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CHAPTER 1 

INTRODUCTION 

The scheduling theory concerns the optimum allocation of limited resources like money, tools, 

energy, machines, and manpower over time to perform a set of activities (operation) in some 

processes like computation and manufacturing. 

The first scheduling algorithms were appeared in the mid fifties, while the area developed as its 

own specific field during the year 1960’s with many industrial applications. The computer 

scientists in the year 1970’s accelerated investigations of scheduling as a tool for improving the 

performance of computer systemsOne of the simplest ways to understand the scheduling problem 

is to find the answer for following question: 

Given a number of jobs that have to be processed on a machine consisting of a certain number of 

processor, find for each job a processor assignment for a certain time interval so that the 

completion time of the last finishing job is minimal. This time is called makespan of the schedule 

and it is one of many objective functions one could be interested in minimizing or maximizing. 

Consider the processor of a computer as a resource tasks arrive over time needing to be 

processed. In which order shall these tasks be accomplished in order to minimize the average 

time a task is in the system? 

Consider a hospital; every patient - from the doctor’s perspective a task - needs a bunch of 

different medical treatments (like surgery, x-raying, etc.). Each treatment symbolizes a scarce 

resource - in most cases due to limited staff. In which order shall a given number of patients with 

individual needs for medical treatments be served in order to minimize the average waiting time?  

Consider a certain machine within a manufacturing process as a resource, there is a set of jobs 

that must be processed on this machine - like semi-finished goods waiting to be completed. Each 

job has individual characteristics - it takes a certain time to be completed, should be finished 

before a certain instant of time, etc. How the jobs shall be scheduled in order to meet certain 

objectives?   

 All these scenarios have in common that a decision must be made concerning the assignment of 

patients, tasks, jobs to the available resources and concerning the sequence to process them on 
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each of those resources in order to “best” fulfill a certain predetermined objective; in other 

words, optimal schedule must be determined.  

 

Most of the difficulties of optimal solution processes in scheduling theory lie on the fact that an 

examination of the solution space in combinatorial optimization is very much time consuming 

even it is a finite set. 

A definition is quoted by Carlier and Chretienne:  “Scheduling is to forecast the processing of a 

work by assigning resources to tasks and fixing their start times. The different components of 

scheduling problem are the tasks, the potential constraints, the resources and the objective 

function. The tasks must be programmed to optimize a specific objective function. Of course, 

often it will be more realistic in practice to consider several criteria.”, Carlier and Chretienne 

[1].  

Another definition put forward by Pinedo: “Scheduling concerns the allocation of limited 

resources to task over time. It is decision-making process that has a goal the optimization of one 

or more objectives.”,Pinedo [2]. 

In the above definitions, the task (or operation) is the entity to schedule. In this dissertation work 

we deal with jobs to schedule. When all jobs contain only a single operation we term mono 

operation problem. Else we say multi-operation problem. The operation of a job may be 

connected by precedence constraints. We deal with the resource or machine. We consider two 

types of resources: renewable resource (which is available after use e.g. machine, file, processor, 

personnel etc.) and non renewable resources (which disappear after use e.g. money, raw 

materials etc.). There are two types of optimality criteria those relating to completion time and 

those relating to costs. In the category of completion time related criteria we find for example 

those which measure the completion time of whose schedule and those which measure the 

tardiness of jobs in relation to their due date. In the category of cost related criteria we may cite 

those which represent cost of machine use and those which represent cost allied to waiting time 

of operations before and/or after they are processed. 

Now days, the scheduling theory has become the most desirable concept in the computing 

environment; the hardware configuration of computer such as processor management, memory 

management, I/O Management and other resource management, and software development 

structure such as modular programming, object oriented, aspect oriented concepts. Today’s most 



 
3 

popular computer processing such as on-line processing, data communication over the network 

and Artificial Intelligence (AI) technology are also characterized by scheduling theory[3]. 

Research in scheduling theory has evolved over the past forty years and has been the subject of 

much significant literature which uses techniques ranging from unrefined dispatching rules to 

highly sophisticate parallel branch and bound algorithms and bottleneck based heuristics.  

 An extensive literature search is done scheduling jobs on a single machine and some traditional 

approaches to solve like the famous Moore-Hodgson’s Algorithm for minimizing the number of 

tardy jobs is presented. We studied a heuristic algorithm and branch and bound algorithm to 

solve this problem. The results obtained are compared. In this chapter introduction of machine 

scheduling, scheduling environment and scheduling problem are briefly discussed. The notation 

used and significance of the current problem dealt in this thesis is also given. 

This thesis is dedicated to the problem of scheduling n jobs on a single machine. The scope is 

limited to deterministic problems with objective of minimizing the weighted number of tardy 

jobs. A job is finished on time as long as it is completed before its due date, otherwise it is said 

to be tardy. Satisfying due dates is necessarily crucial, since tardiness is typically connected with 

extra costs.  

1.1 Machine Scheduling  

The problem of scheduling arises in several areas like production management, computer 

networks, operating systems and many fields having resource constraints. Scheduling concerns 

the allocation of limited resources to tasks over time.  The general scheduling problem can be 

formulated in this way: We are given m machines, Mi  i = 1,2,...,m and n number of jobs j, j = 

1,2,…,n. Besides, there is an objective function, which gives the cost of scheduling. The problem 

is to assign the jobs an allocation of one or more time intervals on one or more machines, 

minimizing the total objective value. The terms ‘machine’ and ‘job’ are very general. For 

example machine can be a microprocessor, a water pump, or even office personnel. Similarly, 

jobs can be of any type. If the machine is a microprocessor, then job means a program. 

1.2 Three field notation 

Scheduling problems can be described by a three field notation α|β|γ where α describes the 

machine environment, β describes job characteristics, and γ describes the objective functions to 



 
4 

be minimized, Graham et al [4]. A field may contain more than one entry but may also be empty. 

Latter, it is described in Chapter 3. Our problem is a single machine scheduling to minimize 

weighted number of tardy jobs with release time constant is denoted by in three field notations as 

1||∑WjUj 

1.3   Significance of the problem 

The problem considered in this research deals with scheduling n jobs on a single machine to 

minimize the weighted number of tardy jobs with release time constant ,each job to completed 

have different processing time, due date and associated with weight. This is proved to NP-Hard 

problem and is only solvable in pseudo polynomial time and has very much importance in 

computer science. 

1.4  Notations and Definitions 

Let n be the number of jobs to be processed with jє{1,……..,n} denoting a typical job. 

Alternatively, a job is denoted Ji and the set of jobs to be processed is given by 

{J1,……....,Jn}.Let  i є {1,…………,m} be a certain machine of a set of m machines available. 

There are a terms related to scheduling problems which are used throughout this dissertation [5] 

1.4.1 Machine 

A machine is available to execute jobs and tasks. Different machine environments exist. Such as 

single machine and parallel machines. Generally we use in this dissertation as single machine 

scheduling. 

1.4.2 Release Time/Date 

The point in time when a job j is ready to be processed. It is denoted by rj. It is also known as 

arrival or ready time/date. 

1.4.3 Processing Time 

It is defined as the length of time to process a job or task. It is denoted by pj 

1.4.4 Completion Time 

The time at which a job is finished. It is denoted by Cj 
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1.4.5 Due Date 

The point in time at which job should be completed. It is denoted by dj. 

1.4.6 Waiting Time 

Length of time between the ready time of a job and beginning of processing of a job. It is 

denoted by W. 

1.4.7 Weight (Priority) 

A weight can be added to the jobs to express relative urgency or priority between them. It is 

denoted by wj. 

1.4.8 Job 

A job can be made up of any number of tasks. It is easy to think of a job as making a product and 

each task as an activity that contributes to making that product, such as a painting task, 

assembling task and so on. 

1.4.9 Lateness 

Difference between completion time and due date i.e. Lj=Cj-dj where Cj is the completion time 

job j and dj is the due date of job j. 

1.4.10 Tardiness 

The tardiness of job j Tj is defined as Tj=max (0,Cj-dj) where Cj is the completion time of job j 

and dj is the due date of job j. 

1.4.11 Flow time 

Amount of time job j spends in the system .Fj=Cj-rj, where Cj is the completion time of job j and 

rj is the release date of job j. 

1.4.12 Earliness 

Difference between the due date and the completion time i.e Ej=dj-Cj, where dj is the due date of 

job j and Cj is the completion time of job j. 

1.4.13 Preemption  

The preemption (or job splitting) is allow during the processing of a job, if the processing of the 

job can be interrupted at any time (preempt) and resumed at a later time, even on a different 

machine. The amount of processing already done on the preempted job is not lost. In this case we 

consider only the non preemption. 

1.4.14 Slack Time 

Time until a jobs due date minus the processing time of a jobs. 
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1.4.15 Precedence 

Some jobs must be done before the other jobs. In addition, each job also has a specific order of 

performing the tasks of that job. This order is referred to as a precedence constraint. 

 

1.5  Organization of the thesis 

Thesis is organized as follows: 

Chapter 2 describes algorithm and computational complexity. The theoretical basis of computer 

science has been formulated. Computational resources and complexity classes are described. 

Chapter 3 describes the scheduling problems as encountered in the literature. It presents the 

representation of schedule, Graham’s law of scheduling problem, types of scheduling problems 

and some application areas of scheduling problems in operating system is also provided. 

Chapter 4 describes the different solution strategies for scheduling problems. 

Chapter 5 describes the single machine scheduling and its importance in scheduling and also 

describe the list of solution mentioned in past. 

Chapter 6 describes the problem and some solution approach related to problem. 

Chapter 7 describes the methodologies used in our dissertation and describes the comparison of 

two enumerative algorithm dynamic programming and branch and bound algorithm input is 

given by random number generator. 

Chapter 8 describes the conclusion and further research. 
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CHAPTER 2 

COMPUTATIONAL COMPLEXITY 

2.1 Complexity Theory 

Complexity theory is a part of theory of computation dealing with the resources required during 

computation to solve a given problem. The most common resources are time (how many steps 

does it takes to solve a problem) and space (how much memory does it take to solve a 

problem).Other resources can also be considered, such as how many parallel processors are 

needed to solve a problem in parallel. Complexity theory differs from computability theory, 

which deals with whether a problem can be solved at all, regardless of the resources required [6]. 

One of the major goals of complexity theory and algorithm analysis is to measure the 

performance of algorithms with respect to their computation time. The time complexity of an 

algorithm is the number of steps that it takes to solve an instance of the problem as a function of 

input size using the most efficient algorithm. The running time of an algorithm is said to be 

O(h(n)) if for a positive number c>0 there exists an implementation that terminates after at most 

c.h(n)  for all n≥𝑛0.The time complexity of an algorithm is the smallest function such that the 

algorithm has running time O(h(n)).The time complexity T(k) of a problem ∏ is the minimal 

time complexity of all algorithms so that for some c>0 and 𝑘0є𝑧+ it holds T(k)≤c.h(k) for all 

k≥𝑘0.Remark that, the existence of this minimality in general is not guarantee and it is in fact 

one of the focal points of research in complexity theory. Obtaining the lower bounds for the 

complexity of a problem is harder; however upper bounds are usually obtained. 

A polynomial algorithm is the one whose time complexity function T(k) є O(h(n)),where h is 

some polynomial and n is the input length of an instance I.A computational problem is called 

polynomially solvable if there is a polynomial time algorithm solving it. 

 

If time complexity function cannot be bounded by polynomial function, it is called exponential 

time algorithm. 

The complexity theory provides a framework in which computation problems are studied so that 

they can be classified as “easy” or “hard”. Here we focus the main points of such theory. 
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A polynomial time (polynomial) algorithm is one whose time complexity function is O (p (k)), 

where p is some polynomial and k is the input length of an instance. Each algorithm whose time 

complexity function cannot be bounded in that way is called exponential time algorithm. 

Generally the problems with polynomial time algorithm are called easy problems with 

exponential time complexity are called hard problems [7]. 

 

2.2 Algorithms and Complexity 

If computer problem solving can be summed up in one word, it is demanding! Problem solving is 

an intricate process requiring much thought, careful planning, logical precision, persistence and 

attention to detail. At the same time, it can be challenging, exciting and satisfying experience 

with considerable room for personal creativity and expression. If computer problem solving is 

approached in this sprit, then the chances of success are greatly amplified. 

The computer solution to a problem is a set of explicit and unambiguous instructions                 

expressed in a programming language. This set of instruction is called a program. Program may 

also be thought of as an algorithm expressed in programming language. An                            

algorithm therefore corresponds to a solution to a problem. 

2.2.1 Algorithm 

An algorithm is a procedure for solving a problem (i.e. giving an answer).we will say that an 

algorithm solve the search problem, if it finds a solution for any instances I. In order to keep the 

representation of algorithms easily understandable, we follow a structural programming such as 

case statement, or loop of various kinds. Functions or procedures may also be called an 

algorithm. Parameter may be used to import data or to export data from the algorithm. Besides 

these, we also use mathematical notations such as set theoretic notations. In general, an 

algorithm consists of two parts: a head and a method. The head starts with the keywords 

algorithm followed by identifying number and optimality, a descriptor (a name or a description 

of the purpose of algorithm) references to the authors of the algorithm. Input and output 

parameters are omitted in case where they are clear from the context. In other case, they are 

specified as a parameter list. In even more complex case, two fields input (instances) and output 
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(Answer) are used to describe the main idea of the algorithm. The method part is block of the 

instructions. 

2.2.2 Computational Resources 

Complexity theory analyzes the difficulty of computational problems in terms of many different 

computational resources. The same problem can be explained in terms of the necessary amounts 

of many different computational resources, including time, space, randomness, and other less-

intuitive measures. A complexity class is the set of all of the computational resource. 

The most well-studied computational resources are time and space. The time complexity of a 

problem is the number of steps that an algorithm takes to solve an instance of the problem. The 

space complexity of a problem measures the amount of space, or memory required by the 

algorithm. A good algorithm always takes less time and less space. A better algorithm in bad 

machine may appear insufficient compared to bad algorithm in good machine. To minimize 

effect of these considerations, computational complexity deals with instances whose input size is 

very large, so that machine size can be neglected. To describe behavior of algorithm for large 

input the concept of asymptotic order is    useful. 

2.2.3 Time and Space Complexities of Algorithms 

Time requirement is counted in units of steps. Space requirement is counted in units of memory 

cells. For any algorithm, one may have not specified time or space complexity or both for 

example, if an algorithm has time complexity of O (f (n), then it means that the number of steps 

required by the algorithm is bounded above by f (n). Space complexity can be stated similarly. 

Usually in computational complexity theory, one considers time complexity. In the following 

discussions; the term ‘complexity’ is used to denote time complexity unless explicitly 

mentioned. 

2.3 Decision /Recognition Problem 

Optimization problems can rearranged in such a way that the solution is a “yes” or “no” answer 

(e.g. “is there a schedule for a given set of jobs that generates a number of tardy jobs less than a 

predetermined number say |L|?”). 
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If the recognition version of the problem is answered with “yes”, the underlying instance is 

called a certificate (for the above example the certificate would be the schedule that achieves a 

number of tardy jobs less than |L|). 

In other words, much of complexity theory deals with decision problems. A decision problem is 

a problem where answer is always YES/NO. For example a problem PATH related to shortest 

path problem is, “Given a path G= (V, E), two vertices u, vV and non-negative integer k, does 

a path in G between u and v whose length is at most k?”. If I = (G, u, v, k) is an instance of this 

shortest path problem, then PATH (I) = “yes” if a shortest path from u to v has length at most k, 

and PATH (I) = “no” otherwise, [7]. 

 

2.4 Optimization Problems 

 

We encounter many problems where there are many feasible solutions and our aim is to find the 

feasible solution with best value. This kind of problem is called optimization problem. For 

example given the graph G, and the vertices u and v find the shortest path from u to v with 

minimum number of edges. The NP completeness does not deal with optimization problems; 

however we can translate the optimization problem to the decision problem. Discrete 

optimization problems are also known as combinatorial optimization problems. Large classes of 

combinatorial optimization problems are important tools to solve problems in computer science 

and interpretation technology. 

 

2.5 Abstract Problems and Encoding 

 

Abstract problem A is the binary relation on set I of problem instances, and the set S of problem 

solutions. For example minimum spanning tree of a graph G can be viewed as a pair of the given 

graph G and MST graph T. Many abstract problems are not decision problems, but rather 

optimization problems in which some value must be minimized or maximized. 

Encoding of a set S is a function e from S to the set of binary strings. With the help of encoding, 

we define the concrete problem as a problem with problem instances as the set of binary strings 

i.e. if we encode the abstract problem, then the resulting encoded problem is concrete problem. 
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So, encoding as a concrete problem assures that every encoded problem can be regarded as a 

language i.e. subset of {0, 1}*. 

 

2.6 Reducibility 

 

A useful tool in studying the relationship between members of a class is the translation or 

mapping of one to another. If we can translate one set into another, we can often deduce 

properties of one by the properties that we know the other processes. A problem A1 can be 

reduced into another problem A2 if any instances of A1 can be rephrased as an instances of A2,the 

solution to which provides a solution to the instances of A1 [8].For example, the problem of 

solving linear equation in an indeterminate x reduces to the problem of solving quadratic 

equations. Given an instance ax +b=0, we transform it to 0x2 +ax +b=0, whose solution provides 

to the solution to ax +b=0.Thus if problem A1 reduces to another problem A2, then A1 is , in 

sense, no harder to solve than A2. This notion can be represented as A1 pA2. The fig 3.1 below 

shows this strategy. 

 

 

A1                         A2                               Yes 

Instances      In     Instances 

 

            No 

     Figure 2.1: Problem reduction[8] 

2.7 Complexity Classes 

2.7.1The Class P 

The class P consist of all those decision problems that can be solved on a deterministic sequential 

machine in an amount of time that is polynomial in size of input i.e. the time complexity function 

is polynomial [7].In other word, a decision problem is in the class P if there exists an algorithm 

that solves any instances of size n in O (nk) time, for some integer k. So P is just the set of 

tractable decision problem: the decision problem for which we have polynomial time algorithms. 

 

Construct 

Decide 
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Example 2.1 the problem of sorting n numbers can be done in O (n2) time using the quick sort 

algorithm in worst case. Thus all sorting problems are in P. 

 

2.7.2The Class NP 

The complexity class NP is the set of decision problem that can be solved by non-deterministic 

polynomial time. Equivalently we can say that class NP consists of all those decision problems 

whose positive solution can be verified in polynomial time. The important of this class of 

decision problems is that it contains many interesting searching and optimization problems 

where we want to know if there exists a certain solution for a certain problem or whether there 

exists a better solution. 

Example 2.2 The Travelling salesman problem where we want to know if there is a shorter route 

that goes through all the nodes in a certain formula in propositional logic with propositional 

variables is satisfiable or not. 

2.7.3 PNP 

A P problem is always also NP. If a problem is known to be NP and a solution the problem is 

some how known, then demonstrating the correctness of the solution can always be reduced to a 

single P verification. If P and NP are equivalent, then the solution of NP problems requires an 

exhaustive search. 

 

2.7.4 Big Question: Is P=NP? 

The question of whether P is the same set as NP is the most open question in theoretical 

computer science and modern mathematics. The question of the equality of these two classes was 

originally posed in a letter from Kurt Gödel to J. von Neumann. There is even a $ 1,000,000 

prize for solving it [6]. 

If any problem A є P, then A є NP, since there is a polynomial time algorithm to decide A, the 

algorithm can be easily converted to a two argument verification algorithm that simply ignores 

any certificate and accepts exactly those input it determines to be in A. Thus, we can say PNP. 

The definition of NP-completeness leads to the sense that the NP-complete problems are ones 

most likely not to be in P. The reason is that if we could find a way to solve an NP-complete 

problem quickly, then we could use that algorithm to solve all NP problems quickly. Most 
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theoretical computer scientist believes that P≠NP, which leads to the relationships among P, NP, 

NP-complete exist in following figure. But if someone finds a polynomial time algorithm for 

NP-complete problem, it will prove P=NP. Nevertheless, no polynomial time algorithm for any 

NP complete has yet been discovered. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Relationship between P, NP and NP-complete 

If P=NP,P would encompass the NP and NP-complete areas. 

 

 

2.7.5 NP-complete problems 

NP-complete problems are the hardest problems in NP. It is also defined as a decision problem D 

is NP-complete if it is in NP and if every other problem in NP is reducible to it [8].”Reducible” 

here means that for every NP problem L, there is a polynomial time algorithm which transforms 

instances of L into instances of D, such that two instances have the same truth values. As a 

consequence, if we had a polynomial time algorithm for D, we could solve all NP problems in 

polynomial time. 

Example 2.3 Boolean satisfiability problem 

The Boolean satisfiability problem (SAT) is a decision problem considered in complexity theory. 

An instance of the problem is defined by Boolean expression written using only AND, OR, 

NOT, variables and parentheses. The question is: given the expression, is there some assignment 

of TRUE and FALSE values to variable that will make the entire expression true? The SAT is 

NP-complete. In fact it was first known NP-complete problem [8]. 

              

           NP 

    P 

NP-

complete 
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2.7.6 NP-hard problem 

A problem is NP-hard (non-deterministic polynomial time hard) if solving it in polynomial time 

would make it possible to solve all problems in class NP in polynomial time. That is a problem is 

NP-hard if an algorithm for solving it can be translated into one for solving any other NP 

problem.NP hard therefore means “at least as any NP problem”. 

2.7.7 Co-NP class 

Co-NP is the set containing the complement problems (i.e. problems with the YES/NO answers 

reserved) of NP problems. It is believed that the two classes are not equal; however it has not yet 

been proven. It has been shown that if these two complexity classes are not equal, then it follows 

that no NP-complete problems can be in Co-NP and no Co-NP complete problems can be in NP. 

2.7.8 Co-NP-complete problems 

In complexity theory, the complexity class Co-NP-Complete is the set of problems that are 

hardest problems in Co-NP, in the sense that they are the ones most likely not to be in P. If we 

can find a way to solve a Co-NP-Complete problem quickly, then we can use that algorithm to 

solve all Co-NP problems quickly. 

A more formal definition: A decision problem A is Co-NP-Complete if it is in Co-NP and if 

every problem in Co-NP is many-one reducible to it. This means that for every Co-NP problems 

L, there exists a polynomial time algorithm which can transform any instances of L into an 

instance of A with the same truth values. As a consequence, if we had a polynomial time 

algorithm for A, we could solve all Co-NP problems in polynomial time. 

2.7.9 Famous Complexity Classes 

The following are the some of the classes of problems considered in complexity theory, along 

with informal definitions. 

 

P     Solvable in polynomial time 

NP     YES answers checkable in polynomial time 
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Co-NP     No answers checkable in polynomial time 

NP-Complete    The hardest problems in NP 

Co-NP-Complete   The hardest problem in Co-NP 

NP-hard    Either NP-Complete or harder 

Table 2.1 Famous Complexity Classes 
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CHAPTER 3 

 SCHEDULING THEORY 

In more general we say that scheduling is an allocation of one or more time intervals to each job 

on one or more machines. A scheduling is called optimal if it minimized a given objective 

function mean to establish an assignment of resources to consumers for a certain period of time 

in a way that a certain objective is optimized. And the policy used to determine this assignment 

is called scheduling algorithm. 

Scheduling theory is excessively used in computer manufacturing to schedule the jobs in CPU, 

memory, printing buffer, spooling and other devices for processing jobs. The multiprogramming 

characteristics of computer due to the good scheduling jobs in the CPU because of the CPU can 

only process one job at a time. In this case the objective function is to maximize the CPU 

utilization [9]. 

3.1 Representation of Scheduling Problem 

 

Let there be m number of machines, Mi, i=1,2,..,m which have to process n jobs, Ji, i=1,2,…,n. 

The problem is to assign each job one or more time intervals on one or more machines. Such an 

assignment is called a schedule in general term. A schedule is often represented by Gantt chart. 

Which may be machine oriented or job oriented. Below is an example of schedule for a single 

machine. The schedule of jobs can be represented as a sequence of jobs. For example, the 

schedule shown in Figure: 3.1 can be written as the sequence s= (J1, J4, J2, J3). The machine may 

remain idle for some time interval. We specify idle intervals by writing ‘idle’ for that time 

interval. 

 

 

M1 

 Time 

Figure 3.1: Gantt chart for schedule of four jobs in single machine 

       

J1 J4  J2      J3 
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3.2 Classes of Schedules 

Certain classes of schedules are introduced [10]. 

 A schedule is called non-delay if no machine is kept idle when there exists a job 

available for processing. 

 A schedule is called active, if no operation can be completed earlier by changing the job 

orders without delaying any other operation. 

 A schedule is called semi-active, if no operation can be completed earlier without 

changing the sequence. 

Therefore the following properties hold: 

Non-delay schedule  ⇒  active schedule  ⇒  Semi-active schedule  

   (⇍)    (⇍) 

The following figure illustrates the connection between the above introduced classes of 

schedules. 

 

 

 

 

 

  

Figure 3.2 Classes of schedule[10] 

3.3 Types of Scheduling Problem 

 

Scheduling problems can be classified in terms of number of machines, flow discipline, job 

availability (in case of batching), and so on. 

Semi-active 

Active 

 

Non-delay 
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  3.3.1 Single Machine 

 

Single machine models are important for various reasons. The single machine environment is 

very simple and a special case of all other environments. Single machine models often have 

properties that neither machine in parallel nor machine in series has. The results can be 

obtained for single machine models not only provide insights into the single machine 

environments, they also provide a basis for heuristics that are applicable to more complicated 

machine environments are often decomposed into sub problems that deal with single machines. 

For example a complicated machine environment with a single bottleneck may give rise to a 

single machine model [2].  

 

3.3.2 Parallel Machine 

 

Multiple machines are available to process jobs. The machines can be identical, of different 

speeds, or specialized to only processing specific jobs. Each job has a single task. 

 

3.3.3 General Shop Scheduling Problem 

 

In this section we will discuss general shop scheduling problems like open shop problem, job 

shop problem, mixed shop problem and super shop problems. Which are widely used for 

modeling production processes? All of these problems are special cases of general shop 

problems [5]. 

 

3.3.4 Flow Shop Problems 

The most well known shop scheduling problem is the flow shop. Here it is assumed that each job 

Jj consists of M operations O1j, O2j, ……….., Omj with processing times Pij to be performed in 

this order, operation Oij being processed on machine Mj. In other words, each job Jj is first 

processed on machine M1, then on machine M2,and so on, until it is processed on machine Mm. 

In what follows, the order in which a job has to pass the machine is called the processing route. 

Thus, in the flow shop all jobs are given the same processing route (M1, M2,…………,Mm). The 

problem is to find a job order for each machine. 
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3.3.5 Job Shop Problem 

 In the general job shop model, there are a set of machines indexed by k, jobs indexed by i, and 

tasks indexed by j. Each task on a machine is indicated by a set of three indices i, the job that the 

task belongs to, j, the number of the task itself, and k, the machine that this particular task needs 

to use. The flow of the tasks in a job does not have to be unidirectional. Each job may also use a 

machine more than once. 

 

3.3.6 Open Shop Problem 

An open shop problem is a special case of the general shop in which each job i consists of m 

operations Oij (j=1, 2,……,m) where Oij must be processed on machine Mj and there are no 

precedence relation between the operation. 

A schedule is said to be non-preemptive if each operation is executed continuously from start to 

completion. A schedule is preemptive if the execution of any operation may arbitrarily often be 

interrupted and resumed at a time, the periods in which the operation of a given jobs are 

performed may be interleaved in time. 

 

3.3.7 Mixed Shop Problem 

These three basic models can be generalized by combining some or all of them. For example, 

combining the flow shop and open shop, we obtain the model which is known as mixed shop. 

More precisely, for the mixed shop, it is assumed that the set J of jobs is partitioned into two 

non-empty subsets J0 and J1. The jobs of the set J0 have non fixed orders of their operations (as in 

an open shop), while all jobs of the set J1 have the processing route (M1,M2,………,Mm) (as in a 

flow shop). 

 

3.3.8 Super Shop Problem 

One of the most general shop scheduling models, which covers all the previous ones, is called 

the super shop. This is obtained as a result of combining the open shop and the job shop. 

According to that model, set J is partitioned into r+1 subsets J0, J1, J2, ………., Jr. The jobs of set 

of J0 have non fixed orders of processing their operations (as in an open shop), while the jobs of 

a set Jq, 1≤ q ≤r, have the processing route Lq; some machines of set M may not occur in a 
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sequence Lq, while, on the other hand, some of them may occur more than once (as in a job 

shop).  

 

3.3.9 Static and Dynamic 

If all the data of the problem are known at the same time we speak of a static problem. For some 

problems a schedule may have been calculated and being processed when new operations arrive 

in the system. Then the foregoing schedule has to re-establish in real-time. These problems are 

said to be dynamic. In other words static and dynamic are defined as follows: Depending on the 

release times, a model (problem) is referred to as a static model if the release times of all jobs are 

zero (rj=0 for every j). Problems with varying nonzero release times are called dynamic. 

 

3.3.10 Stochastic and Deterministic 

A models that assume some of data to be randomly fluctuating (e.g. defects, break-downs, set-

ups, etc as stochastic date [16]. 

A model is deterministic if all data defining a problem is available and known with certainty. 

 

3.4 Classification (The Three Field α|β|γ Notation) 

There are varieties of classes of scheduling problems, which differ in their complexity. Also the 

algorithms developed are quite different for different class of scheduling problems. Classes of 

scheduling problems are specified in terms of a three field classification α|β|γ, where 

 α specifies the machine environment. 

 β describing the job and resource characteristics. 

 γ denoting the optimality criteria. 

This classification scheme was introduced by Graham et al in 1979 [5] 

3.4.1 Machine Environment (α): 

The machine environment is characterized by a string α=α1•α2 where, 

 α1 describing the type of machine used or their arrangement , respectively 

 α2 describing the number of machines or the number of processing steps, respectively. 
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3.4.1.1 Machine Types and Arrangements 

The possible values of α1 are Φ,P,Q,R,PMPM,QMPM,G,X,O,J,F. If α1є 

(Φ,P,Q,R,PMPM,QMPM),where Φ denotes the empty symbols(thus α=α2 if α1= Φ),then each job  

Jj  consists of a single operation. 

If α1= Φ, then each job must be processed on a specified (dedicated) machine, single machine. 

If α1є (Φ,P, Q, R),then we have parallel machines. 

If α1=P, then we have identical parallel machine. 

If α1=Q, then there are uniform parallel machine. 

If α1=R, then there are unrelated parallel machine. 

If α1=PMPM, then we have multi-purpose machine and identical speed. 

If α1=QMQM, then we have multi-purpose machine with uniform speed. 

If α1є (G, X, O, F, J) we have the multi-operational model. 

If α1=G, then it represent a general shop model. 

If α1=J, then it represent the job shop model, there are m dedicated machine available. Each job 

has its identical flow pattern. 

If α1=O, then it represent the open shop model. The machine orders and the job orders can be 

chosen arbitrarily. 

If α1=F, then it represent the flow shop model. All jobs have identical flow patterns and each job 

has to seize each machine exactly once. 

If α1=X, then it represent mixed shop model. 

In my dissertation we consider only single machine model. 
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3.4.1.2 Machine Number 

Parameter α2є{Φ,M} describes either the number of machines, in case of parallel processors and 

one operation, or the number of processing steps , in case of dedicated processors with more than 

one operation.  

If the number of machines is arbitrary we set α2=Φ. 

3.4.2 Job Characteristics (β) 

The job characteristics are specified by a set β containing at most six elements β1, β2, β3, β4, β5, 

β6. 

 β1 indicates whether preemption is allowed. If preemption is allowed the processing of a 

job on a machine can be interrupted and continued later on, and we set β1=pmtn, otherwise 

β1 does not appear in β. 

 β2 describes precedence relation between jobs which may be represented by an acyclic 

directed graph and we set β2=prec. Sometimes we will consider the scheduling problems 

with restricted precedence given by chains, an intree, an outtree, a tree or a series parallel 

directed graph. In these cases we set β2 equals to chains, intree, outtree, and sp-graph. 

 If β3=rj then release dates may be specified for each job. If rj=0 for all jobs then β3 does 

not appear in β. 

 β4 specifies restriction on the processing times or on the number of operations. If β4 

equals to Pij=1 then each job (operation) has unit processing requirements. 

 If β5=dj then a deadline dj is specified for each job Jj ,i.e job Jj must finish not later than  

time di 

 β6=bath indicates a batching problem. A batch is a set of jobs, which must be processed 

successively on a machine and batching problem is to group the jobs into batches and to 

schedule these batches. 

3.4.3 Optimality Criteria (γ) 

The scheduling problem is to find a feasible schedule which minimizes the total cost 

function. We denote the finish time of job Jj by Cj and associated cost by fj(Cj).If the function 

fj are not specified ,we set γ=fmax or γ=∑fj. The most common are the makespan 
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max{Cj|j=1,……..,n}, total flow time∑ 𝐶𝑛
𝑗=1  j and weighted (total) flow time ∑ 𝑊𝑛

𝑗=1 jCj.In 

these case we write γ=Cmax,γ=∑Cj,and γ=∑WjCj respectively. Following are the main 

objectives function in scheduling for each job Jj,let release time be rj, due date be dj and 

weight be wj. 

Completion time   Cj 

Flow time    Fj=Cj-rj 

Lateness    Lj=Cj-dj 

Tardiness                    Tj=max{0,Cj-dj} 

Earliness    Ej=max{0,dj-Cj} 

Unit penalty   𝑈𝑗 = {
0, 𝑖𝑓 𝐶𝑗 ≤ 𝑑𝑗 ,

1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 

 

Other objective functions are 

 

Total completion time   ∑Cj 

 

Total tardiness    ∑Tj 

 

Total weighted completion time  ∑WjCj 

 

Total weighted tardiness   ∑WjTj 

 

Number of tardy jobs   ∑Uj 

 

Weighted number of tardy jobs  ∑WjUj 

 

In my dissertation we consider the ∑WjUj objective function and my aim is to minimize the 

weighted number of tardy jobs. 
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In γ field, the formula or a short symbol for denoting the objective function is simply written. 

For example we can write ∑WjUj to indicate the weighted number of tardy jobs has to be 

minimized. Here are some example of three field notation 1|rj|∑Uj denote the single machine 

schedule where release date is given and the objective to minimize the number of tardy jobs. 

But in my dissertation we consider the problem in three field notation as 1||∑WjUj, a single 

machine problem with no release time and objective function is to minimize the weighted 

number of tardy jobs. 

Another example is that J3|Pij=1|Cmaxis the problem of minimizing maximum completion 

time in three machine job shop with unit processing times. 

 

 

3.5 Simple Reduction between Scheduling Problems 

 

If in description of scheduling problem we replace F by J, we get a simple reduction because the 

flow shop is a special case of job shop. Similarly we get a simple reduction, if we replace tree by 

prec. These simple reduction are shown by the reduction graph Gi (i=1,…..,7) in fig 3.3 
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  Fig 3.3 Reduction between scheduling problem [5] 

There are similar reductions between objective functions. These relation are shown in figure 

3.3∑fj reduces to ∑Wjfj by setting Wj=1 for all j,Lmax,∑Cj and ∑WjCj reduces to Lmax, ∑Tj and 

∑WjTj respectively by setting dj=0,for all j. 

 

 

 

   

 

 

 

Figure 3.4 Relation between objective functions [5] 
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3.6 Some Application Areas of Scheduling Problem 

Scheduling plays an important role in most manufacturing and production system as well as in 

most information processing environments. Scheduling problems are encountered at all levels 

and in all sectors of activity. Scheduling can be difficult from a technical as well as from 

implementation point of view. Generally we can distinguish between those of manufacturing 

production and those in computer in computer systems or project management 

3.6.1 Problems Related To Production 

We encounter scheduling problems in Flexible Manufacturing System (FMS).Numerous 

definitions of an FMS are found in the literature. Lu and MacCarthy [12], states: “An FMS 

comprises three principal elements: computer controlled machine tools, an automated transport 

system and a computer control system”. Besides, this very broad problem encompasses other 

problem related to Robotic Cell Scheduling and Scheduling of Automated Guided Vehicles 

(AGV). Electroplating and chemical shops have their own peculiarities in scheduling problems. 

The shops are characterized by the presence of one or more traveling cranes sharing the same 

physical area and which are ordered to transport the products for treatment in tanks. In general, 

the soaking time in a tank is bounded by a minimum and maximum , transport time is not 

negligible and the operation must be carried out without waiting time. These problems are very 

common in industry and the “simple” cases (mono-robot, single batch tanks, etc) have been 

solved by now. 

Scheduling problems in car production line, so called Car Sequencing Problems, are encountered 

in assembly shops where certain equipment must be assembled in the different models of 

vehicles. These problems have constraints and peculiarities of their own. Knowing a sequence of 

vehicles undergoing treatment, the problem is to determine the type of next vehicle programmed. 

We have to take account of a group of constraints connected principally to assembly options for 

these vehicles and to the limited movement of the tools along the production line. 

3.6.2 Scheduling Problem in Operating System 

Scheduling is a fundamental operating–system function. Almost all computer resources are 

scheduled before use. The CPU is, of course, one of the primary computer resources. Thus, its 
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scheduling is central to operating–system design. Whenever the CPU becomes idle, the operating 

system must select one of the processes in the ready queue to be executed. The selection process 

is carried out by the short–term scheduler (or CPU scheduler). The scheduler selects from among 

the processes in memory that are ready to execute, and allocates the CPU to one of them. 

For detail we refer [13].  

 

Scheduling problems posed by Operating Systems (OS) are online versions of various scheduling 

problems. In an online version, one does not know processing time and other relevant 

information of a job until it actually arrives in the system. In an OS, a machine is a processor, 

and jobs are processes (a process is a program ready for execution). The machine environment 

has a vast variety. There can be multiple processors, preemption may or may not be allowed, and 

in almost all situations, the scheduling problems are resource constrained. OS designers take 

engineering approach due to this variation. The scheduling algorithms are selected on the basis 

of simulation experiments. Objective function for OS oriented scheduling is different than those 

for manufacturing companies. A manufacturing company aims to reduce production cost, where 

as an OS aims to provide a fair service to all user processes. This leads objective functions like: 

 

1. Processor utilization: This is the average function of time during which the processor is 

busy. 

2. Throughput: This is the number of processes executed per unit time. Throughput is 

computed by dividing number of processes by schedule length. 

  3. Average turnaround time: The time that elapses from the moment a program released 

until it is completed by the system. 

  4. Average waiting time: The time that a process spends waiting for the processor or some 

other resources. 

  5. Average response time: The time taken by a process to response after it is released. 

Scheduling problems in computer system is mostly based on the analysis of queuing theory. 

The basic queuing model is given below. 
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    Preemption (if allowed) 

 

 

 

 

Job arrival                 Job departure 

 

 

   Figure 3.5 The basic queuing model [13] 

 

Jobs arrive and wait in a queue. The queue is the main memory for an OS. Every scheduling 

algorithms of an OS follows this model. Some basic algorithms used in OS for uni-processor 

computers are given below. 

1. First come First Serve (FCFS): At any instant when machine is idle, select available job 

having least release date. 

2. Shortest processing Time(SPT): When the machine is idle select the available job having 

least processing time, This rule is also called Shortest Job  First(SJF). 

3. Shortest Remaining Time Next (SRTN): Select an unfinished job which is having the 

smallest remaining processing time. 

4. Rounds Robin: Available jobs are stored in a queue according to release dates, unit 

processing time is given to each job in a queue in the sorted order. The newly arrived job 

is appended to the queue; Completed jobs are removed from the queue. 

 

3.6.3 Other Problems 

 

We encounter scheduling problems in computer systems. These problems are studied in different 

forms by considering mono or multi processor systems, with the constraints of synchronization 

of operations and resource sharing. In these problems, certain operations are periodic others are 

not; some are subject to dates, others to deadlines. The objective is to find a feasible solution i.e. 

a solution which satisfied the constraints. In fact, in spite of appearances they are very close to 

those encountered in manufacturing systems, Blazewicz et al [14]. 

    Queue Processor 
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Timetable scheduling problems concern all educational establishments or universities, since they 

involve timetabling of courses assuring the availability of teachers, students and classrooms. 

These problems are just as much the object of studies. 

Project scheduling problems comprise a vast literature. We are interested more generally in 

problems of scheduling operations which use several resources simultaneously (money, 

personnel, equipment, raw materials etc.), these resources being available in known amounts. In 

other words, we deal with the multi-resource scheduling problem with cumulative and non-

renewable resources. 

 

3.7 Just-In-Time and Real-Time System 

Just-In-Time (JIT) is the name used to describe as manufacturing system where the parts which 

are needed to compute the finished products are produced or arrive at the assembly site as they 

are needed. Just-In-Time is a Japanese manufacturing management method developed in 1970s.It 

was first adopted in Toyota manufacturing plants by Taiichi Ohno. The main concern at that time 

was to meet consumer demands. 

The main concept of penalizing jobs both for being tardy and for being early has proven one of 

the most important and fertile research topic in operations research. Sequencing different 

products with even distribution under Just-In-Time production for minimization of earliness and 

tardiness penalties is a challenging non-linear integer programming problem. The purpose of 

Just-In-Time is to reduce cost by eliminating waste. In sales the Just-In-Time concept is realized 

by producing only solvable products or part in salable quantities. The main goal of Just-In-Time 

approach is to sequence small batches of variety of parts types in order to satisfy customers 

demand for them without holding excessive inventories or incurring large shortage. A sequence 

with this goal is termed as a balanced schedule, Miltenburg and Sinnamon [16]. In some special 

cases, this sequence will be optimal for level schedule problem for mixed model assembly line, 

Monden [16]. The level schedule problem is concerned with keeping as constant as possible the 

rate of usage of component parts going into part type being assembled. 

A special type of just in time scheduling is due date scheduling. Basically; there are two versions 

of this problem. In the first version, a common due date is given for all jobs; one has to find 

schedule minimizing lateness and tardiness penalties with respect to this due date. The second 

version is reverse of the first one, here, one has to determine a common due date such that the 
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penalties are minimized. The symbols‘d’ and ‘dopt’ are added in the β field of the three field 

notation to indicate first and second versions due date scheduling, respectively. Unlike other 

scheduling problems, usually due date scheduling considers positional weights. This means, 

weight wj does not correspond to job Jj, but to any job that occurs in position j of the 

schedule.[17], [11]. 

Real-time computing system plays a vital role in our society-controlling laboratory experiments, 

automobile engines, nuclear power plants, flight systems, and manufacturing processes and the 

spectrum of their complexity varies widely from the very simple to very complex. Real-time 

scheduling problems are principally online versions of just-in-time scheduling problems, but 

popularly, the nomenclature ‘real-time’ refers to computer related problems. These types of 

scheduling problems occur in real –time systems. Generally a real –time system is an operating 

system embedded in some electronic devices. In a real-time system, the correct functioning of 

the system depends on the time when jobs are completed. In a soft real-time system, early/tardy 

jobs degrade the quality of the output, while in a hard real-time system; such jobs make the 

output invalid. The book of Tanenbaum [13] provides an introduction for real-time scheduling 

problems in operating systems. 

      

 

 

 

 

 

 

 

 

 

 



 
31 

CHAPTER 4 

ANALYZING AND SOLVING SCHEDULING PROBLEMS 

Since numerous techniques for analyzing and solving scheduling problems under different 

constraints are known, a complete overview and description is cumbersome. The main aim of 

this section is to introduce a general scheme of how much to approach scheduling problems, to 

roughly classify the most common solving techniques and to give some examples of certain 

frequently used methods. 
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Figure 4.1 Analyzing scheduling problems [12] 
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Figure 4.1 shows a schematic approach of how to analyze scheduling problems proposed by 

Blazewicz et al.[14].The three typical groups which – according to MacCarthy and Liu [12]-

comprise most of the solving technique are outlined. 

Referring to the above mentioned groups of solving methods, it is distinguished between: 

4.1 Efficient optimal methods 

This group includes the methods/algorithms typically used for the class of polynomially solvable 

problems. Thus, they guarantee an optimal solution within polynomial time even for large 

problems. Most of the optimal algorithms are dedicated only to a specific kind of problem or to 

small class. Hence, they are rare and applicable only for a few and quite fundamental issues. 

Even if such methods exist, it might sometimes be more useful to rely upon other approaches, 

like good heuristics, if the exact optimal algorithm is of too high complexity. 

4.2 Enumerative Optimal Methods 

Enumerative methods typically use a partial enumeration of the set of all solutions that are 

possible macCarthy and Liu. Methods of implicit enumeration variety “consider certain solutions 

only indirectly, without evaluating them explicitly Blazewicz et al. [14].The main approaches 

are: 

 Dynamic programming 

 Branch and bound method 

Both are exponential in nature but promising mainly for problems of smaller size. Especially 

dynamic programming algorithms can often be constructed to obtain pseudopolynomially 

bounded approaches.  

4.2.1 Dynamic Programming 

Dynamic programming is a powerful algorithm paradigm. Problems are solved by identifying 

smaller sub problems and by solving one sub problem after the other, starting with smallest and 

using the answers to the small problems until the initial problem is solved [18]. In other words, 

dynamic programming, like the divide and conquer method, solves problem by combining the 
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solutions to sub problems. Divide and conquer algorithms partition the problem into independent 

sub problems, solve the sub problems recursively, and then combine their solutions to solve the 

original problem. In contrast, dynamic programming is applicable when the sub problems are not 

independent, that is, when sub problems share subsubproblems. In this context, a divide and 

conquer algorithm does more work than necessary, repeatedly solving the common 

subsubproblem just once and then saves its answer in a table, thereby avoiding the work of 

recomputing the answer every time the sub problem is encountered. Dynamic programming is 

typically applied to optimization problems. In such problems there can be many possible 

solutions. Each solution has a value, and we wish to find a solution with the optimal (maximum 

or minimum) value. We call such a solution an optimal solution to the problem, as opposed to 

the optimal solution, since there may be several solutions that achieve the optimal value. 

An example of Baker is used to outline the characteristics of dynamic programming procedures 

[19] 

 A set J of j=1,  ….., n jobs is to scheduled on a single machine. S denotes a subset of J 

and 𝑆 its complement, i.e. the set of jobs not contained in S. Schedules are to be 

constructed such that all jobs in 𝑆 precede every job in S. 

 Cj is the completion time of job j and C (𝑆) the total time required to process all jobs in 

 𝑆. 

 Let z be the performance measure with an additive structure like ∑ 𝑔𝑛
𝑗=1 j (Cj), with 𝑔j(Cj) 

being the marginal contribution of job j to the overall cost in dependency of its 

completion time Cj. If z is the number of tardy jobs, 𝑔j(Cj) would be 1 if job j is 

scheduled tardy and 0 otherwise. 

 The aim is to minimize the value of z. 

Most applications of dynamic programming have following characteristics [20]. 

1. The initial problem can be divided into several stages. A decision is required at each 

stage. Considering the example, a stage k could be characterized by the size of the subset 

S, i.e. the number of jobs to be schedule at this stage. Hence, in the first stage the task 

consists of schedule one job, in the second of scheduling two jobs and so on. 
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2. Each stage has a number of associated states, the information needed at any stage to make 

an optimal decision. In the mentioned example the states are the possible subsets S. If J 

consists of four jobs j=1, …….  ,4 and one looks at the second stage, i.e. a pair of two 

jobs is to be considered, the states are:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4} 

3. Decisions have to be made in any stage. Decisions describe how the state at the current 

state is transformed into the state at the next stage. In our example a decision is simply 

the subsequent job to be chosen in the next stage’s S, determining the next stages. 

4. Principle of optimality: Given the current state, the optimal decision for each of the 

remaining stages must not depend on previously reached states or previously made 

decision. 

Since the overall problem consists of several stages, there must obviously be recursion 

that relates the costs or rewards from one stage to the other. 

Dynamic programming is used to solve scheduling problems such as,  iiUw1 ,  iCbatch1 and 

so on.  

4.2.2 Branch and bound (B&B) Algorithm 

Branch and bound algorithm is another method for solving combinatorial optimization problems. 

It is based on the idea of intelligently enumerating all feasible solutions. We assume that the 

discrete optimization problem P to be solved is a minimization problem. P may be identified with 

the corresponding set S of feasible solutions. Generally, B & B methods decompose a complex 

problem into multiple subproblems and utilize known methods to solve the easier subproblems 

[21]. Another advantages of the B & B approaches is that although the worst case complexity is 

exponential, especially in situations where the search for the solution takes a lot of time the B & 

B procedure can be aborted at any stage using the best solution known so far [Comp. soric 

(2002,p.13). The name branch and bound denotes that this method is based on two main steps. 

The problem decomposition is the result of branching procedure leading to subproblems which 

are: 

1. Mutually exclusive and exhaustive subproblems of the original. 

2. Partially solved problems of the original. 

3. Smaller problems than the original [19] 
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Since decomposing can be continued i.e. a problem is branched and its subproblems are further 

decomposed, a tree like form is obtained. Figure 4.2 shows the above things. 

 

 

 

                      

       

 

 

  Figure 4.2 Branching tree-examples [19]  

The main procedure is bounding which calculates lower and upper bounds and fathoms a branch 

if necessary. If one considers a minimizing the objective functions in an integer linear 

programming problem, for each subproblem a lower bound (noted as LB) might be calculated by 

ignoring integer constraints, allowing those variables to take real values. This kind of relaxation 

is known as linear programming relaxation (LP-relaxation). Additionally, an initial upper bound 

(noted as UB) is computed by a fast heuristic or arbitrarily determined to be infinite. During the 

algorithm, the current best LB obtained by a solution which feasible to subproblem as well as to 

the underlying main problem becomes new UB [20]. At each node within the search tree it is 

checked if the current branch should be partitioned further. If a branch is no more considered in 

the ongoing algorithm, it is said to be fathomed. Obviously, due to not partitioning the fathomed 

branches any further, the enumeration process can be curtailed [19]. Following reasons cause a 

branch to be fathomed [19]. 

 No feasible solution is available for the relaxation. 

 The LB received by relaxation is larger or equal than the current UB. 
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 The relaxation’s solution is feasible for the subproblem and the underlying main problem, 

and its objectives value is even better than the current UB. In the latter case, the LB 

becomes the new UB. 

4.3 Heuristic Methods 

Heuristic are kind of rule-of-thumbs techniques which approximate the optimal solution but 

cannot guarantee its finding in all cases [20]. They are applied for both, solving specific 

problems to optimality and providing a fast and simple but acceptably good solution for hard 

problems [22]. Heuristics are typically judged by their “goodness” of approximation; their 

performance, often in a west case scenario, compared with the optimal solution (if known) as 

ratio or difference. Heuristics with analytically evaluated accuracy are referred to as 

approximation algorithms [14]. In this context, a ρ-approximation algorithm generates a result of 

at most ρ times the optimal value in polynomial time [23]. Some heuristic algorithms and 

strategies for scheduling problems are 

 Relaxation based heuristics 

 Scheduling rules / priority rules 

 Simulated annealing 

 Tabu search 

 Genetic algorithms 

4.3.1 Relaxation:- 

Relaxation restricts the universality of the problem considering only special types of input 

instances. Actually, it is not technique for solving given problem, rather a compromise made due 

to difficulties forwarded by the problem. In scheduling following types of relaxation are often 

used. 

1. Allowing preempting :- Complexities of most of the scheduling problems can be reduced 

by allowing preemption. For example, the problem 1|rj|∑Cj is NP-Hard [24] but 

1|rj,pmtn|∑Cj can be solved in O(nlogn) time, n is the number of jobs. 

2. Allowing unit processing time:- E.g. the problem 1||∑WjUj is NP-Hard [24], but the 

problem 1|pj|∑WjUj can be solved in O(nlogn) time [25]. 
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3. Assuming equal release dates:- E.g. the problem 1|rj|∑Lmax is NP-Hard but if rj=r for all 

jobs Jj then it can be solved in O(n2) time [25]. 

4. Assuming certain precedence relation:- E.g. the problem 1|prec|∑WjCj can be solved in 

O(nlogn) time [25]. 

4.3.2 Scheduling rules/priority rules 

Scheduling rules can be defined as a rule that dictates which jobs among those waiting for 

service are to be scheduled in performance to the others [26]. Note that such a rule only indicates 

which job to be serving first, in contrast to job sequencing which orders all jobs in a queue due to 

specific attributes [27]. Scheduling rule is the most general prescription. It can comply with a 

single priority rule but can also be more complex combining several priority rules or one or more 

heuristics.  

Priority rule is a simple function that assigns a priority as a number a value to each waiting jobs 

following a predetermined method. [26].The job with the highest priority the one with the lowest 

priority value is selected first. The FIFO rule prioritizing always the job that has arrived first is a 

typical example. [26].This rule is also known as dispatching rule. The jobs are arranged in a list 

according to some rule. The next job on the list is assigned to the first available machine. The 

following are some of the common rules. 

4.3.2.1 Random List  

This list is made according to a random permutation. 

 

4.3.2.2 Longest Processing Time (LPT)  

The longest processing time rule orders the jobs in the order of decreasing processing times. 

Whenever a machine is freed, the longest job ready at the time will begin processing. This 

algorithm is a heuristic used for finding the minimum make span of a schedule with parallel 

machines. It schedules the longest jobs first so that no one large job will "stick out" at the end of 

the schedule and dramatically lengthen the completion time of the last job. 
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4.3.2.3 Shortest Processing Time (SPT) 

The shortest processing time rule orders the jobs in the order of increasing processing times. 

Whenever a machine is freed, the shortest job ready at the time will begin processing. This 

algorithm is optimal for finding the minimum total completion time and weighted completion 

time, if there is a single machine. In the single machine environment with ready time at 0 for all 

jobs, this algorithm is also optimal in minimizing the mean flow time, minimizing the mean 

number of jobs in the system, minimizing the mean waiting time of the jobs from the time of 

arrival to the start of processing, minimizing the maximum waiting time and the mean lateness. 

 

4.3.2.4 Earliest Due Date (EDD)  

In the single machine environment with ready time set at 0 for all jobs, the earliest due date rule 

orders the sequence of jobs to be done from the job with the earliest due date to the job with the 

latest due date. Let Di denote the duedate of the ith job in the ordered sequence. EDD sequences 

jobs such that the following inequality holds D1≤D2≤…≤Dn. EDD finds the optimal schedule 

when one wants to minimize the maximum lateness, or to minimize the maximum tardiness. 

 

4.3.2.5 Simulation Techniques  

Simulation can represent realistic systems for study of various scenarios that might occur over a 

time period at a modest cost. The structure of the shop, activities, jobs and constraints can be 

animated on a computer. Given appropriate input data and simple dispatching rules at decision 

points, computer could extrapolate a given schedule into the future. It provides a natural 

approach for interfacing with human expertise. However, the disadvantage is that the results 

obtained are not even approximately optimal and also it is difficult to determine how good these 

schedules are and how to improve them for better solutions. Simulation is the base for more 

advanced methods like Artificial Intelligence and Decision Support Systems with added accurate 

decision- making procedures. 

 

4.3.2.6 Neighborhood Search Techniques 

 It is a general-purpose heuristic technique that may be used for quite complicated problems 

where solution itself is very complex. It consists of a starting solution called original seed and all 

solutions close to the original solution (the neighborhood of the seed). A selection criterion is 
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used to find a new seed and this is terminated by a termination criterion. A much- improved 

solution is obtained at the end of the search. 

 

4.3.2.7 Meta-Heuristic Search Methods 

A meta-heuristic is a heuristic method for solving a very general class of computational problems 

by combining user-given black-box procedures- usually heuristics themselves-in the hope of 

obtaining a more efficient procedure. Meta-heuristics are generally applied to problems for 

which there is no satisfactory problem-specific algorithm or heuristic; or when it is not practical 

to implement such a method 

Dispatching rules are used in many contexts. For some easy problems, especially those in a 

single server environment, they enable an optimal solving, like for instance: 

 The EDD-rule for [1 Tmax] and [1 Lmax], namely minimizing the maximum 

tardiness and lateness, respectively. 

 The preemptive EDD-rule for minimizing the maximum tardiness and lateness with 

release time constraints and preemption ([1 max; Trpmtn j ] and [1 max; Lrpmtn j ]). 

 The SPT-rule for minimizing the mean lateness ([1 L ]), ([1 F ]) and total 

completion time ([1  jC ]), 

 The WSPT-rule for minimizing the total weighted completion time (1  jjCw ]), 

 The EDD-rule for minimizing the make-span for a single machine problem with 

release time constraints ([1 maxCr j ]). 

 

 4.3.3 Simulated Annealing 

Simulated annealing has its origin on the analogy between the annealing process of solids and 

the problem of solving combinatorial optimization problems. At the beginning, almost all 

solutions are accepted. Then, generally the “temperature” is dropped meaning that the 

mechanism of accepting new solutions is increasingly more selective. At the end, only the 

solutions that improve the objective function value are accepted. Each point in the search space 

has an energy associated with it, which indicates how good it is. The goal is to find the point 
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with minimum energy. The algorithm starts off at an arbitrary point; at each step chooses some 

neighbor of the current point and moves to that point with a certain probability. Neighbors are 

points that are close to each other in a function of the energy difference between two points and a 

global time-dependent parameter called temperature. Let E  be the difference in energy and T  

be the temperature. If  E  is negative then the algorithm moves to new point with probability 1. 

If not it does so with probabilitye
TE

. This rule is deliberately similar to the Maxwell-

Boltzmann distribution governing the distribution of molecular energies. 

It is clear that the behavior of the algorithm is crucially dependent on the temperature: if T  is 0, 

it reduces to the greedy algorithm, always moving to a point of lower energy. If T  is infinity, it 

moves around randomly. At first T  is set to infinity, and it gradually decrease to zero 

(“cooling”). This enables the algorithm to initially get to the general region of the search space 

containing good solutions, and later hone in optimum. The exact annealing schedule, however, 

cannot be generally prescribed; it must be chosen depending on the problem. 

It can be shown that, for any given finite problem, the probability that the simulated annealing 

algorithm terminates with the global optimum solution approaches 1 as the cooling rate is 

decreased. This fact is, however, not particularly useful in practice, as at some point the time 

required to execute the algorithm will exceed the time required for a complete search of solution 

space. Simulated annealing can be very effective at finding good sub-optimal solutions.  

Algorithm 4.2: [42] Simulated Annealing  

1. select an initial solution s . 

2. for dotot 1  

2.1. if 0T then return s . 

2.2. 's = a randomly selected solution from ).(sN  

2.3. E = cost )'(s -cost ).(s  

2.3.1. if E <0 then s = 's . 

2.3.2. else s = 's only with probabilitye
TE

.  
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4.3.4 Tabu Search  

 

The basic Concept of Tabu Search is described in Glover [29]. It is a deterministic heuristic 

approach for solving combinatorial optimization problems. It is an adaptive procedure that can 

be superimposed on many other methods to prevent them from being trapped at locally optimal 

solutions. It is a neighborhood search with a list of recent search positions. The essential feature 

of tabu search is the systematic use of memory. It keeps track of both the local information and 

also the exploration process. The method starts with an initial current solution, which could be 

feasible, non-feasible or even a partial solution. Using some local changes (called moves) from 

the current solution, a list of candidate solutions are generated (called candidate list). To avoid 

cycling in the algorithm a tabu list is maintained to keep track of a set of solutions that are 

forbidden. The role of the memory will be to restrict the choice to some subset of neighborhood 

by forbidding moves to some neighbor solutions. 

 

4.3.5 Genetic Algorithm 

Genetic Algorithms (GAs) were originally proposed by John H and Holland [30]. They are 

search algorithms that explore a solution space and mimic the biological evolution process. 

There are many GA implementations successfully applied to a great variety of problems. The 

main components of a genetic algorithm are as follows. 

1 Solution encoding: A chromosomal representation of solutions. 

2 Initial populations: Creation of an initial population of chromosomes. 

3 Fitness: Measurement of chromosome fitness based on the objective function. 

4 Selection: Natural selection of some chromosomes (parents) in the population for generating 

new members (children) in the population. 

5 Genetic operators: Genetic operators applied to these chromosomes whose role is to create 

new members (children) in the population by crossing the genes of two chromosomes (crossover 

operators) or by modifying the genes of one chromosome (mutation operators). 
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6 Replacement: Natural selection of the members of the population who will survive. 

7 Parameter selections: Natural convergence of the whole population that is globally improved 

at each step of algorithm. 

The performance of a GA depends largely on the design of the above components and the choice 

of parameters such as population size, probabilities of genetic operators (crossover rate and 

mutation rate), and number of generations. 

4.4 Near-To-Exact Algorithms 

Near-to-exact algorithm give not exact but approach to best possible solution among all. These 

algorithm are also used to study and try to solve regarding to NP-hard.  

Basically there are two types of algorithms for obtaining near-to-exact scheduling [14, 25]. 

(i)     Approximation algorithms: These algorithms provide a theoretical guarantee for the 

quality of the obtained solution. 

(ii)      Heuristic algorithms: No such theoretical guarantee can be given. The quality of 

solution is determined by simulation experiments and actual implementation. 

The performance of approximation is measured by approximation ratio, i.e., a function of size of 

input instance. Let A be an algorithm then for any input instance of size n , A has an 

approximation ratio of )(n if the cost C of the solution produced by the algorithm is within a 

factor )(n of the cost C of the optimal solution, i.e., 






 

 C

C

C

C
,max  )(n [7]. Regarding to 

online version al well as other optimization problems, the concept of competitive ratio is also 

introduced. Let 0A be an online algorithm. For any instance of size n , let AC  be the cost of 

solution obtained by 0A and C  be the cost of optimal solution for the corresponding offline 

problem. Then 0A is said have a competitive ratio of )(nc if AC  Cnc )(  [31]. 

 4.4.1 Approximation Algorithms for Off-line Problems  

Approximation technique is not a general paradigm. Depending upon the problem, one has to 

implement his own scheme for obtaining the solution. For example, consider the NP-hard 

problem  jj Fr1 . Keller et.al, obtained an approximation algorithm for this problem with an 
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approximation ratio of  nO  for this problem. Their technique does not fall on any broad class 

of algorithms; the summary given as: 

(i)   Convert the problem  jj Fr1 to  jj Fpmptr ;1 by allowing preemptions, 

(ii)    Solve  jj Fpmptr ;1 using Shortest Remaining Processing Time rule [5], 

 (iii) From the solution of preemptive version, obtain the solution for the original problem

 jj Fr1 . 

For the last step, they associate a forest structure for the preemptive schedule, such that each 

node represents an interval  ii CS , where iS and iC are the start and complete times of a job iJ in 

the preemptive schedule. The solution for the original non-preemptive problem is obtained by 

merging these trees in a suitable way.  

 

Savelsbergh et.al, make an empirical analysis of several approximation algorithms based on 

linear programming formulation for the problem  jjj Cwr1 . They conclude that these techniques 

usually have complexity of  nnO log , n being the number of jobs, and have very reasonable 

approximation ratio. 

 

 4.4.2 Approximation Algorithms for On-line Problems  

On-line algorithms are betting larger attention by researchers of the scheduling theory. Consider 

the problem  jj Cr1 even the off-line version of this problem is NP-hard [30]. Regarding its on-

line version, some popular approaches for solving it are the FCFS (First Come First Serve) and 

SPT (Shortest Processing Time) rules. For the problem  jj Cr1 , both FCFS and SPT rules have 

competitive ratio of n , where n  is the total number of jobs that is a very pessimistic result. Again 

for the same problem, D-SPT (Delayed Shortest Processing Time) rule gives the competitive 

ratio of 2, which is a vast improvement compared to the performance of FCFS and SPT. The 

main idea behind D-SPT rule is to postpone a job with too large processing requirement. 

D-SPT rule: 

 If the machine is idle and a job is available at time t, determine an unscheduled jobs with 

smallest processing requirement, say iJ . If there is a choice, take the job with smallest release 
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date. If tpi  , then schedule iJ , otherwise wait until time ip , or a new arrives. Hoogeven et.al 

further proved that there can be no off-line algorithm for the problem  jj Cr1 having 

competitive ratio less than 2. Their result was generalized by Anderson et.al, who proved that the 

D-WSPT (Delayed Shortest Weighted Processing Time) rule has a competitive ratio of 2 for the 

more general problem    jjj Cwr1 . D-SWPT is very much similar to D-SPT; the difference is 

due to the weight. 

 

D-SWPT rule: 

 Suppose that the machine is available at time t. We choose from among the available job as a 

job iJ with the lowest value of ratio 
j

j

w

p
to start at time t, otherwise, we do nothing until time jp

or another job is released if this occurs before time jp . There can be no algorithm for the on-line 

version of the problem  jjj Cwr1  having competitive ratio 2 [31]. 
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CHAPTER 5 

SINGLE MACHINE SCHEDULING PROBLEM 

 

After getting the basic knowledge about scheduling theory in general and some initial 

background for handling scheduling problems, this chapter now describes introduction to single 

machine scheduling problems (referred to as SMS). It is organized as follows: Introducing the 

field of SMS research, then the importance and overview of SMS research is pointed out.  

 

5.1 Definition, importance and overview of SMS Research 

Definition “The simplest pure sequencing problem is one in which there is a single resource, or 

machine.” There is not much more to say about the nature of single machine scheduling 

problems (also called one machine scheduling problems). n jobs ,  j = 1, ..., n (alternatively jj = j1, 

..., jn), are to be processed on one single machine (m = 1) under certain constraints. 

It is worth-noting that when speaking about SMS problems two different perspectives are 

distinguished between them [33]. 

One is the category of lot sizing scheduling problems. In this type of problem, several different 

items types are to be processed on a single machine in lots or batches using repetitive production 

schedules (Production cycles). The machine is typically restricted such that only one item type 

can be processed at a time and setup times occur each time the processed time is changed [34]. 

These problems aim at determining the optimal batch sizes to minimize cost under certain 

constraints. Bomberger (1966) mentions a metal stamping facility as an example. Stamps having 

different size and forms are produced on one press. Setup time and cost occur each time a 

forming die must be changed [34].  

The order is the category focused on: lot sizes are fixed and aim is to determine a schedule 

satisfying when each job is to be executed in order to achieve certain objective. Although, single 

machine scheduling seems somehow obsolete at first glance especially since real life problems 

are considered to be more extensive and difficult. It is still an important part in scheduling 

research. A short outlining of some reasons given by [19, 33]. 
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 SMS problems are often easier to understand and to handle mathematically than more 

comprising problems. This provides a valuable basis for a learning phase and for addressing 

general questions like getting familiar with the performance measures and for testing solution 

techniques. Baker calls them building block in the development of a comprehensive 

understanding of scheduling concepts [19]. 

But not only for learning purpose, also for a deeper analysis of complex systems, an 

understanding of its incremental components, which often are nothing else than SMS problems, 

is essential. 

In some cases, more complex scheduling issues can even fully be reduced to SMS related topics. 

In a multiprocessor environment, for example, focusing on a bottleneck  or the most expensive 

machine might lead to a SMS problem which determines the schedule for the whole 

environment. 

In a similar way, it might be appropriate especially when handling a small production unit to 

treat a complete production line on an aggregated single resource. 

Focusing on more complex problems types with more than one machine in shop environment; 

single machine scheduling can be used as relaxation to obtain bounds. 

In conclusion, the importance of SMS research is mainly based on two reasons: its simplicity on 

the one hand and the fundamental character for more complicated environments on the other 

[14]. Single machine scheduling problem form the largest group within the area of scheduling 

research, consisting a variety of different settings and include a wider number of different 

constraints and objectives. 

5.2 Overview of Single Machine Scheduling Problems and their Complexity 

Overview of single machining problems 

Specified problem 

type (complete 

classification) 

Complexity Method Reference  

1||Cmax O(nlogn) Each schedule that causes no idle times 

on the machine is optimal 

 

1||∑Cj O(nlogn) SPT-rule Smith[45] 

[1||∑wjCj O(nlogn) W SPT-rule Smith[45] 
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Table 5.1: Complexity of elementary SMS problems 

Table 5.1 shows overview - including the research results and directions for the main classes - is 

given by Gupta and Kyparisis [33]. Starting with a tree-like classification presentation, they 

review SMS research within the span of time between its upcoming in the mid 1950s to the late 

1980s. Their research effort is limited to static SMS problems - as a remainder those with each 

job’s release time is zero. They further do not consider any stochastic behavior. 

 

[1||Fmax  Each schedule that causes no idle times 

on the machine is optimal 

 

[1||∑Fj] O(nlogn) SPT-rule Equivalent to 

[1||∑Cj] 

[1||wjFj O(nlogn) W SPT-rule Equivalent to 

[1||∑wjCj] 

[1||wmax] O(n) The job with longest processing time is 

to be scheduled last 

 

[1||∑wj O(nlogn) SPT-rule Equivalent to 

[1||∑Cj] 

[1||∑wjWi O(nlogn) W SPT-rule Equivalent to 

[1||∑wjCj] 

[1||∑Lmax O(nlogn) EDD-rule Jackson[46] 

[1||∑wjLj) O(nlogn) W SPT-rule Equivalent to 

[1||∑wjCj] 

[1||∑Lj] O(nlogn) EDD-rule Equivalent to 

[1||∑Cj] 

[1||Tmax] O(nlogn) EDD-rule Jackson[46] 

[1||∑Tj] NP-Hard   

[1||∑wjTj NP-Hard  Lawler[38] 

[1||∑Uj O(nlogn) Hodgson Algorithm Moore[38] 

[1||∑rjUj NP-Hard   

[1||wjUj NP-Hard  Karp[37] 
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5.3 Some SMS Related Problem Types 

1. Minimizing maximum make-span [1 Cmax], maximum flow time [1 Fmax]: A 

minimization of the make-span equals minimizing idle time of the machine. Thus, each 

schedule that causes zero idle times is optimal. Since, flow time is defined as jF = Cj- jr , 

both problems are same if jr  = 0 for all jJ . 

Minimizing total completion time [1  jC ], total flow time [1  jF ], total waiting 

time [1  jw ] and total lateness [1  jL ]: Consider the general ease of Mi machines, 

where i = 1, 2,….,m, a decomposition of flow time leads to following relationships, [35]: 

    jF = 


m

i 1

( jiw + jip ) = Wj + 


m

i 1

 jip  and Fj = Cj– jr  = jd +Lj- jr . 

           Hence;  Cj,   Fj,   Wj and  Lj are equivalent. 

Objective functions since each can be modified to one of the others    through     linear 

transformation [35]. 

2. Minimizing total weighted completion time [1  jw Cj], total weighted flow time [1

 jw Fj], total weighted waiting time [1  jw Wj], and total weighted lateness [1 

jw Lj] : With use of relationship shown above, the equivalence of the objectives  jw Cj, 

 jw Fj,  jw Wj and  jw Lj becomes obvious [35]. 

    jw Fj =  jw Wj + 


n

i 1

jw  +


m

i 1

jip  

  and  jw Fj =  jw Cj –


n

i 1

jw jr  =  jw Lj + 


n

i 1

jw  ( jd – jr ). 

 Smith (1956) proved optimality of the WSPT rule for the total weighted completed time and 

hence for the other problems. This method is bounded polynomially by O(n log n). 

3. Minimizing maximum waiting time [1 Wmax]: It can be solved in O(n) by  
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       simply scheduling the job with largest processing time last. 

4. Minimizing maximum tardiness [1 Tmax] and maximum lateness [1 maxL ] :  

       Jackson (1955) applied the EDD rule to solve problems with computational   

       effort of O(n log n). 

5. Minimizing total tardiness [1  jT ] : The complexity of the problem of 

       minimizing total tardiness remained open for a long time until [17] proved 

       NP-hardness. 

6. Minimization of total weighted tardiness [1  jjTw ]: It is the generalization of   

tardiness and showed as NP-hardness by Lawer and Lenstra et. al. (1977). 

7. Minimizing the weighted number of tardy jobs showed NP-hardness [37] remaining even 

if all jobs have a common due date. 

 

5.4 Polynomially solvable single machine scheduling problems: 

 

Single machine scheduling is a classical scheduling problem. In this type of scheduling, n jobs 

are processed on one machine. Many problems are solved by single machine in polynomial time 

and these problems are known as easy problems. In this section, we will study about those 

problems that are solved by single machine in polynomial time. 

5.4.1 1 maxfprec : 

To solve problem with 1 maxfprec fmax = 
n

j 1
max


fj(Cj) and fj monotone for j = 1,2,….,n, it is 

sufficient to construct an optimal sequence )(),.....,2(),1(: n . Lawer developed a simple 

algorithm which developed a simple algorithm which constructs this sequence in a reverse order. 

Let, N = {1, 2,…., n} be the set of all jobs and denoted by SN the set of unscheduled jobs. 

Furthermore, define p(S) =
Sj

jp . Then, the scheduling rule may be formulated as follows: 
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Schedule a job jS which has no successor in S and has a minimal jf (p(S)) value as the last job 

in S.  

To give a precise description of the algorithm, represent the algorithm, represent the precedence 

constraints by corresponding adjacently matrix A = )( ija  where, ija  = 1if and only if j is a direct 

successor of i. By )(in , denote the immediate successor of i. 

Algorithm 5.1 [5] Lawer’s algorithm for max1 fprec . 

begin 

1. for i = 1 to n do n(i) = 


n

j

ija
1

 

2. S = { 1,2,…,n}, p = 


n

j

jp
1

 

3. for k = n down to 1 do 

Begin  

3.1 jobs Sj with n(j) = 0 and minimal fj(p) value. 

3.2 }{ jSS   

3.3  n(j) = ∞ 

3.4  find jk )(  

3.5  P = p-pj 

3.6  for I = 1 to n do 

3.7  If aij = 1 then i = n(i) – 1 

end 

end of algorithm 

The complexity of this Algorithm is O(n2). 

5.4.2  jU1  
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To generate an optimal schedule, it is sufficient to construct a maximal set of jobs which are on 

time. The optimal schedule then consists of the sequence of jobs in F ordered according to non-

decreasing d j-values followed by the late jobs in any order. 

An optimal set F is constructed by the following rule: add jobs to non-decreasing due dates. If 

the addition of job j results in this job is being completed after dj, then a job in S with the largest 

processing time is marked to be late and removed from F. The following algorithm, in which t 

denotes the current schedule time, implements this rule. 

5.4.3 jjCw1  

This problem can be solved using the weighted shortest processing time (WSPT) rule. The 

SWPT rule is to sort jobs in non-decreasing order of jj wp . This WSPT rule produces an optimal 

solution for problem  jjCw1 . The optimality of SWPT rule can be proved as a sequence of a 

more general theorem due to Lawer [30]. Consider this problem that includes   jjCw1  as a 

special case: Given a set N of n jobs and a real valued function f which assigns )(f  to each 

permutation   of the jobs, find a permutation  * such that *)(f = min { )(f   is a 

permutation of N}. If some special cases one can find a transitive and a complete relation  on 

the set of jobs N such that for nay two jobs Ji, Jk N, and for any permutation of the form  kijJ ,

 )1.5...(..........)()(  ikkiki JJfJJfJJ   

If such a relation exists for a given function ff , is said to admit the relation ,  and the relation 

  is known as a task interchange relation for f . Now consider the following theorem:  

5.5 Other Problems 

  jj Ur1 : 

The algorithm for this problem also constructs a minimal set S of jobs completed on time, which 

are scheduled in arbitrary order. Lawer devised an algorithm based on this idea and prove that it 

gives optimal solution for  jj Ur1 . 
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 jU1 : 

The algorithm for  jU1 is very much similar to the algorithm for problem  jjj Uwp 11 . This 

problem can be solved in O(n logn) time using Moore’s algorithm [40]. The algorithm constructs 

a minimal set S of jobs which complete on time. The optimal solution then consists of the jobs in 

S scheduled according to EDD rule, followed by the late jobs in any order. The set S is 

constructed by Moore’s rule: add the jobs in S in order of non-decreasing due dates. If the 

addition of jobs Jj results in this job being computed after dj, then a job in S with the largest 

processing time is marked to be late and removed from S. 

max;;1 frprecpmtn j  : 

The objective function maxf  for this problem is maxf  = max { )( jj Cf }. This problem can be 

solved in O(n2) time using the following algorithm with this steps: 

If a job Jj is a successor of a job Ji and jii rpr   then job Jj cannot start before iij prr ' . So, 

replace jr  by 'jr . In this way, all release dates are modified. 

Schedule the jobs in non-decreasing order of modified release dates. This decomposes the jobs 

into blocks, where a block in a minimal set of jobs processed without idle time between them. 

Find optimal solution for each block separately. The resulting set of blocks will be the optimal 

schedule 

 jjj Uwp 11  

The objective function in this problem involves unit penalty Uj, this means for each job Jj due 

dates dj is given here is an algorithm for  jjj Uwp 11 is described. This algorithm constructs an 

optimal set S of early jobs. To get an optimal schedule jobs in S are scheduled according to non 

decreasing due dates. Late jobs i.e. the jobs not belonging to S are scheduled in arbitrary order. 

The main strategy of this algorithm is to construct the set S of early jobs such that total weight of 

jobs in S is maximum. For this one tries to schedule the jobs in earliest due date order. If a job i 
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to be scheduled next is late, then i is scheduled and a job k with smallest  wk value is removed 

from S. 

In the following algorithm t denotes the current time, n is the total number of jobs, and assume 

jobs are enumerated such that 1≤d1≤……..≤dn. 

Algorithm 5.2  jjj Uwp 11
  

 

Begin 

1    t=1, S= Φ 

2 for i=1 to n do 

3               if di≥t then 

4                           add i to S, t=t+1. 

 5  If there exist a job k with wk<wi 

begin 

6 Delete job k from S where k is the largest index such that wk is minimal. 

7 Add i to S. 

end  

End of algorithm. 

If the scheduled jobs in S are organized as a priority queue with respect to wi value, the 

complexity of this algorithm is O (nlogn). 

Theorem5.1 [5] Algorithm  jjj Uwp 11
 
 provides an optimal schedule. 

Proof: Let s be sequence of jobs scheduled early by the algorithm ordered according to their 

indices. Let S* be the corresponding sequence of an optimal schedule coinciding with S as long 

as possible. Let k be the first job in S* which does not belong to. When constructing S, job k 

must have been eliminated by some job say i. let J be the set of jobs in S between k and I at the 

time k was eliminated. Due to step 6 of the algorithm wj<wk for all j J. Thus all j must belong to 
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S*, otherwise replacing k by j would yield a better schedule than S*. However this implies that 

there is a late job in S* which is a contradiction. 

Example 5.1: To demonstrate how the algorithm for  jjj Uwp 11 constructs the set of early 

jobs consider jobs J1,J2 ,J3,J4,J5, with the following information.  

j 1 2 3 4 5 

Wj 3 5 1 4 4 

dj 3 6 2 8 2 

 

Initially t=1 and the set of early jobs S= Φ. 

At i=1, d1≥t, so S= {J1}, t:=t+1=2. 

At i=2, d2≥t, so S= {J1,J2}, t:=t+1=3. 

At i=3, d3<t, J2 has maximum weight in S, so swap J2 and J3 and S={J1,J3}. 

At i=4, d4≥t, so S={J1, J3, J4}, t:=t+1=4. 

At i=5,d5<t, J4 has maximum weight in S, so swap J4 and J5, and S={J1, J3, J5} finally. 

The jobs in S are to be scheduled as per the sequence =(J1, J5, J1), J2 and J4 can be scheduled 

afterwards in any order. 

Finally, the job in S are to be scheduled as per the sequence π={J3, J5, J1} J2 and J3  can be 

scheduled afterwards in any order.   

5.6 NP-hard Problem Related to SMP 

5.6.1 max1 Lrj  

A generalization of max1 L is the problem max1 Lrj with the jobs released at different points in the 

time. It does not allow preemption and is significantly harder than the problem with all jobs 

available at time zero. The optimal schedule is not necessarily a non-delay schedule. It may be 

advantageous to keep the idle just before the release of a new job. 



 
55 

5.6.2 jjUw1  

This problem is also known to be NP-hard. The special case with all due dates being equal is 

equal and equivalent to so called Knapsack problem. The due date is equivalent to the size of 

Knapsack, the processing time of the jobs are equivalent to the benefits obtained by putting the 

items into the Knapsack. A popular heuristic for this problem is the WSPT rule which sequences 

the jobs in decreasing order of
j

j

p

w
. A worst case analysis shown that this heuristic may perform 

arbitrarily. 

 Example 5.2 (WSPT rule and Knapsack):  

                             Consider the following three jobs 

            

                                  Jobs      1         2           3 

                      jp       11        9           90 

                     jw       12       12          89 

                           jd        100     100        100 

    

  Comparison to Schedule Jobs According to WSPT and Knapsack Rules. 

Scheduling the jobs according to WSPT results if the schedule 123. The third job is 

completed late and  jjUw  (WSPT) is 89. Scheduling the jobs according to 231 results in 

 jjUw (OPT) being equal to 12. 
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CHAPTER 6 

 MINIMIZING THE WEIGHTED NUMBER OF TARDY JOBS 

6.1 Problem Presentation 

This section addresses the problem [1||∑WjUj] i.e. minimizing the weighted number of tardy jobs 

on a single machine subject to certain job characteristics, n jobs, j = 1, ……., n (alternatively Jj = 

J1, ….., Jn), are to be schedule single machine. The job’s processing time is pj, its release date rj 

(i.e rj=0) and its due date dj, with rj + pj ≤dj. The job is tardy (Uj = 1) if its completion time 

exceeds its due date (Cj>dj), otherwise it is on time. Specific weight (wj) are assigned 

representing a job’s penalty incurred in case of tardiness. The objective is to minimize the 

weighted number of tardy jobs; or in other words to minimize the penalty payments ∑WjUj. 

A property often referred to shall be prefixed is that if a job j is tardy it might as well be arbitrary 

tardy, meaning that it can be scheduled arbitrarily after all on-time jobs. Thus, an optimal 

schedule exists such that all jobs on time precede all tardy jobs. And the objective of 

“minimizing the weighted number of tardy jobs” is equivalent to “maximizing the weighted 

number of on-time jobs”. 

This section is organized as following. 

Starting with Section 6.2, a detailed literature review is given. 

Further, Section 6.3 addresses some “previous” solution approaches. 

 

6.2 Historical Development and Research Overview 

A comprehensive up to date overview of the research effort limited to the problem specification 

mentioned above, namely those without release date and preemption is not given. Allowing for 

the vast field of publications and research made, it is hardly possible to guarantee completeness 

of such an overview. Thus, we rather aim at pointing at the important milestones and may be a 
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little more which enable orientation and impetus for interested reader, instead of claiming 

completeness. 

NP-hardness of [1||∑WjUj] was first proven by Karp [37] and holds even if all jobs have a 

common due date. The publication of Lawler and Moore [38] is seen as pioneer work providing 

a dynamic programming approach pseudopolynomially bounded by (n min {∑j pj, maxj {dj}}). 

Their formulation was generalized by Sahani [39]. Under the assumption that all weights have to 

integers the approach is pseudopolynomially bounded by O (n min {∑j pj, ∑j wj, maxj {dj}}) [41]. 

The drawback of both formulations is the complexity’s dependence on the input data, which 

limit their practical use. It was again Lawler [40] who adopted the well known Moore Hodgson 

algorithm to easily solve the weighted problem as special case if processing time and weights 

can be indexed such that they are oppositely ordered, i.e. pi < pj⇒ wi ≥ wj for every i,j. The time 

bound is O (n log 𝑛 ).  

Furthermore, Lawler [23] presented a new dynamic programming approach, initially for the case 

with preemption and release time constraints, that solves [1||∑WjUj] as a special case in      O 

(nW), with W denoting the sum of integer job weights.  

Considering the branch and bound algorithm,[41] proposed a procedure solving problems with 

up to 50 jobs; the procedure of Tang [42] is able to solve up to 85 jobs. Potts and Van 

Wassenhove [15] proposed a branch and bound method appropriate for up to100 jobs; and as one 

of the newest publications M’Hallah and Bulfin [43] is worth mentioning coping up to 2500 jobs. 

When adding release dates to the problem, i.e. [1|rj|∑wjUj], Lenstra et al. [24] showed that it 

remains to be NP-hard, even for the case with unity weights. Techniques applied to this type of 

problem cover a wide field. The dynamic programming approach by Lawler [44] mentioned 

above, initially for the preemptive case, solves the non-preemptive case under the additional 

assumption that release dates and due dates are similarly ordered, i.e. ri < rj ⇒ di ≤ dj for every i,j, 

on O (nW). 

If the processing times are equal (pj=p for every j) the dynamic programming formulation of 

Baptise [3] achieves attention solving the problem in polynomially bounded time of O (n7). 

Some newer branch and bound algorithm methods were proposed by Peridy et al. (2003) and 
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M’Hallah and Bulfin (2007). The first utilizes a Lagrangean based lower bound, the latter 

surrogate relaxation that leads to a multiple choice knapsack formulation to compute the bounds. 

A hybrid branch and cut method with improved infeasibility cuts based on constraint propagation 

is suggested by Sadykov (2004). Further, a heuristic developed by Dauzere-Peres and Sevaux 

(2003) is worth mentioning, computing a lower bound based on the notion of a so called master 

sequence and Lagrangean relaxation, as well as a genetic algorithm by Sevaux and Dauzere-

Peres (2003). 

The last problem type investigated that is [1|pmtn,rj|∑wjUj] is NP-hard as well, but it can be 

solved in pseudopolynomial time by the dynamic programming algorithm of Lawler (1990), 

bounded by O (nk2W2), with W as the sum of integer weights and k as the number of distinct 

release dates. For unity processing times, i.e. pj=p for every j, Baptiste (1990b) developed an O 

(n10) dynamic programming formulation. If the processing times and release dates can be 

indexed such that a similar order is obtained and processing times and weights are oppositely 

ordered on the other hand (pi < pj  ⇒ ri ≤ r j and  pi < pj  ⇒  wi ≥ wj for every i,j) or if release date 

and due date intervals are nested and processing times and job weights oppositely ordered, 

Lawler (1994) suggests both underlying dynamic programming formulations to be solved by 

variation of the Moore-Hodgson algorithm in O (nlog 𝑛). 

6.3 Similar Problems in the Past 

 

Many of the researcher’s have studied the problem in the past and obtained various solution 

approaches. The table provides the history information of the problem. The table shows the 

specified problem, the developed year and the solving method. 

 

                                  Weighted Number of Tardy Jobs [[1|……|∑wjUj] 

Specified Problem Year  Author Solving Method Character Complexity Comment 

[1||∑wjUj 1969 Moore and 

Lawler 

DP  

En 

O(n min {∑j pj, 

maxj {dj}})) 

 

[1||∑wjUj] 1976 Sahni DP  

En 

O(n min {∑j pj, 

,∑wj,max 

j{dj}}) 

All weights 

integers 
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[1||∑wjUj] 1976 Lawler Generalization of 

Moore algorithm 

 

Op 

O(nlogn) pi<pj⇒wi 

≥wj 

[1||∑wjUj] 1983 Villareal & 

Bulfin 

B &B  

En 

 For up to 50 

jobs 

[1||∑wjUj] 1988 Potts and Van 

Wassenhove 

B & B  

En 

O(nlogn) For up to 

100 jobs 

[1||∑wjUj] 1990 Tang B & B  

En 

 For up to 85 

jobs 

[1||∑wjUj] 1990 Lawler DP 

 

 

En 

O(nW) with W 

as sum of 

integer job 

weights 

All weights 

integers 

[1||∑wjUj] 2003 M’Hallah & 

Bulfin 

B & B  

en/he 

 For up to 

2500 jobs 

[1|rj|∑wjUj] 1990 Lawler DP  

En 

O(nW) with W 

as sum of 

integer job 

weights 

All weights 

integers ri<rj 

⇒di≤dj 

[1|rj,pj=p|∑wjUj] 1999 Baptiste DP  

En 

 

O(n7) 

Equal 

processing 

times pj=p 

[1|rj|∑wjUj] 2003 Dauzere-

Peres & 

Sevaux 

Heuristic 

(Lagrangean 

Relaxation) 

 

He 

 For more 

than 100 

jobs 

[1|rj|∑wjUj] 2003 Dauzere-

Peres & 

Sevaux 

Genetic 

algorithm 

 

He 

  

[1|rj|∑wjUj] 2003 Peridy et al B&B En   

[1|rj|∑wjUj] 2004 Sadykov Branch &cut En   

[1|rj|∑wjUj] 2007 M’Hallah and 

Bulfin 

B&B en/he   

[1|pmtn,rj|∑wjUj] 1990 Lawler DP  

En 

O(nk2W2) with 

k as number of 

distinct release 

dates & W as 

sum of weights 

All weights 

integers 
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[1|pmtn,rj|∑wjUj] 1994 Lawler Generalization of 

Moore’s 

Algorithm 

 

Op 

 

O(nlogn) 

pi<pj ⇒ri≤rj 

pi<pj ⇒wi≥wj 

[1|pmtn,rj|∑wjUj] 1994 Lawler Generalization of 

Moore’s 

Algorithm 

 

Op 

 

O(nlogn) 

Nested 

release date 

–due date 

intervals 

pi<pj ⇒wi≥wj 

[1|pmtn,rj,pj=p|∑wjUj] 1999 Baptiste DP  

en 

 

O(n10) 

Equal 

processing 

times: pj = p 

DP=Dynamic Programming B&B=Branch and Bound ,op=optimal ,en=enumerative, he=heuristic 
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CHAPTER 7 

 

 

PROBLEM STATEMENT AND METHODOLOGY 
 

In the last chapter we discussed the research done on minimizing the weighted number of tardy 

jobs scheduling problems, the solution methodologies applied and the complexity of those 

algorithms. In this chapter, the present research problem and our methodology to solve it will be 

presented. 

 

 

7.1 Statement of the Problem 
 

 

The problem in the present research is, scheduling of n jobs that are available at time rj (i.e. rj=0) 

on a single machine to minimize the weighted number of tardy jobs. Each job is associated with 

a release time constant, processing time and due date. The machine can perform one operation at 

a time and no preemption is allowed.  A job is said to be tardy when its completion time is 

greater than the due date associated with it.  

 

 

7.2 Assumptions 
 

1. The machine is always available  

 

2. No preemption is allowed. 

 

7.3 Objective Function 
 

The objective function that is been considered for the present problem is to minimize the number 

of tardy jobs. 

 

Minimize∑WjUj, for j = 1, 2,.., n 

 

Where Uj= {
1, 𝑖𝑓 𝑗𝑜𝑏  𝑗  𝑖𝑠 𝑡𝑎𝑟𝑑𝑦 
0 ,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

7.4Complexity of the Problem 

 
The 1 | |∑WjUj, is proved to be a NP-hard problem and an optimal solution to this problem can be 

found only in pseudo-polynomial time. I implement a dynamic programming algorithm and 

branch and bound algorithm for the above problem and obtained result from both are compared. 
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. 

7.5 Methodology 

 
 7.5.1 A Branch and bound approach 

A B&B approach by M’Hallah and Bulfin (2003) for a problem with equaling release dates 

(1||∑wjUj)  is treated[46]. In table 5.1 shows, many very different B&B approaches for minimizing 

the weighted number of tardy jobs on one singe machine have been proposed by several authors. 

The very special approach by   is discussed in detail since it is capable of solving typical 

problems with up to 2500 instances in about twelve minutes[46]. The approach falls back upon a 

heuristic that provides good solution on instances with up to 2500 jobs in a few seconds. Another 

particular feature is the utilization of a mathematical programming formulation based on the well 

known knapsack problem to develop a bound. Actually, the resulting algorithm can be 

implemented with slight modifications to any knapsack code. In order to keep the algorithm as 

simple as possible, neither dominance nor reduction properties are embedded. 

7.5.1.1 Derivation of a knapsack model 

Instead of minimizing the weighted number of tardy jobs, it is possible to seek for a maximum 

weight feasible set of on time jobs. The original problem referred to as WNT is formulated as 

following, assuming the jobs to be indexed in non decreasing order of their due dates. 

max


n

j 1

wjxj      (WNT)………………….(7.1) 

  s.t  ∑ pi
𝑗
𝑖=1 xi≤dj     j=1, ….n,……………….(7.2) 

xj є{0,1}      j=1, …n, ……………….(7.3)  

With xj equaling 1 if job j is scheduled on time and 0 otherwise, the objective function equation 

(7.1) simply sums the weights of all on-time jobs. The set of constraints in equation (7.2)  

ensures that any on-time job’s completion time is smaller or equal than its due date in 

consideration of the on times job’s with smaller due dates sequenced before. The final set of 

constraints in (7.3) ensures that each job is either scheduled on time or tardy. 
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Surrogate multipliers are used for obtaining the well known knapsack model as a relaxation of 

WNT. Glover was the first who introduced surrogate constraint to integer programming. 

Generally, surrogate relaxation subsumes several constraints by weighting them with factors so 

called surrogate multipliers, and by summing up these modified constraints [43]. With λi≥0   

being the surrogate multiplier associated with constraint i and with 

 aj=pj∑ λj𝑛
𝑖=𝑗  and b=∑ λ𝑛

𝑗=1 jdj 

The knapsack model(referred to as KP) can be expressed as following  

max∑ w𝑛
𝑗=1 jxj      (KP) …………………………………..(7.4)      

s.t.   ∑ aj𝑛
𝑗=1 xj≤b    ………………………………………... (7.5) 

xj є{0,1}     j=1, ….. , n …………………………... (7.6) 

KP corresponds to the binary knapsack problem, with wj being the profit if item j is selected 

(xj=1; otherwise xj=0), aj being the weight of item j and b being the knapsack capacity. The 

objective of the profit equation is simply expressed as the sum of all packed items profit, where 

as equation ensures that the overall weight does not exceed the knapsack capacity. 

Any feasible solution to WNT is also feasible to KP, but not necessarily the other way round. 

Thus, KP is less constraint providing a bound for WNT. The bound’s quality, of course depends 

on the surrogate multipliers values. The linear programming of KP (i.e LPKP) obtained by 

relaxing the binary restriction in (7.6) and allowing xj to take real values between zero and one 

(i.e. 0≤xj≤1,j=1,, ….., n ) can easily solved. After reordering the variables in decreasing order of 

wj/aj, i.e. 

w1/a1≥w2/a2≥…….≥wn/an, 

One has to find the index f satisfying 

 ∑ ai𝑛
𝑖=1 ≤b≤∑ ai

𝑓+1
𝑖=1  

Then, in an optimal solution, all jobs whose index is smaller than f-1 are set on time, while jobs 

associated with an index larger than f+1 are scheduled tardy. If job j cannot be scheduled 
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 completely it is scheduled partially. Thus an optimal solution of LPKP has at most one variable 

with 0<xj <1. Subsuming, an optimal solution of LPKP with identified index f has the following 

form. 

    xj=1,     j=1,……, f-1, ……………………………(7.7) 

   xj =b-∑ ai
𝑓
𝑖=1 /af    j=f ………………………………………(7.8) 

    xj=0      j=f+1, …, n, ……………………………(7.9) 

 

An O(n) algorithm for finding a critical job based on critical ratios stems from Balas and Zemel.  

7.5.1.2 A heuristics for obtaining an initial solution for WNT 

Given suited surrogate multipliers, the heuristic procedure by M’Hallah and Bulfin runs in O (n2) 

polynomial time. It is used to find the initial feasible solution for WNT as starting point for the 

exact B&B algorithm. 

The heuristic starts by solving LPKP and checking whether all jobs in O, which denotes the 

subset of those supposed to be on time, are actually on time if scheduled in EDD order (the EDD 

schedule is said to be feasible) (step 0 and 1).Note that all jobs with an index smaller or equal 

than f-1 are initially supposed to be on time, Consequently, j=1,….., f-1 and O={1,….., f-1}. If in 

EDD ordering not all such jobs (in O) can actually be scheduled on time (the solution to LPKP is 

not feasible to WNT), the last job in O (at the beginning the one with index f-1) is removed and 

set tardy (xf-1=0), the resulting EDD schedule is checked again for feasibility. This procedure is 

continued (step 2) until a feasible EDD schedule to WNT is found. The heuristic then tries to 

improve it by gradually setting tardy jobs temporarily on time (adding them to O) (step3) and by 

testing the schedule’s feasibility (step 4). If infeasibility is triggered again, the last job which was 

temporarily set on time is set tardy again. As the consequence of the LPKP solving procedure the 

sequence in which jobs are considered depends on wj/aj, i.e. the job’s ratio of objective 

coefficient (wj) to constraint coefficient (aj). On time jobs are scheduled tardy, one by one, in 

increasing order of wj/aj whereas tardy jobs are scheduled on time in decreasing order of wj/aj 
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Algorithm 7.1 [46] Heuristic 

Step 0: Solve LPKP; set O= {1,2, ….., f-1}, L={f, f+1, ….., n},k=f-1. 

Step1: Schedule all jobs in O in EDD-order. If all jobs in O are on time, the EDD schedule is 

feasible; proceed with step 3. 

Step 2: Set O=O-{k}, L=LU{k} and k=k+1. Go back to step 1. 

Step 3: If L= go to step 5 otherwise set k=k+1, L=L-{k}. 

Step 4: If all jobs in OU{k} are on time in EDD order set O= OU{k} and go back to step 3. 

Step 5: All jobs in O are on time. The objective value of WNT equals: 

Z*=∑ 𝑤𝑗𝑗єo  and xj
*=1,j є O; xj

*=0 otherwise. 

7.5.1.3 An exact algorithm for WNT 

Starting with initial solution for WNT obtained by applying the heuristic discussed in the 

previous section, the B&B approach uses bounds based on LPKP. Each problem in the candidate 

list (each node) is a subproblem of KP having certain variables fixed to either one or zero. At 

each iteration, the subproblem with the best bound (the candidate problem CP) is chosen from 

the candidate list and its linear programming relaxation (LPKP) is solved, thus maximum upper 

bound rule is applied. When no feasible solution can be found, or the objective function’s value 

is lower/ equal than the best known feasible solution, the branch can be fathomed and another 

problem is chosen from the candidate list. Otherwise if the solution obtained by solving LPKP is 

better than the best known feasible solution, it is checked whether this solution is also feasible to 

WNT. According to the set of constraint (7.2) and (7.3) all jobs thought to be on time actually 

must be in on time on a EDD schedule, and all variables must be integer. If all variables are 

integer and if all jobs j with xj=1 are on time in an EDD schedule, anew best solution is found. 

Problems with bounds no better than this new best solution’s objective value are removed from 

the candidate list otherwise some variable are fixed, the treated candidate problem is 

decomposed and two new candidate problems are added to the candidate list .   
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7.5.2 Dynamic programming applied to problem. 

Given n jobs ni ,.....,2,1 with processing times ip and due dates id . These jobs have to be 

sequenced such that 


n

i

iiUw
1

is minimized where 0iw for ni ,.....,2,1 . Assume that the jobs are 

enumerated according to non-decreasing due dates: nddd  ......21 . Then, there exists an 

optimal schedule given by a sequence of the form, nss iiiii ,....,,,.......,, 121  . Where, jobs 

siii  .......21 are on-time and jobs ns ii ,....,1 are late. If a job i is late, then put i at the end of 

the schedule without increasing objective function. If i and j are early jobs with ji dd  such that 

i  is not scheduled before j then shift the block of all jobs scheduled between j and i jointly with 

i to the left by ip time units and schedule j immediately after this block. Since, i was not late 

and ji dd  which creates no late jobs. To solve the problem, calculate recursively for 





n

i

ipTt
1

,.....,2,1 and nj ,.....,2,1 the minimum criterion value )(tFj for the first j jobs 

subjected to constraint that total processing time of on-time job is at most t . If jdt 0 and job 

j is on-time in a schedule corresponds with )(tFj than )(tFj = )(1 jj ptF  . Otherwise )(tFj =

jj wtF  )(1 . If jdt  , then )()( jjj dFtF  because all jobs j,.....,2,1 finishing later than 

1...... ddj  are late. 

To calculate an optimal schedule it is sufficient to calculate the set L of late jobs in an optimal 

schedule. 

Algorithm 7.2:  iiUw1  

1. 1max  toptfor  

2. ntojfor 0  

;)(0 tF  

3. Ttotfor 0  

;)(0 otF   

4. ntojfor 1  

{ 
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4.1  jdtotfor 0  

 

4.2  )()( 11 jjjj ptFwtFif    

        )(tFj  = jj wtF  )(1 )(tFj ; 

         else  

        )(tFj = )(1 jj ptF  ; 

 

4.3  Ttodtfor j 1  

     )()( jjj dFtF  ; 

} 

 

7.6 Experiments and Results  

In this experimentation part, all of the algorithms mentioned in this chapter were implemented in 

java. The source codes for these programs are given in appendix. These algorithms were 

executed in Intel Pentium IV processor, Windows XP operating system, 512 MB of RAM. The 

programming language used was java.  

The objective of implementing dynamic programming and branch and bound algorithms describe 

in this chapter, is simply to compare their output . 

7.6.1 Input Data Set  

First, a program for generating data was implemented (see appendix). This program uses the 

random number generator provided by the java library. Using this program, size sets of input 

data were generated, containing instances for 10, 20, 30, 40 and 50 jobs. Each input data set 

contains 50 instances. In all instances, processing times are in range [1, 100]; due-dates are in 

range [1, 100] and weights for each job are in range [1, 10]. The release time for each job is set 

to be zero. 
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 7.6.2 Output   

Input data 

set 

No. of jobs Weighted Number of 

Tardy Jobs(Dynamic 

Programming) 

Weighted Number 

of Tardy Jobs 

(Branch &Bound) 

1 5 2 0 

2 10 3 2 

3 15 9 2 

4 20 9 3 

5 25 7 3 

6 30 13 4 

7 35 16 4 

8 40 19 5 

 

Table 7.1: Weighted number of tardy jobs given by various algorithms (for all input data sets, 

no. of instances=50, maximum processing time=100, maximum due date=100, maximum weight 

for each job=10, and release time for each job=0). 

The above table is summarized in the following figure: 

 

Fig 7.1:  Weighted Number of Tardy Jobs Given By Various Algorithms. 
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From figure, it is clear that, Branch and bound algorithm is more efficient than dynamic 

programming. 
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CHAPTER 8 

CONCLUSION AND RECOMMENDATION 

In Chapter 8 the experimental setup and results obtained are presented. In this chapter, summary 

and directions for future research are given. 

 

8.1 Summary 

In this thesis, I addressed problem related to minimize the weighted number of tardy jobs, a 

single machine scheduling problem with release time constant performance objective of 

minimizing the weighted number of tardy jobs. 

The problem is proved to be NP-Hard problem, and only can be solved in pseudo polynomial 

time. I studied a heuristic algorithm and the branch and bound algorithm to solve the problem, 

implemented both and compared the results of both the algorithms and proved that the heuristic 

algorithm gives solution very near to branch and bound procedure. 

It is found that the weighted numbers of tardy jobs obtained from B&B are less as compared to 

dynamic programming approach when the number of jobs increases. 

 

8.2 Conclusions 

For scheduling problem to minimize the weighted number of tardy jobs with release time 

constant, from the implemented heuristic approach and branch and bound approach, following 

conclusions can be made 

 The dynamic programming algorithm gives a solution near to B&B for the 1||WjUj. However 

as the number of the jobs increases the B&B gives less number of tardy jobs. 

 

8.3 Recommendation 

The scheduling problem discussed in this thesis is deterministic single machine scheduling 

problem with a performance objective of minimizing the weighted number of tardy jobs with 

release time constants without preemption. As customization is the key feature of any product 

today, we need more study and research in this area, so that we can provide benchmarks for 

many of the application area of scheduling. 
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It would be interesting if the solution obtained by the implemented heuristic in this thesis is 

improved to more near optimal solution by using meta-heuristic approaches like tabu search, 

simulated annealing or genetic algorithm techniques and also more interesting if the case is non-

deterministic.  
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APPENDIX A: Program Source Code of Algorithms 

package javaapplication3; 

import java.util.ArrayList; 

import java.util.Arrays; 

import java.util.Random; 

public class FindTardyJobs { 

public static double num, num1; 

    public static int n = 8; 

    //array to hold processing times 

    public static int p[] =  new int[n]; 

 

    //array to hold due times 

    public static int d[] =  new int[n]; 

 

    //array to hold weight 

    public static int w[] =  new int[n]; 

 

    public static int tardyJob = 0; 

 

    //array to hold the optimal schedule given  by the sequence 

    public static int onTimeLateJobs[] = new int[n]; 

 

    //arraylist to hold the ontime jobs 

    public static ArrayList<Integer> onTime = new ArrayList<Integer>(); 

 

    //arraylist to hold the latetime jobs 

    public static ArrayList<Integer> lateTime = new ArrayList<Integer>(); 
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    public static int capitalT = 0; 

    public static int smallT = 0; 

 

    public static int f1 = 0; 

    public static int f2 = 0; 

    public static int f3 = 0; 

 

    public static int capitalF[] = new int[n]; 

 

    public static void main(String arg[]) 

    { 

        //find the processing time 

        for(int i=0; i<n; i++) 

        { 

            num = Math.random(); 

            num1 = num * 10.0; 

            p[i] = (int)num1; 

 

            num = Math.random(); 

            num1 = num * 10.0; 

            d[i] = (int)num1; 

 

            num = Math.random(); 

            num1 = num * 10.0; 

            w[i] = (int)num1;             

        } 

        //sort the due times 
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        Arrays.sort(d); 

        System.out.print("               "); 

        for(int i=0; i<n; i++) 

            System.out.print("Job "+(i+1)+"    "); 

         

 

        System.out.println(); 

        System.out.print("processing time"); 

        for(int i=0; i<n; i++) 

        { 

            System.out.print(p[i]+"        ");             

        } 

        System.out.println(); 

        System.out.print("due time       "); 

        for(int i=0; i<n; i++) 

            System.out.print(d[i]+"        "); 

 

 

        System.out.println(); 

        System.out.print("weights        "); 

        for(int i=0; i<n; i++) 

            System.out.print(w[i]+"        "); 

 

 

            for(int i=0; i<n; i++) 

            { 

                if(p[i] > d [i]) 

                { 
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                    tardyJob += 1; 

                } 

            } 

 

        System.out.println(); 

        System.out.println("No of tardy jobs = " + tardyJob); 

 

        //implement the second algorithm 

               

        for(int i=0; i<n; i++) 

        { 

            //find the ontime jobs 

            if(p[i] <= d[i]) 

            { 

                onTime.add(i); 

                smallT = smallT + p[i];//find the total time sum of ontime jobs 

            } 

            //find the latetime jobss 

            else 

            { 

                lateTime.add(i); 

            } 

 

            //find the total time of all jobs 

            capitalT = capitalT + p[i]; 

        } 
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        for(int i=0; i<n; i++) 

        { 

            if(d[i] >= smallT)  

            { 

                for(int k=0; k<onTime.size(); k++) 

                { 

                    if(i == onTime.get(k)) 

                    { 

                        f1 = f1 + f1 * (smallT - p[i]); 

                        //capitalF[i] = capitalT[i-1] 

                    } 

                    else 

                    { 

                        f2 = f2 + w[i]; 

                    } 

 

                } 

            } 

            else 

            { 

                f3 = f3 + f3 * d[i]; 

            } 

        } 

 

        String tr = ""; 

        int t; 

        int count = 0; 

        for(int j=n-1; j>=0; j--) 
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        { 

            if(smallT < d[j]) 

                t = smallT; 

            else 

                t = d[j]; 

            if(f2 == f1 + w[j]) 

            { 

                tr = tr + "     Job " + j; 

                count++; 

            } 

 

            else 

                t = t - p[j]; 

        } 

        //print tardy job 

        System.out.println("Tardy jobs by second algorithm"); 

        System.out.println("Number of tardy jobs = "+ count); 

        System.out.println(tr); 

    } 

 

} 

 


