
CHAPTER I

1. Introduction

In many areas of commerce, government, academia, and hospitals, large collections of digital

images are being created. Many of these collections are the product of digitizing existing

collections of analogue photographs, diagrams, drawings, paintings, and prints. Usually, the only

way of searching these collections was by keyword indexing, or simply by browsing. Digital

images databases however, open the way to content-based searching. Recent years have seen a

rapid increase in the size of digital image collections. Everyday imaging equipment generates

Giga-bytes of images. Different surveys have estimated that world-wide 2,600 new images are

created per second (equivalent to 80 billion per year) with an estimated 10 billion of which are

available on the internet [1, 2, 3]. Finding the correct image has become an expensive problem. It

is necessary to have these data organized so as to allow efficient browsing, searching, and

retrieval. Image retrieval has been a very active research area since the 1970s, with the thrust

from two major research communities; database management and computer vision. Image

retrieval can be divided into text-based image retrieval (TBIR) and content-based image retrieval

(CBIR) [1, 2, 3, 4, 5]. The text-based image retrieval technique first annotates the images by text,

and then uses text-based database management systems to perform image retrieval. However,

there exist two major difficulties, especially when the size of image collections is large. One is

the vast amount of labour required in manual image annotation. The other difficulty is the

subjectivity of human perception, that is, for the same image content different people may

perceive it differently. The perception subjectivity and annotation impreciseness may cause

unrecoverable mismatches in later retrieval processes. As processors become increasingly

powerful, and memories become increasingly cheaper, the deployment of large image databases

for a variety of applications have now become realizable. Databases of art works, satellite and

medical imagery have been attracting more and more users in various professional fields for

example, geography, medicine, architecture, advertising, design, fashion, and publishing.

Effectively and efficiently accessing desired images from large and varied image databases is

now a necessity

1

1.1 Content Based Image Retrieval

Content-based image retrieval (CBIR) is a technique which uses visual contents to search images

from large scale image databases according to users’ interest. It has been an active and fast

advancing research area since the 1990s [1,2]. Content-based image retrieval uses the visual

contents of an image such as color, shape, texture, and spatial layout to represent and index the

image. [1,2,3] In typical content-based image retrieval systems(figure1.1), the visual contents of

the images in the database are extracted and described by multi-dimensional feature vectors. The

feature vectors of the images in the database form a feature database. To retrieve images, users

provide the retrieval system with example images or sketched figures. The system then changes

these examples into its internal representation of feature vectors. The similarities/distances

between the feature vectors of the query example or sketch and those of the images in the

database are then calculated and retrieval is performed with the aid of an indexing scheme. [6]

The indexing scheme provides an efficient way to search for the image database. Recent retrieval

systems have incorporated users' relevance feedback to modify the retrieval process in order to

generate perceptually and semantically more meaningful retrieval results.

In CBIR, each image that is stored in the database has its features extracted and compared to the

features of the query image. It involves two steps:

1. Feature Extraction: The first step in the process is extracting the low level feature

and representing them.

2. Similarity Measures: The second step in the process is matching the query image

with the different images present in the database according to their low level feature.

2

User

Figure 1.1: Block diagram of Content based Image Retrieval

1.1.1 Feature Extraction

Feature extraction is the basis of content-based image retrieval, and features can be classified as

General Visual contents or Domain-specific Visual Contents [2,3,4]. General features are

suitable for most applications and include color, texture, shape, color layout and shape layout

features. Domain-specific features are only suitable for a narrow image domain. This research

concentrates on general visual contents. Color, texture and shape are the most used features in

content-based image retrieval. Many techniques are used to extract the feature of the images and

represent them in the statistical form. The most commonly used technique to extract and

represent the image feature in statistical form is Histogram.

1.1.2 Similarity Measures

Similarity measure technique is the second step in the process. After formulation of the low level

feature of the image and extraction of the feature of the query image, the next step is to extract

the features of the all the images present in the database and index them according to low level

feature which makes searching fast and effective. Now the query image feature and database

User

Image Database

Query
Formation

Visual Content
Description

Visual Content
Description

Feature
Vector

Feature
Vector

Relevance
Feedback

Similarity
Comparison

Indexing &
Retrieval

Retrieval Results

3

image feature is matched or compared to retrieve the similar image according to low level

content. Many similarity techniques are used to implement CBIR system. The most efficiently

used technique is Minkowsi- Form Distance. Other techniques are Euclidian Distance, Quadratic

Form Distance [6,7,8].

1.2 Motivation and Aims

Recent years have seen a rapid increase in the size of digital image collections in the internet and

other systems. Everyday imaging equipment generates huge amount of images. The storage and

retrieval of images is very difficult, which needs great amount of time and annotation technique

to arrange the data with their name. Due to two major difficulties of manual image annotation

and the subjectivity of human perception may cause unrecoverable mismatches in later retrieval

processes. This leads to more efforts being required on content-based image retrieval. Using this

technique, images are indexed by their own visual content, such as colour, texture or shape.

CBIR has become more and more important with the advance of computer technology, and

provides the answer to the two drawbacks of the Text based image Retrieval (TBIR) system

mentioned above. It is important to stress that CBIR is not a replacement of, but rather a

complementary component to TBIR. Only the integration of the two can result in satisfactory

retrieval performance at present. The wavelet transform, a powerful tool in image processing and

analysis will be used as the main tool for the research work.

1.3 Application of CBIR

Examples of CBIR applications are

 Crime prevention: Automatic face recognition systems, used by police forces.

 Security Check: Finger print or retina scanning for access privileges.

 Medical Diagnosis: Using CBIR in a medical database of medical images to aid

diagnosis by identifying similar past cases.

4

 Intellectual Property: Trademark image registration, where a new candidate mark is

compared with existing marks to ensure no risk of confusing property ownership.

1.4 CBIR System

Several CBIR systems currently exist, and are being constantly developed. Examples are

 QBIC or Query By Image Content was developed by IBM, Almaden Research Centre, to

allow users to graphically pose and refine queries based on multiple visual properties

such as colour, texture and shape. It supports queries based on input images, user-

constructed sketches, and selected colour and texture patterns.

 VIR Image Engine by Virage Inc., like QBIC, enables image retrieval based on primitive

attributes such as colour, texture and structure. It examines the pixels in the image and

performs an analysis process, deriving image characterization features .

 VisualSEEK and WebSEEK were developed by the Department of Electrical

Engineering, Columbia University. Both these systems support colour and spatial

location matching as well as texture matching.

 NeTra was developed by the Department of Electrical and Computer Engineering,

University of California. It supports colour, shape, spatial layout and texture matching, as

well as image segmentation.

 MARS or Multimedia Analysis and Retrieval System was developed by the Beckman

Institute for Advanced Science and Technology, University of Illinois. It supports colour,

spatial layout, texture and shape matching.

 Viper or Visual Information Processing for Enhanced Retrieval was developed at the

Computer Vision Group, University of Geneva. It supports colour and texture matching.

5

1.5 Thesis Organization

Apart from introduction part, the other information is arranged in the subsequent chapters. In

Chapter 2, a literature study of the background of the thesis area will be studied. The literature

study includes the background of content-based image retrieval; with different methods of the

feature extraction of different low level features of images i.e. color, texture, and shape. Since

the feature extraction is the main theme of this thesis, the different feature extraction techniques

are presented in detail in Chapter 3, Chapter 4 and Chapter 5. In Chapter 3, detail analysis of

color feature extraction techniques are discussed. In Chapter 4, a comprehensive comparison

between several texture feature extraction techniques are conducted, and the best features

extraction techniques is identified. The performance of the texture methods will be evaluated in

terms of accuracy and computation time. Chapter 5 describes several shape feature extraction

technique available in the literature. Chapter 6 introduces to the different comparison techniques

used for the matching of the images from the database and the query images. Chapter 7 gives the

detail of Implementation of the used model for the Contained Based Image Retrieval using color

and texture feature with best results. Chapter 8 gives the detail of result and testing of the used

model for the Contained Based Image Retrieval using color and texture feature with best results.

Finally, in Chapter 9, the conclusions of the research are gathered together and various avenues

for future works are presented.

6

CHAPTER II

2. Background and Problem Formulation

As a result of advances in the internet and new digital image sensor technologies, the volume of

digital images produced by scientific, educational, medical, industrial and other applications

available to users increased dramatically [1]. The difficulties faced by text-based image retrieval

became more and more severe. In text-based image retrieval, the major two difficulties are (a)

images were first annotated with text and then searched using a text-based approach from

traditional database management systems and (b) Retrieval system requires manual annotation of

images. Obviously, annotating images manually is a cumbersome and expensive task for large

image databases, and is often subjective, context-sensitive and incomplete.

It requires more efforts on content-based image retrieval. Using this technique, images are

indexed by their own visual content, such as color, texture or shape [7]. If we can make suitable

system then it can remove the drawbacks of the Text-based image retrieval system as mentioned.

2.1 Literature Reviews

There has been a lot of research works dealt with Content based image retrieval system in last

decades and various methods are proposed for retrieval of images from large databases from

Internet and other database server. Retrieval can be done on the basis of different low level

features such as color, shape, texture, spatial layout etc

2.1.1 CBIR System Architecture

A simple image retrieval system is suitable for the broad image domain. There are three

databases in the system architecture, the image database, the feature vector database, and the text

annotation database [6]. The image database contains the raw images for visual display purposes.

The feature vector database stores the visual features extracted from the images. This is the

information needed to support CBIR. Finally the text annotation database contains the keywords

7

and free-text descriptions of the images. The text-based retrieval is included in the system

because only the integration of the two methods can result in satisfactory retrieval performance.

However the concern of this thesis is only towards the feature extraction and similarities measure

of images, which are the two important phases in a CBIR system.

2.1.2 Feature Extraction

Feature extraction is the one of the most important part of CBIR system. Visual content can be

very general or domain specific. General visual content include color, texture, shape, spatial

relationship, etc. Domain specific visual content, like human faces, is application dependent and

may involve domain knowledge [7,8]. Semantic content is obtained either by textual annotation

or by complex inference procedures based on visual content [6]. This thesis concentrates on

feature extraction of color, shape, texture.

2.1.2.1 Color

Color is most extensively used visual content for image retrieval. Its three dimensional values

make its discrimination potentiality superior to the single dimensional gray values of image.

Color reflects the chromatic attributes of the image as it is captured with a sensor. Each pixel of

the image can be represented as a point in a 3D color space. Commonly used color spaces are

HSV, RGB, L*u*v, L*a*b, Munsell. [10]

The commonly used color feature representation are the Color Histogram, color coherence

vector, color correlogram and color moments. Color histograms are amongst the most traditional

technique for describing the low-level properties of an image [11]. Histogram intersection is

usually used as the similarity measure for the color histogram. Finally the color coherence vector

differs from the color histogram in that it manages to capture information about the distribution

of the colors spatially within the image [12]. The detail study and analysis of color feature is

presented in chapter 3.

8

2.1.2.2 Texture

Texture is another important property of images. Texture representation method can be classified

in two parts: structural and statistical. Structural methods, including morphological operator and

adjacency graph, describe texture by identifying structural primitives and their placement rules

[8,13]. Statistical methods characterize texture by the statistical distribution of the image

intensity. The different statistical methods are Fourier power spectra, co-occurrence matrices,

shift-invariant principal component analysis (SPCA), Tamura feature, Wold decomposition,

Markov random field, fractal model, and multi-resolution filtering technique such as Gabor and

Wavelet transform. [8,13]. The detail study and analysis of color feature is presented in chapter

4.

2.1.2.3 Shape

Shape features involve all the properties that capture conspicuous geometric details in the image.

The shape representations can be divided into two categories, boundary-based and region-based.

The former uses only the outer boundary of the shape while the latter use the entire shape region

[4,14]. The most successful representatives for these two categories are Fourier descriptor and

moment invariants. The main idea of a Fourier descriptor is to use the Fourier transformed

boundary as the shape feature. A modified Fourier descriptor which is robust to noise and

invariant to geometric transformation is proposed by Rui et al [15]. The main idea of moment

invariants is to use region-based moments which are invariant to transformations, as the shape

feature. Hu identified seven such moments. Based on his work, many improved versions

emerged, such as the Zernike moment descriptors proposed by Teague [15,16]. The rotational

invariance nature of the Zernike moment descriptors make it very useful in overcoming the

shortcomings associated with Hu's moments. Besides the Fourier descriptor and moments, some

other recent work in shape representation and matching includes the finite element method

(FEM), the turning function, and the wavelet descriptors. The FEM defines a stiffness matrix

which describes how each point on the object is connected to the other points. The turning

function method is useful in comparing both convex and concave polygons. Wavelet descriptors

have desirable properties such as multi-resolution representation, invariance, uniqueness,

9

stability and spatial localization [9]. The shape feature extraction techniques are discussed in

detail in chapter 5

2.1.2.4 Spatial Layout

Regions or objects with similar color and texture properties can be easily distinguished by

imposing spatial constraints. For example, regions of blue sky and ocean may have similar color

histograms, but their spatial locations in images are different. Therefore spatial locations or

regions or the spatial relationship between multiple regions in an image is very useful for

searching images [17].

The most widely used representation of spatial relationship is the 2D strings, it is constructed by

projecting images along the x and y directions. In addition to the 2D string, spatial quad-tree and

symbolic image are also used for spatial information representation.

2.1.3 Similarity Measures

Basically all systems use the assumption of equivalence of an image and its representation in

feature space. These systems often use measurement systems such as the easily understandable

Euclidean vector space model for measuring distances between a query image (represented by its

features) and possible results representing all images as feature vectors in an n dimensional

vector space. This is done, although metrics have been shown to not correspond well to human

visual perception. Several other distance measures do exist for the vector space model such as

the city block distance, the Mahalanobis distance or a simple histogram intersection. Still, the use

of high dimensional feature spaces has shown to cause problems and great care needs to be taken

with the choice of distance measurement to be chosen in order to retrieve meaningful results.

These problems with a similarity definition in high dimensional feature spaces are also known as

the curse of dimensionality and have also been discussed in the domain of medical imaging.

Another approach is a probabilistic framework to measure the probability that an image is

10

relevant. A relationship between probabilistic image retrieval and vector space distance measures

is given in [6, 8, 18].

2.1.4 Multilevel Image Indexing

Multidimensional indexing is needed in content-based image retrieval in order to make the

system truly scalable to large size image collections.[19] Similarity retrieval on multiple

attributes (as opposed to exact matching) is also an important issue for multimedia systems, as

most of the queries are searching for the nearest matches rather than exact matches. Many

different approaches for multidimensional indexing can be found, such as the many branches of

the famous tree-based algorithms. Clustering and neural nets, widely used in pattern recognition,

are also promising indexing techniques. [6] The history of multidimensional indexing techniques

can be traced back to the middle of 1970s, when cell methods, quad-tree, and k-d tree were first

introduced. Guttman proposed the R-tree indexing structure [20]. Based on his work, many other

variants of the R-tree were developed. There are two main types of multidimensional indexing

method: Point Access Methods and Spatial Access Methods. The Point Access Method is only

for multidimensional data points whereas the Spatial Access Methods are designed for data not

only represented by points but also as multidimensional spatial regions.

11

CHAPTER III

3. Color Feature Extraction and Analysis

3.1 Definition

One of the most important features that make possible the recognition of images by humans is

colour. Colour is a property that depends on the reflection of light to the eye and the processing

of that information in the brain. Colour is used everyday by us to tell the difference between

objects, places, and the time of day.

3.1.1 Color Space

Usually colours[21] are defined in three dimensional colour spaces. These could either be RGB

(Red, Green, and Blue), Munsell, CIE L*a*b*, CIE L*u*v*, HSV (Hue, Saturation, and Value) or

HSB (Hue, Saturation, and Brightness)[21]. The last two Color Spaces are dependent on the

human perception of hue, saturation, and brightness. The Munsell color system is a color space

that specifies colors based on three color dimensions, hue, value (lightness), and chroma (color

purity or colorfulness). It was created by Professor Albert H. Munsell in the first decade of the

20th century. The Color spaces are described in detail in consequent chapters.

Most image formats such as JPEG, BMP, GIF, use the RGB colour space to store information.

The RGB colour space is defined as a unit cube with red, green, and blue axes. Thus, a vector

with three co-ordinates represents the colour in this space. When all three coordinates are set to

zero the colour perceived is black. When all three coordinates are set to 1 the colour perceived is

white. The other colour spaces operate in a similar fashion but with a different perception. There

is no agreement on which is the best. However, one of the desirable characteristics of an

appropriate color space for image retrieval is its uniformity. Uniformity means that two color

pairs that are equal in similarity distance in a color space are perceived as equal by viewers. In

other words, the measured proximity among the colors must be directly related to the

psychological similarity among them [30].

12

a) RGB Color Space

RGB space is a widely used color space for image display. It is composed of three color

components red, green, and blue. These components are called "additive primaries" since a color

in RGB space is produced by adding them together [21]. Each color point within the bounds of

the cube can be represented as triple (R, G, B), where values for R, G, and B are assigned in the

range from 0 to 1.

Figure 3.1: RGB color space

b) CMY Color Space

In contrast, CMY space [21] is a color space primarily used for printing. The three color

components are cyan, magenta, and yellow. These three components are called "subtractive

primaries" since a color in CMY space is produced through light absorption. Both RGB and

CMY space are device-dependent and perceptually non-uniform.

c) CIE Color Space

The CIE L*a*b* and CIE L*u*v* [21] spaces are device independent and considered to be

perceptually uniform. They consist of a luminance or lightness component (L) and two chromatic

13

components a and b or u and v. CIE L*a*b* is designed to deal with subtractive colorant

mixtures, while CIE L*u*v* is designed to deal with additive colorant mixtures. The

transformation of RGB space to CIE L*u*v* or CIE L*a*b* space can be found in [21].

d) HSV Color Space

In HSV (or HSL, or HSB) space is widely used in computer graphics and is a more intuitive way

of describing color. The three color components are hue, saturation (lightness) and value

(brightness) [21]. The hue is invariant to the changes in illumination and camera direction and

hence more suited to object retrieval. RGB coordinates can be easily translated to the HSV (or

HLS, or HSB) coordinates by a simple formula. The opponent color space uses the opponent

color axes (R-G, 2B-R-G, R+G+B). This representation has the advantage of isolating the

brightness information on the third axis. With this solution, the first two chromaticity axes,

which are invariant to the changes in illumination intensity and shadows, can be down-sampled

since humans are more sensitive to brightness than they are to chromatic information.

Figure 3.2: HSV color space

14

3.2 Methods of Representation

There many way to describe the color feature of the image. Some of the most broadly used are

introduced like color descriptors: the color histogram, color coherence vector, color correlogram,

and color moments.

3.2.1 Color Histogram

The main method of representing colour information of images in CBIR systems is through

colour histograms. A colour histogram [12,22] is a type of bar graph, where each bar represents a

particular colour of the colour space being used. The popularity of Color Histogram is due to

Color histograms are computationally trivial to compute, Small changes in camera viewpoint

tend not to effect color histograms and different objects often have distinctive color histograms.

The bars in a colour histogram are referred to as bins and they represent the x-axis. The number

of bins depends on the number of colours there are in an image. The y-axis denotes the number

of pixels there are in each bin. In other words how many pixels in an image are of a particular

colour.

In histogram representation of Images, all the images are scaled to contain the same number of

pixels M. We discretize the color space of the image such that there are n distinct (discretized)

colors. A color histogram H is a vector (h1; h2; : : : ; hn), in which each bucket hj contains the

number of pixels of color j in the image. Typically images are represented in the RGB colors

pace, and a few of the most significant bits are used from each color channel. For a given image

I, the color histogram HI is a compact summary of the image. A database of images can be

queried to find the most similar image to I, and can return the image I’ with the most similar

color histogram HI’. Typically color histograms are compared using the sum of squared

differences (L2-distance) or the sum of absolute value of differences (L1-distance). So the most

similar image to I would be the image I’ minimizing

2

1 1 '
1

' [] []
n

I I
j

H H H j H j

for the L2-distance[22,23], or

15

' '
1

| | | [] [] |
n

I I I I
j

H H H j H j

for the L1-distance.

An example of a colour histogram in the HSV colour space can be seen with the following

image:

Figure 3.3: Sample Image and its Corresponding Histogram

To view a histogram numerically one has to look at the colour map or the numeric representation

of each bin. Each bin contains different numerical values for the different component present in

the image. Here in our case, the Image contains the image contains the values for Hue(H),

Saturation(S), and Values(V) which are the building block of the HSV color Space.

16

Colour Map (x-axis) Number of Pixels per Bin

(y-axis)H S V

0.9922 0.9882 0.9961 106

0.9569 0.9569 0.9882 242

0.9725 0.9647 0.9765 273

0.9176 0.9137 0.9569 372

0.9098 0.8980 0.9176 185

0.9569 0.9255 0.9412 204

0.9020 0.8627 0.8980 135

0.9020 0.8431 0.8510 166

0.9098 0.8196 0.8078 179

0.8549 0.8510 0.8941 188

0.8235 0.8235 0.8941 241

0.8471 0.8353 0.8549 104

0.8353 0.7961 0.8392 198

. . . .

. . . .

.

.

.

.

.

.

.

.

.

.

.

.

Table 3.1: Colour Map and Number of pixels for the Image of figure 3.3

As one can see from the colour map each row represents the colour of a bin. The row is

composed of the three coordinates of the colour space. The first coordinate represents hue, the

second saturation, and the third, value, thereby giving HSV. The percentages of each of these

coordinates are what make up the colour of a bin. Also one can see the corresponding pixel

numbers for each bin, which are denoted by the blue lines in the histogram [20].

17

Quantization in terms of colour histograms refers to the process of reducing the number of bins

by taking colours that are very similar to each other and putting them in the same bin. By default

the maximum number of bins one can obtain using the histogram function in MatLab is 256. For

the purpose of saving time when trying to compare colour histograms, one can quantize the

number of bins. Obviously quantization reduces the information regarding the content of images

but as was mentioned this is the tradeoff when one wants to reduce processing time.

There are two types of colour histograms, Global colour histograms (GCHs) and Local colour

histograms (LCHs). A GCH represents one whole image with a single colour histogram. An

LCH divides an image into fixed blocks and takes the colour histogram of each of those blocks

[1,22]. LCHs contain more information about an image but are computationally expensive when

comparing images. “The GCH is the traditional method for colour based image retrieval.

However, it does not include information concerning the colour distribution of the regions”

[1,2,3,22] of an image. Thus when comparing GCHs one might not always get a proper result in

terms of similarity of images.

When an image database contains a large number of images, histogram comparison will saturate

the discrimination. To solve this problem, the joint histogram technique is introduced [22,23]. In

addition, color histogram does not take the spatial information of pixels into consideration, thus

very different images can have similar color distributions. This problem becomes especially

acute for large scale databases. To increase discrimination power, several improvements have

been proposed to incorporate spatial information. A simple approach is to divide an image into

sub-areas and calculate a histogram for each of those sub-areas. As introduced above, the

division can be as simple as a rectangular partition, or as complex as a region or even object

segmentation. Increasing the number of sub-areas increases the information about location, but

also increases the memory and computational time.

18

3.2.2 Color Coherence Vector

In [26] a different way of incorporating spatial information into the color histogram, Color

coherence vectors (CCV), was proposed. Each histogram bin is partitioned into two types, i.e.,

coherent, if it belongs to a large uniformly-colored region, or incoherent, if it does not.

Figure 3.4: Two image with similar Color histogram

For example, the images shown in figure 3.4, two images have similar color histograms, despite

their rather different appearances. The color red appears in both images in approximately the

same quantities. In the left image the red pixels (from the flowers) are widely scattered, while in

the right image the red pixels (from the golfer's shirt) form a single coherent region. The

coherence measure classifies pixels as either coherent or incoherent. Coherent pixels are a part of

some sizable contiguous region, while incoherent pixels are not. A color coherence vector

represents this classification for each color in the image. CCV's prevent coherent pixels in one

image from matching incoherent pixels in another. This allows fine distinctions that cannot be

made with color

Histograms[13].

Let αi denote the number of coherent pixels in the ith color bin and βi denote the number of

incoherent pixels in an image. Then, the CCV of the image is defined as the vector <(α1, β1), (α2,

β2), …, (αN, βN)>. Note that <α1+β1, α2+β2, …, αN+βN> is the color histogram of the image. Due

to its additional spatial information, it has been shown that CCV provides better retrieval results

19

than the color histogram, especially for those images which have either mostly uniform color or

mostly texture regions. In addition, for both the color histogram and color coherence vector

representation, the HSV color space provides better results than CIE L*u*v* and CIE L*a*b*

spaces [2,13,21].

3.2.3 Color Correlogram

A color correlogram [22] (henceforth correlogram) expresses how the spatial correlation of pairs

of colors changes with distance. Informally, a correlogram for an image is a table indexed by

color pairs, where the k-th entry for row (i, j) specifies the probability of finding a pixel of color j

at a distance k from a pixel of color i in this image. Here Ic is chosen from a set of distance

values D. The color correlogram [23] was proposed to characterize not only the color

distributions of pixels, but also the spatial correlation of pairs of colors. The first and the second

dimension of the three-dimensional histogram are the colors of any pixel pair and the third

dimension is their spatial distance. A color correlogram is a table indexed by color pairs, where

the k-th entry for (i, j) specifies the probability of finding a pixel of color j at a distance k from a

pixel of color i in the image. Let I represent the entire set of image pixels and Ic(i) represent the

set of pixels whose colors are c(i). Then, the color correlogram is defined as

() , 21

()
, ()P r 2 / | 1 2 |

c i

k
i j c i

p I p I
p I p p k

where i, j {1, 2, …, N}, k {1, 2, …, d}, and | p1 – p2 | is the distance between pixels p1 and

p2. If we consider all the possible combinations of color pairs the size of the color correlogram

will be very large (O(N2d)), therefore a simplified version of the feature called the color

autocorrelogram is often used instead. The color autocorrelogram only captures the spatial

correlation between identical colors and thus reduces the dimension to O(Nd).

Compared to the color histogram and CCV, the color autocorrelogram provides the best retrieval

results, but is also the most computational expensive due to its high dimensionality.

20

3.2.4 Color Moments

Color moments [24] have been successfully used in many retrieval systems (like QBIC) [2,3],

especially when the image contains just the object. The first order (mean), the second (variance)

and the third order (skewness) color moments have been proved to be efficient and effective in

representing color distributions of images. Mathematically, the first three moments are defined

as:

1

1
f

i j

N

i
jN

1

2 2

1

1 N

i i j i
j

f
N

1

3 3

1

1 N

i i j i
j

s f
N

where fij is the value of the i-th color component of the image pixel j, and N is the number of

pixels in the image. Usually the color moment performs better if it is defined by both the L*u*v*

and L*a*b* color spaces as opposed to solely by the HSV space Using the additional third-order

moment improves the overall retrieval performance compared to using only the first and second

order moments. However, this third-order moment sometimes makes the feature representation

more sensitive to scene changes and thus may decrease the performance.

Since only 9 (three moments for each of the three color components) numbers are used to

represent the color content of each image, color moments are a very compact representation

compared to other color features. Due to this compactness, it may also lower the discrimination

power. Usually, color moments can be used as the first pass to narrow down the search space

before other sophisticated color features are used for retrieval.

21

CHAPTER IV

4. Texture Feature Extraction and Analysis

22

The efficient way of the feature representation of the image is in the form of texture of the

image.

4.1 Definition

Texture [17,27] is that innate property of all surfaces that describes visual patterns, each having

properties of homogeneity. It contains important information about the structural arrangement of

the surface, such as; clouds, leaves, bricks, fabric, etc. It also describes the relationship of the

surface to the surrounding environment. In short, it is a feature that describes the distinctive

physical composition of a surface.

Figure 4.1: Example of Textures

Texture properties include:

 Coarseness

 Contrast

 Directionality

 Line-likeness

 Regularity

 Roughness

Texture is one of the most important defining features of an image. It is characterized by the

spatial distribution of gray levels in a neighborhood. In order to capture the spatial dependence of

gray-level values, which contribute to the perception of texture, a two-dimensional dependence

texture analysis matrix is taken into consideration. This two-dimensional matrix is obtained by

decoding the image file; jpeg, bmp, etc.

23

4.2 Methods of Representation

There are three principal approaches used to describe texture; statistical, structural and spectral

 Statistical techniques characterize textures using the statistical properties of the grey

levels of the points/pixels comprising a surface image. Typically, these properties are

computed using: the grey level co-occurrence matrix of the surface, or the wavelet

transformation of the surface.

 Structural techniques characterize textures as being composed of simple primitive

structures called “texels” (or texture elements). These are arranged regularly on a surface

according to some surface arrangement rules.

 Spectral techniques are based on properties of the Fourier spectrum and describe global

periodicity of the grey levels of a surface by identifying high-energy peaks in the Fourier

spectrum [13,27].

For optimum classification purposes, the statistical techniques of characterization are used. This

is because it is these techniques that result in computing texture properties. The most popular

statistical representations of texture are:

 Co-occurrence Matrix

 Tamura Texture

 Simultaneous Auto-Regressive (SAR) Model

 Wavelet Transform

4.2.1 Tamura Texture

By observing psychological studies in the human visual perception, Tamura explored the texture

representation using computational approximations to the six main texture features of:

coarseness, contrast, directionality, likeliness, regularity and roughness. In the most cases, only

the first three Tamura's features are used for the CBIR. The features capture the high-level

perceptual attributes of a texture well and are useful for image browsing. Each of these texture

features are approximately computed using algorithms.

24

 Coarseness is the measure of granularity of an image, or average size of regions that have

the same intensity.

 Contrast is the measure of vividness of the texture pattern. Therefore, the bigger the

blocks that makes up the image, the higher the contrast. It is affected by the use of

varying black and white intensities.

 Directionality is the measure of directions of the grey values within the image.

4.2.1.1 Coarseness

Coarseness is a measure of the granularity of the texture. It is defined as the distances of notable

variations of grey levels of the image. In another way, it can be defined as the differences

between the average signals for the non-overlapping windows of different size. To calculate the

coarseness, moving averages Ak(x,y) are computed first using 2k × 2k (k = 0, 1, …, 5) size

windows at each pixel (x, y) i. e.

11

1 1

2 12 1
2

2 2

, (,) / 2
kk

k k

yx
k

k
i x j y

A x y g i j

Then, the differences between pairs of non-overlapping moving averages in the horizontal and

vertical directions for each pixel are computed, i.e.,

1 1
, (,) (2 ,) (2 ,)k k

k h k kE x y A x y A x y

1 1
, (,) (, 2) (, 2)k k

k v k kE x y A x y A x y

After that, the value of k that maximizes E in either direction is used to set the best size for each

pixel, i.e.,

(,) 2 k
bestS x y

25

The coarseness is then computed by averaging Sbest over the entire image, i.e.,

1 1

1
(,)

m n

c r s b e s t
i j

F S i j
m n

Instead of taking the average of Sbest an improved version of the coarseness feature can be

obtained by using a histogram to characterize the distribution of Sbest. Compared with using a

single value to represent coarseness, using histogram-based coarseness representation can greatly

increase the retrieval performance. This modification makes the feature capable of dealing with

an image or region which has multiple texture properties, and thus is more useful to image

retrieval applications.

4.2.1.2 Contrast

The contrast feature can be evaluated by finding the vary of gray level of the image g and to

what extent their distribution is biased to black or white

1 / 4
4

c o nF

Where the kurtosis α4 = μ4/σ4, μ4 is the fourth moment about the mean, and σ2 is the variance.

This formula can be used for both the entire image and a region of the image.

4.2.1.3 Directionality

Directionality of texture image distribution is identified by frequency distribution of oriented

local edges against their directional angles. The edge strength e(x,y) and the directional angle

a(x,y) are computed using approximate pixel-wise derivatives computed by the Soble edge

detector in the 3×3 moving windows.

1 0 1

1 0 1

1 0 1

and

1 1 1

0 0 0

1 1 1
and a gradient vector at each pixel is computed.

The magnitude and angle of this vector are defined as

26

() / 2H VG

1tan (/) / 2V H

where ΔH and ΔV are the horizontal and vertical differences of the convolution. Then, by

quantizing θ and counting the pixels with the corresponding magnitude |ΔG| larger than a

threshold, a histogram of θ, denoted as HD, can be constructed. This histogram will exhibit

strong peaks for highly directional images and will be relatively flat for images without strong

orientation. The entire histogram is then summarized to obtain an overall directionality measure

based on the sharpness of the peaks:

2() ()
p

p

n

d i r p D
p w

F H

4.2.1.4 Linelikeness (Flin)

Linelikeness[17] is defined as an average coincidence of the coded directional angles in the pairs

of pixels separated by a distance d along the edge direction in every pixel

4.2.1.5 Regularity

Regularity[17] can be obtained by using following formula Freg=1−r(Scrs+ Scon + Sdir + Slin) where

r is a normalizing factor and each S is the standard deviation of the corresponding feature F in

each sub image the texture is partitioned into roughness.

4.2.1.6 Roughness

The roughness [13] can be find by adding the energies obtained from the coarseness computation

and contrast computation.

Frgh= Fcrs+Fcon

4.2.2 Co-occurrence Matrix

Tamura features of image only explain the only high level perceptual attributes of the texture.

But they are not very effective in finer image discrimination. More intricate texture feature based

on second order signal statistics i.e. Co-occurrence matrix was proposed. Originally proposed by

27

R.M. Haralick, the co-occurrence matrix representation of texture features explores the grey

level spatial dependence of texture. A mathematical definition of the co-occurrence matrix is as

follows [27,30]:

- Given a position operator P(i,j),

- let A be an n x n matrix

- whose element A[i][j] is the number of times that points with grey level (intensity)

g[i] occur, in the position specified by P, relative to points with grey level g[j].

- Let C be the n x n matrix that is produced by dividing A with the total number of

point pairs that satisfy P. C[i][j] is a measure of the joint probability that a pair of

points satisfying P will have values g[i], g[j].

- C is called a co-occurrence matrix defined by P.

Examples for the operator P are: “i above j”, or “i one position to the right and two below j”, etc.

[27]

This can also be illustrated as follows… Let t be a translation, then a co-occurrence matrix Ct of

a region is defined for every grey-level (a, b) by [27]:

C a b card s s t R A s a A s t bt (,) {(,) | [] , [] } 2

Here, Ct(a, b) is the number of site-couples, denoted by (s, s + t) that are separated by a

translation vector t, with a being the grey-level of s, and b being the grey-level of s + t.

For example; with an 8 grey-level image representation and a vector t that considers only one

neighbour, It is found:

Figure 4.2: Co- occurrence Matrix of Image

28

Figure 4.3: Classical Co-occurrence matrix

At first the co-occurrence matrix is constructed, based on the orientation and distance between

image pixels. Then meaningful statistics are extracted from the matrix as the texture

representation [13,30]. Haralick proposed the following texture features:

1. Angular Second Moment

2. Contrast

3. Correlation

4. Variance

5. Inverse Second Differential Moment

6. Sum Average

7. Sum Variance

8. Sum Entropy

9. Entropy

10. Difference Variance

11. Difference Entropy

12. Measure of Correlation 1

13. Measure of Correlation 2

14. Local Mean

Hence, for each Haralick texture feature, a co-occurrence matrix is obtained. These co-

occurrence matrices represent the spatial distribution and the dependence of the grey levels

within a local area. Each (i,j) th entry in the matrices, represents the probability of going from one

29

pixel with a grey level of 'i' to another with a grey level of 'j' under a predefined distance and

angle. From these matrices, sets of statistical measures are computed, called feature vectors [8].

4.2.3 Wavelet Transform

Textures can be modeled as quasi-periodic patterns[9,15,27] with spatial/frequency

representation. The wavelet transform transforms the image into a multi-scale representation

with both spatial and frequency characteristics. This allows for effective multi-scale image

analysis with lower computational cost. According to this transformation, a function, which can

represent an image, a curve, signal etc., can be described in terms of a coarse level description in

addition to others with details that range from broad to narrow scales.

Unlike the usage of sine functions to represent signals in Fourier transforms, in wavelet

transform, Functions known as wavelets are used. Wavelets are finite in time, yet the average

value of a wavelet is zero. In a sense, a wavelet is a waveform that is bounded in both frequency

and duration. While the Fourier transform converts a signal into a continuous series of sine

waves, each of which is of constant frequency and amplitude and of infinite duration, most real-

world signals (such as music or images) have a finite duration and abrupt changes in frequency.

This accounts for the efficiency of wavelet transforms. This is because wavelet transforms

convert a signal into a series of wavelets, which can be stored more efficiently due to finite time,

and can be constructed with rough edges, thereby better approximating real-world signals.

Examples of wavelets are Coiflet, Morlet, Mexican Hat, Haar and Daubechies. Of these, Haar is

the simplest and most widely used, while Daubechies have fractal structures and are vital for

current wavelet applications [1]. These two are outlined below:

4.2.3.1 Haar Wavelet

30

The Haar wavelet [28], is an odd rectangular pulse pair, is the simplest and oldest orthonormal

wavelet with compact support, and can be used for illustration purposes. Starting from the finer

scales, the basic wavelet is translated by increments equal to its width, so that the complete set of

wavelets at any scale completely covers the interval. The basic wavelet is progressively stretched

(increased in scale) by powers of two. As the basic wavelet is scaled up by powers of two, its

amplitude is scaled down by powers of 2, to maintain orthonormality. The result of this is a set

of orthonormal basis functions. The scaling function completes the interval in the coarsest scale.

Haar wavelet can be denoted by following graphs [28].

Figure 4.4: Haar Wavelet Example

4.2.3.2 Daubechies Wavelet

This wavelet is naamed after Ingrid Daubechies, the Daubechies wavelets are a family of

orthogonal wavelets defining a discrete wavelet transform and characterized by a maximal

number of vanishing moments for some given support. With each wavelet type of this class,

there is a scaling function (also called father wavelet) which generates an orthogonal

multiresolution analysis [29].

The Daubechies wavelet family is defined as [29]

31

Figure 4.5: Daubechies Wavelet Example

4.2.4 Gabor Filter Feature

The Gabor filter has been widely used to extract image features, especially texture features [1]. It

is optimal in terms of minimizing the joint uncertainty in space and frequency, and is often used

as an orientation and scale tunable edge and line (bar) detector. There have been many

approaches proposed to characterize textures of images based on Gabor filters. The basic idea of

using Gabor filters to extract texture features is as follows.

A two dimensional Gabor function g(x, y) is defined as:

2 2

2 2

1 1
(,) exp 2

2 2X y X y

x y
g x y jWx

where, σx and σy are the standard deviations of the Guassian envelopes along the x and y

direction.

Then a set of Gabor filters can be obtained by appropriate dilations and rotations of g(x,y):

gmn (x,y) = a-m g(x’,y’)

x’ = a-m(x cosθ + y sinθ)

y’ = a-m(-x sinθ + y cosθ)

32

where a >1, θ = nπ/K, n = 0, 1, …, K-1, and m = 0, 1, …, S-1. K and S are the number of

orientations and scales. The scale factor a-m is to ensure that energy is independent of m. Given

an image I(x, y), its Gabor transform is defined as:

Wmn = ∫I(x,y) g*
mn(x-x1, y-y1)dx1dy1

where * indicates the complex conjugate. Then the mean μmn and the standard deviation σmn of

the magnitude of Wmn (x, y), i.e., f =[μ00, σ00,-----, μmn, σmn , Λ, μs-1k-1, σs-1k-1] can be used to

represent the texture feature of a homogenous texture region.

CHAPTER V

33

5 Shape Feature Extraction and Analysis

5.1 Definition

Shape[12,31] may be defined as the characteristic surface configuration of an object; an outline

or contour. It permits an object to be distinguished from its surroundings by its outline. Shape

representations can be generally divided into two categories:

 Boundary-based, and

 Region-based.

Figure 5.1: Boundary-based & Region-based shape representation.

Boundary-based shape representation only uses the outer boundary of the shape. This is done by

describing the considered region using its external characteristics; i.e., the pixels along the object

boundary. Region-based shape representation uses the entire shape region by describing the

considered region using its internal characteristics; i.e., the pixels contained in that region.

5.2 Methods of Representation

For representing shape features mathematically, Following method are used [4,26]:

Boundary-based:

 Polygonal Models, boundary partitioning

 Fourier Descriptors

 Splines, higher order constructs

 Curvature Models

34

Region-based:

 Superquadrics

 Fourier Descriptors

 Implicit Polynomials

 Blum's skeletons

The most successful representations for shape categories are Fourier Descriptor and

Moment Invariants[4,26]:

 The main idea of Fourier Descriptor is to use the Fourier transformed boundary as the

shape feature.

 The main idea of Moment invariants is to use region-based moments, which are

invariant to transformations as the shape feature.

5.2.1 Fourier Descriptor

Fourier descriptors describe the shape of an object with the Fourier transform of its boundary.

Again, consider the contour of a 2D object as a closed sequence of successive boundary pixels

(xs, ys), where 0 ≤ s ≤ N-1 and N is the total number of pixels on the boundary. Then three types

of contour representations, i.e., curvature, centroid distance, and complex coordinate function,

can be defined.

The curvature K(s) at a point s along the contour is defined as the rate of change in tangent

direction of the contour, i.e.,

() ()
d

K s s
ds

where θ(s) is the turning function of the contour, The centroid distance is defined as the distance

function between boundary pixels and the centroid (xc, yc) of the object:

2 2() () ()s c s cR s x x y y

35

The complex coordinate is obtained by simply representing the coordinates of the boundary

pixels as complex numbers:

Z(s) = (xs − xc) + j(ys − yc)

The Fourier transforms of these three types of contour representations generate three sets of

complex coefficients, representing the shape of an object in the frequency domain. Lower

frequency coefficients describe the general shape property, while higher frequency coefficients

reflect shape details. To achieve rotation invariance (i.e., contour encoding is irrelevant to the

choice of the reference point), only the amplitudes of the complex coefficients are used and the

phase components are discarded. To achieve scale invariance, the amplitudes of the coefficients

are divided by the amplitude of DC component or the first non-zero coefficient. The translation

invariance is obtained directly from the contour representation.

5.2.2 Moment Invariants

Classical shape representation uses a set of moment invariants [1,2]. If the object R is

represented as a binary image, then the central moments of order p+q for the shape of object R

are defined as:

,
(,)

() ()p q
p q c c

x y R

x x y y

where (xc, yc) is the center of object. This central moment can be normalized to be scale

invariant

,
,

0,0

2
,

2
p q

p q y

p q

CHAPTER VI

36

6. Similarity Measures

For retrieval of the image from the large database, Content-based image retrieval calculates the

visual similarities between the query image and images in the database instead of exact

matching. The retrieval result is not a single image but a list of images ranked by their

similarities with the query image. Many similarities measures technique have been developed in

recent years. Different similarities/distance measures will affect retrieval performances of an

image retrieval system.[1,6,8]

D(I ,J) can be denoted as the distance measure between the query image I and the image J in

database, and ƒi(I) as the number of pixels in bin i of I

6.1 Minkowski-Form Distance

If each dimension of feature vector is independent of each other and is of equal importance, the

Minskowski-form distance Lp is a appropriate for calculating the distance between two images.

The distance is diefined as [33]

1/(,) (| () () |)P p
i i

i

D I J f I f J

Where p=1, 2, ∞, D(I, J) is the L1, L2(also called Euclidean distance) and L∞ distance

respectively.

6.2 Quadratic Form (QF) Distance

The Minkowski distance treats all bins of the feature histogram entirely independent and does

not account for the fact that certain pairs of bins correspond to features which are perceptually

more similar than other pairs. To solve this problem, quadratic form distance is introduced

[6,8,33].

(,) () ()t
Q I Q ID Q I H H A H H

37

Where A=[aij] is a similarity matrix, and aij denotes the similarity between bin Q and I. HQ and

HI are vectors that list all the entries in Hi(Q) and Hi (I).

Other similarity measures technique such as Mahalonobis Distance and Kullback-Leibler(KL)

Divergence and Feffery-Divergence (JD) are also used for similarity measures.

6.3 Mahalanobis Distance

The Mahalanobis distance metric is appropriate when each dimension of image feature vector is

dependent of each other and is of different importance. It is defined as[1]:

1(,) () ()T
I J I JD I J F F C F F

where C is the covariance matrix of the feature vectors.

The Mahalanobis distance can be simplified if feature dimensions are independent. In this case,

only a variance of each feature component, ci, is needed.

2

1
(,) () /

N

I J ii
D I J F F c

6.4 Kullback-Leibler (KL) Divergence and Jeffrey-Divergence (JD)

The Kullback-Leibler (KL) divergence measures how compact one feature distribution can be

coded using the other one as the codebook. The KL divergence between two images I and J is

defined as:

()
(,) () log

()
i

i
i i

f I
D I J f I

f J

The KL divergence is used in [1,33] as the similarity measure for texture. The Jeffrey-divergence

(JD) is defined by:

38

() ()
(,) () log () log

() ()
i i

i i
i i i

f I f I
D I J f I f J

f J f J

where fˆi = [fi (I) + fi (J)] /2. In contrast to KL-divergence, JD is symmetric and numerically

more stable when comparing two empirical distributions.

CHAPTER VII

39

7. Implementation

This chapter describes the implementation of the algorithm proposed in the previous chapters for

the feature extraction and similarity measures. Here in chapter 3, different techniques for the low

level feature extraction of the image are discussed. In chapter 4, different texture feature

extraction techniques are discussed. This chapter describes the algorithm implementation for

extracting the best matched from the database of the system.

7.1 Implementation Tools

Different tools have been used for the implementation processes. For the feature extraction and

histogram generation MATLAB is used. The programming has been accomplished by using

Visual C++ codes.

7.1.1 MATLAB

MATLAB is the acronym of Mathematical Library. It is a high-performance language for

technical computing. It integrates computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar mathematical notation.

Typical uses include Math and computation Algorithm development Data acquisition Modeling,

simulation, and prototyping Data analysis, exploration, and visualization Scientific and

engineering graphics Application development, including graphical user interface building.

The front end design of the application has been achieved by using MATLAB GUIDE.

7.1.2 Data Structures

40

Data Structures used in this retrieval system are Visual C++ build in Objects.

Vector or Array: It is a collection for storing and manipulating the objects stored in it. In this

dissertation, the use of vector is used for the representation of the multi-dimensional matrix for

the statistical value storage and manipulation.

String: This is an array of characters. This data structure is used to represent the query image

and indexing of the images for the result displaying..

7.2 Colour Feature

7.2.1 Histograms

Global colour histogram is used in extracting the colour features of images. In analyzing the

histograms there were a few issues that had to be dealt with. First there was the issue of how the

number of bins in a histogram is quantized. By default the number of bins represented in an

image's colour histogram using the imhist() function in MatLab is 256. Meaning that in the

calculations of similarity matrix and histogram difference, the processing would be

computationally expensive. During the initial implementation, the number of bins is quantized to

20. This means that colours that are distinct yet similar are assigned to the same bin reducing the

number of bins from 256 to 20. This obviously decreases the information content of images, but

decreases the time in calculating the colour distance between two histograms. On the other hand

keeping the number of bins at 256 gives a more accurate result in terms of colour distance.

The second issue was in which colour space to select for the image representation. Should it be

RGB or HSV? This was solved right away when it is found that QBIC's similarity matrix

equation was using the HSV colour space in its calculation. There hasn't been any evidence to

show which colour space generates the best retrieval results, thus the use of this colour space did

not restrict anyway.

7.2.2 Quadratic Distance Metric

41

The equation used in deriving the distance between two colour histograms is the quadratic

distance metric:

(,) () ()t
Q I Q ID Q I H H A H H

The equation consists of three terms. The derivation of each of these terms will be explained in

the following sections. The first term consists of the difference between two colour histograms;

or more precisely the difference in the number of pixels in each bin. This term is obviously a

vector since it consists of one row. The number of columns in this vector is the number of bins in

a histogram. The third term is the transpose of that vector. The middle term is the similarity

matrix. The final result d represents the colour distance between two images. The closer the

distance is to zero the closer the images are in colour similarity. The further the distance from

zero the less similar the images are in colour similarity.

7.2.3 Similarity Matrix

As can be seen from the colour histograms of two images Q and I in the figure below, the colour

patterns observed in the colour bar are totally different. This is further confirmed when one sees

the respective colour maps in the following table…

(a) Image Q

42

(a) Image I

Figure 7.1: Colour Histograms of two images.

Colour Map of image

Q

Colour Map of image I

0.9608 0.8980 0.7843 0.9922 0.9882 0.9961

0.9373 0.9059 0.8235 0.9569 0.9569 0.9882

0.9098 0.8510 0.7765 0.9725 0.9647 0.9765

0.9255 0.8588 0.8039 0.9176 0.9137 0.9569

0.8627 0.8275 0.7961 0.9098 0.8980 0.9176

0.9098 0.8431 0.7216 0.9569 0.9255 0.9412

0.9137 0.8392 0.6627 0.9020 0.8627 0.8980

0.9059 0.7882 0.6510 0.9020 0.8431 0.8510

0.9451 0.8275 0.6824 0.9098 0.8196 0.8078

0.9569 0.7882 0.5922 0.8549 0.8510 0.8941

0.9137 0.7765 0.5961 0.8235 0.8235 0.8941

0.9412 0.7961 0.5569 0.8471 0.8353 0.8549

.

.

Table 7.1: Colour Maps of two images.

43

A simple distance metric involving the subtraction of the number of pixels in the 1st bin of one

histogram from the 1st bin of another histogram and so on is not adequate. This metric is referred

to as a Minkowski-Form Distance Metric, shown below, which only compares the “same bins

between colour Histograms”[13].

Figure 7.2 : Minkowski Distance Approach

This is the main reason for using the quadratic distance metric. More precisely it is the middle

term of the equation or similarity matrix A that helps to overcome the problem of different colour

maps. The similarity matrix is obtained through a complex algorithm:

a

v v s h s h s h s h

q i

q i q q i i q q i i

,

cos cos sin sin

1

5

2 2 2
1

2

which basically compares one colour bin of HQ with all those of HI to try and find out which

colour bin is the most similar, as shown below:

44

Figure 7.3: Quadratic Distance Approach

This is continued until it compared all the colour bins of HQ. In doing so an N x N matrix is

obtained, N representing the number of bins. What indicates whether the colour patterns of two

histograms are similar is the diagonal of the matrix, shown below. If the diagonal entirely

consists of ones then the colour patterns are identical. The further the numbers in the diagonal

are from one, the less similar the colour patterns are. Thus the problem of comparing totally

unrelated bins is solved.

Figure 7.4: Similarity Matrix A, with a diagonal of ones

7.3 Texture Feature

7.3.1 Pyramid-Structured Wavelet Transform

Different texture extraction techniques are found in the literature of the CBIR. It is found that

wavelet representation of the texture is quite efficient in the representation of the image. In this

work, the pyramid-structured wavelet transform has been used for texture classification. Its name

comes from the fact that it recursively decomposes sub signals in the low frequency channels. It

is mostly significant for textures with dominant frequency channels. For this reason, it is mostly

suitable for signals consisting of components with information concentrated in lower frequency

channels. Due to the innate image properties that allows for most information to exist in lower

sub-bands, the pyramid-structured wavelet transform is highly sufficient.

45

Using the pyramid-structured wavelet transform, the texture image is decomposed into four sub

images, in low-low(LL), low-high(LH), high-low(HL) and high-high(HH) sub-bands. At this

point, the energy level of each sub-band is calculated. This is first level decomposition. Using the

low-low sub-band for further decomposition, the fifth level of decomposition has been reached in

this method. The reason for this is the basic assumption that the energy of an image is

concentrated in the low-low band. For this reason the wavelet function used is the Daubechies

wavelet.

Figure 7.5: Pyramid-Structured Wavelet Transform.

7.3.2 Energy Level

Energy Level Algorithm:

1. Decompose the image into four sub-images

2. Calculate the energy of all decomposed images at the same scale, using:

 E
M N

X i j
j

n

i

m

1

11

,

46

where M and N are the dimensions of the image, and X is the intensity of the pixel located at

row i and column j in the image map.

3. Repeat from step 1 for the low-low sub-band image, until index ind is equal to 5.

Increment ind.

Using the above algorithm, the energy levels of the sub-bands were calculated and further

decomposition of the low-low sub-band image. This is repeated five times, to reach fifth level

decomposition. These energy level values are stored to be used in the Euclidean distance

algorithm.

7.3.3 Euclidean Distance

Euclidean Distance Algorithm:

1. Decompose query image.

2. Get the energies of the first dominant k channels.

3. For image i in the database obtain the k energies.

4. Calculate the Euclidean distance between the two sets of energies, using:

 D x yi k i k
k

k

 ,

2

1

5. Increment i. Repeat from step 3.

Using the above algorithm, the query image is searched for in the image database. The Euclidean

distance is calculated between the query image and every image in the database. This process is

repeated until all the images in the database have been compared with the query image. Upon

completion of the Euclidean distance algorithm, an array of Euclidean distances is obtained,

which is then sorted. The five topmost images are then displayed as a result of the texture search.

7.4 Graphical User Interface (GUI)

The Graphical User Interface was constructed using MatLab GUIDE or Graphical User

Interface Design Environment. Using the layout tools provided by GUIDE, the graphical user

47

interface (aMain.fig) is designed for the CBIR application

Figure 7.6: GUI Design

In addition to the above outlined design, a simple menu structure was also designed, using the

Menu Editor, as shown below:

48

Figure7.7: Menu Editor specification for the menu…

The above design yields the following application window on run time:

49

Figure7.8: Application window at runtime

The handlers for clicking on the buttons are coded using MatLab code to perform the necessary

operations.

7.5 Database

The image database that are used in this thesis contains sixty 8-bit uncompressed it maps

BMPs that have been randomly selected from the World Wide Web. The following figure

depicts a sample of images in the database:

50

Figure 7.9: Image Database

51

CHAPTER VIII

8. Testing and Analysis

To demonstrate the result of application, a query image was passed through the system:

 The application was started by typing aMain and pressing return in the MatLab Command

Window. The application window started.

 In the application window, The Search databse option was selected from the Options menu.

This enabled the browsing window, to browse to a BMP file.

 Upon highlighting a BMP file, the select button became enabled. Note: Only 8-bit

uncompressed BMPs are suitable for this application. In this example, the image named with

371.bmp was .

 The highlighted BMP is then selected by pressing the Select button.

 Next, pressing the Search button started the search.

Figure 8.1: The query image: 371.bmp…

52

8.1 Colour Extraction & Matching

Using the colour feature extraction algorithm described above, where the histograms of the

query image and the images in the database are compared using the Quadratic Distance Metric,

the following top 10 results are displayed.

Figure 8.2 : Colour Results for the searching for 371.bmp

The above results are sorted according to the quadratic distance… These are shown below:
File Name Colour Distance

371.bmp 0

391.bmp 3.3804

401.bmp 4.3435

331.bmp 5.0800

311.bmp 5.9940

341.bmp 6.6100

351.bmp 6.9638

191.bmp 7.0813

181.bmp 7.1060

151.bmp 7.1958

Table 8.1: Colour distance between query and results

53

8.2 Texture Extraction & Matching

Using the texture feature extraction algorithm described above, where the energies of the query

image and the colour result images’ sub-bands are compared using the Euclidean Distance

Metric, the following top 4 results are obtained

Figure 8.3: Texture Results for the searching for 371.bmp

The above results are sorted according to the Euclidean distance… These are shown below:

File Name Euclidean Distance

371.bmp 0

331.bmp 1.1449

391.bmp 2.4609

401.bmp 2.6926

Table 8.2: Euclidean distance between query and results…

54

By observing the images in database, It can be found that the above results represent the closest

matches to the query image chosen.

1.5 Performance Evaluation

To evaluate the performance of retrieval system, two measurements, namely, recall and

precision [1], are borrowed from traditional information retrieval. For a query q, the data set of

images in the database that are relevant to the query q is denoted as R(q), and the retrieval result

of the query q is denoted as Q(q). The precision of the retrieval is defined as the fraction of the

retrieved images that are indeed relevant for the query:

| () () |

| () |

Q q IR q
precision

Q q

The recall is the fraction of relevant images that is returned by the query:

| () () |

| () |

Q q IR q
recall

R q

Usually, a tradeoff must be made between these two measures since improving one will sacrifice

the other. In typical retrieval systems, recall tends to increase as the number of retrieved items

increases; while at the same time the precision is likely to decrease. In addition, selecting a

relevant data set R(q) is much less stable due to various interpretations of the images. Further,

when the number of relevant images is greater than the number of the retrieved images, recall is

meaningless. As a result, precision and recall are only rough descriptions of the performance of

the retrieval system.

55

CHAPTER IX

9. Conclusions and Further Recommendation

9.1 Summary

The dramatic rise in the sizes of images databases has stirred the development of effective and

efficient retrieval systems. The development of these systems started with retrieving images

using textual connotations but later introduced image retrieval based on content. This came to be

known as CBIR or Content Based Image Retrieval. Systems using CBIR retrieve images based

on visual features such as colour, texture and shape, as opposed to depending on image

descriptions or textual indexing. In this dissertation, various modes of representation and

retrieval of the image properties of colour, texture and shape are researched as the core of feature

extraction techniques.

The application performs a simple colour-based search in an image database for an input query

image, using colour histograms. It then compares the colour histograms of different images using

the Quadratic Distance Equation. Further enhancing the search, the application performs a

texture-based search in the colour results, using wavelet decomposition and energy level

calculation. It then compares the texture features obtained using the Euclidean Distance

Equation. A more detailed step would further enhance these texture results, using a shape-based

search.

CBIR is still a developing science. As image compression, digital image processing, and image

feature extraction techniques become more developed, CBIR maintains a steady pace of

development in the research field. Furthermore, the development of powerful processing power

and faster and cheaper memories contribute heavily to CBIR development. This development

promises an immense range of future applications using CBIR.

56

9.2 Further Recommendation

In CBIR System, the image can be retrieved on the basis of the color, texture and shape features.

The methods of representation of the image are done in this dissertation basically on the basic

global feature description. Image segmentation technique can also be used to represent images’

local feature description so the implemented to get finer image representation and comparison

can be achieved on the basis of local images description. This technique can enhance the

retrieval system by a margin.

Furthermore, human perception of image similarity is subjective, semantic, and task-dependent.

Although Content-based methods provide promising directions for image retrieval, generally, the

retrieval results based on the similarities of pure visual features are not necessarily perceptually

and semantically meaningful. In addition, each type of visual feature tends to capture only one

aspect of image property and it is usually hard for a user to specify clearly how different aspects

are combined. To address these problems, interactive relevance feedback, a technique in

traditional text-based information retrieval systems, can be used. With relevance feedback, it is

possible to establish the link between high-level concepts and low-level features to retrieve the

images.

57

References:

[1] Long F., Zhang H., Feng D. D., Fundamentals of Content-based Image Retrieval.

http://www.research.microsoft.com/asia/dload_files/group/mcomputing/2003P

[2] Lew M. S., Sebe N. , Djeraba C. , Jain R., Content-Based Multimedia Information

Retrieval: State of the Art and Challenges, ACM Transactions on Multimedia computing,

Communications and Applications, Vol.2 No.1, February 2006, pp 1–19.

[3] Veltkamp R. C., Tanase M., Content-Based Image Retrieval Systems: A Survey

Technical Report UU-CS-2000-34, October 2000.

[4] Zhang D. S. and Lu G., Review of Shape Representation and Description

Techniques. Pattern Recognition, ACM 2004, pp1-19.

[5] Koskela M., Laaksonen J., Oja E, Entropy-based Measures for Clustering and

SOMTtopology preservation applied to Content-Based Image Indexing and Retrieval,

Proceedings of the 17th International Conference on Pattern Recognition ICPR, 2004.

[6] McDonald S., Tait J., Search Strategies in Content-Based Image Retrieval, ACM, 2003,

pp1-58, 113-646.

[7] Huang J., Kumar S. R., Mitra M., Combining Supervised Learning with Color

Correlograms for Content-Based Image Retrieval, ACM Multimedia 97 Seattle

Washington USA.

[8] Abbadeni N., Content Representation and Similarity Matching for Texture-based Image

Retrieval, MIR’03, November 7, 2003, Berkeley, California, USA, ACM 2003.

[9] Datta R., Joshi D., Li J., and Wang J. Z., Image retrieval: Ideas, influences, and trends of

the new age. ACM Computing Survey. Vol 40 No. 2, April 2008.

58

[10] Su Z., Li S., Zhang H., Extraction of Feature subspaces for Content-based Retrieval

Using Relevance Feedback, ACM , 2001.

[11] Tzelepi S. K., Koukopoulos D. K., Pangalos G., A flexible content and context-based

access control model for multimedia medical image database systems, ACM 2001, pp 1-

58,113-393.

[12] Pass G., Zabih R., Miller J., Comparing Images Using Color Coherence Vectors, Cornell

University

http://www.cs.cornell.edu/home/rdz/ccv.html

[13] Kang K., Yoon Y., Choi J., Additive Texture Information Extraction Using Color

Coherence Vector, 7th WSEAS International Conference on Multimedia Systems &

Signal Processing, Hangzhou, China, April 15-17, 2007.

[14] Brandt S., Laaksonen J., Oja E., Statistical Shape Features in Content-based Image

Retrieval , Proceedings of ICPR2000, Barcelona, Spain, September 2000.

[15] Yu C. T., Aslandogan Y. A., Multiple evidence combination in image retrieval:

Diogenes searches for people on the web. In Proceedings of 23rd Annual

International ACM SIGIR Conference on Research and Development in

Information Retrieval, ACM 2000, pp 88–95.

[16] Zhang D., Lu G., Generic Fourier Descriptor for Shape-based Image Retrieval

Gippsland School of Computing and Info Tech , Monash University, Churchill, Victoria

3842

[17] Wang J. Z., Boujemma N., Delbimbo A., Geman D., Auptmann A., And Tesic J., Diversity

in Multimedia Information Retrieval Research. In Proceedings of the ACM SIGMM

59

International Workshop on Multimedia Information Retrieval (MIR) at the International

Conference on Multimedia 2006.

[18] Vasconcelos N., On the efficient evaluation of probabilistic similarity functions for

image retrieval.IEEE Trnas. Inf. Theory, Vol 50 No 7, IEEE 2004, pp1482–1496.

[19] El-Kwae E. A., Kabuka M. R., Efficient Content-based Indexing of Large Image

Databases, ACM Transactions on Information Systems, Vol. 18 No. 2, April 2000, pp

171–210.

[20] Foschi P. G., Kolippakkam D., Liu H., Mandvikar A., Feature Extraction for Image

Mining, 8th International Workshop on Multimedia, 2000.

[21] Hearn D., Baker M. P., Computer Graphics C Version, 2nd Edition, Pearson Education,

1997.

[22] Pass G., Zabih R., Comparing images using joint histograms, Multimedia Systems,

Vol.7, 1999, pp 234-240.

[23] Huang J., Ravi Kumar S., Mitra M., Combining Supervised Learning with Color

Correlograms for Content-Based Image Retrieval, ACM multimedia Seattle Washington

USA, 1997.

[24] Zhang H. et al, Image retrieval based on color features: an evaluation study. Proceedings

of SPIE. Vol. 26 No. 06, 2007, pp 212-220.

[25] Keen N., Fisher B., Color Moments, Ferbruary 09, 2005.

http://homepages.inf.edu.ac.uk/rbf/CVonline/LOCAL_COPIES/AV045/KEEN.

60

[26] Weber R., Mlivoncic M., Efficient Region-baded Image Retrieval, ACM, 2003.

[27] Howarth P., Yavlinsky A., Heesch D., Ruger S., Visual Feature for Content-based

Medical Image Retrieval, Multimedia Information Retrieval Team, Imapaerial College

London, UK.

[28] Haar Wavelet.

http://amath.colorado.edu/courses/4720/2000Spr/Labs/Haar/haar.html

[29] Daubechies wavelet.

http://amath.colorado.edu/courses/4720/2000Spr/Labs/DB/db.html

[30] Yu H., Li M., Zhang H. and Feng J., Color texture moment for content-based image

retrieval, Proc. IEEE Intl Conf. on Image Processing, September, 2002.

[31] Keysers D., Dahmen J., Ney H., Wein B. B., Lehmann T. M. : A statistical framework for

model-based image retrieval in medical applications, Journal of Electronic Imaging, Vol

12 No 1, 2003.

[32] Lehmann T. M., Schubert H., Keysers D., Kohnen M., Wein B. B., The IRMA

code for unique classification of medical images. Proceedings SPIE 2003; 5033: in

press in this issue.

[33] Seidl T., Kriegel H., Efficient User-Adaptable Similarity Search in Large Multimedia

Databases, Proceedings of the 23rd VWB Conference Athens, Greece, 1997.

[34] Zheng B., Macclean D. C., And Lu X., Identifying biological concepts from

a protein-related corpus with a probabilistic topic model. BMC Bioinformatics. 7, 58,

2006.

61

[35] Zhang R., and Zhang Z., Hidden semantic concept discovery in region based image

retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2004.

[36] Chun J., Stockman G., Subband Image Segmentation Using VQ for Content-Based

Image Retrieval, MM'OI, Ottawa, Canada., Sept. 30-Oct. 5, ACM 2001 ppl-581.

[37] Kherfi M. L., Ziou D., Bernardi A., Image Retrieval from the World Wide Web: Issue,

Techniques, and System, ACM Computing Surveys, Vol. 36, No 1, March 2004, pp 35-67.

[38] Lafore R., Object Oriented Programming in Microsoft C++, The Waite Group,

1995.

[39] MATLAB Documentation, Version 7.1.0.246 Service Pack 3.

ANNEX- Matlab Code

aMain.m

function varargout = Main(varargin)

62

% --

% MAIN Application M-file for Main.fig

% MAIN, by itself, creates a new MAIN or raises the existing

% singleton*.

%

% H = MAIN returns the handle to a new MAIN or the handle to

% the existing singleton*.

%

% MAIN('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in MAIN.M with the given input arguments.

%

% MAIN('Property','Value',...) creates a new MAIN or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before Main_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to Main_OpeningFcn via varargin.

%

% *See GUI Options - GUI allows only one instance to run (singleton).

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help Main

% Last Modified by GUIDE v2.5 21-Jun-2008 03:11:52

% --

% --

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...

63

'gui_OpeningFcn', @Main_OpeningFcn, ...

'gui_OutputFcn', @Main_OutputFcn, ...

'gui_LayoutFcn', [], ...

'gui_Callback', []);

if nargin == 0 % LAUNCH GUI

initial_dir = pwd;

% Open FIG-file

fig = openfig(mfilename,'reuse'); % Generate a structure of handles to pass to callbacks, and

store it.

handles = guihandles(fig);

guidata(fig, handles);

%disp('populate1!!');

% Populate the listbox

load_listbox(initial_dir,handles)

% Return figure handle as first output argument

if nargout > 0

varargout{1} = fig;

end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try

[varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard

catch

disp(lasterr);

end

end

% End initialization code - DO NOT EDIT

% --

64

% --

% Executes just before Main is made visible.

% --

function Main_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Main (see VARARGIN)

% Choose default command line output for Main...

handles.output = hObject;

% Initialize the options...

handles.option = 'input';

% Update handles structure...

guidata(hObject, handles);

% --

% --

% Outputs from this function are returned to the command line.

% --

function varargout = Main_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

65

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --

% --

% Callback for list box - open .fig with guide, otherwise use open

% --

function varargout = listbox1_Callback(h, eventdata, handles)

% hObject handle to listbox1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns listbox1 contents as cell array

% contents{get(hObject,'Value')} returns selected item from listbox1

mouse_event = get(handles.figure1,'SelectionType');

index_selected = get(handles.listbox1,'Value');

file_list = get(handles.listbox1,'String');

filename = file_list{index_selected};

if strcmp(mouse_event,'normal')

if ~handles.is_dir(handles.sorted_index(index_selected))

[newpath, name, ext, ver] = fileparts(filename);

switch ext

case '.BMP'

set(handles.selectButton, 'Enable', 'On');

case '.bmp'

set(handles.selectButton, 'Enable', 'On');

otherwise

set(handles.selectButton, 'Enable', 'Off');

end

66

end

end

if strcmp(mouse_event,'open')

if handles.is_dir(handles.sorted_index(index_selected))

cd (filename)

load_listbox(pwd,handles)

end

end

% --

% --

% Read the current directory and sort the names

% --

function load_listbox(dir_path,handles)

cd (dir_path)

dir_struct = dir(dir_path);

[sorted_names,sorted_index] = sortrows({dir_struct.name}');

handles.file_names = sorted_names;

handles.is_dir = [dir_struct.isdir];

handles.sorted_index = [sorted_index];

guidata(handles.figure1,handles)

set(handles.listbox1,'String',handles.file_names,...

'Value',1)

set(handles.text1,'String',pwd)

% --

67

% --

% Executes during object creation, after setting all properties.

% --

function listbox1_CreateFcn(hObject, eventdata, handles)

% hObject handle to listbox1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: listbox controls usually have a white background, change

% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.

usewhitebg = 1;

if usewhitebg

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --

% --

% Executes during object creation, after setting all properties.

% --

function popupmenu_CreateFcn(hObject, eventdata, handles)

% hObject handle to popupmenu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

68

% Hint: popupmenu controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc

set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

% --

% --

% Executes on selection change in popupmenu.

% --

function popupmenu_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu contents as cell array

% contents{get(hObject,'Value')} returns selected item from popupmenu

val = get(hObject,'Value');

str = get(hObject, 'String');

cd(str{val});

load_listbox(pwd, handles)

% --

69

% --

% Executes on selection of 'Quite' from the menubar.

% --

function quite_Callback(hObject, eventdata, handles)

% hObject handle to CloseMenuItem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

selection = questdlg('Are you sure you want to quite?',...

['Close ' get(handles.figure1,'Name') '...'],...

'Yes','No','Yes');

if strcmp(selection,'No')

return;

end

delete(handles.figure1)

% --

% --

% Executes on selection of 'Input To Database' from the menubar.

% --

function inputDatabase_Callback(hObject, eventdata, handles)

% hObject handle to CloseMenuItem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

70

% Some code to input the selected image to the database...

set(handles.input, 'Checked', 'On');

set(handles.search, 'Checked', 'Off');

set(handles.listbox1, 'Enable', 'On');

set(handles.text1, 'Enable', 'On');

set(handles.popupmenu, 'Enable', 'On');

handles.option = 'input'; % This means that the option is to "input to database"...

guidata(hObject, handles)

% --

% --

% Executes on selection of 'Search Database' from the menubar.

% --

function searchDatabase_Callback(hObject, eventdata, handles)

% hObject handle to CloseMenuItem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Some code to search the database for the selected image...

set(handles.input, 'Checked', 'Off');

set(handles.search, 'Checked', 'On');

71

set(handles.listbox1, 'Enable', 'On');

set(handles.text1, 'Enable', 'On');

set(handles.popupmenu, 'Enable', 'On');

handles.option = 'search'; % This means that the option is to "search database"...

guidata(hObject, handles)

% --

% --

% Executes on button press in selectbutton.

% --

function selectButton_Callback(hObject, eventdata, handles)

% hObject handle to selectButton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

index_selected = get(handles.listbox1,'Value');

file_list = get(handles.listbox1,'String');

filename = file_list{index_selected};

[newpath,name,ext,ver] = fileparts(filename);

handles.filename = strcat(name,ext);

[handles.queryx, handles.querymap] = imread(filename); %read the image file.

cd('C:\Project');

figure

imshow(handles.queryx, handles.querymap); %This displays the image.

% Obtain HSV format of the image...

handles.queryhsv = rgb2hsv(handles.querymap);

guidata(hObject,handles)

set(handles.selectButton, 'Enable', 'Off');

set(handles.listbox1, 'Enable', 'Off');

72

set(handles.text1, 'Enable', 'Off');

set(handles.popupmenu, 'Enable', 'Off');

set(handles.input, 'Enable', 'Off');

set(handles.search, 'Enable', 'Off');

% handles.option

switch handles.option

case 'input'

set(handles.inputButton, 'Enable', 'On');

case 'search'

set(handles.searchButton, 'Enable', 'On');

end

% --

% --

% Executes on button press in inputButton.

% --

function inputButton_Callback(hObject, eventdata, handles)

% hObject handle to transform1button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

set(handles.inputButton, 'Enable', 'Off');

% Open database txt file... for reading...

fid = fopen('database.txt');

exists = 0;

while 1

tline = fgetl(fid);

if ~ischar(tline), break, end % Meaning: End of File...

if (strcmp(tline, handles.filename))

exists = 1;

73

break;

end

end

fclose(fid);

if ~exists

fid = fopen('database.txt', 'a');

fprintf(fid,'%s\r',handles.filename);

fclose(fid);

end

guidata(hObject, handles)

msgbox('Database updated with file name...', 'Success...');

set(handles.input, 'Checked', 'Off');

set(handles.search, 'Checked', 'Off');

set(handles.input, 'Enable', 'On');

set(handles.search, 'Enable', 'On');

% --

% --

% Executes on button press in searchButton.

% --

function searchButton_Callback(hObject, eventdata, handles)

% hObject handle to transform2button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

set(handles.searchButton, 'Enable', 'Off');

% Colour search...

% Open database txt file... for reading...

74

fid = fopen('database.txt');

resultValues = []; % Results matrix...

resultNames = {};

i = 1; % Indices...

j = 1;

while 1

imagename = fgetl(fid);

if ~ischar(imagename), break, end % Meaning: End of File...

[X, RGBmap] = imread(imagename);

HSVmap = rgb2hsv(RGBmap);

D = quadratic(handles.queryx, handles.querymap, X, HSVmap);

resultValues(i) = D;

resultNames(j) = {imagename};

i = i + 1;

j = j + 1;

end

fclose(fid);

% Sorting colour results...

[sortedValues, index] = sort(resultValues); % Sorted results... the vector index

% is used to find the resulting files.

fid = fopen('colourResults.txt', 'w+'); % Create a file, over-write old ones.

for i = 1:10 % Store top 10 matches...

tempstr = char(resultNames(index(i)));

fprintf(fid, '%s\r', tempstr);

disp(resultNames(index(i)));

disp(sortedValues(i));

disp(' ');

end

fclose(fid);

75

%return;

disp('Colour part done...');

disp('Colour results saved...');

disp('');

displayResults('colourResults.txt', 'Colour Results...');

disp('Texture part starting...');

% Texture search...

queryEnergies = obtainEnergies(handles.queryx, 6); % Obtain top 6 energies of the image.

% Open colourResults txt file... for reading...

fid = fopen('colourResults.txt');

fresultValues = []; % Results matrix...

fresultNames = {};

i = 1; % Indices...

j = 1;

while 1

imagename = fgetl(fid);

if ~ischar(imagename), break, end % Meaning: End of File...

[X, RGBmap] = imread(imagename);

imageEnergies = obtainEnergies(X, 6);

E = euclideanDistance(queryEnergies, imageEnergies);

fresultValues(i) = E;

fresultNames(j) = {imagename};

i = i + 1;

j = j + 1;

end

fclose(fid);

disp('Texture results obtained...');

% Sorting final results...

[sortedValues, index] = sort(fresultValues); % Sorted results... the vector index

% is used to find the resulting files.

76

fid = fopen('textureResults.txt', 'w+'); % Create a file, over-write old ones.

for i = 1:4 % Store top 5 matches...

imagename = char(fresultNames(index(i)));

fprintf(fid, '%s\r', imagename);

disp(imagename);

disp(sortedValues(i));

disp(' ');

end

fclose(fid);

disp('Texture results saved...');

displayResults('textureResults.txt', 'Texture Results...');

guidata(hObject,handles)

set(handles.input, 'Checked', 'Off');

set(handles.search, 'Checked', 'Off');

set(handles.input, 'Enable', 'On');

set(handles.search, 'Enable', 'On');

% --

decompose.m

% Works to decompose the passed image matrix...

% --

% Executes on being called, with input image matrix.

% --

function [Tl, Tr, Bl, Br] = decompose(imMatrix)

[A,B,C,D] = dwt2(imMatrix,'db1');

Tl = wcodemat(A); % Top left...

Tr = wcodemat(B); % Top right...

Bl = wcodemat(C); % Bottom left...

77

Br = wcodemat(D); % Bottom right...

% Display the image decomposition... [For testing purposes]

%figure

%colormap(gray)

%imagesc([Tl, Tr; Bl, Br]);

% --

quadratic.m

% Works to obtain the Quadratic Distance between two Colour images

% --

% Executes on being called, with inputs:

% X1 - number of pixels of 1st image

% X2 - number of pixels of 2nd image

% map1 - HSV colour map of 1st image

% map2 - HSV colour map of 2nd image

% --

function value = quadratic(X1, map1, X2, map2)

% Obtain the histograms of the two images...

[count1, y1] = imhist(X1, map1);

[count2, y2] = imhist(X2, map2);

% Obtain the difference between the pixel counts...

q = count1 - count2;

s = abs(q);

% Obtain the similarity matrix...

A = similarityMatrix(map1, map2);

% Obtain the quadratic distance...

d = s.'*A*s;

d = d^1/2;

78

d = d / 1e8;

% Return the distance metric.

value = d;

% --

similarityMatrix.m

% Works to obtain the Similarity Matrix between two HSV color

% histograms. This is to be used in the Histogram Quadratic

% Distance equation.

% --

% Executes on being called, with input matrices I and J.

% --

function value = similarityMatrix(I, J)

% Obtain the Matrix elements... r - rows, c - columns. The

% general assumption is that these dimentions are the same

% for both matrices.

[r, c] = size(I);

A = [];

for i = 1:r

for j = 1:r

% (sj * sin hj - si * sin hi)^2

M1 = (I(i, 2) * sin(I(i, 1)) - J(j, 2) * sin(J(j, 1)))^2;

% (sj * cos hj - si * cos hi)^2

M2 = (I(i, 2) * cos(I(i, 1)) - J(j, 2) * cos(J(j, 1)))^2;

% (vj - vi)^2

M3 = (I(i, 3) - J(j, 3))^2;

M0 = sqrt(M1 + M2 + M3);

%A(i, j) = 1 - 1/sqrt(5) * M0;

79

A(i, j) = 1 - (M0/sqrt(5));

end

end

%Obtain Similarity Matrix...

value = A;

% --

obtainEnergies.m

% Works to obtain the first 'n' energies of the passed grayscale image...

% --

% Executes on being called, with input matrix & constant 'n'.

% --

function value = obtainEnergies(iMatrix, n)

dm = iMatrix; % The matrix to be decomposed...

energies = [];

i = 1;

for j = 1:5

[tl, tr, bl, br] = decompose(dm);

energies(i) = energyLevel(tl);

energies(i+1) = energyLevel(tr);

energies(i+2) = energyLevel(bl);

energies(i+3) = energyLevel(br);

i = i + 4;

dm = tl;

end

%Obtain array of energies...

sorted = -sort(-energies); % Sorted in descending order...

value = sorted(1:n);

% --

80

energyLevel.m

% Works to obtain the energy level of the passed matrix...

% --

% Executes on being called, with input matrix.

% --

function value = energyLevel(aMatrix)

% Obtain the Matrix elements... r - rows, c - columns.

[r, c] = size(aMatrix);

%Obtain energyLevel...

value = sum(sum(abs(aMatrix)))/(r*c);

% --

euclideanDistance.m

% Works to obtain the Euclidean Distance of the passed vector...

% --

% Executes on being called, with input vectors X and Y.

% --

function value = euclideanDistance(X, Y)

[r, c] = size(X); % The length of the vector...

e = [];

% Euclidean Distance = sqrt [(x1-y1)^2 + (x2-y2)^2 + (x3-y3)^2 ...]

for i = 1:c

e(i) = (X(i)-Y(i))^2;

end

81

Euclid = sqrt(sum(e));

%Obtain energyLevel...

value = Euclid;

% --

displayResults.m

% Works to display the images named in a text file passed to it...

% --

% Executes on being called, with inputs:

% filename - the name of the text file that has the

% list of images

% header - the figure header name

% --

function displayResults(filename, header)

figure('Position',[200 100 700 400], 'MenuBar', 'none', 'Name', header, 'Resize', 'off',

'NumberTitle', 'off');

% Open 'filename' file... for reading...

fid = fopen(filename);

i = 1; % Subplot index on the figure...

while 1

imagename = fgetl(fid);

if ~ischar(imagename), break, end % Meaning: End of File...

[x, map] = imread(imagename);

subplot(2,5,i);

subimage(x, map);

xlabel(imagename);

82

i = i + 1;

end

fclose(fid);

%---

