1 INTRODUCTION

Mixed model just-in-time production system has been developed with a goal of reducing
cost of diversified small-lot instead large-lot that minimizes large inventories and large
shortages. The MMJIT production system minimizes both the earliness and the tardiness
penalties that respond to the customer demand for a variety of products without incurring
large inventory and shortages. This requires designing and controlling the system in such
a way that the only required products are produced in the necessary quantity when
needed. The main aim of the system is to obtain a sequence of a number of products that
minimizes deviation throughout the time, between the actual and the idea (desired)
production. This maintains the final assembly line keeping rate of parts usage as constant
as possible. The sequence at the final level is crucia and affects the entire supply chain as
al other levels are also inherently fixed due to pull nature of the system. The problem
that deals with the final level only is called the single level problem whereas dealing with
more than one level is multilevel problem. This is called leveling or balancing the
schedule.

Mixed model assembly lines with negligible changeover costs between the products
allow manufacturing of different models of a common base product in evenly distributed
sequences on the same line; Boysen et a. [3]. Monden [28] creates the first interest in JT
sequencing problem of single level mixed model assembly line. He describes a local
search heuristic "Goa Chasing Method" to deal with the problem. Miltenburg [24]
considers the problem of determining the sequence for producing different products on
the line that keeps a constant rate of usage of every part used by the line. In other words,
the quantity of each part used by the mixed model assembly line per unit of time should
be kept as constant as possible. This alows very little variability in the usage of each part
from one time horizon to the other. Miltenburg and Sinnamon [25] and Miltenburg and
Goldstein [26] extend the formulation to multi-level system. Kubiak [18] gave a more
specific distinction between these problems and referred single-level problem as the
Product Rate Variation (PRV) problem and the multi-level problem as the Output Rate

1

Variation (ORV) problem. He districted PRV problem as total deviation PRV problem
and maximum deviation PRV problem. Such problem represent the problem considered
by Steiner and Y eomans [35]. The pull system where the final assembly line defines the
scheduling and requests for demand down the level is represented by ORV problem. The
problems consider by Miltenburg and Sinnamon [25] and Miltenburg and Goldstein [26]
are categorized as ORV problem.

Miltenburg [24] and Miltenburg and Sinnamon [25] observe the existence of the cyclic
sequences for the total PRV problem. Kubiak [21] proves that optimal JIT sequences are
cyclic. Dhamaa and Kubiak [11] conjecture that cyclic sequences in the ORV are
optimal, too. This provided an important theoretical support to the usua for JIT systems
practice of repeating relatively short sequence to build a sequence for a longer time
horizon [24][28]. It aso has important consequences on the computational time
complexity of all existing algorithms for PRV [17]. Steiner and Y eoman [35], following
the optimization algorithm for the total deviation given in Kubiak and Sethi [18] give a
graph theoretic optimization algorithm for minimizing maximum deviation JIT single-
level sequencing problem. They also give an agorithm for minimizing multi-level
maximum deviation JIT assembly systems under the pegging assumption, Steiner and
Yeoman [36]. If outputs at production levels which feed the fina assembly level are
dedicated to the final product into which they will be assembled, then the problem with
pegging is equivalent to a weighted single level problem which can then be minimized by
modified algorithm for un-weighted single-level problem. Kovalov et a [16] perform a
large—scale computational study to examine various optimization algorithms formulating
several open questions of previous time as conjectures and answer them by means of

extensive computational testing.

The upper and lower bounds on the threshold value of the un-weighted max-abs problem
are established in Steiner and Yeoman [35], for the first time. Consequently they
established the bounds for the same problem with the weighted case [36]. Dhamala et al.
[12] established the lower and upper bounds on the threshold value both for weighted and
un-weighted max-sgr problems. Dhamala and Khadka [10] and Dhamala et al. [13]

2

established that there exists no feasible solution for any instance of the max-absolute
problem when the deviation is less than 1/3 and no feasible solutions for any instance of
the max-sgr problem when the deviation isless than 1/9 (cf. [12]).

This dissertation has been divided in 7 chapters. The brief descriptions of these are as
follows: Chapter 2 reviews some fundamental definitions relating to the subsequent study
of thiswork. In Chapter 3 a synopsis introduction of the scheduling problem is given. In
Chapter 4, the mathematical formulation of JT production system is given with
multilevel and single level formulation. Finally the pegged ORV P problem which can be
reduced to weighted single level problemis formulated in Section 4.3.

Chapter 5 is the main focus of this thesis in which the solution procedure both for min-
sum and min-max PRVP are explored. Since the cyclic solutions are optimal for both
problems with corresponding program, the optimal cyclic sequences for both problems
are presented for some instances. The implementation issue of EDD methods for optimal
solutions for min-max problem is the contents of Section 5.2. The nearest integer point
method to find a solution for min-sum problem with an example is presented in Section
under different algorithms and heuristics established in Miltenburg [24]. In Section
cost assignment approaches to the solution for min-sum PRVP is given. As the cost
assignment is fruitful only for the practical sized problem, the dynamic programming
approach to the min-sum is the content of Section 5.5. In Chapter 6, the Toyota’s Goal
Chasing method for sum-deviation ORVP is explored under parts usage goal. As the min-
sum ORVP is NP-hard, the heuristic approaches purposed by Miltenburg and Sinnamon
[25] is analyzed in detail with implementation and an example is presented in which
cyclic solution is obtained. Chapter 7 contains the conclusion, further suggestions and

recommendations.

The main work of this dissertation is to study the different cyclic sequencing procedures
to PRVP with their implementation issues. The heuristic to solve ORVP approaches are

explored. Moreover examples are presented for some solution approaches.

2 FUNDAMENTAL BACKGROUND
Functions

Given two sets A and B, afunction fisabinary relation on A x B such that for all a €A,
there exists precisely one b €B such that (a, b) ef. the set A is caled the domain of f,
and the set B is called the co-domain of f. We sometimes write f : A— B;and if (a b)

ef, wewriteb= f(a), since b isuniquely determined by the choice of a.

A function f whose values are in the set of real numbers R is caled a real-vaued
function and is non-negative if f > 0. Since we shall be mostly interested in real valued

function of real variable throughout thisthesis, we write only “function” to mean the real-

valued function of real variable unless otherwise specified. The function f is said to be
monotonically increasing if f(x)< f(y)wheneverx<y. Similaly, fis called

monotonically decreasingif f(x)> f(y) whenever x<'y.

The function f defined over a set AcR is said to take on its maximum and minimum

over A at the points x* and x respectively if f (x)< f(x)< f(x*) for all xe A.

Thefunction f issaid to be unimodal if for some value a (the mode) such that either (i)

or (ii) holds:
() f is monotonically increasing for x < aand monotonically decreasing for x>a. In
that case, the maximum valueof fis f(a)and there are no other local maxima.

(i) f is monotonically decreasing for x < aand monotonically increasing forx>a. In

that case, theminimum value of f is f(a)and there are no other local minima.

A function f is said to be convex over a convex st AcR if for any two points

x,yeAand for dlo,0<a <1l f(ox+(1-a)y)<af (x)+(1-a)f(y).

The floor function (it is often also called greatest integer function) denoted by
4

|_xJ assigns to the real number x the largest integer that is less than or equal to x .

The ceiling function denoted by [x| assignsto the real number xthe smallest integer that
is greater than or equal to x

Graph Theoretical Denotations

A graph as a mathematical structure is a pair G = (V,E) where V ={v;,...,v,} is a non-
empty finite set of vertices, and E has as elements subsets of V of cardinality two called
edges. An edge between two vertices v, and v; for i=] is denoted by[v,,v;]. A
directed graph (or diagraph) G is a pair, (V, E)where V is caled a finite set of vertices
and E is ais a set of ordered pairs of vertices called arcs; that is, AcV xV .. In an
undirected graphG = (V, E) , the edge set E consists of unordered pairs of vertices, rather

than ordered pairs. That is, an edge is a set {u, v}, where u, v €V and u =v. The

unqualified term graph usually means undirected graph.

A path of length kfrom u to a vertexu' in a graphG =(V, E), where{u,u} € E, is a
sequence {V,,Vy,....,, } of vertices such thatu=v,, u=viand (v,,v)eE

fori =1,2,..k . Thelength of the path is the number of edgesin the path.

Let G=(V,E)be agraph in which the vertex set V can be partitioned into two digjoint
sets, V, andV,, and each edge in E hasonevertex in V; and another inV, . In such acase
G is called a bipartite graph and we denote by G = (V; U V,, E) . If agraph has no such a
partition, we say it non-bipartite. A bipartite graph G=(V, UV,,E)is said to be
complete if each vertex of V;is connected to each vertex ofV,. The bipartite graph

G=(VUU,E) is V-convex if there is an ordering on V such that [v,,u,]€ E and

[v;,w]eE with v,,v; eV, V, <v; impliesthat [v,,u] E for v, <v, <v; (see[34]).

The graph G = (V, E) together with a function W : E — R"is called the edge weighted

graph and together with a function W :V — R" is called vertex weighted graph, where
R" the set of all nonnegative real numbers is.

Algorithmsand Heuristics

A computational problem is a mathematical object representing a general question that
might want to solve and is independent of its specific input. A problem with a specific set

of inputs is called an instance. Hence, a computational problem isafunction I1:Z—Y,
where Z isthe set of all problemsinstances | and Y isthe set of solutions. An algorithm

is a set of precise instructions for performing a computation or solving an optimization
problem [31].

In other words, an algorithm is any well-defined computation procedure that takes some
value, or set of values, as input and produces some value, or set of values, as output. An
algorithm is thus a sequence of computational steps that transform the input into the
output. To represent algorithms we use English language however for the ssmplicity we
use pseudo code that can represent an algorithmsin clear manner like in English language
and gives the implementation view as in the programming languages.

There are severa properties that algorithms generaly share. They are useful to keep in

mind when algorithms are described. These properties are:

1. Input/output: An algorithm hasinput or set of inputs values from the set that has
possible input values and for each inputs an agorithm produces the solution of the
problem that are in the set of output values.

2. Definiteness. Each step must be clear and unambiguous.

3. Correctness. An agorithm produced output must be correct for each set of input
values.

4. Finiteness: An algorithm must terminate after finite amount of time for every
possible set of values.

5. Effectiveness. Each step must be executable in finite time.
6. Generality: The devised algorithm must be capable of solving the problem of
similar kind for all possible inputs.

Heuristic is the art and science of discovery and invention. The word comes from the
Greek root as “eureka”, means “to find”. A heuristic for a given problem is a way of
direction towards a solution (see [32]). It is different from an agorithm in that it merely
serves as a rule of thumb or guideline, as opposed to an invariant procedure. Heuristics
may not achieve the desired outcome, but can be extremely valuable to problem-solving
(see [43]). Good heuristics can dramatically reduce the time required to solve a problem
by eliminating the need to consider unlikely possibilities or irrelevant states.

The mathematician Gege Polya popularized heuristics in the twentieth century in his
book How to solve it [43]. He was motivated by his experiences in mathematics
education where students are taught mathematical proofs, without learning techniques to
formulate proofs themselves. How to solve it is a collection of ideas about heuristics that
he taught to math students: ways of looking at problem and casting about for solutions

that often give results very quickly (see[43]).
Complexity of Algorithms

When an algorithm is designed it must be analyzed for its efficiency. The efficiency of an
algorithm is measured in terms of complexity. The complexity of algorithms is
mentioned in terms of resource needed by the algorithm. We generally consider two
kinds of resources used by an algorithm time and space. The measure of time required by
an agorithm to run is given by time complexity and the measure of space (compute
memory) required by an algorithm is given by space complexity. Here in this dissertation
we generally discuss time complexity of an agorithm that is given by the number of
operations needed by an algorithm for given set of inputs. Since actual time required may
vary from computers to computers we use number of operations required to measure the

time compl exity.

Let f and g be functions from the set of real numbers to the set of real numbers. A
function f (x) = O(g(x)) if and only if there exists two constants ¢ and n, such that for

aln>ng, 0< f(n)<cxg(n)

- C.g{n)

f fin)
'_’_l'_‘—\—

/
—

Iy
Figure 1. Graphical notation of f (n) = O (g (n))

A polynomia time (polynomial) agorithm is the one whose time complexity

functionsT (k) € O(h(k)), where h is some polynomia and k is the input length of an

instance I. If time complexity function cannot be bounded by the polynomial function, it
is called exponentia time algorithm. A computational problem IT is called polynomial
solvable if there is a polynomia time algorithm solving it. A problem 11 is called

pseudo-polynomia solvable if the time complexity function T(Kk)is polynomia with
respect to || | andmax(l), where |I| and max(l) respectively denotes the input length and

the largest number appearing in the instancel € I1. Hence, the notion of pseudo-
polynomial solvable depends on the magnitude of the largest input data involved.

Given any problem instance | €Z of an optimization problem to minimize a certain sum
or bottleneck objective function with respect to constraint set X, the optimal solution is
given byy (%) = min{y (X) | xe X}, thereforeTI(1) =y () . However, the range Y must

contain elements to represent “unbounded” and “infeasibility”, too, in general. A problem
IT is caled decision problem if Y = {yes, no}. Each optimization problem has its decision

counterpart which is associated by defining an additional threshold value y for the

corresponding objective function . For example, given an additional threshold value y
for the objective function we ask: does there is a feasible solution xe X such

thaty (x) < y?

In complexity classes, the set of all decision problems which are polynomia solvable is
denoted by P. The class of all decision problems whose all yes instances can be checked
for validity in polynomia time, given some additional information called certificate, is
denoted by NP (Non-deterministic Polynomial Time).

Similarly, the class of al problems that are the complements of the problemsin NP, i. e.
for every no instance | there exists a concise certificate for I, which can be checked for

validity in polynomial time, is denoted by Co-NP.

We say that a decision problem IT, reduces to another decision problemIT;, denoted
byIT, o I1,, if there exists a polynomial time transformation function h:Z,— Z; such
that T1,(1)=yes for | € Z if and only if TI;(h(1)) = yes for h(l)e€Z; A decision
problem TI1; is caled NP-complete if I1, e NP and for any other known decision
problem IT, e NP we havell, « IT,. Since it follows from IT, oc I, that the problem
I1; is at least as hard as the problem, I1,it is sufficient to consider any known NP-
complete problem IT, in the complexity hierarchy. The “problem reducibility” relation

is a trangitive relation on the class of decision problems. A decision problem in NP is
called NP-complete in strong sense if it can be solved pseudo-polynomia only if P =
NP, which is one of the major open problems in modern mathematics. An optimization

problem is called NP-hard if the corresponding decision problem is NP-compl ete.
Dynamic Programming

Dynamic programming solves problems by combining the solutions to sub-problems.
This is a modification of the divide-and-conquers approach. Divide-and-conquer

algorithms partition the problem into independent sub-problems, solve the sub-

problem recursively, and then combine their solutions to solve the original problem. In
contrast, dynamic programming is application when the sub-problems are not
independent, that is, when sub-problems share sub-sub-problems.

A dynamic programming agorithm solves every sub-problem just once and then savesits
answer in atable, there by avoiding the work of re-computing the answer every time the

sub-problem is encountered.

Dynamic programming is typicaly applied to optimization problems. In such problems
there can be many possible solutions. Each solution has a value, and we wish to find a
solution with the optimal (minimum or maximum) value. We call such a solution an
optimal solution to the problem, as opposed to the optimal solution, since there may be

several solutions that achieve the optimal value.

The development of a dynamic programming algorithm can be broken into a sequence of

four steps.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information.
Steps 1-3 form the basis of a dynamic programming solution to a problem. Step 4 can be
omitted if only the value of an optimal solution is required. When we do perform Step 4,

we sometimes maintain additional information during the computation in Step 3 to ease

the construction of an optimal solution.
Combinatorial Optimization

Some scheduling problem can be solved efficiently by reducing them to well known

combinatorial optimization problems like linear programs, maximum flow problem

10

or transportation problem. Others can be solved by using standard techniques like
dynamic programming and branch and bound methods. Here we give a brief sketch of
these combinatorial optimization problem and also discuss some of the methods.

Integer Programming

A linear programming refers to an optimization problem in which the objective and the
constraints are linear in the variables to be determined. An LP can be expressed as

follows:
Minimize ¢, X +C,X, +...+C,X, . (2.2)
Subjected to:

ay X+ apX+ ...+, X, < b,
Ay Xy + By Xp + .o+ A X, <D,

(2.2)
Ay Xy + 8 X + ot B X, S by
X;20 for j=12..n

The objective is to minimize the costs. The c,,c,,...,C, vector is referred to as the cost
vector. The variables x,, x,,...x, have to be determined so that the objective function
C1Xy + Cy X, + ...+ C X, is minimized. The quantities a,;,a,;,...a,; defines the activity

vector j. The b,,b,,...b,, arereferred to as the resource.

A nonlinear program (NLP) is a generdization of a linear program that alows the

objective function and/or the constraints to be nonlinear inxg, Xz,..X,. An integer

11

program (IP) is a linear program with the additional requirements that the variables

X1, Xo,...%, haveto beintegers.

The linear program (LP) is solvable problem and integer program is NP-hard problem.
Bipartite Matching Problem

A matching M of agraph G = (V, E)is a subset of the edges with the property that no two
edges of M share the same node. Given a graphG = (V, E), the matching problem is to

| V] |
find a maximum matching M of G (see [29]). When the cardinality of amatching is|L¥J|,

the largest possible in a graph with [\/| nodes, we say that the matching is complete, or

perfect and the problem of finding a perfect matching M of G is called the perfect
matching problem (see [29]).

Let us consider a graph G = (V, E)together with a fixed matching M of G. Edges in M
are caled a matched edges, the other edges are free. If [u,Vv] is a matched edge, then u

and v are mate to each other. Nodes that are not incident upon any matched edges are
called exposed; the remaining nodes are matched.

Now, consider a bipartite graph G = (v uU,E) withn=V|<U|=m. For any subset X

of vertices, denoteby N(X) the neighborhood of X, i.e. the set of all vertices adjacent to

at least one vertex in X. Clearly, n is an upper bound for the perfect matching in G. The
following theorem due to Hall [1935] (see [6, 7]) gives necessary and sufficient

conditions for the existence of a matching with cardinality n.

Theorem 2.6.2.1 ([6, 7]) Let G = (V UU,E)be a hipartite graph withn=V/ | <[U|=m.

Then there existsin G a matching with cardinality n if and only if

12

IN(X)| 2 [X| forall XcV.

A maximum matching M in a bipartite graph G = (V UU,E)can be caculated in
o(min(V|,u)|)time (see [29)).

Algorithm 2.6.2.1 The Bipartite Algorithm

Input: A bipartitegraph B = (V, UV,,E),
Output: The maximum matching of B, represented by the array mate.
begin
for all veV; UV, do mategv]=0; (comment: initialize)
stage: begin
for all veV; do exposed[Vv]=0;
A= ¢ ; (comment: begin construction of the auxiliary graph (V, A))
for all [v,u] € E do
if mate[u] =0 then exposed[v] =u else
if matefu] = v then A= Au (v, mate[u]);
Q=9¢;
for all veV; doif mate[v] then Q = QuU{V}, label[Vv]=0;
while Q #¢ do
begin
let vbeanodein Q;

remove Vv from Q;

13

if exposed[V] = 0 then argument(v), go to stage;
else
for all unlabeled v' such that (v,v') € A do
label[v]=v, Q =Qu{V};
end
end
end
procedure augment(v)
if label[v] =0 then mate] v] =exposed[V],
mate] exposed[V] | =V;
else begin
exposed[label[v]] =mate[V] ;
mate] v] =exposed[V] ;
mate] exposed[V] | =v;
augment(label[V])
end

Figure 2. The Bipartite Matching Algorithm
Assignment Problem

Consider the complete bipartite graph, G=(V, uV,,V, xV,). Assume w.l.0.g that
n=V,|<M,|=m . Associated with each arc (i,j) there is a real numberc;. An
assignment is given by a one-to-one mappingo :V; —V, . The assignment problem is to

find an assignment such that

14

D Coqy isminimized.
ieVy

Assume that Vi ={i,..,n} andV, ={1,..,m}. Then the assignment problem has the

following linear programming formulation with O-1- variablex; :

n

minimize) i GiiXii

=1 j=1

Such that:

X101} i=1,..,nmj=1,....., m

We describe the Hungarian method [29], and use the following terminology and
notations:

A label of vertices in a graph G =(V,A)is an array with |V|entries representing the
predecessor vertex of all vertices. The label of avertex v eV is denoted by label[v]. To
represent the current matching in the complete bipartite graph G = (\/ uu, E)We use the
array mate having 2n entries where mate{w] for any vertex eV U U denotes the vertex
w' which is the mate of w. For any v eV exposed [v] isanode of U that is exposed and is
adjacent tov; if no such node exists, exposed[v] = 0. Now, for j =1,...,n, slack [u;]isthe
minimum of (qj -o, - P j) over al labeled vertices v, of V and nhbor[u;] is the

particular labeled vertex v, with which dack[v,]is achieved.

15

Algorithm 2.6.3.1 [29] The Hungarian method

Input: Ann x n, matrix [c;j] of nonnegative integers.

Output: An optimal complete matching (given in terms of the array mate) of the

complete bipartite graph G = (V UU,E) with V £ U £ under the
costc; .

begin
for all v, eV do mate]v,]:=0,a, =0;

for all u; eU do mate[u] :=0, B; := min{c};

(comment : initialize)
fori:=1,...,ndo (comment : repeat for n stages)
begin
A:=0;
for all v e V do exposed[V] := 0;
for all u € U do exposed[u] := «o;
for all v, yiwithvi € V,uj € U, and o; + 3= ¢ do
if matefu] = O then exposed [vi] := u
dse A= AU {(vi, mate{u])};
(comment : construct the auxiliary graph)
Q=0
for all vieV do
if mate[vi] =0 then

begin

16

if exposed[vi] # Othen augment (v;), go to endstage;
Q:=Qu {v}

label[vi] :=0;

for all uc €U do

if O<cCik- a,; - P, <dacku] then slake[u] := cik - ;- By, nhbor[uy]
= Vi,

end
search: whileQ # @do

begin

let v beany nodein Q;

removev; from Q;

for all unlabeled v; € V with (vi,v) € Ado
begin
label[] := v;
Q:=Qu {v}h
if exposed[vj] = O then augment (v;), go to endstage;
for all uc € U do

if 0<cjx - oj- B, <dack[ug] then dake[u] := Cjk - o - B, nhbor[ug
=V

end;
end
modify;

go to search

17

endstage: end
end

procedure modify

(comment : it calculate 0, updates the o.'s and B's, and activates new nodes to
continue the search)

begin

0 := 1 min{dake[u]>0};

L2 wu
for all v € Vdo
if vi islabeled then o, := o, +0, else o, := «a, -0,;
for all uyy € Udo
if slack [u] =Othen B;:= B;- 0,else B;:= B;+ 0,;
for all ueU with slackju]>0 do
begin
slack[u] :=slack[u] -26, ;
if slack[u] =0 then (comment: new admissible edge)
if mate] u] =0 then exposed[nhbor[u]] :=, augment(nhbor[u]), go to endstage;
else (comment: mate[u] = 0)

label[mate] u]] :=nhbor[U], Q:=Qu {mate[u]}, A:=Au{(nhbor[u],
mate{ U])};

end
end

procedure argument (v)

18

if label [v] =0 then mate[V] := exposed [V],
mate [exposed[V]]:=V;
else begin
exposed[label [V]] := mate[V];
mate[V] := exposed [V];
matef exposed[V]] := v,
augment(label[v])

end

Figure 3: The Hungarian method

Theorem 2.6.3.1 [29] The Algorithm 2.6.3.1 correctly solves the assignment problem for
a complete bipartite graph with 2n nodes inO(n3) time.

19

3 SCHEDULING PROBLEMS

In this chapter, the basic formulations of the scheduling problem are described. The

classification of scheduling problems mentioned in this chapter follows the notation used

in[7).

A schedule is an allocation of one or more time intervals to each job on one or more
machines. A scheduling is caled optimal if it minimized a given objective function
means to establish an assignment of resources to consumers for a certain period of timein
a way that a certain objective is optimized [9]. The policy used to determine this
assignment is called scheduling algorithm.

Scheduling theory is excessively used in the computer manufacturing to schedule the
jobs. The multiprogramming characteristic of computer is due to the good scheduling of
jobs in the CPU because the CPU can only process one job at a time. In this case the

objective function is to maximize the CPU utilization.
Schedules and their Representations

Let there be m number of machines, M;, i = 1, 2....m, which have to processn jobs, J;, j =
1, 2...n. Besides, there is an objective function which gives the cost of scheduling. The
problem is to assign the jobs an alocation of one or more time intervals on one or more
machines; such an assignment is caled a schedule (see [7]). A schedule is often
represented by a Gantt chart. Gantt chart can be machine oriented or Job oriented.

20

> =

ILE I3 Iz —
M Ja I J- —

M I J= I J4

Machine oriented Gantt chart

- —

nl %Mg M

Iz Tula I3

I3 | M % M | Ma

i F0"ic""—"rc—"-— I = :
0

Job oriented Gaatt chart
Figure 4: Gantt chart

H. Brasel introduced a new approach of modeling scheduling problems called block-
matrix model in 1990 (see [4, 5]). It is easy, comprehensible and can be applied to
simplify the algorithm in this field. In the block-matrices model, all graph theoretical
structures of scheduling problems are basically described by means of specia kind of

matrix called latin rectangles with sequence property (see aso [9])

The digunctive graph is proposed by B. Roy and B. Sussman in 1964 (see [7, 38, 39])
and is used in the literature of scheduling theory. It is based upon the mathematical
discipline graph theory. Disjunctive graphs are widely used to represent certain feasible
for scheduling problems. The set of feasible schedules, which are represented in this way,

21

always contains an optimal solution for the problem if the objective is regular (see also

[9]).
Three Field Notation

For specifying scheduling problems, three-field notation is popularly used. This notation
is due to Graham et a. [14] (also see [1, 7]). In this scheme, a problem is denoted

asoc|B|y where the first field o =a,0,describes the machine environment, where
o, denotes the machine characteristic and o, denotes the number of machines used. The

single machine environment is described bya, = o, anda.,=1, i.e.0. =1, where o denotes
the empty symbol. The second field 3 describes the job characteristic. If we denote

preemption, precedence relation, release date (r,), processing time (p;) and due date

(d), respectively, by B;,B,,Bs,B4, and s, then Be{BllBZ’BSlBMBS}' The third

field, , denotes the sum and max objective function. Generally, the objective function
will be the completion time C, of jobi. For the fixed parameter d, as the due dates of

jobi, lateness, tardiness and earliness of job i are defined, respectively, by
L =C -d, T =max{C -d; 0, E=max{0d -C},
which are usual objective functions to be measured under the JIT environments.
Earliest Due Date (EDD) Algorithm

Whenever amachine is freed, the job with the earliest due date is selected to be processed
next. This rule is to minimize the maximum lateness among the jobs waiting for
processing. Actualy, in a single machine setting, with n- jobs available at time 0, the

EDD rule does minimize the maximum lateness.

22

Example3.3.1: 1r;; d; pmtn| |L;| max

Is the problem of finding a preemptive schedule on one machine for a set of n-jobs with

given release times I #0 and due dates di # Qsuch that the objective function

|L; ax is minimized.
Benefits of Just-in-Time Production Systems

JT makes production operation more efficient, cost effective and customer responsive.
JT allows manufacturers to purchase and receive components just before they are needed
on the assembly line, thus relieving manufacturers of the cost and burden of housing and

managing idle parts.
The main benefits of the JT manufacturing environment are listed below (see [33, 41]):

1. Set up times are significantly reduced in the warehouse: Cutting down the set up
time to be more productive will alow the company to improve their bottom line to
look more efficient and focus time spent on other areas may need improvement.

2. The flows of goods from warehouse to shelves are improved: Having employees
focused on specific areas of the system will allow them to process goods faster
instead of having them vulnerable to fatigue from doing too many jobs at once and
simplifies the tasks at hand.

3. Employees who possess multiple skills are utilized more efficiently: Having
employees trained to work on different parts of the inventory cycle system will allow
companies to use workers in situations where they are needed when there is a
shortage of workers and a high demand for a particular product.

4. Better consistency of scheduling and consistency of employee work hours: if
there is no demand for a product at the time, workers don’t have to be working. This

can save the company money by not having to pay workers for ajob not completed or

23

could have them focus on other jobs around the warehouse that would not necessarily
be done on anormal day.

Increased emphasis on supplier relationships: No company wants a break in their
inventory system that would create a shortage of supplies while not having inventory
sit on shelves. Having a trusting supplier relationship means that we can rely on
goods being there when we need them in order to satisfy the company and keep the

company nhame in good standing with the public.

Supplies continue around the clock keeping workers productive and business
focused on turnover: Having management focused on meeting deadline will make
employees work hard to meet the company goals to see benefits in terms of job

satisfaction, promotion or even higher pay.

Applications of Just-in-Time Production System

The following are the applications of JIT:

1.

In real time scheduling: Rea time scheduling problems are principaly online
versions of Just-in-Time scheduling problems, but popularly, the nomenclature “real
time” refers to computer related problems. These types of scheduling problems occur
in real-time system. Generally a real-time system is an operating system embedded in
some electrical device. In a rea-time system, the correct functioning of the system
depends on the time when jobs are completed. In a soft-real-time system, early and
tardy jobs degrade the quality of the output, while in a hard-real-time system; such
jobs make the output invalid. The book of Tanenbaum [40] provides an introduction
for real-time scheduling problem in computer system.

Scheduling in operating system: Scheduling theory is excessively used in computer
manufacturing to schedule the jobs in CPU, memory, printing buffer and other
devices for processing jobs. The multiprogramming characteristic of computer is due
to the good scheduling of jobs in the CPU because the CPU can only process the job

at atime. In this case the objective function is to maximize the CPU

24

utilization (see [40]). Some basic algorithm used in OS (see [23, 40])for uniprocessor

computer are:

First Come First Serve (FCFS): At any instance when machine is idle, select the
available jobs in the order they request. When the first job enters in the system it

is started immediately and allowed to run as long as it wants.

I. Shortest Job First (SJF): At any instance when the machine is idle, select the

available job having shortest expected processing time. In the case of tie the FCFS
is used.

Shortest Remaining Time Next (SRTN): At any instance schedule the job whose
remaining time is the shortest. When a new job arrives, its time is compared with
the current process’ remaining time. If new job needs less time to finish than the
current process, the current process is suspended and new job started. It is

applicable to preemptive system.

. Round-Robin: Each process is assigned a time interval, called quantum, which it

isallowed to run. If the processis still running at the end of the quantum, the CPU
is preempted and given to another process. If the process has finished before the
guantum has elapsed, the CPU switching is done when the process blocks, of

course.

. Just-in-Time compilation: In computing, Just-in-Time, aso known as dynamic

trandation for improving the runtime performance of a computer program. It

converts, at runtime, code from one format into another, for example bytecode into

native machine code. The performance improvement originates from caching the

results of translating blocks of code, not simply evaluating each line or operand

separately, or compiling the code at development time. JIT builds upon two earlier

ideas in run-time environments: bytecode compilation and dynamic compilation (see

[37]).

25

4 MATHEMATICAL MODEL OF JIT PRODUCTION
Output Rate Variation Problem

Consider L different production levelsl;l =1,2,...,L; where level 1 is the final assembly
line. For eachl=12..L; let there be n different pat types with

demandsd, ;i =1,2,...,n,. Let t,, denote the total number of units of outputi at levell

Ip

required to produce one unit of product p; p=1,2,...,n; so that the dependent demand for

parti of levell determined by the final product demandsd ,, isd; = ZI:t“pdpl, We see
p=1

that t;, =1 fori =1and O otherwise. For eachl =1,2,...,L ; let D, zzld“ be the total
i=1

output demand of levell. The demand ratio for parti at levell isr, :gl for
I

n

eachi =1,2,...,n, and we have Zr“ =1 for eachi =1,2,...,n, .
i=1

A copy of a product (model) is said to be in stagek;k =1,2,...,D; if k units of products
have been produced at levell. The product level (levell) has a time horizon of D; units
and there will be k units of various products p, completely produced, at levell during
the first k stages. Let the cumulative production of parti at levell during the first k
stages be denoted by x,, so that the total quantity of various parts produced at level |

during the first k stages is Yy, sznk units. We have vy, :ixﬂk =k at levell. In
i=1

i=1

fact, x, = Zl“ti.pxplk must hold forl > 2.

p=1

With these notations, the constraints and various objectives for mixed model multi-level

JIT assembly systems are formulated asthe following [20, 24].

26

For eachi =1,2,...,n;; let f, be a unimoda symmetric convex function with f, (0) =0,

minimum. Then the mixed model multi-level JIT scheduling problem defined by (4.1) is

to minimize one of the objectives:

C m% fo G — Yielir) s (4.1)
D, L n

and Gym = zzz fir e = YaeF) (4.2)
k=11=1 i=1

Subject to the constraints

X = Zl:tilpxplk ' i=12..n;1=12..,L; k=12..D, (4.3)
p=1

Vi = > X |=2,.,L; k=12,.,D (4.4)
i=1

Yu =2 %x =k, k=12..,Ds (4.5)
i=1

Yoz > X p p=12..n; k=12..,D, (4.6)

Xup, = Ao, X0 =0, P=12,...My (4.7)

X« > 0, integer, i=12..n;1=212..,L; k=12,..,D,. (4.8

Constraint (4.3) indicates that the necessary cumulative production of parti of levell by
the end of stagek is determined explicitly by the quantity of products produced at
product level. Constraints (4.4) and (4.5) compute the total cumulative production at
levell and levell, respectively, during the first k stages. Constraint (4.6) shows that the
total production of every product over k stages is a non-decreasing function ofk.

Constraint (4.7) ensures that the production requirements for each product are met

27

exactly. Constraints (4.5), (4.6) and (4.8) indicate that exactly one unit of a product is to
be produced in the product level during each stage.

The deviation between actual and ideal production can be visualized asin Figure 5.

Cumulative
production
fquantitizs

F Y
Bl e v semem e e semee cmeen s g e

Actual cumulative
production quantity

Ideal cumulative
production quartity

Irventory

Shortage

gyl ——_—- - - —_ — —

- Time

Figure 5: The ideal and actual commutative production quantities

In particular, taking f, (X) =| x| (3.1) and (3.2) take the forms:

G = ITllakX | X = YicTir | (4.9)
D, L n

and Gam =Y. | Xi — Yix Ty |, respectively. (4.10)
k=11=1 i=1

Also, taking f, (x) = x* (3.7) and (3.8) take the forms:

Grrex = rinl?(x(x‘lk = Yila)® (4.11)

max 1

28

and G, = (Xine = YT)’ , respectively. (4.12)

The multi-level problem is a difficult optimization problem; however, various heuristic
solution procedures of finding good solution with reasonable computational effort are
desired, in literature, to solve real-life instances of the problem. Here, we focus the

following particular case.
Product Rate Variation Problem

Mixed model single-level JIT assembly system, a particular case of multi-level system
with only one level, the product level; assumes that different products (or models) require
the same number and mix of components and that the processes have negligible switch
over costs from one product to another and so allow for diversified small-lot production.
In this section the mathematical formulation of the single-level system are discussed.

Assume that there are n products (or models) to be produced during a specified planning

time horizon with demands d,, d,,....d, for ali=12..,n. Put p = Z‘di and the time

horizon be divided into D time units (i.e. an implied time horizon of D time units can
be inferred), where one copy of a product will be produced in each time period. A
schedule is called an ideal schedule if at each time periodk; k=1.2..,D the line has

been assembled k ﬂ parts of producti; i =1,2,...,n. The aim of JIT sequence is to keep
D

the real production of a product i in each time unit k as close as possible to the ideal

. d _ _ .
production rater = ' . Let X denote the real cumulative production of product i in
| D I,

time periods 1 tok, inclusive.

The most important goal of JIT production system is to keep the schedule as balanced as

possible. Thus, our objective is to schedule the assembly line so that the proportion of

each product i produced over atime period to the total production is as close to r; as

29

possible. In other words, this model aims to hold inventory and shortage costs as smooth
as possible by keeping the production rate of each product as balanced as possible by
keeping the quantity of each product used by assembly line as constant as possible. The

objectives formulated in [24] and generalized in [20] are given asfollows.

For eachi =1,2,...,n; let f. be aunimoda symmetric convex function with f, (x) > 0 for

x#=0; f(0)=0, minimum. The problem defined by (4.2) is to minimize one of the

objectives:
Froax = max f(x, —kr;), (4.13)
19 <n
D n
Fam=22, i (%, —kr) (4.14)
k=1i=1
Subject to the constraints:
D %, =k, k=12..,D (4.15)
i=1
Xp =d, i=12,..,Nn (4.16)
X0=0, i=12,..,n (4.17)
X, — X120, i=12..,n ; k=12,..,D (4.18)
X, =0, integer, i=12..,n; k=12,..,D. (4.19)

Here, equality (4.15) means that k parts (copies) have to be produced in first k time
periods ; equality (4.16) indicates that all demands must be fulfilled within D time
periods; inequality (4.18) shows that a produced copy cannot be destroyed (i.e. for each
i, the number of produced copies of i cannot decrease with time).

30

Here, F, . seeksto minimize the deviations for each product and hence the maximum
deviation, whereas F_,, objective is to find the lowest possible total deviation. More

specifically we consider the following cases:

Case(1): If f(X)= x| foralli=12,...,n.Under this case, (4.13) takes the form:

Frex = MaX | x, —kr] (4.20)
1<i<n;1<k<D '
and (4.14) takesthe form:
D n
Fo = ZZ| Xix — K| (4.22)
k=1i=1

Case(2): If f,(x) = x* under which (4.18) takes the form:

s = _ 2
Frac = MaX 0 ki) 4.22)
and (4.19) takes the form:
D n
FEEDWACTEL D (4.23)
k=1i=1

For simplicity, we introduce the abbreviation that problemF?2 meansthe problem
defined by (4.2) with objective function (4.20) under the constraints (4.15), (4.16), (4.17),
(4.18) and (4.19); problemF?2 means the problem defined by (4.2) with objective

function (4.21) under the constraints (4.15), (4.16), (4.17), (4.18) and (4.19); etc. Wefind
the pseudo-polynomial algorithms separately for the problemF? ,F® , F in[35, 6]

su

The mixed-model maximum deviation and sum deviation JT sequencing problems are,
respectively, denoted by maximum deviation just-in-time (MDJIT) and sum deviation
just-in-time (SDJIT) problems (see [6, 11]). Similarly the abbreviated form

31

MMJIT refers to mixed-model Just-in-Time and MMJITSP refers to MMJIT sequencing
problem. The bottleneck objective functions seek to find smooth sequences at each stage
and as a result it precludes the possibility of relatively large deviations in every time
period. In contrast the min-sum objective functions are concerned for finding the smooth
seguences on the average which may result in relatively large deviations in certain time

periods
Pegged ORV Problem

Steiner and Yeomans [36] shows that the ORV problem under the pegging assumption
can be reduced to weighted PRV problem. Under the pegging assumption, parts of output
I a production levels which fed the level 1 are dedicated or pegged to the specific fina
product into which they will be assembled. This assumption decomposes the lower level
parts that will be assembled into different level 1 productsinto digoint sets. Asaresult, a

distinction is made between t, andt,, h=p for each part i at levell. With this

ilp 1
assumption the multi level min-sum JIT sequencing problem can be reduced to a
weighted single level problem (cf. [44], also see [13, 11]). Similarly with the same
assumption the weighted max-abs ORV problem can be formulated as (cf. [36], aso see

[11]).

Grgg :r’?alxliwpl |Xplk - krpl|’vvi| |Xplktilp - I(tilprpl l}

=max Wt X ke, }

p.ilk

p=L...n;i=1..n;k=1..D;l=1..,L.Nowlettingw =max{wt }the objective

1 I 1 p1 . il ilp

function reduced toGPSd :m‘lai({wpl|xplk - krp1|}. Now dropping out the superfluous

subscript 1 the problem is reduced to the weighted PRV problem.
pesg:max{w X _kr }-I,i =1,..nk=1..D
I’I’lihi\Gmax i‘v ik i J

32

) SOLUTION PROCEDURE FOR PRV PROBLEM
Cyclic Sequences

An instance of PRV-JIT problem is said to be standard if 0<d, <d, <...<d,, n>1and

the greatest common divisor of d,,...,d,,D is1,i.e, gcd(d,,...,d,, D) =1.

Let B bethe optimal solution to the mixed model Just-in-Time production system for the
standard demand vector (d,,d,,...,d,). Now if the concatenation of m copies of 3 for
any m>1is an optimal solution to the mixed model Just-in-Time production system with
demand vector (md;, mdz,...,md,) , then the solution 3 is called the cyclic solution with
acycle B and number of cycle m. The existence of cyclic sequences significantly

reduces the computational complexity. In fact the optimal sequence to original problem
can be obtained by first calculating the gcd (Greatest Common Divisor) m of

di,d>,...,d,then by obtaining the optimal sequence for the demand vector

d d d
2 ,..._" and finally by concatenating the sequence m times to construct an optimal
m m m

sequence for the original demand vector (di,d»,...,d,) . The existence of optimal cyclic
sequence for the problem F_,, with n=3, and for demand vector (600, 600, 100) is

presented in [24] for the first time. Consequently Kubiak [17] proves this concept
analytically. We sketch the proof here.

Theorem 5.1.1: [17] Letc =0,,..,05,0p5.,--.0,5, b€ a feasible sequence
for2d,,...,2d,. Then, a sequencet = i, ..., o lp.s -5 Mop » Where i occurs d, times

in the second half w,,,, ..., 1,5 Can be constructed such that F,, (1) < Fgm (o).

33

Theorem 5.1.2: [17] Let B be an optimal sequence for the problem F,, with the

demandsd,,d, ...,d ., Thenf™, m>1, isoptimal for the demandsmd ,md , ...,md

Proof: The theorem obviously holds form=1. Suppose, by the induction, that the
theorem holds for anym,1< m<k. We prove that it aso holds form=k +1. Consider an
optimal sequence o, ...,6 ., formd,,md,,...,md,. If m is even, then by Theorem

, this sequence can be transformed without cost increasing into a

SequUence py, -, 1 o.M, o - Hnp » WHere i occurs T‘ timesin each of the two halves

E, s md”. Therefore, by the inductive

2 2

of . Thus, each haf must be optimal for

assumption, each half is the concatenation of g copies of 3 and the theorem holds for

evenm=Kk+1. If m isodd, then consider sequence o for(m+1)d,,...,(m+1)d,. We
haveF,,,(Bo) = Fgn(B) + Fg (o) . By Theorem 5.1.1, fo can be transformed without

cost increasing into a sequence g, ... , Hmyo Where i occurs

' “(rml)—Dz ' “1+(m1)92 v

d
(m+1)3 times in each of the two halves of . Thus, each haf must be optimal

d d
for(m+1) *,..,(m+1) " . Therefore, by the inductive assumption, each half is the
2 2

(m+1)
2

concatenation of

copies of B, and

Fam(BS) = Fam(B) + Fam(0) = (M+1)Fyr (B) . Consequently, Fun(c) 2 mFy,(B) this

proves the theorem for odd m= k + 1. This completes the proof.

Clearly thisidea reduces computational requirements considerably when the greatest

common divisorm> 1.

The existence of cyclic solutions to the max-abs PRVP is established by Steiner
and Yeomans [36] for the first time both for weighted and un-weighted PRV Ps. This

34

concept is generalized by Dhamala et a. [12] to established that the optimal sequences to
the max-sgr PRVP are cyclic both for weighted and un-weighted cases. Now as

m=gcd(d,,...,d,) , then the demand requirement vector becomes
d =(d,,...,d,) = (mm,...,mm,) with d, =mm,vi=1...,n.
i - then n —mAandr-—i——mmzm-
LettlngAzém , Dz;d‘ = 0T A
Let each copy of the product be labded as (k-1)m +c, where

k=1,..mand c=1,..,m. Then for each fixed value of k, there will be a group of

m copies of product i intherange

[(k-Dm +1.(k-)m +m].
This range will be referred to asthe k™ tier of copies for product i (cf. [36]).

Lemmab5.1.1[12, 36] For athreshold value B <1, we havethelinear relations
E(i,km +c) = E(i,c)+ kA and L(i,km +c)= L(i,c) + kA.

Proof: We give the proof only for the case F?2 of Seiner and Yeomans [36] and the

proof for the case F > can beobtained similarly from [10].

B km _[km +c—B_lT|

0
o

_[(k-9m +c-B+m _11
r

35

:}r(k—l)m +c-B ., A—|
r

_[(k-1m +c—B_1—||+A
ri |

=E(i,(k-2)m +c)+ A
=E(i,c)+ KA.
Similarly, it can be proved that L(i,km +c) = L(i,c)+ kA

The Lemma 5.1.1 implies that only the early and late producing times for copies
c=1,...m inthefirst tier need to be calculated, as the produce times for all copiesin the

remaining tiers are linear function of thosein thefirst tier.

Lemma5.1.2 [36] For bottleneckB <1, thenfor all i =1,...,nandk =1,...,m, we have
(@) L(i,km)<kA
(b) (k-DA<E(,(k-Ym +1)
(©) [EG,(k-1)m +12)...L»i,km)] n[EG, km +2)..L(i,(k +Dm)] = B,

where [a...b] denotesthe set of al integers between a and b including both.

Now, we state the main result from [36]

36

Theorem 5.1.3 Letm = ged(d,...,d,) . Then the problem

(@) F.2 has an optimal sequence which consists of m repetitions of the optimal

sequence to the sub-problem where d = (my,...,m,).

(b) F.>, has an optimal sequence which consists of m repetitions of the optimal

sequence to the sub-problemwhere d = (m,...,m,).

Pr oof:

(@) Consider any optimal sequence s=(s,,...,S,) to the problem F2 with objective
value B* <1. Such a solution always exists as the optimal value for max-abs is strictly
less than one. If sitself is an m repetitions of the optimal sequence to the sub-problem
whered = (m;,...,m,), then there is nothing to prove further. Else, acopy (i, j) of product
i occupies a position in the interval [E(, j)...L(i,)]. Moreover, Lemma 5. 1.1 implies that
each interval [(k-1)A.kA-1] consists of m units of products and hence by Lemma
51.2(c) we can rearrange the products sub-sequence on each of the
interval[(k ~1)A..kA-1], for k=2,..,m as in the first interval [0..A-1] without
destroying the B* feasibility of the sequence.

(b) The proof directly follows from Theorem 5.1.3 and (a).

It is aso noted that the cyclic sequence analogously exists for the weighted problem with
appropriate weights (see [10, 36])

Earliest Due Date Algorithms

In this section we describe a graphic approach for solving the max-abs problem [35]. In
this procedure, decision version of the problem with certain target value for objective as a
threshold value, is reduced to a perfect matching problem in a bipartite graph. Then
Glover's modified EDD rule is used for the matching problem to decide whether the

37

decision problem has 'yes answer. Then an optimal is obtained by using the matching
problem and bisection search within the bounds for target value after determination of the
bounds. The procedure in detail is presented in [35]

Release Date/Due Date Decision Problem

For nproducts with demandsd, ;i =1,2,...,n; d. being positiveintegers ; consider the

problem F 2,

Let B be atarget value for the objective function; (i, j) denotethe j™copy of producti .
Then the earliest starting timeE(i, j) for(i, j) must be the unique integer satisfying
=B 1<k <) 7B

and latest starting time L(i, j) of (i,j) must be the unique

integer satisfying
J]-1+B ~1<L(i,j) < j-1+B . This provides the formulae:
r Fi
- Tj-B
EGL i) j ~ (5.2)
1]
I
o lj-1+Bl
andL(i,)= 62

For agiven B, we can determineE(i, j) andL(i, j) for alli andfor al jin O(D) time.

Consider the decision problem defined by (5.1): "Does there exist a nxD matrix (x;,)

with max |x, —kr,[<B satisfying all constraints of (4.15)-(4.19)?” This problem

1<i<n;1<k<D
can be viewed as the problem of determining whether there is a feasible schedule of D

unit-time jobs on a single machine with release dates and due dates for each job. So the

38

decision problem can be represented as a matching problem in a bipartite graph asin the
next subsection.

Perfect Matching Problem and EDD Rule

For a given target value Bas threshold value for decision problem, determine E(, j)
andL(i, j) for ali and for al j according to (5.1) and (5.2). Define the bipartite
graphG = (V, UV,,E) ;

WhereV, ={0,1,2,...,D-1}, V, ={(,j)]|i=12...n;j=1,2,...d} and (k(i, |)) € E if
and only if k €[E(, j), L@, j)] i.e if and only if (i,j) may start at timek. Then the
bipartite graph G isV,; — convex . Here finding a feasible sequence for problem (P5.1) is
analogous to finding a perfect matching in G such that lower numbered copies of a

product are matched to earlier starting times than higher numbered copies. Such a

matching is called order preserving.

Example: 5.2.1 For Demand vector (300, 600, 900), the schedule so constructed by the

1. . .
EDD agorithm with considering the upper bound 1_BIS presented in Table 1. This

consists of 300 cycles of the sequence 3-2-3-1-2-3.

Froduct LInit Due Date

1 4.0 |
1 [3.0 |
2 |6.0 |
1 2.0 |
2 4.0 |
3 |6.0 |

chedule List

(S5 4 T i

o of Cycle ;300

Table 1. Schedule generated by EDD for max-abs

39

5.2.3 EDD for min-sum-sgr

Inman and Bulfin [15] define the ideal position for copy (i, j) as

Let Z; denotes the time at which copy (i, j) actually produced. Then Inman and Bulfin

[15] consider the following problem:

Minimize idi(zi,-_lﬁ,- J (5.3)
1 -1
Subject to
Z,<Zy., i=l..m j=1..d-1 (5.4)
1<7,<D, i=1.,n j=1..d (5.5)
Zy # 4y, (i,) =@ j) (5.6)
Z. W, i=1,.,d (5.7)

Constraint (5.4) ensures that the production time of each copy of a product type i is a
strictly increasing function of each copy j. Constraint (5.5) guarantees that the
production time of any copy of any product liesin the internal [1...D]. Constraint (5.6) is
the only linking constraint and is not in the standard integer programming format and it
specifies that only one copy of any product type can be produced in each period. By
defining k; as the due-date of copy (i,j) where each copy of product is treated as a

40

separate job, Inman and Bulfin [15] observe that problem defined by (5.3) may be
interpreted as a single machine scheduling problem

jrp(a,j)zq 2 Epy +Tip) (5.8)
@i,))el
where p;;,, E;; and T, respectively represents the processing time, earliness and
tardiness of copy (i,j) and 1 ={(i,j)|i=1...n; j=1,..,d }. And in conclusion they
suggest the following.

Theorem 5.2.1 The optimal sequence for problem defined by (5.3) isto order the copies
following the EDD rule for the problem (5.8).

The EDD procedure can run in O(nD) time and the EDD rule aso gives an optimal

sequence for the sum of absolute deviations aswell (see[15, 18]).

Example: 5.2.2 For Demand vector (300, 600, 900), the schedule so constructed by the
F(j ~ 1)D1

EDD algorithm with considering the due date I —2 |:for the j"™ copy of product i of
di

L |
min-sum-sgr is presented in Table 2: Schedule generated by EDD for min-sum This
consists of 300 cycles of the sequence 3-2-1-3-2-3.

41

Froduct LInit Due Date
1 1 2.0
2 1 1.5
-- 2 4.6
3 1 1.0
2 3.0
-- 3 5.0
ISchedule List :
3-2.1-3-2_3-

o of Cycle ;300

Table 2: Schedule generated by EDD for min-sum
Nearest Integer Point Problem

This algorithm obtains the optimal solution for problem defined by (4.23) with finding
the 'nearest’ integer point M = (m;,...,m,) eW" to apoint X = (xg,....X,) €R" where

2m=2x=k.
i=1 i=1

Stepl: Calculate Y. x =K.
i=1

Step2: Find the nearest nonnegative integer m, to each co-ordinate Xi That is, find m,

1
suchthat [m —x | < >’ i=12,..,N.

Step3: Calculate k, =Y. m
i=1

Step4: i) If k -k, =0 stop. The nearest integer pointis M =(m;,m,...,m,).

i) If k—k,>0 goto Step 5.

42

i) If k—k,<0go to Step 6.

Step5: Find x with the smallest m —x, . Put m =m +1, Go to Step 3.

Step6: Find x withthe largest m — x;.

Put m =m —1. Goto Step 3.

Miltenburg [24] has proven that this algorithm provides an optimal solution to the
problem defined by (4.23) with neglecting the Constraints (4.16), (4.17), and (4.18) and
clearly this optimal solution also satisfy the Constraint (4.16) and (4.17) of problem
defined by (4.23). But unfortunately, solution given by this algorithm generally may- not
satisfy the order Constraint (4.18). Hence, this algorithm will not give, in genera, the
feasible solution for product rate variation Just-in-Time problems with sum-square

deviation objective function.

Example 5.3.1 Suppose there are n=4 products with the demands vector D = (2, 3, 5, 7)
to be produced on a mixed model JIT production system under sum-sgr objective. The
vector of demand ratio isr = (2/17, 3/17, 5/17.7/17). Now the schedule given by nearest
integer point is shown in Table 3. In this table there is no possibility of destroying any
products at any stage and the so obtained schedule is optimal to the problem defined by
(4.23).

43

ldue (58 w[0] #11] =13 A (2 MEE PruduckScmedule sunein U RFARRDEY | T ol dridlion
1 DAAFES D76 029122411760 0 |IC | +4 04773 14776° -
z 027529 00252, [0500241202252[0 0 1 i nonosz 2.05C13
& 035262 0,529, 0882351232200 1 1 +2 041522 127236
4 DARIED OPOS.. " ATEB4F T B4YOGID 1 1 |2 +4 046257 1.73702
o B L O M e et N O O 4 al EEE 21434
E 070568 4088, " FEAF 247080 1 1= |2 3 0.:ZEEFD 251517
7 082353 71.235... (2068321283238 1 |2 |3 +q nonss 2BIEaz
£ 0.94112 1.41° | 23623412 234121 |2 o 3 +2 [EEOSS IATELT
5 03382 15686, [2 6470637256560 2 |2 (4 r4 DETGZ 365467 =
11 17547 1 7Rd (PHAIRA 1RGN (2 |5 |4 +3 10331 IHEFLA
i 1.29412 182 [323d2840252 1 2 2 |3 4 0 ZEEFS 4 32026
2 TATTEE 27 38200018 2 M 18 | 3 04083 4.73256
11 152941 2294 [202250]5052042 2 4 |5 i 04E357 513723
14 1EFCR 2470 47738734y 2 2 |4 |6 + n41522 2h12L6
15 17647 2627 0 42 FEISAFELT 2 (32 M |6 +2 0.:8052 5.03z04
1k 1 dizh 2ty [ddlngelandedfl 4 £ |k R I Fe) 44554
17 20 20 5.0 r.a Hat I o 1 +4 n.c 5. 47060 -

Table 3: Schedule generated for demand vector D = (2, 3, 5, 7) by nearest integer point

Example 5.3.2 The schedule constructed by the nearest integer point corresponding to
the JIT scheduling problem with demand vector D = (2, 3, 5, 1) is presented in Table 4
which does not produce the optimal schedule as the product 4 must be destroyed at stage

Stage. | 0] | (] | 32 | x0T | wop]| me2p] M2] Prody ot Sched lesunt imfil[diky. | Total Vadistion
; nA1g. |C.27.. |045c 0030 o o |1 L -3 043322 041322 a
7 026, [CB4. |0G00. 0413108 W0 P ¢ -2 038017 070330

3 DEA. [Cel.. [1.383. 02721 W J ¢ -1 044628 123067

i 0.72. [1.00.. [1.818 0382 1 [|2 ¢ -2 024703 1 4876 i
5 050, [106. [2272.1045:. 11 [2 [4 05 24 20

B {69, o3 i oy 2 B8 e [0.5 24 76122

? 157, 11.80.. [3184. o636 1 2 3 [1 -4 024793 3 76033

5 1,45, |2.18.. [3.636.. 072101 |2 |+ |1 -3 044628 320661

g [1e3. lz45 [¢0a0 osig [z 12 Q4 [0 -1 pg3s;oir (39878 [=|

Table 4: Schedule generated for demand vector D = (2, 3, 5, 1) by nearest integer point

The solution to problem defined by (4.23) neglecting the Constraints (4.16), (4.17), (4.18)
obtained by algorithml is alevel or balanced schedule for the mixed-model single-level
JT assembly systems. However, the schedule may not be feasible. Therefore, the
following algorithm is proposed by Miltenburg [24] which ensures that a feasible

scheduleis found.

Sepl: Solve problem defined by (4.23) without Constraints (4.16), (4.17), (4.18) using
nearest integer point, and determine whether the schedule is feasible. The schedule will

befeasibleif m, -m, , >0 foral i and k. If thescheduleis feasible, stop. Thisis

the optimal schedule. Otherwise go to Step 2.

Sep2: For the infeasible schedule determined in Step 3 find the first (or next) stage |
where m, -m,_, <0.Set 0= number of products i, for whichm, -m, <O.

Reschedule stage I-0, 1-0+1, ...,| +1 by considering all possible sequences that began

with schedule for stage | -0 -1, and end with the schedule for stagel +1.
Step3: Repeat Step 2 for other stages where m, —m,,_; < 0. Then stop.

n!
(n—0-2)!

for each infeasibility. And so to determine the best one, i.e. the minimum variation

In genera there are possible sequences each of length 0 +2 to consider,

among all possible sequences the total enumeration is needed and consequently the time
complexity of this algorithm will not be polynomial in the input size of the instance.
Therefore, practicaly this algorithm works for those instances with small number of
input size (products with similar part requirements) and it will not perform efficiently for
those problems with large number of input size not for problems where products have
different part requirements. As a result to perform large sized problems efficiently,
Miltenburg [24] proposed other scheduling algorithms. Computationally, the following
algorithm is faster, and can be used for large problems obtaining a feasible schedule for
the mixed model JIT assembly systems.

Sepl: Solve problem defined by (4.23) with out Constraints (4.16), (4.17), (4.18), using
nearest integer point, and determine whether the schedule isfeasible. It is feasible

if mjx-m;.1> Ofor al i and k. If the schedule is feasible, stop. This is optimal

45

schedule. Otherwise go to step 2.

Sep2: For the infeasible schedule determined in Step 1, find the first (or next) Stage |
where m;-m;;.1< 0. Set 0 = number of product i, for which m;;-m;;2< 0, and
beginning at stage | - O use heuristic nearest integer point to schedule stages| -0,
-0+1,..., 1+ ; where >0. |+ s the first stage where the schedule
determined by the heuristic matches the schedule determined in Step 1.

Sep3: Repeat Step 2 for other stages where m; x-mj k.1 < 0. Then stop.
Heuristic nearest integer point
For a stage k, schedule the product i with the lowest X; k.1-kr;.

This is a myopic heuristic in that it does not consider the effect on future stages of its
current decision. Its great advantage is that it is one-pass agorithm. It does one
calculation for each product and then makes a selection. For each stage the computational

complexity is O(n) since n comparison should be made in each stage (period). This is
found to be satisfactory algorithm. Because of the myopic nature of this heuristic the
following two pass heuristic of complexity O(n®)for each stage was developed by

Miltenburg [24]
Stepl: Seth=1

Step2: Tentatively schedule product h to be produced in stage k. calcul ates the
variation for stage k and callsit V1.

Step3: Schedule the product i with lowest x; x-(k+1) r; for stage k+1. Notice that
thisis the decision rule of heuristic. Calculate the variation for stage
k+1 & cal it V2. Caculate Vi, = V1,+V 2.

46

Step4: Put h=h+1. If h>n go to Step 5, otherwise go to Step 2, where nisthe
number of products.

Step5: Schedule the product h with the lowest V..

It is observed that this heuristic bases its scheduling decision on two stages- the current
stage and the next stage. It approximates the variability over these two stages &

schedules so that this variability is as small as possible.

Example 5.3.3 For the demand vector (2000, 3000, 5000, 1000) the corresponding data
are presented in Table 5: Schedule generated for demand vector D = (2000, 3000, 5000,
1000) using heuristic, in which the sequence is the 1000 repetition of the cycle 3-2-1-3-4-
3-2-3-1-2-3.

Sagz by X[7] 7] w2 Al3l MLOT W ME2T | R3] [Procuc: Scoledu g sunding ijikl-<01 k21 Tolal Yariztion
1 L YU A rdr il AsA5s LULUET U U 1 u JF: LATZdL U dald
K M AAE540 2454510 8NS5 01818>0 1 1 Ml el 38017 nras=9
2 45450 RTAT8N 36254 0272731 1 1 1] e [ALE2R T230EF
1 0 TIFET] 090311 1818 036364 1 | 2] ta-g C.2e793 1.487E
3 09097901 3035412 27273 0204001 1 2z 1 -4 L0124 2.0

3 1 UEUAT 1 BAE AR S 2 AR5 1 1 3 1 #3 L.E4AM 24T
T 1 2T2TA1 ANET9=3 1813 NARFABA A i 3 | i [7ETH3 THAMA
i 1 4545521 2D GIEI6 0727271 2 |4 1 1 C.42E20 2.30042
El 1 BdEdEL 45400 UYUd] LEEIE Y L 1 1 =1 LAuL1y F.rhdE
10 18181682 727274 04040 0909092 3 |4 1 -2 C.41222 c 18182
1 20 20 a0 1.0 2 3 |5 1 -3 C.0 Li8q£2

Schedule List: 3-2-] -3-4-3-2-3-1-2-3

Mo of Cycle 1000

Table 5: Schedule generated for demand vector D = (2000, 3000, 5000, 1000) using

heuristic nearest integer point
Dynamic Programming Algorithm

In this section we discuss a dynamic programming (DP) agorithm to deal with JIT
production schedule for a mixed model facility. The procedure has considered the joint

problem with the two typical goals.

a7

1. USAGE GOAL: maintaining a constant rate of usage of all itemsin the facility.

2. LOADING GOAL: smoothing the work load on the final assembly process to reduce
the chance of production delays and stoppages.

It is to be noted that goal 1 is mainly focused in this dissertation and is more important

than goal 2. Indeed, goal 2 isaclassical one.

Let there aren products to be produced with demands d,, d,,...,d, in a certain time

horizon. The time to produce one unit of product i be denoted byt ; i =1,2,..,n and
n di
= . ri =
put D él d , D

The specified time horizon be inferred into D time units and during each time periodk ;

k=1.2,..,D; exactly one unit of a product should be produced. Let X, denote the total

production of product i over thefirst k periods; where 0< x, <d, forallk=1.2,...,D.

Then, ZXLK =k ; k=12..,D and x, is non negative integer for al i=12,..,n;

i=1

k=12,..,D.

Suppose that the schedule for the first k stages be determinedi.e. x, for i =1,2,...,n be

known. Then the usage variability at stage k is U, — Z‘(Xi’k —kr,)> and the loading

variability at stage k isL, — Ztiz(Xi,k —kr,)?.
Therefore the problem defined by (5.2) can be formulated as

D
Minimize ;(auuk +a L)

48

Subjected to the Constraints (4.15) - (4.19)

Wherea,,, o, are relative weights for the USAGE goa and LOADING god
respectively. So the problem defined by (5.2) isajoint problem.

Let f, denotethejoint variability at stagek . Then

f =y Z(Xi,k - kl’i)z +aLZti2(Xi,k -k,)?

n

= Z(OLU +a Lti 2)(Xi,k -k,)?

Li

=¥T?*x —k)*;WhereT? =a +o t2.
i ik i i U i

i=1

Therefore the objective function of the problem defined by (5.2) takes the form:

D n
Minimize > > T:?(x; —Kr)? : where callT, , the implied production time for periodi .

k=1i=1

Now we consider the DP procedure presented by Miltenburg et a. [27]

Let d =(dy,dz,...,d,) bethe product requirements vector. Define subsets in a schedule
as X = (X, %,...,X,) ; Where X is a non negative integer representing the production of
exactly x units of producti, x <d, for ali. Let & bethe i™ unit vector; with n

entries, having i™ entry 1 and remaining all zero. A subset X can be scheduled in the

first k stagesifk =| X |:Z>§,
i=1

Let f(X) bethe minimal total variation of any schedule where the products in X are

scheduled (produced) during the first k stages. Letg(X)= YT 2(x , —kr,)?. The
j=1

49

following (DP) recursion (R1) holdsfor f (X):

f(X)= (X, Xpseee %y) = Min{f (X —g)+ g(X)]i =1,...,

f(X)=f(X|% =0i=1,..,n)= £(00,.,0)=0.

Clearly f (X) = 0and g(X | % = 0;i = 1,..,n) = 0. The following theorem tells about the

computational efficiency of the above procedure [27]

Example 5.4.1 Demand vector (300, 600, 900) and Time T = (2, 5, 1) the schedule
generated by DP for min-sum is shown in Table 6: Schedule generated by dynamic

programming, with number of cycle 300.

n;x, —1> 0}

Mo of Cucle ;300

Table 6: Schedule generated by dynamic programming

50

Stlage | ol #3,.0] Index P-lndey Product Ech... - g -2 [E1GA] i) Exaand
1 T 0O i il o0 o] 2.tk [=R=N]5] E
1 01 0 1 2 o002 17 472 11472 E
1 0-0-1 -1 J S D EE A 1,119 1,129 [
7} 1-1-0 |3 fl 7 1-0N-0 |7 ANA HERHgeE & 11 3R7 F
¥ 1-n-1 |4 n 3 1-N-0 |7 &0 17 AR 1R ARG

Z b G o 1] 1 1 O-1-0 1147z 0.006 17.028

2 0-2-0 |6 i 2 O-1-0 (11472 45 589 AT.3E100...| E
2 o-1-1 |7 | 3 O-71-0 (117472 3.222 1469399, .

2 oo e 2 i oo 3139 12880 1028 E
2 U1 1|4 2 > [O N s e Foadd [pcioy| =
2 Uy 2 4 [B T BELE | 12 56k THBEY4UY. 1 E
J i i e | J 2 1-1-0 11262 2025 J9612 [z
J b s B ™] 2l 1-1-0 [11.3G2 1.25 12512

3 1-2-0013] 1 0-2-0 273610000, (25825 30611

= o-2-1 |14 B 3 0-2-0 (573610000, |23625 B3611

] 1-1-1 |15] Z 1-0-1 (16023 1.25 17.278

3 1-0-2 |16 2 2 1-0-1 |16023 1625 13278

3 1-1-71¢ !zl 1 U-1-1 |4.461 1.5 £ E
£ u 2 1 [1d] 2 U1 1 |4.461 2h 25 224811 =
2 0-1-2119 g L] 0-1-1 13061 1.25 .51 Iz
J 1-0-2 |20 10 1 0-0-2 11569499959, 26 25 41945 L
| 0-1-2 121 10 2 0-0-2 156949999 . M1.25 16945

i (nl nl ko 3 v Ly] 40 bl I I] 1o CoA0nan = B N AT OAS |
Schedule -

1-3-2-3-3-2-1

Theorem 5.4.1 [27]

The DP recursion solves the JIT scheduling problem in
n n

)
o n[J(d +D | timeand O n[[(d; +1) | space.
\ i) L ia)

Pr oof:

Suppose g(X) represents the contribution of each product to the objective function at
stage k. The minimization in recursion (R1) is done over all possible choices of the
product to be in this last position. Since x; can assume thevalues 0, 1, 2, .. di, the number

n

of sets, or states, in the DP recursion is H (d +1).
1=1

For each set X thereareat most n f(X —e) values, to each of which must be added

g(X), whose calculation required O(n) times. Therefore, the computational time is
n

)
o(n) foreachset, and Ol n[[(d; +1) |
)

i=1

for the entire problem. The value f(X) and the produce i, where the minimum occurs in

recursion (R1), must be saved for each set X, so that the optimal solution can be
n

constructed at the end. Therefore, the space requirements are Ol [[(d; +1) |

i=1

Notice that the total number of feasible schedulesis
D!

Thisis considerably larger than the number of statesin the DP recursion. Furthermore

51

Therefore the growth rate of the number of sets is polynomia in D although it is
exponential with n. this clearly shows that the procedure is effective for small n even
with large D. we see that the DP algorithms is efficient only for practical sized problems
with the analysis are proposed in [27].

Min-max Absolute-chain Algorithm

In [8] Dhamala, extended the formulation of single-level JIT sequencing problem under a
number of chain constraints. He purposed the following min-max-absolute-chain-

algorithm.

Given: d! fori=1,2, ,npand t=1, 2, ,m;

an upper bound B for min-max-absol ute-chain-problem;

chaing, chainy, ,chaing, ...oooe... , chaing,;

Update: number of demands n = ny;
demand ratesdi fori=1, 2,, n;
total demand D = d.

Step 1: Calculate windows [E(i ,), L(1,j)] forj=1, 2,, dandi=12,n
by Steiner/ Y eomans [35]

Step 2: Modify the duedate L (1, j).
if (i,]) = (”,j) thenL(i,) :=min{L(,]j), L({’,)}

Step 3: Schedule the jobs by EDD .

52

Output : B feasible for (n, D) if Lmax < 0.

Example: 5.5.1 The schedule for min-max absolute chain algorithm is shown Table 8,

for inputs of Figure 6: Input data for min-max absolute-chain algorithm.

Chain Id Chain String
KR
FSrsrs
(W
Chain Id: 3 Chain String:
Add New Save Edit Comhbine Chain

Figure 6: Input data for min-max absol ute-chain algorithm

Chain Id Joh Mame Earliest Due Date Late Due Date

0 b 2.0 3.0 -
0 ¥ an a0

0 % an a.0

0 y an a.0

0 % 130 13.0

0 y 130 13.0

1 ¢ an 3

1 S an 3 =
1 t an a.0

1 S an a.0

1 t 130 13.0

1 S 130 13.0

2 o an 3

2 & 2.0 2.0

2 & 13.0 13.0 =

Table 7; Calculation of window value

53

Chain Id Joh Mame Earliest Due Date Late Due Date
1] i an 3.0
1] iy an a0
1] i 8.0 a.0
1] iy 8.0 a.0
1] i 13.0 13.0
1] iy 13.0 13.0
1 r an a0
1 g an a0
1 r 2.0 a.0
1 5 2.0 a.0
1 r 13.0 13.0
1 5 13.0 13.0
2 C an a0
2 C 2.0 a.0
2 C 13.0 13.0

chedule ;
VISCHKYISCXYISC

Table 8: Output of min-max absolute chain algorithm

Cost Assignment Problem

Let Z; denotes the period in which the copy (i, j)is produced. Then the problem defined

by (4.14) can be restated as
n [z Zio-1 b
minimize Fon =Y Y f(0—kr)+ D fil—kr)+...+ Y f(d
i=1| |_ k=0 k=21 K=Zg
such that

Zi i1 2 4y +1, j=1,...,d;i=1...,n

Zy #Zup for (i, j) = ('), Z; 20

Note that Constraint (5.12) is the only linking constraint in problem defined by

54

]
-kr)|l (5.9)

]

(5.10)
(5.11)

(5.12)

(5.9), which aims specify that only copy of each product can be produced in each period.

The min-sum PRVP can be reduced to an assignment problem and hence can be solved
by Hungarian method which is presented in Figure 3: The Hungarian method. For the

corresponding assignment problem we consider the vertex sets
Vi={@j):i=1...,n j=1,...,d } and V, = {1,..., D}. We now have to calculate the
appropriate costs to specify its objective function. More specificaly, these costs must be
such that the assignment problem with these costs has an optimal solution, which is both

optimal and feasible for problem (5.9).

Let Cy, denotesthe cost of assigning (i, j) tothe k™ period and let

_{L if (i,]) isassigned tok
10, otherwise

Then the assignment problem is

n d D
minimize C =" >">" Ci X (5.13)
=]
n d
such thatzz X =L k=1,...,D (5.14)
i=1 =1
D
D%k =Li=1..,n j=1...4d (5.15)
k=1

Constraints on the assignment problem require that

a) For each (i,]) inV, thereisexactly one k in V;, i.e. each copy is produced exactly

once.

55

b) For each k in V,, thereis exactly one (i, j) in Vi, i.e. exactly one copy is produced

at atime.

But Constraints (5.10) on problem defined by (5.9) requires an additional property that

c) For any two copies (i, j) and (i, ') of aproduct i, with j < j',if (i,]) isproduced

a k and (i, J') isproduced a k' then k < K.

Example 5.6.1 For demand vector D = (300, 600, 900) the schedule generated by cost
assignment method is shown in Table 10: Schedule generated by cost assignment

problem, with the repetition of 300 cycles.

ProdJct Ao g 2 = 4 4]]
f 1 66T 0:33 0.0 1333 0367 1.0
2 1 0333 n:33 1.0 1.0 J 1.0
4 1.0 1.0 1.0 1333 0.333 1.0
3 1 0.0 1.0 1.0 1.0 P 1.0
2 1.0 1.0 0.0 10 d 1.0
3 1.0 1.0 1.0 1.0 n.J 1.0

Table9: Excessinventory or shortage costs calcul ated

Froduct 5o 1 i 3 4 g ki
1 1 11 0.333 0.0 0.0 0333 1.0
2 1 0.333 0.0 0.333 1.333 2333 3.333
2 2313 2333 1.333 0.333 0.0 0.333
3 1 0.0 0.0 1.0 2.0 2.0 4.0
2 20 1.0 0.0 0.0 1.0 2.0
3 4.0 3.0 20 1.0 0.0 0.0
chedule:
3:2.1-3:2-3
b of cycle :300

Table 10: Schedule generated by cost assignment problem

56

6 SOLUTION PROCEDURE FOR ORV PROBLEM

Here, we introduce the solution procedure for ORVP. The ORVP has been shown to be
strongly NP-hard by reducing the known NP-hard scheduling problem “Around the
shortest job to ORVP.

Toyota used the goal chasing methods GCM | and GCM 11, Monden [28]. The heuristics
GCM | and GCM 1l construct a sequence filling one position at a time from first slot to
the last one. They, designed with product level and sub-assembly level, consider the
variability at the sub-assembly level. GCM Il compared to GCM | represents a decrease
in computational time because the sum is formed only on the components of a given

product.

Miltenburg and Sinnamon [25] extend GCM to extended goal chasing method with more
levels. GCM is a specia case of their myopic polynomial heuristic. They also introduce

another polynomial heuristic to remedy the myopic problems of the previous heuristic.

In Section 5.1 it is shown that the optima sequence both for min-max and min-sum
PRVPs are cyclic. But Dhamala and Kubiak [11] conjecture that whether the optimal
sequence to ORVP are cyclic.

Toyota’s Goal Chasing Method (GCM)

Among the magjor car manufactures, Toyota has always been an innovator in the areas of
manufacturing and assembly. Toyota operates according to the JIT principle. Toyota’s
most important goal in the operation of its mixed-model production system is to keep the
rates of consumption of all parts constant. For sequencing mixed model multi level JIT
production system, Toyota developed and used an agorithm known as the GCM to

schedule automobile final assembly lines, (cf. [28] and also see [25]).

57

Goal chasing method (GCM) for a stage k (1< k < D) schedule the product pamong n;
products at with the lowest

n,

GCM . = Z[(Xi,z,k—l +1,,)—kxd,)/D 1? (6.2)
=T

To minimize this objective the GCM algorithm is described as:
Algorithm 6.1 [30] Goal Chasing Method
Stepl.Set X0 =0, S, = {1.2,...,n} and k=1

Sep 2.Select for k™ position in the sequence model p* that minimizes the measure

GCM e min JZZ[(Xi,Z,kl + ti,,z,p) —kx di,z)/ D] 2}?

pescs |15
Sep3.1f more copies of model p* remain to be sequenced set S=S ;. Ifall
Copies of model p* now already have been sequenced set
S=Sa-{p*}.
Sep 4. If S.=¢, then stop.
If S #¢,set Xy = X1 Ty o1 =1,

Set k= k+1and gotostep 2
Figure 7: The Goal Chasing Algorithm

But in practice it is difficult to apply the Goa Chasing Method to al parts as the total

number of parts required for a car is in around 20,000. Therefore, the parts are

58

represented only by their respective subassemblies. The number of subassemblies is
around 20 and Toyota gives the important subassemblies additional weights. The sub
assemblies include the following items (see [30]):

Engines, Bumpers,
Transmissions, steering assemblies,
Frames, Wheels,

Front axles, Doors,

Rear axles, Air conditioners.

Since the GCM is developed only for two levels, it considers only the variability at the
subassembly and the variability at final assembly is ignored. The GCM can also be
extended for al levels and is known as Extended Goal Chasing Method (EGCM) (see

[25]) in which, for example with L levels and for the objective
D L n

2
DI w, (>gjk ~d,k/D,) schedulethe product p at stage k with the lowest

k=1 I=1i=1

EGCM , = ZL: B ok (6.2)
Where 8, = Z [(Xil(k—l) +1,)_ kxd; /D,] (6.3)

And to minimize this objective, asimilar algorithm as that of 6.1 can be devel oped
Miltenburg and Sinnamon Heuristic Approach

Suppose that each product has significantly different sub-assembly, component and raw
materia requirements. Then the variation at all levels in the system must be considered
when selecting a product schedule. Beginning with stage 1, compose a schedule stage by
stage using the following decision rule at each stage k, taking the schedule already
determined for stages 1,2,3,...k — lasfixed.

59

The mathematical expression of thisdecision ruleis:

Schedule the product i with the lowest

L
H o =W (X1 = Krpy) + 0.5x Z:“zB plk

Where Bplk = ZVV, Xpeny T tip) — (yl(k—l) + op) %1y] ?
1=1

And

To see this consider a stagek, if product pis scheduled, the affected terms in the

objective function of P4.1 for stagek are:

2
= + LN +)_(+)X]
VP Vvl ZZ\M [(X“(k—l) tin y|(k_1) Ip rip
1=2i=1
where ¢, =>"t,. . Since the objective function is to be minimized. Let product Pbe
i=1

scheduled rather than product p’ifvp<vp,. Canceling the identica terms and

simplifying the expression will show that thisis equivalent to saying thatH ,, < H ok

Thisis a myopic heuristic in that it does not consider the effect of its current decision on
the variation in future cycles. That is, it may achieve low variability at stage k at the

expense of high variability at stagek + 1.

Miltenburg and Sinnamon [25] introduce another scheduling heuristic of complexity

60

O(nf(n2+...+n)zfor each stage. This is heuristic attempts to remedy the myopic

problem of previous heuristic.
For each cyclek:
Sepl: St =1

Sep 2: Tentatively schedule product | to be produced in stagek . Calculate the variation
for stage kand call itVL.

Sep 3: Find the product pwith the lowest H ,, ,, for stagek + 1. Calculate the variation

for stage k +1and call itV, . Compute V, =V, +V,

Sep 4: Incrementl(l =1 +1). If | >n;go to Sep 5, otherwise go to Sep 2. Where n,is

number of product.
Sep 5: Schedulethe product pwith the lowest V, in stagek .

Figure 8: Miltenburg and Sinnamon heuristic approach

Example 6.2.1: we consider only two levels-product and sub-assembly. Suppose n, =2
products with demands 600, 500 units. The product consists of n, =3different sub-

assemblies. The bills of material are shownin Figure 9.

61

Sub-assembly

Product

R OoORk
o NN

Figure 9: Input demand for ORVP

To develop a production schedule t,

Ip?

d, and r;, are calculated from these data and shown

in Table 11: Assembly and demand data for Example 6.2.1.

t;,— Number of parts for one unit of product |

Product Sub-assembly, | =2 Demand Ratio
| =1 i=1 2 3 Tota dy r

1 1 0 1 2 6 5455
2 2 4 0 6 5 4545

Demand

d, 16 20 6 42

Ratios

i 38 .4762 .1429

Table 11: Assembly and demand data for Example 6.2.1

The calculations for heuristic of Miltenburg and Sinnamon [25] for the first 13 stages are
shown in Table 12: Detail Schedule of Example 6.2.1. This procedureis repeated for 100
times and fina schedule is 1-2-1-2-1-2-1-2-1-2-1 with a total variation of
163.51164840000001590ver 13 cycles.

62

T . !

Stage
k

Product
p

1

2

\I] plk

-0.5455

-0.4545

0.0909999
99999999

97
-0.909

1.6364999
99999999
8

0.3635000

00000000
16

-1.182

-1.818

-2.7275

-1.2725

2.2729999

99999999
7

2.7270000
00000000
3

-3.8185

2 1Q1K

B plk
0.4131405

0.5951405

1.652562

0.01656199
999999999

0.53726449
99999999

3.08326449
99999994

3.338248

2.066248

4.6035125

7.51351250
0000001

9.05705800
0000001

8.149058

12.7028845

15.9768844
99999999

B p2k
1.4737914

2.12292259
99999994

5.8951656

3.34769040
0000001

0.05906239
999999996

21.9731615
99999997

5.8951656

3.34769040
0000001

0.05906239

999999996

21.9731615
99999997

5.8951656

3.34769040
0000001

305599555

21.9731615
99999997

H

pk

0.19139570

000000006
0.60696129
99999997

2.8565828

0.76484520
00000006

1.60696879
99999998

10.6230807
99999999

1./655828VU
00000002
0.14415479
999999947
-2.6979688

9.71408079
9999998

0.67458280
00000005

1.05315479

3.78896879
99999997

8.80508079
9999999

Product _ Variaion
Schedule

1.8869
319

3.3642
. 52400
00000

0.5963
. 26899
99999

99

5.4139
38400
00000

4.6625
749

11.496
74840

00000
01

12.761
9469

ot

Variation

1.8869
319

5.2511

84300

00000
1

5.8475

11200

00000
09

11.261

44960

00000
019

15.924

02450

00000
019

27.420
77290

00000
029

40.182
71980
00000

\V /v

63

0.41641719

1 -3.364 18.808992 5.8951656 61.795
8 09999997 21.612 40220
334769040 i 6824 00000
2 -3.636 18264992~ iiogoy 196215479 029
99999995
Rk - 86.689
4.9094999 0.05906239
1 99999999 24.8353805 999999996 4.87996879 24.894 84510
9999999 00000
g 5 44289 009
- 99999
5 3.0905000 28.4733804 21.9731615 7.89608079 08
00000000 99999998 99999997 9999998
5
1 -4.455 3250405 5.8951656 -1.5074172 122.45
35.761
) A0 15855
0, 4545 3241405 3'3353381‘0 2.87115479 00000 %033%0
99999993 1
0.05906239
1 -6.0005 410010005 goooo0ggs -5-9709688 41060 16351
11 - 06290 16484
5 3.9995000 = 135005 21.9731615 6.98708079 00000 00000
00000000 ' 99999997 0999998 05 0159
3
Table 12: Detail Schedule of Example 6.2.1
Dynamic Programming Algorithm
The weighted case of the objective G__, and G, can be formulated as:
w =maxw |x -y r | (6.2)
max i1k il ilk Ik il
D, L n
G;\jvm = ZZZ Wi (X — Vi ril)2 (6.2)

k=11=1 i=1

Subjected to the Constraints (4.3) — (4.8) where w, be a weighting factor which reflect

the relative importance of balancing the sequencefor part i atlevel | .

64

Now, in this section we summarized an implicit enumeration dynamic programming (DP)

procedure which can optimize the problem G | w - BY definition, we have

m n

ylk il Ztllp plk |Izzt|lp plk

- Z(tﬂp r|I Ztﬂp \X
p=lk i=1

igllp plk’

where

Sincew, >0, x,, 20 and r, >0 ,thenthedeviationfor part i of level | at stage k for

GW would be

|I|X1Ik YT 1= ||(28np plk) = itp X pik |
b2) e
where v;, =w,5,, is the measure of the weighted deviation in the usage of part i in

level | from the proportional usage per unit of product p. Let T = (y ip)nxnl be the matrix

L
where n=Zn, is the total number of different parts and products. Each row of
1=1

I corresponds to either a product or a part at the corresponding levels. The value v,

will be the element earing in the /1-1
appearng (Nm + i\th row and the p™ column of the matrix

m=1

. The maximum norm of a vector a=(a,..,a,) is defined to be

65

|a, = max{a,|}. Then the objective function G, can bewritten as G, = mkax||rxk||1,

1<i<n

where X k(: X g yeen anlk) Is the cumulative, level 1 production vector through the first k

stages. Let the demand vector at level 1 be d = (dll e d)z (q '""dm) and the states in

nl
a sequence be X =(x1,...,xn1) with |x| :lei i=1,.,m where X is the cumulative

production of product i, x; < d,. Let g =(0..,1,..,0) be the unit vector with

n.entries al of which are zero except for a single 1 in the i row. Let ¢(X) be the
minimum value of the maximum deviation for al parts and products over al partia

sequences which lead to state X. The norm X |, represents the maximum deviation of
actual production from desired one over al products and partsin state X at stagek = |X |

The following DP recursion holds for ¢(X) (cf.[22], seedso [13)]):

9(8) =(X : X=0)=0
o(X)= ¢(x, y 3 mln{max{¢(x e)”FX” bi=t, SLENSTS (6.3)

It can be observed that ¢(X)= 0and [[(X:X =d)], =0 for any state X.

Theorem 6.3.1 [22] The DP Recursion (6.3) solvesthe MMJTSP G in

ol nn[](d; +2)| Timeand

T
Ol nn i +1)1 Space.
\)

66

7 CONCLUSION

In this dissertation, the MMJITSP with respect to different mathematical models and
sequencing approaches developed till date have been anadyzed. The mathematical
formulations of the MMJITSP in scheduling theory are in the more challenging non-
integer programming form. It is because the linear case of the integer programming has
already been NP-hard. We implement some of the algorithms and heuristics both for
single-level and multi-level JIT sequencing problem to obtain the cyclic sequences by
which the computational complexity is significantly reduced. Our study shows that the
MMJITSP has real world like existing application as well asin operating system.

When selecting a schedule for a mixed-model multi-level production system, isto keep a
constant rate of usage for every part used by the system. In this dissertation we studied a
theoretical basis of doing this. A mathematical model is explored and analyzed. Two
scheduling heuristics of Miltenburg and Sinnamon are implemented and we give an
example of it (cf. Example 6.2.1). Another heuristic called GCM to sum-deviation ORVP
and dynamic programming approach both for sum-deviation and max-deviation ORVP
are studied and explored.

The different solution approaches such as nearest integer point, dynamic programming,
cost assignment and earliest due date agorithms for sum deviation PRVP are
implemented with optimal cyclic solutions for some particular instances. Likewise, min-
max absolute-chain and earliest due date algorithms are implemented to sequence
products under the min-max objective for a pre-specified threshold value. The modified
proof of the existence of cyclic solutions to min-max absolute problem is presented (cf.
Theorem 5.1.3)

Most of the PRVP Just-in-Time problem had been efficiently solved by pseudo-
polynomial algorithms depending on the input size of the demands; their complexity
statusis not yet clear. Even the basic min-max absolute deviation problem is Co-NP but it

67

is still open whether the problem is Co-NP-Complete or polynomial solvable.

ORVPs even with two levels are strongly NP-hard; however the developments of
approximation procedures like GCM and dynamic programming procedure provide an
interest to the researchers for the further improvements. But the problem, under the
assumption that the products require approximately the same number and mix of parts or
the pegging assumptions (single-level) is solvable.

The relation between optimal sequences of the min-sum and min-max problem will be
the foremost topic for the further investigation and to determine an agorithm which
simultaneously optimizes both min-sum and min-max objectives will be the most

interesting topic for the research.

Cyclic JIT sequences for PRVP are optimal and existence of such sequences considerably
reduces the computational effort. The question, whether cyclic sequences to ORVP are
optimal, is still open.

68

REFERENCES

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

H. Aigbdo, Some Structural Properties for the JIT Level Schedule Problem,
Production Planning and Control, 11, 4 (2000), 357-362.

J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Scheduling
Computer and Manufacturing Processes (Springer- Verlag, Berlin, 1996).

N. Boysen, M. Fliedner and A. Scholl, Sequencing mixed-model assembly lines,
Survey, classification and model critique. European Journal of Operational

Research, to appear, 2007.

H. Brasdl., Latin Rectangles in Scheduling Theory, Working paper, Otto-von-
Guericke-University, Magdeburg, Germany (1990).

H. Brasdl., Matrices in Shop Scheduling Problems, Working paper, Otto-von-
Guericke-University, Magdeburg, Germany (2005).

N. Brauner, and Y. Crama, The Maximum Deviation Just-In - Time Scheduling
Problem, Discrete Applied Mathematics, 134 (2004) , 25-50.

P. Brucker, Scheduling Algorithms, 2™ edition (Springer- Verlag, 1995).

T. N. Dhamala, Just-in-Time Sequencing Algorithms for Mixed-Model Production
Systems, The Nepali Mathematical Sciences Report, 24, 1 (2005), 25-34.

T. N. Dhamaa Shop Scheduling Solution-Spaces with Algebraic
Characterizations (Ph. D. Thesis Otto-von-Guericke University, Magdeburg,
Germany, 2002).

T. N. Dhamala and S. R. Khadka, Bottleneck Product Rate Variation Problem
with Absolute-Deviation Objective, Submitted to The Nepali Mathematical
Sciences Report, 27, 1-2 (2008).

T. N. Dhamala and W. Kubiak, A Brief Survey of Just-In-Time Sequencing for
Mixed-Model Systems, International Journal of Operations Research, 2(2005), 38-
47.

69

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

T. N. Dhamada, S. R. Khadka, M. H. Lee, Bottleneck Product Rate Variation
Problem for Mixed-Model Just-In-Time Production System (Working Paper
2008).

T. N. Dhamala, S. R. Khadka, M. H. Lee, On Sequencing Approaches for Mixed-
Model Just-In-Time Production Systems, AsiaPacific Journal of Operational
Research, 37(2008), 1-25.

R. E. Graham, E. L. Lawer, J. K. Lenstraand A. H. G. Rinnoy Kan, Optimization
and Approximation in Deterministic Sequencing and Scheduling: A Survey,
Annals of Discrete Mathematics, 5 (1979), 287-326.

R. R. Inman, and R. L. Bulfin, Sequencing JIT Mixed- Model Assembly Lines,
Management Science, 37(1991), 901-904.

M. Y. Kovalyov, W. Kubik and J.S. Yeomans, A Computational Analysis of
Balanced JIT Optiminization Algorithms, Journal of Information Systems and
Operationa Research- INFOR, 39 (Aug 2001), 299- 315.

W. Kubiak, Cyclic Just- in- Time Seqauence are Optimal, Journal of Globle
Optimization, 27 (2003a), 335- 347.

W. Kubiak, Minimizing Variation of Product Ratesin Just - In - Time Systems: A
Survey, European Journa of Operational Research, 66 (1993), 259-271.

W. Kubiak, Solution of the Liu-Layland Problem via Bottleneck JIT Sequencing,
Journal of Scheduling, 8 (2005), 295-302.

W. Kubiak and S. P. Sethi, A Note on Level Schedules for Mixed- Model Assembly
Lines in Just-In-Time Production Systems, Management Science, 37(1991),121-
122.

W. Kubiak and S. P. Sethi, Optinal Just - In- Time Schedules for flexible transfer
lines, The International Journal of Flexible Manufacturing Systems, 6 (1994),
137-154.

70

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

W. Kubiak, G. Steiner and J.S. Yeomans, Optimal Level Schedules for Mixed-
Model, Multi-Level Just- In - Time Assembly Systems, Annals of Operations
Research, 69 (1997) , 241- 259.

M. Milenkovic, Operating Systems. Tata McGraw-Hill (1997)

J. Miltenburg, Level Schedules for Mixed - Model Assembly Lines in Just - In —
Time Production Systems, Management Science, 35 (1989), 192- 207.

J. Miltenburg and G. Sinnamon, Scheduling Mixed - Model Multi-Level Just-In -
Time Production Systems, International Journal of Production Research, 27
(1989) , 1487- 1509.

J. Miltenburg and T. Goldstein, Developing Production Schedules which Balance
Part Usage and Smooth Production Loads for Just-In-Time Production Systems,
Nava Research Logistics, 38(1991), 893-910.

J. Miltenburg, G. Steiner and S. Yeomans, A Dynamic Programming Algorithm
For Screduling Mixed - Model, Just - In- Time Production Systems, Mathematical
and ComputerM odeling,13(1990), 57-66.

Y. Monden, Toyota Production Systems (Industrial Engineering and M anagement
Press, Norcross, GA 1983).

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity (Prentice-Hall of India Pvt. Ltd. 2003).

M. Pinedo and X. Chao, Operations Scheduling with Application in
Manufacturing and Services (Irwin, McGraw-Hill, 1999).

K.H. Rosen, Discrete Mathematics and its Applications (TATA MCGRAW Hill
Edition, (2003), New Delhi).

S. J. Russel and P. Norving, Artificia Intelligence: A Modern Approach (Prentice
Hall, 1995).

Stage-by-sage business devel opment, www.1000ventures.com.

71

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

G. Steiner, and S. Yeomans, A inear Time Algorithm fo Maximum Matching in
Convex, Bipartite Graphs, Computers Math. Applic., 31(1996), 91-96.

G. Steiner and S. Yeomans, Level Schedules for Mixed - Model Just - In - Time
Processes, Manage. Science., 39 (1993), 728-735.

G. Steiner and J. S. Yeomans, Optimal Level Schedules in Mixed - Model , Multi-
Level JIT Assembly Systems with Pegging, Europen Journal of Operationa
Research, 95 (1996) , 38-52.

T. Suganuma and T. Ogasawara, Overview of the IBM Java Just-in-Time
compiler, IBM System Journal, 39, 1 (2000).

B. Sussman., Scheduling Problems with Interval Disunctions, Operational
Research, 16, (1972), 165-178.

V.S. Tanaev., Y.N.,Sotskov and V.A. Strusevich, Scheduling Theory Multi-Stage
System (Kluwer Academic Publishers, Dordrecht, Boston, London, 1994)

A. Tanenbaum, Modern Operating Systems. Prentice-Hall of India Pvt. Ltd.
(2004).

ToyotaMotor Corporation Global Site, www.toyota.co.jp.

WWW.assi gnmentproblem.com.

Wikipedia, the Free Encyclopedia (http://en.wikipedia.org 2008).

S. Yeomans, Optimal Level Schedules for Mixed-Model Just-in-Time Assembly
Systems (Ph. D. Thesis, McMaster University, Hamilton, Ontario, 1997).

72

