
1

CHAPTER 1

INTRODUCTION

1.1 Background

Information can be said to be the single most important business asset today and

achieving a high level of information security can be viewed as imperative in order to

maintain a competitive edge. SQL Injection Attacks (SQLIA’s) are one of the most

severe threats to web application security [29]. They are frequently employed by

malicious users for a variety of reasons like financial fraud, theft of confidential data,

website defacement, etc. The number of SQLIA’s reported in the past few years has been

showing a steadily increasing trend and so is the scale of the attacks. It is, therefore, of

vital importance to prevent such types of attacks, and SQLIA prevention has become one

of the most active topics of research in the industry and academia. There has been

significant progress in the field and a number of models have been proposed and

developed to counter SQLIA’s, but none have been able to guarantee an absolute level of

security in web applications, mainly due to the diversity and scope of SQLIA’s. One

common programming practice in today’s times to avoid SQLIA’s is to use database

stored procedures instead of direct SQL statements to interact with underlying databases

in a web application, since these are known to use parameterised queries and hence are

not prone to the basic types of SLQIA’s. However, there are vulnerabilities in this

scheme too, most notably when dynamic SQL statements are used in the stored

procedures, to fetch the database objects during runtime.

1.2 Problem

Given the perspective of time passed since web applications entered the commercial

market, SQL injection is hardly a new threat [24]. The problem has been described by

many security professionals and hackers, and the information is widely spread on the

Internet. Many attempts have also been made in order to find countermeasures that can

2

contend with and overcome SQL injection threats. These countermeasures build on

earlier work that covers broader aspects of computer security, including database security

issues mentioned above, and the software development process itself.

In addition, the countermeasures constitute new solutions regarding application layer

vulnerabilities in general and SQL injection threats in particular. It even seems to be a

somewhat common assumption among writers to think that protecting web applications

from SQL injection is an easy task, as long as you have an understanding of the SQL

injection threat [14]. Nevertheless, corporations, security professionals and hackers

continue to announce that SQL injection vulnerabilities are inherent in web applications

and reports of compromised applications are frequently published [1, 16, 24]. This clearly

indicates that there still seems to exist a lack of awareness, knowledge and respect of

SQL injection threats inherent in web applications among security professionals. One

reason might be that software development companies and third party vendors do not

take a structured security approach when developing web applications. Another reason is

that software developers compete in introducing software to the market. We can think of

two other reasons as well. First, the vast amount of information published, including

detailed step-by-step guides of how to attack web applications with SQL injection, is of

course also available for potential attackers. The other reason, we think that the area of

SQL injection has never been properly surveyed and that the countermeasures and

prevention techniques proposed has not always been systematically composed. We

believe that some of the proposed prevention techniques may contain weaknesses and

that they therefore can not adequately cope with SQL injection.

1.3 Objective and Outline

Objective of this work is :

1. To show how unauthorized SQL commands can be injected in stored procedure

2. To detect the SQL injection in stored procedure

3. To show how SQL injection can be prevented in stored procedure

3

1.4 Literature Review

Tim Berners-Lee proposed first concept about the global information network (World Wide

Web) in 1990 [2], naming this platform web, this is the initial point of webpage

development. Web page is only static picture at first till CGI was released in 1993, then

webpage entered dynamic era. In the end, only less people use CGI because of the defect

of its security question.

Until the introduction of JSP, PHP and ASP successively, MVC concept was

implemented, it allows users not need to install each of huge software anymore, they can

utilize the browser to execute the application program. AJAX(Asyn-chronous JavaScript

and XML) is a webpage application technology with inter-action structure. This is

created by Jesse James Garrett in 2005 [9], using the greatest advantage of Ajax to

maintain the data without renewing whole page. This enables Web application program

to reflect user's instructions promptly, similar as you double click the program shortcut

on your personal computer desktop.

The tool used on Web program safety analysis and inspection (WebSSARI) [11] was

launched in May, 2004. It can evaluate the safety level of Web application program

automatically and get good result with real tests. Livshits and Lam also proposed one tool

LAPSE [13] in Oct.,2005, it can integrate analysis result into Eclipse. It can help find out

the vulnerability of incoming unverified data based on static analysis, further it looks for

JAVA source code to inform user of all potential weakness. OWASP (Open Web

Application Security Project) also issues WebScarab [20] projectAit also integrates the

tools to inspect Web security, making the security check efficiently.

4

CHAPTER 2

WEB APPLICATION

2.1 Introduction

Web application, or webapp, is the general term that is normally used to refer to all

distributed web-based applications. According to the more technical software engineering

definition, a web application is described as an application accessible by the web through

a network. Many companies are converting their computer programs into web-based

applications. Web Applications are similar to computer-based programs but differ only in

that they are accessible through the web, allowing the creation of dynamic websites and

providing complete interaction with the end-user. Web Applications are placed on the

Internet and all processing is done on the server, the computer which hosts the

application.

Web applications are sets of web pages, files and programs that reside on a Company’s

web server, which any authorized user can access over a network such as the World Wide

Web or a local intranet. A web application is usually a three-tiered model. Normally, the

first tier is a Web browser on the client side, the second is the real engine on the server-

side where the applications core runs, and the third layer is a database. A server processes

all user transactions and usually the end-user simply accesses the web application by a

Web browser, interacting with it. Since web applications reside on a server, they are easy

to manage. In fact, they can be updated and modified at any time by the web applications

owner with minimal effort and without any distribution or installation of software on the

client’s machines. This is the main reason for the widespread adoption of Web

applications in today’s organizations [29]

Nowadays, web applications are becoming increasingly popular and are poised to become

a major player in the overall software market due to the benefits they afford, such as

visibility and worldwide access. They are, without a doubt, essential to the current and

next generation of businesses and they have become part of our everyday online lives. In

5

fact, a web application is a worldwide gate accessible not only through standard personal

computers but also though different communication devices such as mobile phones and

PDAs. The use of web applications is especially beneficial for a company: with just a

little investment, a company can open up a marketing channel that will allow potential

clients easy global access to its business 24 hours a day.

2.2 Architecture of Web application

Figure 1: Architecture of a typical web based system

A web system consists of a web browser at the user end. The user is connected to the web

application through the internet. A firewall protects the web system from intrusion and

allows traffic at port 80 only. The web server receives request from the browser,

processes them and passes the dynamic part to the application server, which processes

server side code like JSP. All requests for database access are passed to the database

server. The results are than shipped back to the web browser as HTML web pages.

2.3 Input Validation-Based Vulnerabilities

The most prominent class of input validation errors are SQL injections. SQL injections

are the classes of vulnerabilities in which an attacker causes the web application server to

6

produce HTML documents and database queries, respectively, that the application

programmer did not intend. They are possible because, in view of the low-level APIs

described above for communication with the browser and database, the application

constructs queries and HTML documents via low-level string manipulation and treats un-

trusted user inputs as isolated lexical entities. This is especially common in scripting

languages such as PHP, which generally do not provide more sophisticated APIs and use

strings as the default representation for data and code. Some paths in the application code

may incorporate user input unmodified or unchecked into database queries or HTML

documents. The modifications/checks of user input on other paths may not adequately

constraint the input to function in the generated query or HTML document as the

application programmer intended. In that sense, SQL injections are integrity violations in

which low-integrity data is used in a high-integrity channel; that is, the browser or the

database executes code from an un-trusted user, but does so with the permissions of the

application server

Figure 2: Vulnerability Type

7

Figure 3: Reported Web Attacks in 2008

To highlight how ubiquitous web applications have become and how prevalent their

problems are, Figure-2. shows, for each year from 2001 to 2006, the percentage of newly

reported security vulnerabilities in five vulnerability classes (this data comes from

Mitre’s report [22]): XSS, SQL injection, PHP file inclusions, buffer overflows, and

directory traversals. These were the five most reported vulnerabilities in 2006. All of

these except buffer overflows are specific to web applications. Note that SQL injections

are consistently at or near the top: 13% of the reported vulnerabilities in 2006,

respectively. Some web security analysts speculate that because web applications are

highly accessible and databases often hold valuable information, the percentage of SQL

injection attacks being executed is significantly higher than the percentage of reported

vulnerabilities would suggest. Empirical data supports this hypothesis. Figure-3 shows

percentages of reported web attacks for the year 2008 (this data comes from the Web

Hacking Incidents Database) [3]. Although many attacks go unreported or even

undetected, this chart shows that 30% of the web-based attacks that made the press in

2008 were SQL injections, respectively.

8

Figure 4: Number of incident by number of records leaking in 2007

This kind of attacks can cause severe damage. Typical uses of SQL injection leak

confidential information from a database, by-pass authentication logic, or add

unauthorized accounts to a database. Figure-4 shows the number of reported information

leakage attacks in 2007 that leaked the number of records in each of four ranges split by a

log-scale(this data comes from the Web Hacking Incidents Database [19]). A news article

from May, 2008 gives an example of the kinds of records that Over 1.5 million pages

affected by via an SQL injection. It is an attempt to mitigate the impact of the recent

waves of SQL injection attacks, and provide more transparency into the approximate

number of affected pages [7].

2.4 Web Application and SQL Injection

Most of the current web applications use RDBMS (Relational Database Management

Systems). Sensitive information like credit card, social security and financial records are

stored in these databases. Web application allows users to view, edit or store information

in RDBMS through programs written by web application programmers. Usually

9

programmers who write these programs are unaware of technique for writing secure

code. They would focus on implementing desired functionalities and would focus less on

security aspects. This results in vulnerabilities in web applications. Vulnerabilities allow

attacker to target these web application and obtain valuable information. Attackers would

send SQL (Structured Query language) to interact with RDBMS servers or modify

existing SQL to retrieve unauthorized information without any authentication. The risk is

higher if the application is open source or if the attacker is able to gain source code

through other means. In this case he can analyze the code to find out the vulnerabilities

10

CHAPTER 3

SQL

3.1 Introduction

The SQL standard, according to Connolly et al. [25], was defined by the American

National Standards Institute (ANSI) and was later adopted by the International Standards

Organization (ISO). Its objectives are to allow users to create database and relation

structures, managing tables by inserting, modifying, and deleting data as well as retrieve

information from the database through queries. SQL queries are commands that are

passed to the RDBMS, and specify which data is to be gathered from one or more tables

and how it should be arranged. We intend to follow the ISO SQL standard used by

Connolly et al., and will be using it throughout this thesis unless stated otherwise.

SQL consists of two major components: the Data Manipulation Language (DML) and the

Data Definition Language (DDL). Using the DML, users can manipulate data stored

inside tables in the database, while the DDL allows creating and destroying database

objects such as schemas, domains, tables, views and indices.

3.1.1 DML

The Data Manipulation Language has four available statements, namely SELECT,

INSERT, UPDATE and DELETE.

SELECT used for retrieving information from one or more tables in the

database and displaying it.

INSERT used for adding new data rows in a table.

UPDATE used for modifying data rows in a table.

DELETE used for removing data rows from a table.

11

3.1.2 DDL

Connolly et al. [25] defines the Data Definition Language (DDL) as ”A descriptive

language that allows the DBA or user to describe and name the entities required for the

application and the relationships that may exist between the different entities.” Thus, the

DDL is used when manipulating the database’s meta-data, which describes the objects

contained in the database and allows access to them. The DDL does not allow users to

manipulate data stored in the database.

3.2 Query Techniques

An SQL query to be executed in a RDBMS can be constructed using two techniques.

Either the query is allowed to be dynamically tailored with respect of both SQL keywords

and query arguments, or the query syntax is unchangeable, only allowing arguments to be

passed [25].

3.2.1 Dynamic SQL

Dynamic SQL refers to the concept of allowing an SQL query to be dynamically built by

concatenating statements and using variables that supply the query with dynamic values.

According to Connolly et al. [25] and Harper [18] and Khatri [10], the query is typically

stored in a variable and the query builders consist of application logic components that

adds SQL syntax and arguments to the variable in a process governed by specified

conditions. Such queries are interpreted and compiled at run-time by the RDBMS,

meaning that the query will be compiled every time it is executed. Since dynamic SQL

allows SQL syntax to be added, both SQL keywords and values may be passed as

arguments to queries.

3.2.2 Static SQL

Static SQL refers to the concept of using fixed and unchangeable SQL queries. Such

queries are predefined and compiled and are not permitted to add SQL keywords, defined

in DDL or DML. Only arguments to clauses, e.g. WHERE, may be allowed to be passed

to the queries. Either the query is embedded in application logic code in form of prepared

statements or it resides in RDBMS as stored procedures.

12

CHAPTER 4

SQL INJECTION

4.1 SQL Injection Attacks

SQL injection is the act of passing SQL code into an application that was not intended by

the developer. SQL injection vulnerability can occur when a program uses user-provided

data in a database query without proper input validation. On the other hand SQL injection

is a form of attack on a database-driven web site in which the attacker executes

unauthorized SQL commands by taking advantage of insecure code on a system

connected to the Internet.

SQL injection is a particularly dangerous threat that exploits application layer

vulnerabilities inherent in web applications. Instead of attacking instances such as web

servers or operating systems, the purpose of SQL injection is to attack RDBMSs, running

as back-end systems to web servers, through web applications. [15]

More specifically, attackers can bypass existing security mechanisms implemented to

enforce security services, and may therefore gain access to and manipulate information

assets outside their privileges. This is accomplished by modifying input parameters

expected in fields of forms embedded in web pages, in order to change the underlying

queries built with SQL and passed to the database through the web server. Another

method is to insert arbitrary SQL directly in the query string portion of an URL in the

address field of web browsers. [5, 6, 15]

Every web application, using a relational database, can theoretically be a subject for SQL

injection attacks. Those databases usually contain corporation’s most valuable

information assets: corporate and customer data. Those data are vital for the functions of

a corporation’s web applications, but often even more crucial and valuable for the

corporation itself: user credentials, sensitive financial information, preferences, invoices,

payments, inventory data etc. If successful, SQL injection attacks may therefore result in

13

exposure of and serious impact on the corporations most valuable information assets.

These attacks may in the worst case result in a completely destroyed database schema,

which in turn may affect a corporation’s ability to perform business. [15, 18]

The typical intentions of the attacker performing a SQL injection attacks may be to:

 Identify inject-able parameters.

 Perform database finger-printing.

 Determine the database schema.

 Extract and modify data.

 Perform Denial of Service (DoS)

 Bypass authentication and perform privilege escalation

 Execute remote commands

4.2 Attack Intention

When a threat agent utilizes a crafted malicious SQL input to launch an attack, the attack

intention is the goal that the threat agent tries to achieve once the attack has been

successfully executed.

Identifying Injectable Parameters [26]: Injectable parameters are the parameters or the

user input fields of the Web applications directly used by server-side program logic to

construct SQL statements, which are vulnerable to SQLIA. In order to launch a

successful attack, a threat agent must first discover which parameters are vulnerable to

SQL injection attack.

Performing database finger-printing [26]: Database finger-print is the information that

identifies a specific type and version of database system. Every database system employs

a different proprietary SQL language. For example, the SQL language employed by

Microsoft SQL server is T-SQL while Oracle SQL server uses PL/SQL. In order for an

attack to be succeeded, the attacker must first find out the type of and version of database

deployed by a web application, and then craft malicious SQL input accordingly.

14

Determining database schema [26]: Database schema is the structure of the database

system. The schema defines the tables, the fields in each table, and the relationships

between fields and tables. Database schema is used by threat agents to compose a correct

subsequent attack in order to extract or modify data from database.

Bypassing Authentication [26]: Authentication is a mechanism employed by web

application to assert whether a user is who he/she claimed to be. Matching a user name

and a password stored in the database is the most common authentication mechanism for

web applications. Bypassing authentication enables an attacker to impersonate another

application user to gain un-authorized access

Extracting Data [26]: In most of the cases, data used by web applications are highly

sensitive and desirable to threat agents. Attacks with intention of extracting data are the

most common type of SQL injection attacks

Adding or Modifying Data [26]: Database modification provides a variety of gains for a

threat agent, for instance, a hacker can pay much less for a online purchase by altering the

price of a product in the database. Or, the threads in a online discussion forum can be

modified by an attacker to launch subsequent Cross-Site-Scripting attacks.

Performing denial of service [26]: These attacks are performed to shut down the

database of a Web application, thus denying service to other users. Attacks involving

locking or dropping database tables also fall under this category.

Executing Remote Commands [26]: Remote commands are executable code resident on

the compromised database server. Remote command execution allows an attacker to run

arbitrary programs on the server. Attacks with this type of intention could cause entire

internal networks being compromised.

Performing privilege escalation [26]: Privileges are described in a set of rights or

permissions associated with users. Privilege escalation allows an attacker to gain un-

15

authorized access to a particular asset by associating a higher privilege set of rights with a

current user or impersonate a user who has higher privilege

Downloading File: Downloading files from a compromised database server enable an

attacker to view file content stored on the server. If the target web application resides on

the same host, sensitive data such as configuration information and source code will be

disclosed too.

Uploading File: Uploading files to a compromised database server enable an attacker to

store any malicious code onto the server. The malicious code could be a Trojan, a back

door or a worm that can be used by an attacker to launch subsequence attack.

4.3 How it Happens

SQL is the standard language for accessing Microsoft SQL Server, Oracle, MySQL,

sybase, and Informix (as well as other) database servers. Most Web applications need to

interact with a database, and most Web application programming languages, such as

ASP, C#, .NET, Java, and PHP, provide programmatic ways of connecting to a database

and interacting with it. SQL injection vulnerabilities most commonly occur when the

Web application developer does not ensure that values received from a Web form,

cookie, input parameter, and so forth are validated before passing them to SQL queries

that will be executed on a database server. If an attacker can control the input that is sent

to an SQL query and manipulate that input so that the data is interpreted as code instead

of as data, the attacker may be able to execute code on the back-end database.

Each programming language offers a number of different ways to construct and execute

SQL statements, and developers often use a combination of these methods to achieve

different goals. A lot of Web sites that offer tutorials and code examples to help

application developers solve common coding problems often teach insecure coding

practices and their example code is also often vulnerable. Without a sound understanding

of the underlying database that they are interacting with or a thorough understanding and

16

awareness of the potential security issues of the code that is being developed, application

developers can often produce inherently insecure applications that are vulnerable to SQL

injection.

4.3.1 Dynamic String Building

Dynamic string building is a programming technique that enables developers to build

SQL statements dynamically at runtime. Developers can create general-purpose, flexible

applications by using dynamic SQL. A dynamic SQL statement is constructed at

execution time, for which different conditions generate different SQL statements. It can

be useful to developers to construct these statements dynamically when they need to

decide at runtime what fields to bring back from, say, SELECT statements, the different

criteria for queries, and perhaps different tables to query based on different conditions.

However, developers can achieve the same result in a much more secure fashion if they

use parameterized queries. Parameterized queries are queries that have one or more

embedded parameters in the SQL statement. Parameters can be passed to these queries at

runtime; parameters containing embedded user input would not be interpreted as

commands to execute, and there would be no opportunity for code to be injected. This

method of embedding parameters into SQL is more efficient and a lot more secure than

dynamically building and executing SQL statements using string-building techniques.

The following PHP code shows how some developers build SQL string statements

dynamically from user input. The statement selects a data record from a table in a

database. The record that is returned depends on the value that the user is entering being

present in at least one of the records in the database.

// a dynamically built sql string statement in PHP

$query = "SELECT * FROM table WHERE field = '$_GET["input"]'";

One of the issues with building dynamic SQL statements such as this is that if the code

does not validate or encode the input before passing it to the dynamically created

statement, an attacker could enter SQL statements as input to the application and have his

17

SQL statements passed to the database and executed. Here is the SQL statement that this

code builds:

SELECT * FROM TABLE WHERE FIELD = 'input'

Incorrectly Handled Escape Characters

SQL databases interpret the quote character (‘) as the boundary between code and data. It

assumes that anything following a quote is code that it needs to run and anything

encapsulated by a quote is data. Therefore, you can quickly tell whether a Web site is

vulnerable to SQL injection by simply typing a single quote in the URL or within a field

in the Web page or application. Here is the source code for a very simple application that

passes user input directly to a dynamically created SQL statement:

// build dynamic SQL statement

$SQL = "SELECT * FROM table WHERE field = '$_GET["input"]'";

// execute sql statement

$result = mysql_query($SQL);

// check to see how many rows were returned from the database

$rowcount = mysql_num_rows($result);

// iterate through the record set returned

$row = 1;

while ($db_field = mysql_fetch_assoc($result)) {

if ($row <= $rowcount){

print $db_field[$row] . "
";

$row++;

}

To enter the single-quote character as input to the application, may be presented with

either one of the following errors; the result depends on a number of environmental

factors, such as programming language and database in use, as well as protection and

defense technologies implemented:

18

Warning: mysql_fetch_assoc(): supplied argument is not a valid MySQL result

Resource

You may receive the preceding error or the one that follows. The following error

provides useful information on how the SQL statement is being formulated:

You have an error in your SQL syntax; check the manual that corresponds to your

MySQL server version for the right syntax to use near ''VALUE'''

The reason for the error is that the single-quote character has been interpreted as a

string delimiter. Syntactically, the SQL query executed at runtime is incorrect (it has one

too many string delimiters), and therefore the database throws an exception. The SQL

database sees the single-quote character as a special character (a string delimiter). The

character is used in SQL injection attacks to “escape” the developer’s query so that the

attacker can then construct his own queries and have them executed.

The single-quote character is not the only character that acts as an escape character; for

instance, in Oracle, the blank space (), double pipe (||), comma (,), period (.), (*/), and

double-quote characters (“) have special meanings.

Incorrectly Handled Types

The single-quote character is interpreted as a string delimiter and is used as the boundary

between code and data. When dealing with numeric data, it is not necessary to

encapsulate the data within quotes; otherwise, the numeric data would be treated as a

string.

Here is the source code for a very simple application that passes user input directly to

a dynamically created SQL statement. The script accepts a numeric parameter ($userid)

and displays information about that user. The query assumes that the parameter will be an

integer and so is written without quotes.

19

// build dynamic SQL statement

$SQL = "SELECT * FROM table WHERE field = $_GET["userid"]"

// execute sql statement

$result = mysql_query($SQL);

// check to see how many rows were returned from the database

$rowcount = mysql_num_rows($result);

// iterate through the record set returned

$row = 1;

while ($db_field = mysql_fetch_assoc($result)) {

if ($row <= $rowcount){

print $db_field[$row] . "
";

$row++;

}

}

MySQL provides a function called LOAD_FILE that reads a file and returns the file

contents as a string. To use this function, the file must be located on the database server

host and the full pathname to the file must be provided as input to the function. The

calling user must also have the FILE privilege. The following statement, if entered as

input, may allow an attacker to read the contents of the /etc/passwd file, which contains

user attributes and usernames for system users:

1 UNION ALL SELECT LOAD_FILE('/etc/passwd')--

The attacker’s input is directly interpreted as SQL syntax; so, there is no need for the

attacker to escape the query with the single-quote character. Here is a clearer depiction of

the SQL statement that is built:

SELECT * FROM TABLE

WHERE

USERID = 1 UNION ALL SELECT LOAD_FILE('/etc/passwd')—

20

Incorrectly Handled Query Assembly

Some complex applications need to be coded with dynamic SQL statements, as the table

or field that needs to be queried may not be known at the development stage of the

application or it may not yet exist. An example is an application that interacts with a large

database that stores data in tables that are created periodically. A fictitious example may

be an application that returns data for an employee’s time sheet. Each employee’s time

sheet data is entered into a new table in a format that contains that month’s data (for

January 2008 this would be in the format employee_employee-id_01012008). The Web

developer needs to allow the statement to be dynamically created based on the date that

the query is executed.

The following source code for a very simple application that passes user input directly

to a dynamically created SQL statement demonstrates this. The script uses

applicationgenerated values as input; that input is a table name and three column names.

It then displays information about an employee. The application allows the user to select

what data he wishes to return; for example, he can choose an employee for which he

would like to view data such as job details, day rate, or utilization figures for the current

month. Because the application already generated the input, the developer trusts the data;

however, it is still user-controlled, as it is submitted via a GET request. An attacker could

submit his table and field data for the application-generated values.

// build dynamic SQL statement

$SQL = "SELECT $_GET["column1"], $_GET["column2"], $_GET["column3"] FROM

$_GET["table"]";

// execute sql statement

$result = mysql_query($SQL);

// check to see how many rows were returned from the database

$rowcount = mysql_num_rows($result);

// iterate through the record set returned

$row = 1;

21

while ($db_field = mysql_fetch_assoc($result)) {

if ($row <= $rowcount){

print $db_field[$row] . "
";

$row++;

}

}

If an attacker was to manipulate the HTTP request and substitute the users value for

the table name and the user, password, and Super_priv fields for the application-

generated column names, he may be able to display the usernames and passwords for the

database users on the system. Here is the URL that is built when using the application:

http://www.victim.com/user_details.php?table=users&column1=user&column2=

password&column3=Super_priv

If the injection were successful, the following data would be returned instead of the

time sheet data. This is a very contrived example; however, real-world applications have

been built this way.

user Password Super_priv

root 2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 Y

sqlinjection 2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 N

sanu 2470C0C06DEE42FD1618BB99005ADCA2EC9D1E19 N

Table 1:. Data Returned After Successful Injection

Incorrectly Handled Multiple Submissions

Application developers also tend to design an application around a user and attempt to

guide the user through an expected process flow, thinking that the user will follow the

logical steps they have laid out. For instance, they expect that if a user has reached the

third form in a series of forms, the user must have completed the first and second forms.

In reality, though, it is often very simple to bypass the expected data flow by requesting

22

resources out of order directly via their URLs. Take, for example, the following simple

application:

// process form 1

if ($_GET["form"] = "form1"){

// is the parameter a string?

if (is_string($_GET["param"])) {

// get the length of the string and check if it is within the

// set boundary?

if (strlen($_GET["param"]) < $max){

// pass the string to an external validator

$bool = validate(input_string, $_GET["param"]);

if ($bool = true) {

// continue processing

}

}

}

}

// process form 2

if ($_GET["form"] = "form2"){

// no need to validate param as form1 would have validated it for us

$SQL = "SELECT * FROM TABLE WHERE ID = $_GET["param"]";

// execute sql statement

$result = mysql_query($SQL);

// check to see how many rows were returned from the database

$rowcount = mysql_num_rows($result);

$row = 1;

// iterate through the record set returned

while ($db_field = mysql_fetch_assoc($result)) {

if ($row <= $rowcount){

23

print $db_field[$row] . "
";

$row++;

}

}

}

The application developer does not think that the second form needs to validate input,

as the first form will have performed the input validation. An attacker could call the

second form directly, without using the first form, or he could simply submit valid data as

input into the first form and then manipulate the data as it is submitted to the second

form. The first URL shown here would fail as the input is validated; the second URL

would result in a successful SQL injection attack, as the input is not validated:

[1] http://www.victim.com/form.php?form=form1¶m=' SQL Failed --

[2] http://www.victim.com/form.php?form=form2¶m=' SQL Success --

4.3.2 Insecure Database Configuration

You can mitigate the access that can be leveraged, the amount of data that can be stolen

or manipulated, the level of access to interconnected systems, and the damage that can be

caused by an SQL injection attack, in a number of ways. Securing the application code is

the first place to start; however, you should not overlook the database itself. Databases

come with a number of default users preinstalled. Microsoft SQL Server uses the

infamous “sa” database system administrator account, MySQL uses the “root” and

“anonymous” user accounts, and with Oracle, the accounts SYS, SYSTEM, DBSNMP,

and OUTLN are often created by default when a database is created. These aren’t the

only accounts, just some of the betterknown ones; there are a lot more! These accounts

are also preconfigured with default and well-known passwords.

Some system and database administrators install database servers to execute as the root,

SYSTEM, or Administrator privileged system user account. Server services, especially

database servers, should always be run as an unprivileged user (in a chroot environment,

24

if possible) to reduce potential damage to the operating system and other processes in the

event of a successful attack against the database. However, this is not possible for Oracle

on Windows, as it must run with SYSTEM privileges.

Each type of database server also imposes its own access control model assigning various

privileges to user accounts that prohibit, deny, grant, or enable access to data

and/or the execution of built-in stored procedures, functionality, or features. Each type

of database server also enables, by default, functionality that is often surplus to

requirements and can be leveraged by an attacker (xp_cmdshell, OPENROWSET,

LOAD_FILE, ActiveX, and Java support, etc.).

Application developers often code their applications to connect to a database using one of

the built-in privileged accounts instead of creating specific user accounts for their

applications needs. These powerful accounts can perform a myriad of actions on the

database that are extraneous to an application’s requirement. When an attacker exploits

an SQL injection vulnerability in an application that connects to the database with a

privileged account, he can execute code on the database with the privileges of that

account. Web application developers should work with database administrators to operate

a least-privilege model for the application’s database access and to separate privileged

roles as appropriate for the functional requirements of the application.

In an ideal world, applications should also use different database users to perform

SELECT, UPDATE, INSERT, and similar commands. In the event of an attacker

injecting code into a vulnerable statement, the privileges afforded would be minimized.

Most applications do not separate privileges, so an attacker usually has access to all data

in the database and has SELECT, INSERT, UPDATE, DELETE, EXECUTE, and similar

privileges. These excessive privileges can often allow an attacker to jump between

databases and access data outside the application’s data store.

To do this, though, attacker needs to know what else is available, what other databases

are installed, what other tables are there, and what fields look interesting! When an

attacker exploits an SQL injection vulnerability attacker will often attempt to access

25

database metadata. Metadata is data about the data contained in a database, such as the

name of a database or table, the data type of a column, or access privileges. Other terms

that sometimes are used for this information are data dictionary and system catalog. For

MySQL Servers (Version 5.0 or later) this data is held in the

INFORMATION_SCHEMA virtual database and can be accessed by the SHOW

DATABASES and SHOW TABLES commands. Each MySQL user has the right to

access tables within this database, but can see only the rows in the tables that correspond

to objects for which the user has the proper access privileges. Microsoft SQL Server has a

similar concept and the metadata can be accessed via the INFORMATION_SCHEMA or

with system tables (sysobjects, sysindexkeys, sysindexes, syscolumns, systypes, etc.),

and/or with system stored procedures; SQL Server 2005 introduced some catalog views

called “sys.*” and restricts access to objects for which the user has the proper access

privileges.

Each Microsoft SQL Server user has the right to access tables within this database and

can see all of the rows in the tables regardless of whether he has the proper access

privileges to the tables or the data that is referenced.

Meanwhile, Oracle provides a number of global built-in views for accessing Oracle

metadata (ALL_TABLES, ALL_TAB_COLUMNS, etc.). These views list attributes and

objects that are accessible to the current user. In addition, equivalent views that are

prefixed with USER_ show only the objects owned by the current user (i.e., a more

restricted view of metadata), and views that are prefixed with DBA_ show all objects in

the database (i.e., an unrestricted global view of metadata for the database instance). The

DBA_ metadata functions require database administrator (DBA) privileges. Here is an

example of these statements:

-- Oracle statement to enumerate all accessible tables for the current user

SELECT OWNER, TABLE_NAME FROM ALL_TABLES ORDER BY TABLE_NAME;

-- MySQL statement to enumerate all accessible tables and databases for the

-- current user

26

SELECT table_schema, table_name FROM information_schema.tables;

-- MS SQL statement to enumerate all accessible tables using the system

-- tables

SELECT name FROM sysobjects WHERE xtype = 'U';

-- MS SQL statement to enumerate all accessible tables using the catalog

-- views

SELECT name FROM sys.tables;

4.4 Existing Technologies to Stop SQL Injection

4.4.1 Defensive Programming

Defensive Programming is a Programming practice that was done on the integrated

application code when the software is in development stage. The programmer tries to

minimize all the bugs in the programming, and the programmer tries to find out the way

to use the code for hacking purpose. So by this type of coding practice the programmer

will be able to find out the security weakness in the code. By securing the code the

programmer can possibly stop potential attacks on the website. The code can be analyzed

in many ways like reducing the complexity of the program. Doing reviews on the code

again and again to find out the possible vulnerabilities of the code and to perform

software testing on the code. By forming the programming with the above measures the

programmer can develop a code which may be immune. Ultimately the attacker tries to

find out new ways to penetrate into the code. When the hacker finds a new method that is

not tested while application programming the attacker may be successful at some stage.

The user also limited to test the application with the attacking techniques he knows about.

There are a number of ways a programmer/system administrator can prevent or counter

attacks made on their systems.

Parameterized Query: Parameterized query is parameterized database access API

provided by development platform such as PrepareStatement in Java or SQLParameter

27

.NET. Instead of composing SQL by concatenating string, each parameter in a SQL query

is declared using place holder and input is provided separately.

Least Privilege: The account that an application uses to access the database should have

only the minimum permissions necessary to access the objects that it needs to use.

Different Accounts: Use a different database account for a task that requires a different

level of privilege.

Customized Error Message: Attacker may gain access to knowledge through overly

informative error messages, yet completely removing error messages makes debugging a

difficult task. Customized error messages hinder the reconnaissance progress of attacker,

particularly in deducing specific details such as inject-able parameters, etc.

Figure 5: Informative error messages

System Stored Procedure Reduction: Once a attacker gains knowledge of which back-

end server is used, he/she has knowledge of an entire set of system stored procedures that

are available. By limiting the system stored procedures one can execute on a server,

especially the processes that are not used, one can reduce or even eliminate

vulnerabilities that may arise from these stored procedures

SQL Keyword Escaping: Escape specific SQL keyword or delimiter in the input string.

Input Variable Length Checking: By checking for input variable length, malicious

code strings beyond certain length limits will not be applicable. Even if the length

limitation is long enough to fit a few additional queries, the inability to input an infinitely

28

long string disables the attacker from employing evasion techniques such as encoding,

and consequently, allows signature based detection mechanisms to intercept simple

attacks.

Although these techniques remain the best way to prevent SQL injection vulnerabilities,

but their application is problematic in practice. These techniques are prone to human

error and are not as rigorously and completely applied as automated techniques. While

most developers do make an effort to code safely, it is extremely difficult to apply

defensive coding practices rigorously and correctly to all sources of input. In fact, many

of the SQL injection vulnerabilities discovered in real applications are due to human

errors: developers forgot to add checks or did not perform adequate input validation

4.4.2 Anomaly Detection

Anomaly detection technique is a method where the administrator observes the network

traffic. By observing the network traffic the administrator can find when there is a

possible attack performed against the server. The anomaly system verifies the traffic

which is going through the network by analyzing the recorded behavior with the network

traffic there is possibility to find out the attacks. The anomaly detection is classified in

many types like rule-based, model-based and statistical analysis. The programmer creates

a set of rules to define possible types of attacks that can be performed on the program

when the rule is not satisfied there might be a possible attack on the database. In the

model based approach the application imports the anomaly techniques that are

characterized to define attacks on the server. If the incoming traffic doesn‟t meets the

model, the application indicates there is a possible attack on the database. Statistical

analysis is a different approach where the program calculates the system behavior by

measuring certain variables overtime and it takes average point of the calculated

variables. If the new traffic exceeds the thresholds, indicates there might be a possible

attack going on the server. The anomaly detection techniques are very good in detecting

the attacks like Buffer overflows and different kind of attacks but as the user can be able

to pass the data in a method which represents like normal traffic these techniques are

unsuccessful for detection of SQL Injection attacks.

29

CHAPTER 5

EXISTING PREVENTION/DETECTION MODELS

5.1 Secure SQL Processing

This model has been proposed by Dibyendu Aich, an M-tech research scholar at the

National Institute of Rourkela in the research paper titled “Secure Query processing by

blocking sql injection” [30]. The basic mechanism that this model uses is a two phase

query analysis, consisting of the static analysis phase and the dynamic analysis phase.

During runtime, the model checks the input query structure with the previously stored

query structure to determine possible SQLIA’s. The database of the valid query structures

is made statically, during compilation. The valid structures are stored as a singly linked

list of the different tokens in a sequential ordering. All such valid query structures in the

application are then stored as a doubly linked list where each node of the doubly linked

list contains the staring address of an individual singly linked list of a valid query

structure. So basically, when a new query is sent to the database server, the model starts

searching for a match of the structure of the query in the linked representation. If a match

is found, the search is stopped and the query is dubbed a valid query, else it is labelled as

an SQL injection attack.

In effect, the searching procedure is the operation of checking if the sequence of query

language tokens generated by the arrived query is the same as the sequence of tokens

generated by at least one singly linked list of valid query structures, upon finding which,

the query is sent to the server for execution. This model makes use of the SQL parser of

the backend database to parse the incoming query into a sequence of tokens, with an

additional field to denote if the node is a user input or if it is a token of the static part of

the query. When a node denoting a user input is found in the linked list, the checker skips

right past it to the next static token, and the matching continues.

30

Figure 6: Node structure of the main doubly linked list

Figure 7: Node structure of singly linked list for storing a valid individual query structure

From the above description of the matching technique, it is clear that for a successful

search, number of tokens in the input query must be equal to the length of the linked list

storing its structure.

Key advantages over other token matching algorithms :

 Although this process is a relatively secure way of checking for SQL injection, it

is computationally very intense because it involves searching of the linked list for

a matching structure. For a database where the number of valid query structures is

very huge, this could take an unacceptably long time. Hence, the technique

proposed to deal with this shortcoming is to use a multithreaded search, where the

input query is checked with each different query structure running as different

threads. When a thread performs a successful search, it intimates all other running

threads to immediately terminate.

 However, due to hardware constraints, there is always a limit on the number of

simultaneously executing threads in any application. Hence, to counter this, a

technique is used where we check for the matching structure with stored

31

structures based on a priority search, where the queries that are used more

regularly are given a higher priority compared to those used rarely, which can be

easily maintained by associating a hit counter with each query structure which is

incremented each time the particular structure is matched with an incoming query.

 For runtime matching, if a conventional literal matching is used to compare

tokens, it will lead to a huge computational complexity. For example, if there are

‘n’ literals in the incoming query and ‘q’ individual valid query structures of the

Data related to the tokens of a valid Is it a user input? Link to next node query

same length as the input query, the worst case complexity will be O(n*q). To

avoid this overhead, a technique is used where instead of using literal string

matching algorithms; each token is simply mapped to an integer value. These

integer values are also stored in the database instead of the literals as the query

fingerprint. When an input query arrives for checking, each token of that query is

replaced by its corresponding integer value, and then performing direct integer

comparison checks instead of token matching, thus greatly reducing the

computational overhead and also significantly reducing the memory space

required.

The formula used to convert a token into its corresponding integer value is to

multiply each ASCII decimal value of a literal by its position number in the token,

and then sum it up. For example, let’s consider the keyword, ‘SELECT’, the

corresponding ASCII decimal values are S=83, E=69, L=76, E=69, c=67, T=84;

and the position of each literal is S=1, E=2, L=3, E=4, C=5, T=6. So, after

multiplying the ASCII values of each literal with its position and summing them

up, we get, 83*1 + 69*2 + 76*3 + 69*4 + 67*5 + 84*6 = 1564. Hence, the

corresponding integer value of ‘SELECT’ is 1564. The integer equivalents of all

other keywords can be similarly evaluated.

 It is known that for a valid incoming query, the number of tokens is the same as

the number of tokens in its corresponding query structure in the database.

Therefore, to reduce the search space, all the valid structures having the same

length are grouped together. For an input query, first its length is calculated,

32

and it is only compared with that group of valid structures which have the same

length. To achieve this, an array is used each element of which contains the

starting address of a doubly linked list which again contains the starting addresses

of all the singly linked lists of the valid structures of a particular length. Hence,

this array contains one element for each different possible query length in the

application, with the cell number indicating the query length. This substantially

reduces the search space and optimizes the searching process.

5.1.1 Proposed architecture

This scheme would be implemented as a different layer in between the application and

the database. It would perform as a virtual database to the application, as it would take

the queries from the application program, analyse them, and if found safe, then send them

to the database and subsequently send the result set back to the application. As this

scheme is totally dependent of the token generation, for which it uses the DBMS parser,

it would be specific to different databases as different databases use different keyword

sets and function names, as well as different syntax. Hence, we see that it is a wise choice

to use the database parser to perform the parsing.

5.1.2 Performance

The main advantage of this model is that since it is multithreaded in nature, it can utilize

the features of the modern multi-core processors very efficiently. The basic complexity of

this algorithm is in three procedures:

1. Token separation: This depends entirely on the database involved because it is

wholly dependent on the database parser, since most databases have a different

keyword set, syntax and function names. Thus, this factor can be taken to be the

same for all implementations.

2. Token to integer conversion: This is of the order O(n) where ‘n’ is the total

number of unique literals in all the queries put together.

3. Searching: Worst case is when it is an unsuccessful search, or when the match is

found in the last linked list of any group. If the length of the singly linked list is

33

‘m’ and there are ‘q’ such linked lists, then the search complexity is O(m*q). The

best case complexity will be if we found a match in the first structure, in which

case the order will be O(m). If we had used a literal wise checking, then the

complexity would have been O(n*q), where ‘n’ is the total number of literals in

the query and n>>m.

5.1.3 Shortcomings of the technique

 It can only detect injection attacks where the structure of the query is

changed.

 This model can only process a standalone SQL query, but does not work

for PL/SQL code block.

5.2 Weight-based Symptom Correlation Approach

This technique has been proposed by Massimo Ficco et al in the research paper titled “A

Weight-Based Symptom Correlation Approach to SQL Injection Attacks” [31]. In this

technique, a number of symptoms of an SQL injection attack are considered which

appear in different times, involve different components and produce several alert events.

Correlating these symptoms, which are diverse in nature and detected by distributed

probes, allows us “to build a unified view of the web service security, as well as

simplifies the recognition of intrusive behaviours”. [31]

Correlation process: Correlation is a process that receives as input detected symptoms

from many distributed probes. During this process, symptoms are analyzed and merged

into compact reports, which describe the security status of the monitored web

applications, which is followed by a confidence assessment of the produced reports. As

shown in the figure below [31], the steps performed by the considered correlation process

are the following:

34

Figure 8: Correlation Process for weight-based approach

 Detection: Distributed probes and detection mechanisms are used to track

different attack symptoms of an SQLIA.

 Normalization: Every detected symptom is recorded and normalized into a

standardized format, and is also augmented with additional information such as

timestamps, source address of attacker, etc.

 Classification: Here, the symptoms are aggregated into categories depending on a

number of different parameters.

 Data coalescing: Events generated by different probes detecting the same

symptom are merged into a single event.

 Correlation: It receives the classified symptoms and correlates them by using

various collaboration rules.

 Ranking: Once the correlation succeeds, a decision is taken whether the current

observations correspond to malicious activities with respect to the system

mission.

35

In general, the ‘system mission’ represents the major objectives of the detection process

pursued by the security administrator. In this context in particular, the system mission for

a SQLIA attack typically consists in avoiding unauthorized access to the backend

database and any sensitive information.

Steps involved

1) Detection: The use of multiple heterogeneous and distributed probes potentially

improves the detection performance through the generation of different

perspectives of the same security incident. For example, the length of the query

attributes the error code generated by the database server, or the size of the pages

returned by the web server could all be used as probes to detect symptoms of an

SQLIA. Each probe uses a detection model that allows it to assign a probability

value, called an ‘anomaly score’ (AS), which reflects the probability of the

occurrence of the given anomaly with regards to an established profile in keeping

with the system mission. Based on this value the evaluated feature is either

classified as a potential attack’s symptom or as normal.

2) Normalization: Since each probe can provide varied security information with

differing representations or formats, a process of symptom normalization into a

common format is imperative. On the basis of a specific mapping scheme, several

attributes are associated with each event to aid the normalization process, such as

the identifier of the probe, the symptom identifier, the source and the target of the

attack, the start/end times of the symptom, and the anomaly score.

3) Classification: Classification aims to categorize symptoms. Categorization

schemas must be defined to identify classes of symptoms in a prioritized,

hierarchical manner with respect to the overall system mission. Symptoms may be

categorized along several dimensions. For example, they could be divided into

abuses, misuses, and suspicious acts. Abuses represent actions which change the

state of a system’s asset, such as sensitive data or database schema, etc. These can

further be divided into anomaly based and knowledge-based abuses. The former

represent anomalous behaviors (unusual application load, anomalous input

36

requests); the latter are based on the recognition of signatures of previously

known attacks (e:g:, brute force attacks). Misuses represent out-of-policy

behaviors in which the state of the components are not affected (e:g:,

authentication failed, failure queries). Suspicious acts are not policy violations of

any kind but are merely events of interest to the probes (e:g:, commands which

provide information about the state of the system).

4) Data coalescing: In order to avoid multiple messages referring to the same

physical symptom from being generated, events that represent the independent

detection (by different probes) of the same symptom occurrence are coalesced to a

single event. When two symptoms are merged, the resulting event replaces the

constituent events, and will be considered for matching with subsequent events. In

particular, the resulting event presents an AS equal to the sum of the ASs of each

of them.

5) Correlation: In this phase, the different symptom classes are correlated using one

of a number of different correlation rules, and a meta-alert consisting of the

correlated symptoms is generated. Researchers have proposed several alert

correlation techniques and analysis processes. For example, a correlation rule that

aggregates symptoms based not only on the impact they have on the system

mission but also on their temporal proximity. Impact analysis requires a previous

modelling of the relationships between symptoms and mission, which could either

be determined through extensive experience and experimentation or through a

heuristic-based technique.

6) Ranking: In order to reduce the effort required to analyze the volume of

generated alerts, an approach based on the confidence of the meta-alerts is

adopted. Assuming that S (k) = {fs1; s2; :::; sn} is the set of correlated symptoms

during the time window k, the confidence is the probability that the meta-alert

represents malicious actions with respect to the system mission.

37

5.2.1 Detection Approach

In order to detect SQLIA symptoms, anomaly detection models are adopted. They allow

to assign a probability value (anomaly score) to the generated events, which reflects the

probability of the occurrence of the given anomaly with regards to an established profile.

The typical features used to detect symptoms are :

 Character Distribution (CD): Typically, SQLIAs present a number of characters

that are repeated many times and hence the character distribution can be highly

anomalous. Therefore, an anomaly detection model is used to capture the concept

of ‘normal’ query attributes and flag any attempt at SQL injection based on the

character distribution. During the training phase, for each HTTP GET and POST

request, the query section is extracted, and the relative frequency of each

character in the attributes is computed. Then the characteristics of normal

character distribution are approximated by the average of all character

distributions (the sum of the distributions is divided by the number of requests).

The estimated frequencies are sorted and grouped, and any input query differing

in its distribution of characters is marked with a corresponding Anomaly Score

(AS).

 Query Length (QL): The lengths of the inputs given in the different fields of a

form that is part of a web request can be used to detect anomalous behaviors.

Generally, the lengths of the query attributes do not vary much among requests

associated with the same web application. However, this behavior may show

considerable deviations during SQLIA’s. For example, in UNION attacks, the

attacker injects a statement of the form “UNION <injectedquery>”, which

changes the length of the query attribute quite significantly. A model is adopted

which statistically estimates an approximation of the query’s attribute length and

detects suspicious inputs that significantly deviate from the observed normal

behaviour.

 Queries Failed (QF): SQLIAs that execute many queries on a particular database

table could show up as an anomalous high rate of queries failed with respect to

38

the normal behaviour. An operational model is adopted to estimate abnormal rate

of queries failed with respect to the normal profile. This is considered over a fixed

slicing time window.

 Web Response (WR): The size of the page generated by the web server when

under SQLIA can vary significantly from the size of the corresponding page

during normal execution. For example, the web server could generate a web page

which contains an error message, whose size is quite different compared to the

normal response. In particular, it can be safely assumed that the size of the page

generated against the same request does not vary by much and any such anomaly

can be flagged as a symptom of an SQLIA. During the training phase it is

necessary to estimate the mean and the variance of generated page for each web

page directly reachable by the user.

5.2.2 Performance

Weight-based correlation approach for SQLIAs detection allows the system to assign a

higher level of confidence to the alerts collected by multiple security probes, located at

different architectural levels, so as to achieve a higher probability of spotting an

intrusion. In comparison, the other methods are based on a single data source or on

multiple data sources, but located at a single architectural level, and are hence not as

comprehensive. Weight-based approach is seen to give a very good performance in

detecting a majority of both false positives and false negatives.

The injection attacks of the UNION type are very efficiently detected by the Query

Length detection while the Tautology attacks are very well detected by the Character

Distribution detection. Thus, assigning appropriate weights to these two detection probes

could lead to the minimization of false positives. Also, a feedback learning technique

could be used whereby the false positives once recorded can be avoided the next time by

modifying the weights to generate better anomaly scores.

39

CHAPTER 6

STORED PROCEDURES

6.1 Introduction

Stored procedures are precompiled database queries that improve the security, efficiency

and usability of database client/server applications. Developers specify a stored

procedure in terms of input and output variables. They then compile the code on the

database platform and make it available to aplication developers for use in other

environments, such as web applications. All of the major database platforms, including

Oracle, SQL Server and MySQL support stored procedures. The major benefits of this

technology are the substantial performance gains from precompiled execution, the

reduction of client/server traffic, development efficiency gains from code reuse and

abstraction and the security controls inherent in granting users permissions on specific SP

instead of the underlying database tables.

A stored procedure has a name, a parameter list, and an SQL statement, which can

contain many more SQL statements. There is new syntax for local variables, error

handling, loop control, and IF conditions. Here is an example of a statement that creates a

stored procedure.

CREATE PROCEDURE procedure1 /* name */

(IN parameter1 INTEGER) /* parameters */

BEGIN /* start of block */

DECLARE variable1 CHAR(10); /* variables */

IF parameter1 = 17 THEN /* start of IF */

SET variable1 = 'birds'; /* assignment */

ELSE

SET variable1 = 'beasts'; /* assignment */

END IF; /* end of IF */

INSERT INTO table1 VALUES (variable1); /* statement */

END /* end of block */

40

Now to Call a Procedure

CALL procedure1(8);

6.2 Why Stored Procedures?

Stored procedures are widely used in all the popular relational commercial database

system as it gives the following advantage:

Higher performance: A stored procedure especially composed of several complex

queries often runs faster combined than if it had been implemented as, for example, a

program running on a client computer which communicates with the database by

submitting the SQL queries one by one. As stored procedure is stored in the database

server side, by having complex logic run inside the database engine via a stored

procedure, numerous context switches and a great deal of network traffic can be

eliminated. The database server only needs to send the final results back to the user,

doing away with the overhead of communicating potentially large amounts of interim

data back and forth [23].

Simplification of data management: Stored procedure allow for business logic to be

embedded as an API in the database, which can simplify data management. By providing

an API that implements business logic within the database using stored procedures, the

need to duplicate logic within client programs is lessened or eliminated. If managed

appropriately, this may result in a lesser likelihood of data becoming corrupted through

the use of client programs that are out of date, or that have not been updated as intended

[23].

Security: The implementation of stored procedure is hidden, and certain logic which

need to be secured could be encapsulated by stored procedure and user has no way but to

call the stored procedure.

41

Although SQL stored procedure is core of many business products and online services

produced by the company, not enough attention has been paid. It is common misun-

derstanding that stored procedure won't involve business logic, so the size of the code

won't be huge. However, lots of business transactions and database system functions are

written as stored procedure. Stored procedure is as important as any other client code

written in C or Java.

6.3 SQL Injection in Stored Procedures

Stored procedures, opposite to popular belief, are vulnerable to SQLIA’s [12]. Shown

below is an example that illustrates how an attacker can exploit vulnerabilities in a stored

procedure, to gain illegitimate access to the system as well as the network resources.

Shown below is a sample stored procedure that accepts ‘uname’ and ‘pword’ as user

inputs in a variable length string format.

Create procedure p

(IN uname VARCHAR(50),IN pword VARCHAR(50))

BEGIN

SET @sql = CONCAT('SELECT * FROM uinfo WHERE username=" ',uname,' ”

AND password="',pword,'"');

PREPARE stmt FROM @sql;

EXECUTE stmt;

END;

(Stored Procedure vulnerable to SQL-Injection)

An interesting observation to be made from the code sample shown above is that there is

an EXECUTE system function which allows the user to dynamically build a SQL

statement as a string and then execute it. This feature is supported in most business

database products. Such dynamically constructed SQL statements provide great user

42

flexibility. However, they face a great threat from SQLIAs. The process of building an

SQL statement could be used by the attacker to change the original intended semantics of

the SQL statement.

If the stored procedure p is called with user inputs uname and pword, the following query

would get executed: SELECT * FROM uinfo WHERE username=’uname’ and

password=’pword’.

In this scenario, suppose a user gives input for variable uname as ‘anything" OR 1=1 #"’

and any string, say ”null”, for the variable pword the query would take the form:

SELECT * FROM uinfo WHERE username= ‘anything" OR 1=1 #"’ and

password=’null’.

Figure 9: User Login Form

Authorization Script In the Web Page:

<html >

<head>

<title>SQL Injection Testing</title>

</head>

<body>

<div style="width:300px; height:150px; border:1px #CCCCCC solid; padding:5px;

padding-left:20px;">

43

<div style="color: #33CC33; font-size:20px; font-weight:bold;">User Login</div>

<form name="form1" method="post" action="">

<p>

<label>Username:</label>

<input type="text" name="uname">

</p>

<p>

<label>Password:</label>

<input type="password" name="pword">

</p>

<p>

<label>

<input type="submit" name="Submit" value="Submit">

</label>

</p>

</form>

</div>

<?php

if(isset($_POST['Submit']))

{

/* Connect to a MySQL server */

$link = mysqli_connect(

'localhost', /* The host to connect to */

'sanu', /* The user to connect as */

'sanu', /* The password to use */

'sql_inj'); /* The default database to query */

if (!$link)

{

printf("Can't connect to MySQL Server. Errorcode: %s\n", mysqli_connect_error());

exit(); }

44

/* Send a query to the server */

if ($result = mysqli_query($link,

"call p3('".$_POST['uname']."','".$_POST['pword']."')")){

if(mysqli_num_rows($result))

{

echo "You Authorized User";

/* you can now access this application */

}

else

{

echo "User Name or Password Failed
Please try again";

}

}

mysqli_close($link);

}

?>

</body>

</html>

The characters ”#” mark the beginning of a comment in SQL, and everything after that is

ignored. The query as interpreted by the database is a tautology and hence will always be

satisfied, and the database would return information about all users. Thus an attacker can

bypass all the authentication modules in place and gain unrestricted access to critical data

on the web server.

45

6.4 Types of Attacks

The basic types of attacks are as follows:

Tautology attacks

The general goal of a tautology-based attack is to inject code in one or more conditional

statements so that they always evaluate to true. The consequences of this attack depend

on how the results of the query are used within the application. The most common usages

are to bypass authentication pages and extract data. In this type of injection, an attacker

exploits an injectable field that is used in a query’s WHERE conditional. Transforming

the conditional into a tautology causes all of the rows in the database table targeted by the

query to be returned. In general, for a tautology-based attack to work, an attacker must

consider not only the injectable/vulnerable parameters, but also the coding constructs that

evaluate the query results. Typically, the attack is successful when the code either

displays all of the returned records or performs some action if at least one record is

returned.

Example:

Create procedure p

(IN uname VARCHAR(50),IN pword VARCHAR(50))

BEGIN

SET @sql = CONCAT('SELECT * FROM uinfo WHERE username=" ',uname,'”

AND password="',pword,'"');

PREPARE stmt FROM @sql;

EXECUTE stmt;

END;

In this example attack, an attacker submits “ ‘ or 1=1 #

SELECT * FROM uinfo WHERE

username=”or 1=1 # AND password=

46

The code injected in the conditional (OR 1=1) transforms the entire WHERE clause into

a tautology. The database uses the conditional as the basis for evaluating each row and

deciding which ones to return to the application. Because the conditional is a tautology,

the query evaluates to true for each row in the table and returns all of them. In our

example, the returned set evaluates to a nonnull value, which causes the application to

conclude that the user authentication was successful. [4]

UNION attacks

In union-query attacks, an attacker exploits a vulnerable parameter to change the data set

returned for a given query. With this technique, an attacker can trick the application into

returning data from a table different from the one that was intended by the developer.

Attackers do this by injecting a statement of the form: UNION SELECT <rest of injected

query>. Because the attackers completely control the second/injected query, they can use

that query to retrieve information from a specified table. The result of this attack is that

the database returns a dataset that is the union of the results of the original first query and

the results of the injected second query.

Example: Referring to the running example, an attacker could inject the text “’ UNION

SELECT cardNo from CreditCards where acctNo=10032 #” into the login field, which

produces the following query:

SELECT * FROM uinfo WHERE username=’’ UNION

SELECT cardNo from CreditCards where

acctNo=10032 # AND password =

Assuming that there is no login equal to “”, the original first query returns the null set,

whereas the second query returns data from the “CreditCards” table. In this case, the

database would return column “cardNo” for account “10032.” The database takes the

results of these two queries, unions them, and returns them to the application.

In many applications, the effect of this operation is that the value for “cardNo” is

displayed along with the account information. [4, 21]

47

Logically incorrect query attacks

This attack lets an attacker gather important information about the type and structure of

the back-end database of a Web application. The attack is considered a preliminary,

information gathering step for other attacks. The vulnerability leveraged by this attack is

that the default error page returned by application servers is often overly descriptive. In

fact, the simple fact that an error messages is generated can often reveal

vulnerable/injectable parameters to an attacker. Additional error information, originally

intended to help programmers debug their applications, further helps attackers gain

information about the schema of the back-end database. When performing this attack, an

attacker tries to inject statements that cause a syntax, type conversion, or logical error

into the database. Syntax errors can be used to identify injectable parameters. Type errors

can be used to deduce the data types of certain columns or to extract data. Logical errors

often reveal the names of the tables and columns that caused the error.

Example: This example attack’s goal is to cause a type conversion error that can reveal

relevant data. To do this, the attacker injects the following text into input field pin:

“convert(int,(select top 1 name from sysobjects where xtype=’u’))”.

The resulting query is:

SELECT * FROM uinfo WHERE username=’’ AND

password= convert (int,(select top 1 name from

sysobjects where xtype=’u’))

In the attack string, the injected select query attempts to extract the first user table

(xtype=’u’) from the database’s metadata table (assume the application is using Microsoft

SQL Server, for which the metadata table is called sysobjects). The query then tries to

convert this table name into an integer. Because this is not a legal type conversion, the

database throws an error. For Microsoft SQL Server, the error would be: ”Microsoft OLE

DB Provider for SQL Server (0x80040E07) Error converting nvarchar value

’CreditCards’ to a column of data type int.”

48

There are two useful pieces of information in this message that aid an attacker. First, the

attacker can see that the database is an SQL Server database, as the error message

explicitly states this fact. Second, the error message reveals the value of the string that

caused the type conversion to occur. In this case, this value is also the name of the first

user-defined table in the database: “CreditCards.” A similar strategy can be used to

systematically extract the name and type of each column in the database. Using this

information about the schema of the database, an attacker can then create further attacks

that target specific pieces of information. [4, 8, 21]

Piggybacked Query

In this attack type, an attacker tries to inject additional queries into the original query. We

distinguish this type from others because, in this case, attackers are not trying to modify

the original intended query; instead, they are trying to include new and distinct queries

that “piggy-back” on the original query. As a result, the database receives multiple SQL

queries. The first is the intended query which is executed as normal; the subsequent ones

are the injected queries, which are executed in addition to the first. This type of attack can

be extremely harmful. If successful, attackers can insert virtually any type of SQL

command, including stored procedures, into the additional queries and have them

executed along with the original query. Vulnerability to this type of attack is often

dependent on having a database configuration that allows multiple statements to be

contained in a single string.

Example: If the attacker inputs “’; drop table users #” into the pass field, the application

generates the query:

SELECT * FROM uinfo WHERE username=’sanu’ AND

password=’’; drop table users –

After completing the first query, the database would recognize the query delimiter (“;”)

and execute the injected second query. The result of executing the second query would be

49

to drop table users, which would likely destroy valuable information. Other types of

queries could insert new users into the database or execute stored procedures.[4, 21, 17]

Buffer overflow

In the buffer overflow attack the user passes more characters to the database, where the

number of input characters is limited by the databases. This action can overflow allocated

buffer and overwrites adjacent locations in the memory. By crafting the input carefully

the attacker can gain access over the database or this type of attack can also confuse the

database, thus the database can shutdown unexpectedly. Buffer overflow attacks are

normally crafted by making use of security loop holes in the programming. So by

installing updated security patches to the databases the administrator can stop these types

of attacks. Some of the databases are updated with new technologies can stop any

connections coming from the application when a buffer overflow attack is triggered. By

making use of this the attacker can trigger the buffer overflow attacks many times. This

results the database to stop acting against any commands that are to be executed by the

application. This attack can effect normal operation of the application. Bind Variables are

another concept that a developer can use to save system resources and to reduce the

application execution time. When a command is used against a database the command is

saved in shared pool. When a SQL command is passed to database by the application, the

database checks in the shared pool to verify whether the command is executed previously

or not. If the command is not executed before the database goes through all the process to

execute the command, if the database is able to find the result in the shared pool it

directly uses the result that is stored in shared pool to response to the database query. So

to save the application resources developer‟s uses bind variables with the SQL

statements. The attackers can try to manipulate the bind variables to execute applications

maliciously. Generally oracle is immune to this type of attacks as oracle will use the

value of bind variables exclusively. And the oracle database works such as not to reveal

any value from the database, when there are no matching values.

50

6.5 Preventing SQLIA’s in Stored Procedures

This chapter covers several large areas of secure coding behavior as it relates to SQL

injection. First we’ll discuss alternatives to dynamic string building when utilizing SQL

in an application. Then we’ll discuss different strategies regarding validation of input

received from the user, and potentially from elsewhere. Closely related to input validation

is output encoding, which is also an important part of the arsenal of defensive techniques

that should consider for deployment.

6.5.1 Validating Input

Input validation is the process of testing input received by the application for compliance

against a standard defined within the application. It can be as simple as strictly typing a

parameter and as complex as using regular expressions or business logic to validate input.

There are two different types of input validation approaches: whitelist validation

(sometimes referred to as inclusion or positive validation) and blacklist validation

(sometimes known as exclusion or negative validation).

Whitelisting

Whitelist validation is the practice of only accepting input that is known to be good. This

can involve validating compliance with the expected type, length or size, numeric range,

or other format standards before accepting the input for further processing. For example,

validating that an input value is a credit card number may involve validating that the

input value contains only numbers, is between 13 and 16 digits long, and passes the

business logic check of correctly passing the Luhn formula (the formula for calculating

the validity of a number based on the last “check” digit of the card).

51

When using whitelist validation we should consider the following points:

 Data type Is the data type correct? If the value is supposed to be numeric, is it

numeric? If it is supposed to be a positive number, is it a negative number

instead?

 Data size If the data is a string, is it of the correct length? Is it less than the

expected maximum length? If it is a binary blob, is it less than the maximum

expected size? If it is numeric, is it of the correct size or accuracy? (For example,

if an integer is expected, is the number that is passed too large to be an integer

value?)

 Data range If the data is numeric, is it in the expected numeric range for this type

of data?

 Data content Does the data look like the expected type of data? For example,

does it satisfy the expected properties of a ZIP Code if it is supposed to be a ZIP

Code? Does it contain only the expected character set for the data type expected?

If a name value is submitted, only some punctuation (single quotes and character

accents) would normally be expected, and other characters, such as the less than

sign (<), would not be expected.

A common method of implementing content validation is to use regular expressions.

Following is a simple example of a regular expression for validating a U.S. ZIP Code

Contained in a string:

^\d{5}(-\d{4})?$

In this case, the regular expression matches both five-digit and five-digit + four-digit

ZIP Codes as follows:

 ^\d{5} Match exactly five numeric digits at the start of the string.

 (–\d{4})? Match the dash character plus exactly four digits either once (present)

or not at all (not present).

 $ This would appear at the end of the string. If there is additional content at the

end of the string, the regular expression will not match.

52

In general, whitelist validation is the more powerful of the two input validation

approaches. It can, however, be difficult to implement in scenarios where there is

complex input, or where the full set of possible inputs cannot be easily determined.

Difficult examples may include applications that are localized in languages with large

character sets (e.g., Unicode character sets such as the various Chinese and Japanese

Character sets).

Blacklisting

Blacklisting is the practice of only rejecting input that is known to be bad. This

commonly involves rejecting input that contains content that is specifically known to be

malicious by looking through the content for a number of “known bad” characters,

strings, or patterns. This approach is generally weaker than whitelist validation because

the list of potentially bad characters is extremely large, and as such any list of bad content

is likely to be large, slow to run through, incomplete, and difficult to keep up to date.

A common method of implementing a blacklist is also to use regular expressions, with a

list of characters or strings to disallow, such as the following example:

'|%|--|;|/*|*|_|\[|@|xp_

In general, we should not use blacklisting in isolation, and we should use whitelisting if

possible. However, in scenarios where we cannot use whitelisting, blacklisting can still

provide a useful partial control. In these scenarios, however, it is recommended that we

use blacklisting in conjunction with output encoding to ensure that input passed

elsewhere (e.g., to the database) is subject to an additional check to ensure that it is

correctly handled to prevent SQL injection.

An example of using preg_match to validate a form parameter:

$username = $_POST['username'];

if (!preg_match("/^[a-zA-Z]{8,12}$/D", $username) {

// handle failed validation

}

53

6.5.2 Encoding Output

In addition to validating input received by the application, it is often necessary to also

encode what is passed between different modules or parts of the application. In the

context of SQL injection, this is applied as requirements to encode, or “quote,” content

that is sent to the database to ensure that it is not treated inappropriately. However, this is

not the only situation in which encoding may be necessary.

An often-unconsidered situation is encoding information that comes from the database,

especially in cases where the data being consumed may not have been strictly validated

or sanitized, or may come from a third-party source. In these cases, although not strictly

related to SQL injection, it is advisable that we consider implementing a similar

encoding approach to prevent other security issues from being presented, such as XSS.

Encoding to the Database

Even in situations where whitelist input validation is used, sometimes content may not

be safe to send to the database, especially if it is to be used in dynamic SQL. For

example, a last name such as O’Boyle is valid, and should be allowed through whitelist

input validation. This name, however, could cause significant problems in situations

where this input is used to dynamically generate an SQL query, such as the following:

$sql = "INSERT INTO names VALUES ('". $_POST[‘ fname’]. "','"

$_POST[‘lname’]. "');"

Additionally, malicious input into the first name field, such as:

',''); DROP TABLE names #

could be used to alter the SQL executed to the following:

INSERT INTO names VALUES ('',''); DROP TABLE names--','');

54

We can prevent this situation through the use of parameterized statements, as covered

earlier. However, where it is not possible or desirable to use these, it will be necessary to

encode (or quote) the data sent to the database. This approach has a limitation, in that it is

necessary to encode values every time they are used in a database query; if one encode is

missed, the application may well be vulnerable to SQL injection.

MySQL Server uses the single quote as a terminator for a string literal, so it is necessary

to encode the single quote when it is included in strings that will be included within

dynamic SQL. In MySQL, can do this by quoting the single quote with a backslash (\).

This will cause the single quote to be treated as a part of the string literal, and not as a

string terminator, effectively preventing a malicious user from being able to

exploit SQL injection on that particular query.

Additionally, PHP provides the mysql_real_escape() function, which will automatically

quote the single quote with a backslash.

mysql_real_escape_string($user);

For example, the preceding code would cause the string O’Really to be quoted to the

string O\’Really. If stored to the database, it will be stored as O’Really but will not cause

string termination issues while being manipulated while quoted.

55

CHAPTER 7

ANALYSIS IMPLEMENTATION AND RESULTS

7.1 Implementation

To test the performance of the prevention techniques described in the previous chapter, a

system has been developed to detect known form of SQL inject. It is developed in PHP.

We know that SELECT query used in login page of the web application is of the form :

“ SELECT * FROM uinfo WHERE username=’”.$_POST[‘uname’].”’ AND

password=’”.$_POST[‘pword’].”’ “

In this scenario attacker can easily inject a malicious code ‘ or 1=1# in the username

textbox. The query form by this code is always true because it is a tautology hence

anybody can login using malicious code.

To prevent this SQL-Injection, the user input should be validated first, before sending it

to database for query processing. If the query is matches to our desire query, we assume

that there is no attack in user submitted data otherwise there will be SQL-Injection attack.

This idea is illustrated in the following flow chart.

56

Figure 10: Flow chart for intrusion detection for SQL-injection

7.2 Results

Developed SQL-Injection intrusion detection system tested against various stored

procedures. The stored procedures were built to work on the standard databases. The

database was the shopping_cart , with the tables ‘uinfo’ used for testing the intrusion

detection for SQL-Injection. A sample stored procedures used for testing the software is

as shown below. This procedure contains 1 query statements with dynamic SQL

constructs, and depends on 2 user input parameters.

57

Create procedure p

(IN uname VARCHAR(50),IN pword VARCHAR(50))

BEGIN

SET @sql = CONCAT('SELECT * FROM uinfo WHERE username=" ',uname,' ”

AND password="',pword,'"');

PREPARE stmt FROM @sql;

EXECUTE stmt;

END;

The following table gives the summary of the testing results.

Type of injection Successfully blocked

Tautology Yes

Union Yes

Piggy backed Yes

Logically incorrect query Yes

End of line comment Yes

Table 2: Summary of testing results

Figure 11: SQL-Injection intrusion detection

58

7.3 Performance Analysis

Number of input versus execution time

The performance evaluation for this case was done by varying the number of input to

validate. The execution times for the SQL-Injection intrusion detection (ID) were

measured by varying the numbers of user input and the average times were calculated.

The graph shown below gives the relation between the numbers of user input and the

average time SQL Injection intrusion detection takes to analyze the inputs. The graph is

seen to show an increasing trend, as predicted, where higher the number of user inputs,

higher is the execution time.

The average execution time for analysis of a user submitted data having 12 input is 235

ms, which is a reasonable compromise in most cases considering the enhanced level of

security it provides.

Sr. No. No. of User Input Avg. time in ms

1 1 20

2 3 58

3 6 118

4 9 179

5 12 235

Table 3: Execution time for different no. of input

59

Figure 12: Number of input versus execution time

Number of users versus execution time

The performance evaluation for this case was done by varying the number of users and 1

user input data. The execution times of the SQL-Injection ID were measured by varying

the numbers of users and the average times were calculated. Here, we take the response

time for 5 and 10 users in 10 times and calculated their average time by taking mean for

each of the user. Instead of allowing different machine for different users, all the users

processes were simulated on a single machine.

The graph below shows the relation between the number of users and the execution time

of the SQL-Injection intrusion detection. As predicted, this graph also shows an

increasing trend; higher the users, higher is the execution time.

The average execution time for analysis of a user submitted data having 1 input and 10

users is 160 ms, which is also reasonable compromise in most cases considering security

it provides.

60

Numbers of users Avg. Response time(ms)

5 34

10 160

Table 4: Execution time for different no. of users

Figure 13: Number of users versus execution time

61

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Concluding Remarks

SQL Injection is a common technique that hackers employ to exploit underlying

databases in several web and e-Commerce applications in the present day. These attacks

reshape the SQL query, thus altering the behavior of the program. Although several

solutions exist to prevent SQLIA’s at the application level, very few solutions exists to

prevent them from occurring in stored procedures. The main advantage of the model

proposed by Dibyendu Aich, an M-tech [30] is that since it is multithreaded in nature, it

can utilize the features of the modern multi-core processors very efficiently and in the

technique proposed by Massimo Ficco et al [31] the injection attacks of the UNION type

are very efficiently detected by the Query Length detection while the Tautology attacks

are very well detected by the Character Distribution detection.

In this thesis work, we show the different technique of attacking the Database Stored

Procedure through SQL Injection attack and some of their prevention technique. Here we

also show the execution overhead for normal statement and guarded statement, which

show that more time is need to execute the query in guarded statement than for the

normal statement. We can also say that if we follow the prevention technique given in

this work our application is secure in some aspect. During the time of this work when we

studied various research paper and book we conclude that the main reason of SQL

Injection attack is due to the lack of adequate user input validation.

Through the study of different research paper we conclude that security of web

application is depends upon the programmer who designs the application. At last we say

that during the design of application, user need to give least privilege as possible.

62

8.2 Future Work

In this thesis work, we concentrated on specific attacking technique on database SP i.e

SQL Injection attack. We strongly believe that only this work is not sufficient to secure

the web application thus in this field further investigation is needed. In this work we only

concerned with some technique of how SQL Injection attack occur in database SP their

prevention technique and execution time. During preparation of this work we studied that

there are numbers of other factors in the SQL Injection that are harmful to web

application but these are not included in this small work.

63

REFERENCES

[1] Andrew Jaquith, The security of applications: Not all are created equal. Technical

report, @stake, feb 2002.

http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf.

[2] Berners-Lee, The World Wide Web browser, http://www.w3.org/People/Berners-

Lee/WorldWideWeb.html (1990)

[3] Breach.com, The Web Hacking Incidents Database Annual Report 2009. Breach

Security Whitepaper, Feb 2009.

http://www.breach.com/resources/whitepapers/downloads/WP_WebHackingIncidents_20

08.pdf

[4] C. Anley, Advanced SQL Injection In SQL Server Applications. White paper, Next

Generation Security Software Ltd., 2002.

[5] Chip Andrews, Sql injection faq. Web advisory, apr 2003.

http://www.sqlsecurity.com/DesktopDefault.aspx?tabindex=2&tabid=3.

[6] Craig Atkins, Data sanitization - reducing security holes in an asp website. Web

advisory, 2003. http://www.4guysfromrolla.com/webtech/112702-1.shtml.

[7] Dancho Danchev, Over 1.5 million pages affected by the recent SQL injection

attacks, ZDNet.com,20th May 2008.

http://blogs.zdnet.com/security/?p=1150

[8] D. Litchfield, Web Application Disassembly with ODBC Error Messages. Technical

document, @Stake, Inc., 2002. http://www.nextgenss.com/papers/webappdis.doc.

64

[9] Garrett, J. J, Ajax: A New Approach to Web Applications,

http://www.adaptivepath.com/ideas/essays/archives/000385.php (2005)

[10] Himanshu Khatri, Sql server stored procedures 101. Web advisory, jun 2002.

http://www.devarticles.com/printpage.php?articleId=142.

[11] Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D. T., Kuo S.Y, Securing Web

application code by static analysis and runtime protection. Proceedings of the 13th

International World Wide Web Conference (2004)

[12] Justin Clarke,Rodrigo Marcos Alvarez,Gary O’Leary-Steele, SQL Injection Attacks

and Defense,2009.

[13] Livshits, V. B., Lam, M. S., Finding Security Vulnerabilities in Java Applications

with Static Analysis. The 14th USENIX Security Symposium (2005)

[14] Kevin Spett, Sql injection - are your web applications vulnerable? Technical report,

SPI Dynamics, 2002. http://injection.rulezz.ru/SQLInjectionWhitePaper.pdf.

[15] Martin Eizner, Direct sql command injection. Technical report, The Open Web

Application Security Project, 2001.

http://qb0x.net/papers/MalformedSQL/sqlinjection.html.

[16] Matthew Levine, The importance of application security. Technical report, @stake,

jan 2003.

http://www.atstake.com/research/reports/acrobat/atstake_application_security.pdf.

[17] M. Howard and D. LeBlanc, Writing Secure Code. Microsoft Press, Redmond,

Washington, second edition, 2003.

65

[18] Mitchell Harper, Sql injection attacks - are you safe? Technical report, Dev Articles,

may 2002. http://www.devarticles.com/content.php?articleId=138&page=2.

[19] Ofer Sheza, The Web Hacking Incidents Database Annual Report 2007. Breach

Security Whitepaper, 2007

http://www.breach.com/assets/files/resources/breach_security_labs/2008/02/The%20Web

%20Hacking%20Incidents%20Database%20Annual%20Report%202007.pdf

[20] OWASP, WebScarab Project, http://www.owasp.org/

[21] S. McDonald, SQL Injection: Modes of attack, defense, and why it matters. White

paper, GovernmentSecurity.org, April 2002.

[22] Steve Christey, Vulnerability Type Distributions in CVE. cwe.mitre.org, Oct 2006.

http://cwe.mitre.org/documents/vuln-trends/index.html

[23] Stored procedure. http://www.wikipedia.org (retrieval date: May 18, 2006), 2005.

[24] The Open Web Application Security Project. A guide to building secure

web applications, Version 1.1.1. Online Documentation, sep 2002.

http://www.owasp.org/.

[25] Thomas Connolly, Carolyn Begg, and Ann Strachan, Database Systems - A Practical

Approach to Design, Implementation, and Management. Addison - Wesley, 1999.

[26] W. Halfond, J. Viegas, and A. Orso, A Classification of SQL-Injection Attacks and

Countermeasures. Proceedings of the IEEE International Symposium on Secure Software

Engineering (ISSSE), 2006

[29] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso, A classifcation of SQL

injection attacks and countermeasures. In IEEE International Symposium on Secure

Software Engineering, 2006.

66

[30] Dibyendu Aich (NIT Rourkela). ‘Secure Query processing by blocking sql

injection’. M.Tech thesis 2009

[31] Massimo Ficco, Luigi Coppolino and Luigi Romano. ‘A Weight-Based Symptom

Correlation Approach to SQL Injection Attacks’.Dependable computing 2009.

