optimal algorithms are dedicated only to a specific kind of problem or to

small class. Hence, they are rare and applicable only for a few and quite fundamental issues.

Even if such methods exist, it might sometimes be more useful to rely upon other approaches,

like good heuristics, if the exact optimal algorithm is of too high complexity.

4.2 Enumerative Optimal Methods

Enumerative methods typically use a partial enumeration of the set of all solutions that are

possible macCarthy and Liu. Methods of implicit enumeration variety “consider certain solutions

only indirectly, without evaluating them explicitly Blazewicz et al. [14].The main approaches

are:

 Dynamic programming

 Branch and bound method

Both are exponential in nature but promising mainly for problems of smaller size. Especially

dynamic programming algorithms can often be constructed to obtain pseudopolynomially

bounded approaches.

4.2.1 Dynamic Programming

Dynamic programming is a powerful algorithm paradigm. Problems are solved by identifying

smaller sub problems and by solving one sub problem after the other, starting with smallest and

using the answers to the small problems until the initial problem is solved [18]. In other words,

dynamic programming, like the divide and conquer method, solves problem by combining the

33

solutions to sub problems. Divide and conquer algorithms partition the problem into independent

sub problems, solve the sub problems recursively, and then combine their solutions to solve the

original problem. In contrast, dynamic programming is applicable when the sub problems are not

independent, that is, when sub problems share subsubproblems. In this context, a divide and

conquer algorithm does more work than necessary, repeatedly solving the common

subsubproblem just once and then saves its answer in a table, thereby avoiding the work of

recomputing the answer every time the sub problem is encountered. Dynamic programming is

typically applied to optimization problems. In such problems there can be many possible

solutions. Each solution has a value, and we wish to find a solution with the optimal (maximum

or minimum) value. We call such a solution an optimal solution to the problem, as opposed to

the optimal solution, since there may be several solutions that achieve the optimal value.

An example of Baker is used to outline the characteristics of dynamic programming procedures

[19]

 A set J of j=1, ….., n jobs is to scheduled on a single machine. S denotes a subset of J

and 𝑆 its complement, i.e. the set of jobs not contained in S. Schedules are to be

constructed such that all jobs in 𝑆 precede every job in S.

 Cj is the completion time of job j and C (𝑆) the total time required to process all jobs in

 𝑆.

 Let z be the performance measure with an additive structure like ∑ 𝑔𝑛
𝑗=1 j (Cj), with 𝑔j(Cj)

being the marginal contribution of job j to the overall cost in dependency of its

completion time Cj. If z is the number of tardy jobs, 𝑔j(Cj) would be 1 if job j is

scheduled tardy and 0 otherwise.

 The aim is to minimize the value of z.

Most applications of dynamic programming have following characteristics [20].

1. The initial problem can be divided into several stages. A decision is required at each

stage. Considering the example, a stage k could be characterized by the size of the subset

S, i.e. the number of jobs to be schedule at this stage. Hence, in the first stage the task

consists of schedule one job, in the second of scheduling two jobs and so on.

34

2. Each stage has a number of associated states, the information needed at any stage to make

an optimal decision. In the mentioned example the states are the possible subsets S. If J

consists of four jobs j=1, ……. ,4 and one looks at the second stage, i.e. a pair of two

jobs is to be considered, the states are:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}

3. Decisions have to be made in any stage. Decisions describe how the state at the current

state is transformed into the state at the next stage. In our example a decision is simply

the subsequent job to be chosen in the next stage’s S, determining the next stages.

4. Principle of optimality: Given the current state, the optimal decision for each of the

remaining stages must not depend on previously reached states or previously made

decision.

Since the overall problem consists of several stages, there must obviously be recursion

that relates the costs or rewards from one stage to the other.

Dynamic programming is used to solve scheduling problems such as,  iiUw1 ,  iCbatch1 and

so on.

4.2.2 Branch and bound (B&B) Algorithm

Branch and bound algorithm is another method for solving combinatorial optimization problems.

It is based on the idea of intelligently enumerating all feasible solutions. We assume that the

discrete optimization problem P to be solved is a minimization problem. P may be identified with

the corresponding set S of feasible solutions. Generally, B & B methods decompose a complex

problem into multiple subproblems and utilize known methods to solve the easier subproblems

[21]. Another advantages of the B & B approaches is that although the worst case complexity is

exponential, especially in situations where the search for the solution takes a lot of time the B &

B procedure can be aborted at any stage using the best solution known so far [Comp. soric

(2002,p.13). The name branch and bound denotes that this method is based on two main steps.

The problem decomposition is the result of branching procedure leading to subproblems which

are:

1. Mutually exclusive and exhaustive subproblems of the original.

2. Partially solved problems of the original.

3. Smaller problems than the original [19]

35

Since decomposing can be continued i.e. a problem is branched and its subproblems are further

decomposed, a tree like form is obtained. Figure 4.2 shows the above things.

 Figure 4.2 Branching tree-examples [19]

The main procedure is bounding which calculates lower and upper bounds and fathoms a branch

if necessary. If one considers a minimizing the objective functions in an integer linear

programming problem, for each subproblem a lower bound (noted as LB) might be calculated by

ignoring integer constraints, allowing those variables to take real values. This kind of relaxation

is known as linear programming relaxation (LP-relaxation). Additionally, an initial upper bound

(noted as UB) is computed by a fast heuristic or arbitrarily determined to be infinite. During the

algorithm, the current best LB obtained by a solution which feasible to subproblem as well as to

the underlying main problem becomes new UB [20]. At each node within the search tree it is

checked if the current branch should be partitioned further. If a branch is no more considered in

the ongoing algorithm, it is said to be fathomed. Obviously, due to not partitioning the fathomed

branches any further, the enumeration process can be curtailed [19]. Following reasons cause a

branch to be fathomed [19].

 No feasible solution is available for the relaxation.

 The LB received by relaxation is larger or equal than the current UB.

0 0 1

3

2

4

5

7

8

9

10

j

p

P+1

P+2

P+q

6

36

 The relaxation’s solution is feasible for the subproblem and the underlying main problem,

and its objectives value is even better than the current UB. In the latter case, the LB

becomes the new UB.

4.3 Heuristic Methods

Heuristic are kind of rule-of-thumbs techniques which approximate the optimal solution but

cannot guarantee its finding in all cases [20]. They are applied for both, solving specific

problems to optimality and providing a fast and simple but acceptably good solution for hard

problems [22]. Heuristics are typically judged by their “goodness” of approximation; their

performance, often in a west case scenario, compared with the optimal solution (if known) as

ratio or difference. Heuristics with analytically evaluated accuracy are referred to as

approximation algorithms [14]. In this context, a ρ-approximation algorithm generates a result of

at most ρ times the optimal value in polynomial time [23]. Some heuristic algorithms and

strategies for scheduling problems are

 Relaxation based heuristics

 Scheduling rules / priority rules

 Simulated annealing

 Tabu search

 Genetic algorithms

4.3.1 Relaxation:-

Relaxation restricts the universality of the problem considering only special types of input

instances. Actually, it is not technique for solving given problem, rather a compromise made due

to difficulties forwarded by the problem. In scheduling following types of relaxation are often

used.

1. Allowing preempting :- Complexities of most of the scheduling problems can be reduced

by allowing preemption. For example, the problem 1|rj|∑Cj is NP-Hard [24] but

1|rj,pmtn|∑Cj can be solved in O(nlogn) time, n is the number of jobs.

2. Allowing unit processing time:- E.g. the problem 1||∑WjUj is NP-Hard [24], but the

problem 1|pj|∑WjUj can be solved in O(nlogn) time [25].

37

3. Assuming equal release dates:- E.g. the problem 1|rj|∑Lmax is NP-Hard but if rj=r for all

jobs Jj then it can be solved in O(n2) time [25].

4. Assuming certain precedence relation:- E.g. the problem 1|prec|∑WjCj can be solved in

O(nlogn) time [25].

4.3.2 Scheduling rules/priority rules

Scheduling rules can be defined as a rule that dictates which jobs among those waiting for

service are to be scheduled in performance to the others [26]. Note that such a rule only indicates

which job to be serving first, in contrast to job sequencing which orders all jobs in a queue due to

specific attributes [27]. Scheduling rule is the most general prescription. It can comply with a

single priority rule but can also be more complex combining several priority rules or one or more

heuristics.

Priority rule is a simple function that assigns a priority as a number a value to each waiting jobs

following a predetermined method. [26].The job with the highest priority the one with the lowest

priority value is selected first. The FIFO rule prioritizing always the job that has arrived first is a

typical example. [26].This rule is also known as dispatching rule. The jobs are arranged in a list

according to some rule. The next job on the list is assigned to the first available machine. The

following are some of the common rules.

4.3.2.1 Random List

This list is made according to a random permutation.

4.3.2.2 Longest Processing Time (LPT)

The longest processing time rule orders the jobs in the order of decreasing processing times.

Whenever a machine is freed, the longest job ready at the time will begin processing. This

algorithm is a heuristic used for finding the minimum make span of a schedule with parallel

machines. It schedules the longest jobs first so that no one large job will "stick out" at the end of

the schedule and dramatically lengthen the completion time of the last job.

38

4.3.2.3 Shortest Processing Time (SPT)

The shortest processing time rule orders the jobs in the order of increasing processing times.

Whenever a machine is freed, the shortest job ready at the time will begin processing. This

algorithm is optimal for finding the minimum total completion time and weighted completion

time, if there is a single machine. In the single machine environment with ready time at 0 for all

jobs, this algorithm is also optimal in minimizing the mean flow time, minimizing the mean

number of jobs in the system, minimizing the mean waiting time of the jobs from the time of

arrival to the start of processing, minimizing the maximum waiting time and the mean lateness.

4.3.2.4 Earliest Due Date (EDD)

In the single machine environment with ready time set at 0 for all jobs, the earliest due date rule

orders the sequence of jobs to be done from the job with the earliest due date to the job with the

latest due date. Let Di denote the duedate of the ith job in the ordered sequence. EDD sequences

jobs such that the following inequality holds D1≤D2≤…≤Dn. EDD finds the optimal schedule

when one wants to minimize the maximum lateness, or to minimize the maximum tardiness.

4.3.2.5 Simulation Techniques

Simulation can represent realistic systems for study of various scenarios that might occur over a

time period at a modest cost. The structure of the shop, activities, jobs and constraints can be

animated on a computer. Given appropriate input data and simple dispatching rules at decision

points, computer could extrapolate a given schedule into the future. It provides a natural

approach for interfacing with human expertise. However, the disadvantage is that the results

obtained are not even approximately optimal and also it is difficult to determine how good these

schedules are and how to improve them for better solutions. Simulation is the base for more

advanced methods like Artificial Intelligence and Decision Support Systems with added accurate

decision- making procedures.

4.3.2.6 Neighborhood Search Techniques

 It is a general-purpose heuristic technique that may be used for quite complicated problems

where solution itself is very complex. It consists of a starting solution called original seed and all

solutions close to the original solution (the neighborhood of the seed). A selection criterion is

39

used to find a new seed and this is terminated by a termination criterion. A much- improved

solution is obtained at the end of the search.

4.3.2.7 Meta-Heuristic Search Methods

A meta-heuristic is a heuristic method for solving a very general class of computational problems

by combining user-given black-box procedures- usually heuristics themselves-in the hope of

obtaining a more efficient procedure. Meta-heuristics are generally applied to problems for

which there is no satisfactory problem-specific algorithm or heuristic; or when it is not practical

to implement such a method

Dispatching rules are used in many contexts. For some easy problems, especially those in a

single server environment, they enable an optimal solving, like for instance:

 The EDD-rule for [1 Tmax] and [1 Lmax], namely minimizing the maximum

tardiness and lateness, respectively.

 The preemptive EDD-rule for minimizing the maximum tardiness and lateness with

release time constraints and preemption ([1 max; Trpmtn j] and [1 max; Lrpmtn j]).

 The SPT-rule for minimizing the mean lateness ([1 L]), ([1 F]) and total

completion time ([1  jC]),

 The WSPT-rule for minimizing the total weighted completion time (1  jjCw]),

 The EDD-rule for minimizing the make-span for a single machine problem with

release time constraints ([1 maxCr j]).

 4.3.3 Simulated Annealing

Simulated annealing has its origin on the analogy between the annealing process of solids and

the problem of solving combinatorial optimization problems. At the beginning, almost all

solutions are accepted. Then, generally the “temperature” is dropped meaning that the

mechanism of accepting new solutions is increasingly more selective. At the end, only the

solutions that improve the objective function value are accepted. Each point in the search space

has an energy associated with it, which indicates how good it is. The goal is to find the point

40

with minimum energy. The algorithm starts off at an arbitrary point; at each step chooses some

neighbor of the current point and moves to that point with a certain probability. Neighbors are

points that are close to each other in a function of the energy difference between two points and a

global time-dependent parameter called temperature. Let E be the difference in energy and T

be the temperature. If E is negative then the algorithm moves to new point with probability 1.

If not it does so with probabilitye
TE

. This rule is deliberately similar to the Maxwell-

Boltzmann distribution governing the distribution of molecular energies.

It is clear that the behavior of the algorithm is crucially dependent on the temperature: if T is 0,

it reduces to the greedy algorithm, always moving to a point of lower energy. If T is infinity, it

moves around randomly. At first T is set to infinity, and it gradually decrease to zero

(“cooling”). This enables the algorithm to initially get to the general region of the search space

containing good solutions, and later hone in optimum. The exact annealing schedule, however,

cannot be generally prescribed; it must be chosen depending on the problem.

It can be shown that, for any given finite problem, the probability that the simulated annealing

algorithm terminates with the global optimum solution approaches 1 as the cooling rate is

decreased. This fact is, however, not particularly useful in practice, as at some point the time

required to execute the algorithm will exceed the time required for a complete search of solution

space. Simulated annealing can be very effective at finding good sub-optimal solutions.

Algorithm 4.2: [42] Simulated Annealing

1. select an initial solution s .

2. for dotot 1

2.1. if 0T then return s .

2.2. 's = a randomly selected solution from).(sN

2.3. E = cost)'(s -cost).(s

2.3.1. if E <0 then s = 's .

2.3.2. else s = 's only with probabilitye
TE

.

41

4.3.4 Tabu Search

The basic Concept of Tabu Search is described in Glover [29]. It is a deterministic heuristic

approach for solving combinatorial optimization problems. It is an adaptive procedure that can

be superimposed on many other methods to prevent them from being trapped at locally optimal

solutions. It is a neighborhood search with a list of recent search positions. The essential feature

of tabu search is the systematic use of memory. It keeps track of both the local information and

also the exploration process. The method starts with an initial current solution, which could be

feasible, non-feasible or even a partial solution. Using some local changes (called moves) from

the current solution, a list of candidate solutions are generated (called candidate list). To avoid

cycling in the algorithm a tabu list is maintained to keep track of a set of solutions that are

forbidden. The role of the memory will be to restrict the choice to some subset of neighborhood

by forbidding moves to some neighbor solutions.

4.3.5 Genetic Algorithm

Genetic Algorithms (GAs) were originally proposed by John H and Holland [30]. They are

search algorithms that explore a solution space and mimic the biological evolution process.

There are many GA implementations successfully applied to a great variety of problems. The

main components of a genetic algorithm are as follows.

1 Solution encoding: A chromosomal representation of solutions.

2 Initial populations: Creation of an initial population of chromosomes.

3 Fitness: Measurement of chromosome fitness based on the objective function.

4 Selection: Natural selection of some chromosomes (parents) in the population for generating

new members (children) in the population.

5 Genetic operators: Genetic operators applied to these chromosomes whose role is to create

new members (children) in the population by crossing the genes of two chromosomes (crossover

operators) or by modifying the genes of one chromosome (mutation operators).

42

6 Replacement: Natural selection of the members of the population who will survive.

7 Parameter selections: Natural convergence of the whole population that is globally improved

at each step of algorithm.

The performance of a GA depends largely on the design of the above components and the choice

of parameters such as population size, probabilities of genetic operators (crossover rate and

mutation rate), and number of generations.

4.4 Near-To-Exact Algorithms

Near-to-exact algorithm give not exact but approach to best possible solution among all. These

algorithm are also used to study and try to solve regarding to NP-hard.

Basically there are two types of algorithms for obtaining near-to-exact scheduling [14, 25].

(i) Approximation algorithms: These algorithms provide a theoretical guarantee for the

quality of the obtained solution.

(ii) Heuristic algorithms: No such theoretical guarantee can be given. The quality of

solution is determined by simulation experiments and actual implementation.

The performance of approximation is measured by approximation ratio, i.e., a function of size of

input instance. Let A be an algorithm then for any input instance of size n , A has an

approximation ratio of)(n if the cost C of the solution produced by the algorithm is within a

factor)(n of the cost C of the optimal solution, i.e., 






 

 C

C

C

C
,max )(n [7]. Regarding to

online version al well as other optimization problems, the concept of competitive ratio is also

introduced. Let 0A be an online algorithm. For any instance of size n , let AC be the cost of

solution obtained by 0A and C be the cost of optimal solution for the corresponding offline

problem. Then 0A is said have a competitive ratio of)(nc if AC  Cnc)( [31].

 4.4.1 Approximation Algorithms for Off-line Problems

Approximation technique is not a general paradigm. Depending upon the problem, one has to

implement his own scheme for obtaining the solution. For example, consider the NP-hard

problem  jj Fr1 . Keller et.al, obtained an approximation algorithm for this problem with an

43

approximation ratio of  nO for this problem. Their technique does not fall on any broad class

of algorithms; the summary given as:

(i) Convert the problem  jj Fr1 to  jj Fpmptr ;1 by allowing preemptions,

(ii) Solve  jj Fpmptr ;1 using Shortest Remaining Processing Time rule [5],

 (iii) From the solution of preemptive version, obtain the solution for the original problem

 jj Fr1 .

For the last step, they associate a forest structure for the preemptive schedule, such that each

node represents an interval  ii CS , where iS and iC are the start and complete times of a job iJ in

the preemptive schedule. The solution for the original non-preemptive problem is obtained by

merging these trees in a suitable way.

Savelsbergh et.al, make an empirical analysis of several approximation algorithms based on

linear programming formulation for the problem  jjj Cwr1 . They conclude that these techniques

usually have complexity of  nnO log , n being the number of jobs, and have very reasonable

approximation ratio.

 4.4.2 Approximation Algorithms for On-line Problems

On-line algorithms are betting larger attention by researchers of the scheduling theory. Consider

the problem  jj Cr1 even the off-line version of this problem is NP-hard [30]. Regarding its on-

line version, some popular approaches for solving it are the FCFS (First Come First Serve) and

SPT (Shortest Processing Time) rules. For the problem  jj Cr1 , both FCFS and SPT rules have

competitive ratio of n , where n is the total number of jobs that is a very pessimistic result. Again

for the same problem, D-SPT (Delayed Shortest Processing Time) rule gives the competitive

ratio of 2, which is a vast improvement compared to the performance of FCFS and SPT. The

main idea behind D-SPT rule is to postpone a job with too large processing requirement.

D-SPT rule:

 If the machine is idle and a job is available at time t, determine an unscheduled jobs with

smallest processing requirement, say iJ . If there is a choice, take the job with smallest release

44

date. If tpi  , then schedule iJ , otherwise wait until time ip , or a new arrives. Hoogeven et.al

further proved that there can be no off-line algorithm for the problem  jj Cr1 having

competitive ratio less than 2. Their result was generalized by Anderson et.al, who proved that the

D-WSPT (Delayed Shortest Weighted Processing Time) rule has a competitive ratio of 2 for the

more general problem  jjj Cwr1 . D-SWPT is very much similar to D-SPT; the difference is

due to the weight.

D-SWPT rule:

 Suppose that the machine is available at time t. We choose from among the available job as a

job iJ with the lowest value of ratio
j

j

w

p
to start at time t, otherwise, we do nothing until time jp

or another job is released if this occurs before time jp . There can be no algorithm for the on-line

version of the problem  jjj Cwr1 having competitive ratio 2 [31].

45

CHAPTER 5

SINGLE MACHINE SCHEDULING PROBLEM

After getting the basic knowledge about scheduling theory in general and some initial

background for handling scheduling problems, this chapter now describes introduction to single

machine scheduling problems (referred to as SMS). It is organized as follows: Introducing the

field of SMS research, then the importance and overview of SMS research is pointed out.

5.1 Definition, importance and overview of SMS Research

Definition “The simplest pure sequencing problem is one in which there is a single resource, or

machine.” There is not much more to say about the nature of single machine scheduling

problems (also called one machine scheduling problems). n jobs , j = 1, ..., n (alternatively jj = j1,

..., jn), are to be processed on one single machine (m = 1) under certain constraints.

It is worth-noting that when speaking about SMS problems two different perspectives are

distinguished between them [33].

One is the category of lot sizing scheduling problems. In this type of problem, several different

items types are to be processed on a single machine in lots or batches using repetitive production

schedules (Production cycles). The machine is typically restricted such that only one item type

can be processed at a time and setup times occur each time the processed time is changed [34].

These problems aim at determining the optimal batch sizes to minimize cost under certain

constraints. Bomberger (1966) mentions a metal stamping facility as an example. Stamps having

different size and forms are produced on one press. Setup time and cost occur each time a

forming die must be changed [34].

The order is the category focused on: lot sizes are fixed and aim is to determine a schedule

satisfying when each job is to be executed in order to achieve certain objective. Although, single

machine scheduling seems somehow obsolete at first glance especially since real life problems

are considered to be more extensive and difficult. It is still an important part in scheduling

research. A short outlining of some reasons given by [19, 33].

46

 SMS problems are often easier to understand and to handle mathematically than more

comprising problems. This provides a valuable basis for a learning phase and for addressing

general questions like getting familiar with the performance measures and for testing solution

techniques. Baker calls them building block in the development of a comprehensive

understanding of scheduling concepts [19].

But not only for learning purpose, also for a deeper analysis of complex systems, an

understanding of its incremental components, which often are nothing else than SMS problems,

is essential.

In some cases, more complex scheduling issues can even fully be reduced to SMS related topics.

In a multiprocessor environment, for example, focusing on a bottleneck or the most expensive

machine might lead to a SMS problem which determines the schedule for the whole

environment.

In a similar way, it might be appropriate especially when handling a small production unit to

treat a complete production line on an aggregated single resource.

Focusing on more complex problems types with more than one machine in shop environment;

single machine scheduling can be used as relaxation to obtain bounds.

In conclusion, the importance of SMS research is mainly based on two reasons: its simplicity on

the one hand and the fundamental character for more complicated environments on the other

[14]. Single machine scheduling problem form the largest group within the area of scheduling

research, consisting a variety of different settings and include a wider number of different

constraints and objectives.

5.2 Overview of Single Machine Scheduling Problems and their Complexity

Overview of single machining problems

Specified problem

type (complete

classification)

Complexity Method Reference

1||Cmax O(nlogn) Each schedule that causes no idle times

on the machine is optimal

1||∑Cj O(nlogn) SPT-rule Smith[45]

[1||∑wjCj O(nlogn) W SPT-rule Smith[45]

47

Table 5.1: Complexity of elementary SMS problems

Table 5.1 shows overview - including the research results and directions for the main classes - is

given by Gupta and Kyparisis [33]. Starting with a tree-like classification presentation, they

review SMS research within the span of time between its upcoming in the mid 1950s to the late

1980s. Their research effort is limited to static SMS problems - as a remainder those with each

job’s release time is zero. They further do not consider any stochastic behavior.

[1||Fmax Each schedule that causes no idle times

on the machine is optimal

[1||∑Fj] O(nlogn) SPT-rule Equivalent to

[1||∑Cj]

[1||wjFj O(nlogn) W SPT-rule Equivalent to

[1||∑wjCj]

[1||wmax] O(n) The job with longest processing time is

to be scheduled last

[1||∑wj O(nlogn) SPT-rule Equivalent to

[1||∑Cj]

[1||∑wjWi O(nlogn) W SPT-rule Equivalent to

[1||∑wjCj]

[1||∑Lmax O(nlogn) EDD-rule Jackson[46]

[1||∑wjLj) O(nlogn) W SPT-rule Equivalent to

[1||∑wjCj]

[1||∑Lj] O(nlogn) EDD-rule Equivalent to

[1||∑Cj]

[1||Tmax] O(nlogn) EDD-rule Jackson[46]

[1||∑Tj] NP-Hard

[1||∑wjTj NP-Hard Lawler[38]

[1||∑Uj O(nlogn) Hodgson Algorithm Moore[38]

[1||∑rjUj NP-Hard

[1||wjUj NP-Hard Karp[37]

48

5.3 Some SMS Related Problem Types

1. Minimizing maximum make-span [1 Cmax], maximum flow time [1 Fmax]: A

minimization of the make-span equals minimizing idle time of the machine. Thus, each

schedule that causes zero idle times is optimal. Since, flow time is defined as jF = Cj- jr ,

both problems are same if jr = 0 for all jJ .

Minimizing total completion time [1  jC], total flow time [1  jF], total waiting

time [1  jw] and total lateness [1  jL]: Consider the general ease of Mi machines,

where i = 1, 2,….,m, a decomposition of flow time leads to following relationships, [35]:

 jF = 


m

i 1

(jiw + jip) = Wj + 


m

i 1

 jip and Fj = Cj– jr = jd +Lj- jr .

 Hence;  Cj,  Fj,  Wj and  Lj are equivalent.

Objective functions since each can be modified to one of the others through linear

transformation [35].

2. Minimizing total weighted completion time [1  jw Cj], total weighted flow time [1

 jw Fj], total weighted waiting time [1  jw Wj], and total weighted lateness [1 

jw Lj] : With use of relationship shown above, the equivalence of the objectives  jw Cj,

 jw Fj,  jw Wj and  jw Lj becomes obvious [35].

  jw Fj =  jw Wj + 


n

i 1

jw +


m

i 1

jip

 and  jw Fj =  jw Cj –


n

i 1

jw jr =  jw Lj + 


n

i 1

jw (jd – jr).

 Smith (1956) proved optimality of the WSPT rule for the total weighted completed time and

hence for the other problems. This method is bounded polynomially by O(n log n).

3. Minimizing maximum waiting time [1 Wmax]: It can be solved in O(n) by

49

 simply scheduling the job with largest processing time last.

4. Minimizing maximum tardiness [1 Tmax] and maximum lateness [1 maxL] :

 Jackson (1955) applied the EDD rule to solve problems with computational

 effort of O(n log n).

5. Minimizing total tardiness [1  jT] : The complexity of the problem of

 minimizing total tardiness remained open for a long time until [17] proved

 NP-hardness.

6. Minimization of total weighted tardiness [1  jjTw]: It is the generalization of

tardiness and showed as NP-hardness by Lawer and Lenstra et. al. (1977).

7. Minimizing the weighted number of tardy jobs showed NP-hardness [37] remaining even

if all jobs have a common due date.

5.4 Polynomially solvable single machine scheduling problems:

Single machine scheduling is a classical scheduling problem. In this type of scheduling, n jobs

are processed on one machine. Many problems are solved by single machine in polynomial time

and these problems are known as easy problems. In this section, we will study about those

problems that are solved by single machine in polynomial time.

5.4.1 1 maxfprec :

To solve problem with 1 maxfprec fmax =
n

j 1
max


fj(Cj) and fj monotone for j = 1,2,….,n, it is

sufficient to construct an optimal sequence)(),.....,2(),1(: n . Lawer developed a simple

algorithm which developed a simple algorithm which constructs this sequence in a reverse order.

Let, N = {1, 2,…., n} be the set of all jobs and denoted by SN the set of unscheduled jobs.

Furthermore, define p(S) =
Sj

jp . Then, the scheduling rule may be formulated as follows:

50

Schedule a job jS which has no successor in S and has a minimal jf (p(S)) value as the last job

in S.

To give a precise description of the algorithm, represent the algorithm, represent the precedence

constraints by corresponding adjacently matrix A =)(ija where, ija = 1if and only if j is a direct

successor of i. By)(in , denote the immediate successor of i.

Algorithm 5.1 [5] Lawer’s algorithm for max1 fprec .

begin

1. for i = 1 to n do n(i) = 


n

j

ija
1

2. S = { 1,2,…,n}, p = 


n

j

jp
1

3. for k = n down to 1 do

Begin

3.1 jobs Sj with n(j) = 0 and minimal fj(p) value.

3.2 }{ jSS 

3.3 n(j) = ∞

3.4 find jk )(

3.5 P = p-pj

3.6 for I = 1 to n do

3.7 If aij = 1 then i = n(i) – 1

end

end of algorithm

The complexity of this Algorithm is O(n2).

5.4.2  jU1

51

To generate an optimal schedule, it is sufficient to construct a maximal set of jobs which are on

time. The optimal schedule then consists of the sequence of jobs in F ordered according to non-

decreasing d j-values followed by the late jobs in any order.

An optimal set F is constructed by the following rule: add jobs to non-decreasing due dates. If

the addition of job j results in this job is being completed after dj, then a job in S with the largest

processing time is marked to be late and removed from F. The following algorithm, in which t

denotes the current schedule time, implements this rule.

5.4.3 jjCw1

This problem can be solved using the weighted shortest processing time (WSPT) rule. The

SWPT rule is to sort jobs in non-decreasing order of jj wp . This WSPT rule produces an optimal

solution for problem  jjCw1 . The optimality of SWPT rule can be proved as a sequence of a

more general theorem due to Lawer [30]. Consider this problem that includes  jjCw1 as a

special case: Given a set N of n jobs and a real valued function f which assigns)(f to each

permutation  of the jobs, find a permutation  * such that *)(f = min {)(f  is a

permutation of N}. If some special cases one can find a transitive and a complete relation  on

the set of jobs N such that for nay two jobs Ji, Jk N, and for any permutation of the form  kijJ ,

)1.5...(..........)()( ikkiki JJfJJfJJ 

If such a relation exists for a given function ff , is said to admit the relation , and the relation

 is known as a task interchange relation for f . Now consider the following theorem:

5.5 Other Problems

  jj Ur1 :

The algorithm for this problem also constructs a minimal set S of jobs completed on time, which

are scheduled in arbitrary order. Lawer devised an algorithm based on this idea and prove that it

gives optimal solution for  jj Ur1 .

52

 jU1 :

The algorithm for  jU1 is very much similar to the algorithm for problem  jjj Uwp 11 . This

problem can be solved in O(n logn) time using Moore’s algorithm [40]. The algorithm constructs

a minimal set S of jobs which complete on time. The optimal solution then consists of the jobs in

S scheduled according to EDD rule, followed by the late jobs in any order. The set S is

constructed by Moore’s rule: add the jobs in S in order of non-decreasing due dates. If the

addition of jobs Jj results in this job being computed after dj, then a job in S with the largest

processing time is marked to be late and removed from S.

max;;1 frprecpmtn j :

The objective function maxf for this problem is maxf = max {)(jj Cf }. This problem can be

solved in O(n2) time using the following algorithm with this steps:

If a job Jj is a successor of a job Ji and jii rpr  then job Jj cannot start before iij prr ' . So,

replace jr by 'jr . In this way, all release dates are modified.

Schedule the jobs in non-decreasing order of modified release dates. This decomposes the jobs

into blocks, where a block in a minimal set of jobs processed without idle time between them.

Find optimal solution for each block separately. The resulting set of blocks will be the optimal

schedule

 jjj Uwp 11

The objective function in this problem involves unit penalty Uj, this means for each job Jj due

dates dj is given here is an algorithm for  jjj Uwp 11 is described. This algorithm constructs an

optimal set S of early jobs. To get an optimal schedule jobs in S are scheduled according to non

decreasing due dates. Late jobs i.e. the jobs not belonging to S are scheduled in arbitrary order.

The main strategy of this algorithm is to construct the set S of early jobs such that total weight of

jobs in S is maximum. For this one tries to schedule the jobs in earliest due date order. If a job i

53

to be scheduled next is late, then i is scheduled and a job k with smallest wk value is removed

from S.

In the following algorithm t denotes the current time, n is the total number of jobs, and assume

jobs are enumerated such that 1≤d1≤……..≤dn.

Algorithm 5.2  jjj Uwp 11

Begin

1 t=1, S= Φ

2 for i=1 to n do

3 if di≥t then

4 add i to S, t=t+1.

 5 If there exist a job k with wk<wi

begin

6 Delete job k from S where k is the largest index such that wk is minimal.

7 Add i to S.

end

End of algorithm.

If the scheduled jobs in S are organized as a priority queue with respect to wi value, the

complexity of this algorithm is O (nlogn).

Theorem5.1 [5] Algorithm  jjj Uwp 11

 provides an optimal schedule.

Proof: Let s be sequence of jobs scheduled early by the algorithm ordered according to their

indices. Let S* be the corresponding sequence of an optimal schedule coinciding with S as long

as possible. Let k be the first job in S* which does not belong to. When constructing S, job k

must have been eliminated by some job say i. let J be the set of jobs in S between k and I at the

time k was eliminated. Due to step 6 of the algorithm wj<wk for all j J. Thus all j must belong to

54

S*, otherwise replacing k by j would yield a better schedule than S*. However this implies that

there is a late job in S* which is a contradiction.

Example 5.1: To demonstrate how the algorithm for  jjj Uwp 11 constructs the set of early

jobs consider jobs J1,J2 ,J3,J4,J5, with the following information.

j 1 2 3 4 5

Wj 3 5 1 4 4

dj 3 6 2 8 2

Initially t=1 and the set of early jobs S= Φ.

At i=1, d1≥t, so S= {J1}, t:=t+1=2.

At i=2, d2≥t, so S= {J1,J2}, t:=t+1=3.

At i=3, d3<t, J2 has maximum weight in S, so swap J2 and J3 and S={J1,J3}.

At i=4, d4≥t, so S={J1, J3, J4}, t:=t+1=4.

At i=5,d5<t, J4 has maximum weight in S, so swap J4 and J5, and S={J1, J3, J5} finally.

The jobs in S are to be scheduled as per the sequence =(J1, J5, J1), J2 and J4 can be scheduled

afterwards in any order.

Finally, the job in S are to be scheduled as per the sequence π={J3, J5, J1} J2 and J3 can be

scheduled afterwards in any order.

5.6 NP-hard Problem Related to SMP

5.6.1 max1 Lrj

A generalization of max1 L is the problem max1 Lrj with the jobs released at different points in the

time. It does not allow preemption and is significantly harder than the problem with all jobs

available at time zero. The optimal schedule is not necessarily a non-delay schedule. It may be

advantageous to keep the idle just before the release of a new job.

55

5.6.2 jjUw1

This problem is also known to be NP-hard. The special case with all due dates being equal is

equal and equivalent to so called Knapsack problem. The due date is equivalent to the size of

Knapsack, the processing time of the jobs are equivalent to the benefits obtained by putting the

items into the Knapsack. A popular heuristic for this problem is the WSPT rule which sequences

the jobs in decreasing order of
j

j

p

w
. A worst case analysis shown that this heuristic may perform

arbitrarily.

 Example 5.2 (WSPT rule and Knapsack):

 Consider the following three jobs

 Jobs 1 2 3

 jp 11 9 90

 jw 12 12 89

 jd 100 100 100

 Comparison to Schedule Jobs According to WSPT and Knapsack Rules.

Scheduling the jobs according to WSPT results if the schedule 123. The third job is

completed late and  jjUw (WSPT) is 89. Scheduling the jobs according to 231 results in

 jjUw (OPT) being equal to 12.

56

CHAPTER 6

 MINIMIZING THE WEIGHTED NUMBER OF TARDY JOBS

6.1 Problem Presentation

This section addresses the problem [1||∑WjUj] i.e. minimizing the weighted number of tardy jobs

on a single machine subject to certain job characteristics, n jobs, j = 1, ……., n (alternatively Jj =

J1, ….., Jn), are to be schedule single machine. The job’s processing time is pj, its release date rj

(i.e rj=0) and its due date dj, with rj + pj ≤dj. The job is tardy (Uj = 1) if its completion time

exceeds its due date (Cj>dj), otherwise it is on time. Specific weight (wj) are assigned

representing a job’s penalty incurred in case of tardiness. The objective is to minimize the

weighted number of tardy jobs; or in other words to minimize the penalty payments ∑WjUj.

A property often referred to shall be prefixed is that if a job j is tardy it might as well be arbitrary

tardy, meaning that it can be scheduled arbitrarily after all on-time jobs. Thus, an optimal

schedule exists such that all jobs on time precede all tardy jobs. And the objective of

“minimizing the weighted number of tardy jobs” is equivalent to “maximizing the weighted

number of on-time jobs”.

This section is organized as following.

Starting with Section 6.2, a detailed literature review is given.

Further, Section 6.3 addresses some “previous” solution approaches.

6.2 Historical Development and Research Overview

A comprehensive up to date overview of the research effort limited to the problem specification

mentioned above, namely those without release date and preemption is not given. Allowing for

the vast field of publications and research made, it is hardly possible to guarantee completeness

of such an overview. Thus, we rather aim at pointing at the important milestones and may be a

57

little more which enable orientation and impetus for interested reader, instead of claiming

completeness.

NP-hardness of [1||∑WjUj] was first proven by Karp [37] and holds even if all jobs have a

common due date. The publication of Lawler and Moore [38] is seen as pioneer work providing

a dynamic programming approach pseudopolynomially bounded by (n min {∑j pj, maxj {dj}}).

Their formulation was generalized by Sahani [39]. Under the assumption that all weights have to

integers the approach is pseudopolynomially bounded by O (n min {∑j pj, ∑j wj, maxj {dj}}) [41].

The drawback of both formulations is the complexity’s dependence on the input data, which

limit their practical use. It was again Lawler [40] who adopted the well known Moore Hodgson

algorithm to easily solve the weighted problem as special case if processing time and weights

can be indexed such that they are oppositely ordered, i.e. pi < pj⇒ wi ≥ wj for every i,j. The time

bound is O (n log 𝑛).

Furthermore, Lawler [23] presented a new dynamic programming approach, initially for the case

with preemption and release time constraints, that solves [1||∑WjUj] as a special case in O

(nW), with W denoting the sum of integer job weights.

Considering the branch and bound algorithm,[41] proposed a procedure solving problems with

up to 50 jobs; the procedure of Tang [42] is able to solve up to 85 jobs. Potts and Van

Wassenhove [15] proposed a branch and bound method appropriate for up to100 jobs; and as one

of the newest publications M’Hallah and Bulfin [43] is worth mentioning coping up to 2500 jobs.

When adding release dates to the problem, i.e. [1|rj|∑wjUj], Lenstra et al. [24] showed that it

remains to be NP-hard, even for the case with unity weights. Techniques applied to this type of

problem cover a wide field. The dynamic programming approach by Lawler [44] mentioned

above, initially for the preemptive case, solves the non-preemptive case under the additional

assumption that release dates and due dates are similarly ordered, i.e. ri < rj ⇒ di ≤ dj for every i,j,

on O (nW).

If the processing times are equal (pj=p for every j) the dynamic programming formulation of

Baptise [3] achieves attention solving the problem in polynomially bounded time of O (n7).

Some newer branch and bound algorithm methods were proposed by Peridy et al. (2003) and

58

M’Hallah and Bulfin (2007). The first utilizes a Lagrangean based lower bound, the latter

surrogate relaxation that leads to a multiple choice knapsack formulation to compute the bounds.

A hybrid branch and cut method with improved infeasibility cuts based on constraint propagation

is suggested by Sadykov (2004). Further, a heuristic developed by Dauzere-Peres and Sevaux

(2003) is worth mentioning, computing a lower bound based on the notion of a so called master

sequence and Lagrangean relaxation, as well as a genetic algorithm by Sevaux and Dauzere-

Peres (2003).

The last problem type investigated that is [1|pmtn,rj|∑wjUj] is NP-hard as well, but it can be

solved in pseudopolynomial time by the dynamic programming algorithm of Lawler (1990),

bounded by O (nk2W2), with W as the sum of integer weights and k as the number of distinct

release dates. For unity processing times, i.e. pj=p for every j, Baptiste (1990b) developed an O

(n10) dynamic programming formulation. If the processing times and release dates can be

indexed such that a similar order is obtained and processing times and weights are oppositely

ordered on the other hand (pi < pj ⇒ ri ≤ r j and pi < pj ⇒ wi ≥ wj for every i,j) or if release date

and due date intervals are nested and processing times and job weights oppositely ordered,

Lawler (1994) suggests both underlying dynamic programming formulations to be solved by

variation of the Moore-Hodgson algorithm in O (nlog 𝑛).

6.3 Similar Problems in the Past

Many of the researcher’s have studied the problem in the past and obtained various solution

approaches. The table provides the history information of the problem. The table shows the

specified problem, the developed year and the solving method.

 Weighted Number of Tardy Jobs [[1|……|∑wjUj]

Specified Problem Year Author Solving Method Character Complexity Comment

[1||∑wjUj 1969 Moore and

Lawler

DP

En

O(n min {∑j pj,

maxj {dj}}))

[1||∑wjUj] 1976 Sahni DP

En

O(n min {∑j pj,

,∑wj,max

j{dj}})

All weights

integers

59

[1||∑wjUj] 1976 Lawler Generalization of

Moore algorithm

Op

O(nlogn) pi<pj⇒wi

≥wj

[1||∑wjUj] 1983 Villareal &

Bulfin

B &B

En

 For up to 50

jobs

[1||∑wjUj] 1988 Potts and Van

Wassenhove

B & B

En

O(nlogn) For up to

100 jobs

[1||∑wjUj] 1990 Tang B & B

En

 For up to 85

jobs

[1||∑wjUj] 1990 Lawler DP

En

O(nW) with W

as sum of

integer job

weights

All weights

integers

[1||∑wjUj] 2003 M’Hallah &

Bulfin

B & B

en/he

 For up to

2500 jobs

[1|rj|∑wjUj] 1990 Lawler DP

En

O(nW) with W

as sum of

integer job

weights

All weights

integers ri<rj

⇒di≤dj

[1|rj,pj=p|∑wjUj] 1999 Baptiste DP

En

O(n7)

Equal

processing

times pj=p

[1|rj|∑wjUj] 2003 Dauzere-

Peres &

Sevaux

Heuristic

(Lagrangean

Relaxation)

He

 For more

than 100

jobs

[1|rj|∑wjUj] 2003 Dauzere-

Peres &

Sevaux

Genetic

algorithm

He

[1|rj|∑wjUj] 2003 Peridy et al B&B En

[1|rj|∑wjUj] 2004 Sadykov Branch &cut En

[1|rj|∑wjUj] 2007 M’Hallah and

Bulfin

B&B en/he

[1|pmtn,rj|∑wjUj] 1990 Lawler DP

En

O(nk2W2) with

k as number of

distinct release

dates & W as

sum of weights

All weights

integers

60

[1|pmtn,rj|∑wjUj] 1994 Lawler Generalization of

Moore’s

Algorithm

Op

O(nlogn)

pi<pj ⇒ri≤rj

pi<pj ⇒wi≥wj

[1|pmtn,rj|∑wjUj] 1994 Lawler Generalization of

Moore’s

Algorithm

Op

O(nlogn)

Nested

release date

–due date

intervals

pi<pj ⇒wi≥wj

[1|pmtn,rj,pj=p|∑wjUj] 1999 Baptiste DP

en

O(n10)

Equal

processing

times: pj = p

DP=Dynamic Programming B&B=Branch and Bound ,op=optimal ,en=enumerative, he=heuristic

61

CHAPTER 7

PROBLEM STATEMENT AND METHODOLOGY

In the last chapter we discussed the research done on minimizing the weighted number of tardy

jobs scheduling problems, the solution methodologies applied and the complexity of those

algorithms. In this chapter, the present research problem and our methodology to solve it will be

presented.

7.1 Statement of the Problem

The problem in the present research is, scheduling of n jobs that are available at time rj (i.e. rj=0)

on a single machine to minimize the weighted number of tardy jobs. Each job is associated with

a release time constant, processing time and due date. The machine can perform one operation at

a time and no preemption is allowed. A job is said to be tardy when its completion time is

greater than the due date associated with it.

7.2 Assumptions

1. The machine is always available

2. No preemption is allowed.

7.3 Objective Function

The objective function that is been considered for the present problem is to minimize the number

of tardy jobs.

Minimize∑WjUj, for j = 1, 2,.., n

Where Uj= {
1, 𝑖𝑓 𝑗𝑜𝑏 𝑗 𝑖𝑠 𝑡𝑎𝑟𝑑𝑦
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

7.4Complexity of the Problem

The 1 | |∑WjUj, is proved to be a NP-hard problem and an optimal solution to this problem can be

found only in pseudo-polynomial time. I implement a dynamic programming algorithm and

branch and bound algorithm for the above problem and obtained result from both are compared.

62

.

7.5 Methodology

 7.5.1 A Branch and bound approach

A B&B approach by M’Hallah and Bulfin (2003) for a problem with equaling release dates

(1||∑wjUj) is treated[46]. In table 5.1 shows, many very different B&B approaches for minimizing

the weighted number of tardy jobs on one singe machine have been proposed by several authors.

The very special approach by is discussed in detail since it is capable of solving typical

problems with up to 2500 instances in about twelve minutes[46]. The approach falls back upon a

heuristic that provides good solution on instances with up to 2500 jobs in a few seconds. Another

particular feature is the utilization of a mathematical programming formulation based on the well

known knapsack problem to develop a bound. Actually, the resulting algorithm can be

implemented with slight modifications to any knapsack code. In order to keep the algorithm as

simple as possible, neither dominance nor reduction properties are embedded.

7.5.1.1 Derivation of a knapsack model

Instead of minimizing the weighted number of tardy jobs, it is possible to seek for a maximum

weight feasible set of on time jobs. The original problem referred to as WNT is formulated as

following, assuming the jobs to be indexed in non decreasing order of their due dates.

max


n

j 1

wjxj (WNT)………………….(7.1)

 s.t ∑ pi
𝑗
𝑖=1 xi≤dj j=1, ….n,……………….(7.2)

xj є{0,1} j=1, …n, ……………….(7.3)

With xj equaling 1 if job j is scheduled on time and 0 otherwise, the objective function equation

(7.1) simply sums the weights of all on-time jobs. The set of constraints in equation (7.2)

ensures that any on-time job’s completion time is smaller or equal than its due date in

consideration of the on times job’s with smaller due dates sequenced before. The final set of

constraints in (7.3) ensures that each job is either scheduled on time or tardy.

63

Surrogate multipliers are used for obtaining the well known knapsack model as a relaxation of

WNT. Glover was the first who introduced surrogate constraint to integer programming.

Generally, surrogate relaxation subsumes several constraints by weighting them with factors so

called surrogate multipliers, and by summing up these modified constraints [43]. With λi≥0

being the surrogate multiplier associated with constraint i and with

 aj=pj∑ λj𝑛
𝑖=𝑗 and b=∑ λ𝑛

𝑗=1 jdj

The knapsack model(referred to as KP) can be expressed as following

max∑ w𝑛
𝑗=1 jxj (KP) …………………………………..(7.4)

s.t. ∑ aj𝑛
𝑗=1 xj≤b ………………………………………... (7.5)

xj є{0,1} j=1, ….. , n …………………………... (7.6)

KP corresponds to the binary knapsack problem, with wj being the profit if item j is selected

(xj=1; otherwise xj=0), aj being the weight of item j and b being the knapsack capacity. The

objective of the profit equation is simply expressed as the sum of all packed items profit, where

as equation ensures that the overall weight does not exceed the knapsack capacity.

Any feasible solution to WNT is also feasible to KP, but not necessarily the other way round.

Thus, KP is less constraint providing a bound for WNT. The bound’s quality, of course depends

on the surrogate multipliers values. The linear programming of KP (i.e LPKP) obtained by

relaxing the binary restriction in (7.6) and allowing xj to take real values between zero and one

(i.e. 0≤xj≤1,j=1,, ….., n) can easily solved. After reordering the variables in decreasing order of

wj/aj, i.e.

w1/a1≥w2/a2≥…….≥wn/an,

One has to find the index f satisfying

 ∑ ai𝑛
𝑖=1 ≤b≤∑ ai

𝑓+1
𝑖=1

Then, in an optimal solution, all jobs whose index is smaller than f-1 are set on time, while jobs

associated with an index larger than f+1 are scheduled tardy. If job j cannot be scheduled

64

 completely it is scheduled partially. Thus an optimal solution of LPKP has at most one variable

with 0<xj <1. Subsuming, an optimal solution of LPKP with identified index f has the following

form.

 xj=1, j=1,……, f-1, ……………………………(7.7)

 xj =b-∑ ai
𝑓
𝑖=1 /af j=f ………………………………………(7.8)

 xj=0 j=f+1, …, n, ……………………………(7.9)

An O(n) algorithm for finding a critical job based on critical ratios stems from Balas and Zemel.

7.5.1.2 A heuristics for obtaining an initial solution for WNT

Given suited surrogate multipliers, the heuristic procedure by M’Hallah and Bulfin runs in O (n2)

polynomial time. It is used to find the initial feasible solution for WNT as starting point for the

exact B&B algorithm.

The heuristic starts by solving LPKP and checking whether all jobs in O, which denotes the

subset of those supposed to be on time, are actually on time if scheduled in EDD order (the EDD

schedule is said to be feasible) (step 0 and 1).Note that all jobs with an index smaller or equal

than f-1 are initially supposed to be on time, Consequently, j=1,….., f-1 and O={1,….., f-1}. If in

EDD ordering not all such jobs (in O) can actually be scheduled on time (the solution to LPKP is

not feasible to WNT), the last job in O (at the beginning the one with index f-1) is removed and

set tardy (xf-1=0), the resulting EDD schedule is checked again for feasibility. This procedure is

continued (step 2) until a feasible EDD schedule to WNT is found. The heuristic then tries to

improve it by gradually setting tardy jobs temporarily on time (adding them to O) (step3) and by

testing the schedule’s feasibility (step 4). If infeasibility is triggered again, the last job which was

temporarily set on time is set tardy again. As the consequence of the LPKP solving procedure the

sequence in which jobs are considered depends on wj/aj, i.e. the job’s ratio of objective

coefficient (wj) to constraint coefficient (aj). On time jobs are scheduled tardy, one by one, in

increasing order of wj/aj whereas tardy jobs are scheduled on time in decreasing order of wj/aj

65

Algorithm 7.1 [46] Heuristic

Step 0: Solve LPKP; set O= {1,2, ….., f-1}, L={f, f+1, ….., n},k=f-1.

Step1: Schedule all jobs in O in EDD-order. If all jobs in O are on time, the EDD schedule is

feasible; proceed with step 3.

Step 2: Set O=O-{k}, L=LU{k} and k=k+1. Go back to step 1.

Step 3: If L= go to step 5 otherwise set k=k+1, L=L-{k}.

Step 4: If all jobs in OU{k} are on time in EDD order set O= OU{k} and go back to step 3.

Step 5: All jobs in O are on time. The objective value of WNT equals:

Z*=∑ 𝑤𝑗𝑗єo and xj
*=1,j є O; xj

*=0 otherwise.

7.5.1.3 An exact algorithm for WNT

Starting with initial solution for WNT obtained by applying the heuristic discussed in the

previous section, the B&B approach uses bounds based on LPKP. Each problem in the candidate

list (each node) is a subproblem of KP having certain variables fixed to either one or zero. At

each iteration, the subproblem with the best bound (the candidate problem CP) is chosen from

the candidate list and its linear programming relaxation (LPKP) is solved, thus maximum upper

bound rule is applied. When no feasible solution can be found, or the objective function’s value

is lower/ equal than the best known feasible solution, the branch can be fathomed and another

problem is chosen from the candidate list. Otherwise if the solution obtained by solving LPKP is

better than the best known feasible solution, it is checked whether this solution is also feasible to

WNT. According to the set of constraint (7.2) and (7.3) all jobs thought to be on time actually

must be in on time on a EDD schedule, and all variables must be integer. If all variables are

integer and if all jobs j with xj=1 are on time in an EDD schedule, anew best solution is found.

Problems with bounds no better than this new best solution’s objective value are removed from

the candidate list otherwise some variable are fixed, the treated candidate problem is

decomposed and two new candidate problems are added to the candidate list .

66

7.5.2 Dynamic programming applied to problem.

Given n jobs ni ,.....,2,1 with processing times ip and due dates id . These jobs have to be

sequenced such that 


n

i

iiUw
1

is minimized where 0iw for ni ,.....,2,1 . Assume that the jobs are

enumerated according to non-decreasing due dates: nddd 21 . Then, there exists an

optimal schedule given by a sequence of the form, nss iiiii ,....,,,.......,, 121  . Where, jobs

siii 21 are on-time and jobs ns ii ,....,1 are late. If a job i is late, then put i at the end of

the schedule without increasing objective function. If i and j are early jobs with ji dd  such that

i is not scheduled before j then shift the block of all jobs scheduled between j and i jointly with

i to the left by ip time units and schedule j immediately after this block. Since, i was not late

and ji dd  which creates no late jobs. To solve the problem, calculate recursively for





n

i

ipTt
1

,.....,2,1 and nj ,.....,2,1 the minimum criterion value)(tFj for the first j jobs

subjected to constraint that total processing time of on-time job is at most t . If jdt 0 and job

j is on-time in a schedule corresponds with)(tFj than)(tFj =)(1 jj ptF  . Otherwise)(tFj =

jj wtF )(1 . If jdt  , then)()(jjj dFtF  because all jobs j,.....,2,1 finishing later than

1...... ddj  are late.

To calculate an optimal schedule it is sufficient to calculate the set L of late jobs in an optimal

schedule.

Algorithm 7.2:  iiUw1

1. 1max  toptfor

2. ntojfor 0

;)(0 tF

3. Ttotfor 0

;)(0 otF 

4. ntojfor 1

{

67

4.1 jdtotfor 0

4.2)()(11 jjjj ptFwtFif  

)(tFj = jj wtF )(1)(tFj ;

 else

)(tFj =)(1 jj ptF  ;

4.3 Ttodtfor j 1

)()(jjj dFtF  ;

}

7.6 Experiments and Results

In this experimentation part, all of the algorithms mentioned in this chapter were implemented in

java. The source codes for these programs are given in appendix. These algorithms were

executed in Intel Pentium IV processor, Windows XP operating system, 512 MB of RAM. The

programming language used was java.

The objective of implementing dynamic programming and branch and bound algorithms describe

in this chapter, is simply to compare their output .

7.6.1 Input Data Set

First, a program for generating data was implemented (see appendix). This program uses the

random number generator provided by the java library. Using this program, size sets of input

data were generated, containing instances for 10, 20, 30, 40 and 50 jobs. Each input data set

contains 50 instances. In all instances, processing times are in range [1, 100]; due-dates are in

range [1, 100] and weights for each job are in range [1, 10]. The release time for each job is set

to be zero.

68

 7.6.2 Output

Input data

set

No. of jobs Weighted Number of

Tardy Jobs(Dynamic

Programming)

Weighted Number

of Tardy Jobs

(Branch &Bound)

1 5 2 0

2 10 3 2

3 15 9 2

4 20 9 3

5 25 7 3

6 30 13 4

7 35 16 4

8 40 19 5

Table 7.1: Weighted number of tardy jobs given by various algorithms (for all input data sets,

no. of instances=50, maximum processing time=100, maximum due date=100, maximum weight

for each job=10, and release time for each job=0).

The above table is summarized in the following figure:

Fig 7.1: Weighted Number of Tardy Jobs Given By Various Algorithms.

0

2

4

6

8

10

12

14

16

18

20

5 10 15 20 25 30 35 40

W
ei

gh
te

d
 N

o
. o

f
Ta

rd
y

jo
b

s

No of Jobs

B &B

DP

69

From figure, it is clear that, Branch and bound algorithm is more efficient than dynamic

programming.

70

CHAPTER 8

CONCLUSION AND RECOMMENDATION

In Chapter 8 the experimental setup and results obtained are presented. In this chapter, summary

and directions for future research are given.

8.1 Summary

In this thesis, I addressed problem related to minimize the weighted number of tardy jobs, a

single machine scheduling problem with release time constant performance objective of

minimizing the weighted number of tardy jobs.

The problem is proved to be NP-Hard problem, and only can be solved in pseudo polynomial

time. I studied a heuristic algorithm and the branch and bound algorithm to solve the problem,

implemented both and compared the results of both the algorithms and proved that the heuristic

algorithm gives solution very near to branch and bound procedure.

It is found that the weighted numbers of tardy jobs obtained from B&B are less as compared to

dynamic programming approach when the number of jobs increases.

8.2 Conclusions

For scheduling problem to minimize the weighted number of tardy jobs with release time

constant, from the implemented heuristic approach and branch and bound approach, following

conclusions can be made

 The dynamic programming algorithm gives a solution near to B&B for the 1||WjUj. However

as the number of the jobs increases the B&B gives less number of tardy jobs.

8.3 Recommendation

The scheduling problem discussed in this thesis is deterministic single machine scheduling

problem with a performance objective of minimizing the weighted number of tardy jobs with

release time constants without preemption. As customization is the key feature of any product

today, we need more study and research in this area, so that we can provide benchmarks for

many of the application area of scheduling.

71

It would be interesting if the solution obtained by the implemented heuristic in this thesis is

improved to more near optimal solution by using meta-heuristic approaches like tabu search,

simulated annealing or genetic algorithm techniques and also more interesting if the case is non-

deterministic.

72

REFERENCES

[1].Carlier,J.andChretienne,P.,problems’ordonnancement:modelisation/complexite/algorithms”,

Masson,Paris(1988).

[2]. Pinedo, M.,“scheduling–theory, algorithms, and systems”, Prentice Hall, Englewood

Cliffs(1995).

[3]. Colorni M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini and M. Trubian. Heuristics from

Nature for Hard Combinatorial Optimization Problems International Transactions in

Operational Research, V 3, Issue 1, p1-21 (1996).

[4]. Graham, R.E., Lawer, E.L., Lenstra. J.K., and Rinnooy Kan, “Optimization and

approximation in deterministic sequencing and scheduling, a survey”, Annals of Discrete

Mathematics 5(1979) 287-326

[5]. Brucker, P. (1995): Scheduling Algorithms. Springer, Berlin

[6]. Wikipedia, The free Encyclipedia.

[7]. Cormen, T. H., Leisrrson, C. E., Rivest, R. L., and Stein, C. (2004): Introduction to

Algorithms. Prentice-Hall of India Pvt. Ltd.

[8]. Hopcroft, J. E., Motwani, R., and Ullmann, J. D. (2002): Introduction to Automata Theory,

Languages and Computation. Pearson Education.

[9]. Silberschatz, A., Galvin, P. B., and Gagne, G. (2002): Operating System Concepts.6th

Edition, John-Wiley Pvt. Ltd., New York.

[10]. Brasel Heidemarie, “Latin Rectangles in Scheduling theory a basic modeling concept of

LISA, 1996

[11]. Dhamala,T.N.,and Khadka ,S.R.(2007):Just –In –Time Sequencing for mixed model

Production Systems Revisited ,Discrete Optimization, submitted.

73

[12]. McCarthy, B. L., and Liu, J. (1993): Addressing the Gap in Scheduling Research: A Review

of Optimization and Heuristic Methods in Production Scheduling. International Journal of

Production Research, Vol. 31, pp. 59–79.

[13] Tanenbaum, (2004): Modern Operating Systems. Prentice–Hall of India Pvt. Ltd.

[14]. Blazewicz, J. C., Ecker, K. H., Pesch, E., and Weglarz, J. (1996): Scheduling Computer and

Manufacturing Processes. Springer, Berlin.

[15]. Miltenburg, J. and Sinnamon, G., “Scheduling mixed model multi-level just-in-time

production systems”, International Journal of Production Research 27,9 (1989) 1487-1509.

[16]. Monden, Y., “Toyota production system”, Industrial Engineers and Management press,

Norcross, GA(1983).

[17]. Dhamala, T.N., and Kubiak, W, (2005): A brief Survey of Just-In-Time sequencing for

mixed model production .International Journal of Operations Research, Vol.2, pp38-47.

[18]. Dasgupta, S. C., Papadimitriou, C. H., and Vazirani, U. (2006): Algorithms. McGraw-Hill.

[19]. Baker, K. R. (1974): Introduction to Sequencing and Scheduling. John Wiley and Sons,

New York.

[20]. Winston, W.L. and M. Venkataramanan (2003): Introduction to mathematical

programming. 4th edition. Toronto: Books/Cole-Thomson Learning.

[21]. Lawler, E. L. and Wood, D. E. (1966): Branch and Bound Methods: A Survey. Operations

Research, Vol. 14, pp. 699–719.

[22]. Karger, D., Stein, C. and Wein, J. (1997): Scheduling Algorithms. In: M. J. Atallah, editor:

Handbook of Algorithms and Theory of Computation. Boca Raton: CRC Press

[23]. Lawler, E. L. (1990): A dynamic programming algorithm for preemptive scheduling of a

single machine to minimize the number of late jobs. Annals of Operations Research, 26, 125–

133.

74

[24]. Lenstra, J. K., Rinnoy Kan, A. H. G., and Brucker, P. (1977): Complexity of Machine

Scheduling Problem. Annals of Discrete Mathematics, Vol. 4, pp. 121-140.

[25]. Brassard, and Bartley, P.(1998): Fundamentals of Algorithmic, prentice-Hall of India

Pvt,Ltd.

[26]. Gere Jr., W. S. (1966): Heuristics in Job Shop Scheduling. Management Science, Vol. 13,

pp. 167–190.

[27]. Blackstone, J. H., Phillips, D. T., and Hogg, G. L. (1982): A State-of-the-Art Survey of

Dispatching Rules for Job Shop Operations. International Journal of Production Research, Vol.

20, pp. 27–45.

[28]. Russell, S., and Norvig, P. (2006): Artificial Intelligence: A Modern Approach. Pearson

Education

[29]. Glover (1986), scheduling the production of two component jobs on a single machine,

European Journal of Operational Research 120, p 250-259.

[30]. Holland, J. H. (1975): Adaptation in Natural and Artificial Systems. Michigan University

Press, Ann Arbor.

[31] Anderson, E. J., and Potts, C. N. (2002): On-Line Scheduling of a Single Machine to

minimize Total Completion Time. Proceedings of the Thirteenth Annul ACM-SIAM Symposium

on Discrete Algorithms, SODA, January.

[32]. Lawler, E. L. (1994): Knapsack-like scheduling problems, the Moore-Hodgson algorithm

and the “tower of sets” property. Mathematical and Computer Modelling, 20, 91–106.

[33]. Gupta, S. K. and J. Kyparisis (1987): Single machine scheduling research. International

Journal of Management Science, 15, 207–227.

[34]. Bomberger, E. E. (1966): A Dynamic Programming Approach to a Lot size Scheduling

Problem. Management Science, Vol. 12, pp. 778–784.

[35]. Domschke, W., Scholl, A., and Voß, S. (1993): Produktionsplanung -

Ablauforganisatorische Aspekte. Springer, Berlin.

75

[36]. Domschke, W., and Drexel, A. (2005): Einf¨uhrung in Operations Research. 6th edition.

Springer, Berlin.

[37]. Karp, R. M. (1972): Reducibility Among Combinatorial Problems. In: Miller, R. E., and

Thatcher, J. W. (editors): Complexity of Computer Computations. Plenum Press, New York, pp.

85-103.

[38]. Lawler, E.L,and J.M. Moore (1969): A functional equation and its application to resource

allocation and sequencing problems. Management science,16, 77-84.

[39]. Sahni,S. (1976): Algorithm for scheduling independent jobs. Journal of the Association of

Computing Machinery, 23, 116-127.

[40]. Lawler, E. L. (1976): Sequencing to minimize the weighted number of late jobs. RAIRO

Recherche Operationnel, 10, 27–33.

[41]. Villareal, F.J. and R.L. Bulfin (1983): Scheduling a single machine to minimize the

weighted number of tardy jobs. IIE Tranctions, 15, 337-343.

[42]. Tang, G. (1990): A new branch and bound algorithm for minimizing the weighted number

of tardy jobs. Annals of Operations Research, 24, 225-232.

[43]. M’Hallah, R. and R. L. Bulfin (2003): Minimizing the weighted number of tardy jobs on a

single machine. European Journal of Operational Research,145, 45–56.

 [44]. Baptiste, P. (1999b): Polynomial time algorithms for minimizing the weighted number of

late jobs on a single machine with equal processing times. Journal of Scheduling, 2, 245–252.

[45]. Smith, W. E. (1956): Various optimizers for single-state production. Naval Research

Logoistic Quarterly, 3, 59-66.

[46]. Jackson, J. R. (1955): Scheduling in a production line to minimize maximum tardiness. Los

Angels, USA: University of California-Research Report 43, Management Research Project.

76

APPENDIX A: Program Source Code of Algorithms

package javaapplication3;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Random;

public class FindTardyJobs {

public static double num, num1;

 public static int n = 8;

 //array to hold processing times

 public static int p[] = new int[n];

 //array to hold due times

 public static int d[] = new int[n];

 //array to hold weight

 public static int w[] = new int[n];

 public static int tardyJob = 0;

 //array to hold the optimal schedule given by the sequence

 public static int onTimeLateJobs[] = new int[n];

 //arraylist to hold the ontime jobs

 public static ArrayList<Integer> onTime = new ArrayList<Integer>();

 //arraylist to hold the latetime jobs

 public static ArrayList<Integer> lateTime = new ArrayList<Integer>();

77

 public static int capitalT = 0;

 public static int smallT = 0;

 public static int f1 = 0;

 public static int f2 = 0;

 public static int f3 = 0;

 public static int capitalF[] = new int[n];

 public static void main(String arg[])

 {

 //find the processing time

 for(int i=0; i<n; i++)

 {

 num = Math.random();

 num1 = num * 10.0;

 p[i] = (int)num1;

 num = Math.random();

 num1 = num * 10.0;

 d[i] = (int)num1;

 num = Math.random();

 num1 = num * 10.0;

 w[i] = (int)num1;

 }

 //sort the due times

78

 Arrays.sort(d);

 System.out.print(" ");

 for(int i=0; i<n; i++)

 System.out.print("Job "+(i+1)+" ");

 System.out.println();

 System.out.print("processing time");

 for(int i=0; i<n; i++)

 {

 System.out.print(p[i]+" ");

 }

 System.out.println();

 System.out.print("due time ");

 for(int i=0; i<n; i++)

 System.out.print(d[i]+" ");

 System.out.println();

 System.out.print("weights ");

 for(int i=0; i<n; i++)

 System.out.print(w[i]+" ");

 for(int i=0; i<n; i++)

 {

 if(p[i] > d [i])

 {

79

 tardyJob += 1;

 }

 }

 System.out.println();

 System.out.println("No of tardy jobs = " + tardyJob);

 //implement the second algorithm

 for(int i=0; i<n; i++)

 {

 //find the ontime jobs

 if(p[i] <= d[i])

 {

 onTime.add(i);

 smallT = smallT + p[i];//find the total time sum of ontime jobs

 }

 //find the latetime jobss

 else

 {

 lateTime.add(i);

 }

 //find the total time of all jobs

 capitalT = capitalT + p[i];

 }

80

 for(int i=0; i<n; i++)

 {

 if(d[i] >= smallT)

 {

 for(int k=0; k<onTime.size(); k++)

 {

 if(i == onTime.get(k))

 {

 f1 = f1 + f1 * (smallT - p[i]);

 //capitalF[i] = capitalT[i-1]

 }

 else

 {

 f2 = f2 + w[i];

 }

 }

 }

 else

 {

 f3 = f3 + f3 * d[i];

 }

 }

 String tr = "";

 int t;

 int count = 0;

 for(int j=n-1; j>=0; j--)

81

 {

 if(smallT < d[j])

 t = smallT;

 else

 t = d[j];

 if(f2 == f1 + w[j])

 {

 tr = tr + " Job " + j;

 count++;

 }

 else

 t = t - p[j];

 }

 //print tardy job

 System.out.println("Tardy jobs by second algorithm");

 System.out.println("Number of tardy jobs = "+ count);

 System.out.println(tr);

 }

}

