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1 INTRODUCTION

Mixed model just-in-time production system has been developed with a goal of reducing

cost of diversified small-lot instead large-lot that minimizes large inventories and large

shortages. The MMJIT production system minimizes both the earliness and the tardiness

penalties that respond to the customer demand for a variety of products without incurring

large inventory and shortages. This requires designing and controlling the system in such

a way that the only required products are produced in the necessary quantity when

needed. The main aim of the system is to obtain a sequence of a number of products that

minimizes deviation throughout the time, between the actual and the ideal (desired)

production. This maintains the final assembly line keeping rate of parts usage as constant

as possible. The sequence at the final level is crucial and affects the entire supply chain as

all other levels are also inherently fixed due to pull nature of the system. The problem

that deals with the final level only is called the single level problem whereas dealing with

more than one level is multilevel problem. This is called leveling or balancing the

schedule.

Mixed model assembly lines with negligible changeover costs between the products

allow manufacturing of different models of a common base product in evenly distributed

sequences on the same line; Boysen et al. [3]. Monden [28] creates the first interest in JIT

sequencing problem of single level mixed model assembly line. He describes a local

search heuristic "Goal Chasing Method" to deal with the problem. Miltenburg [24]

considers the problem of determining the sequence for producing different products on

the line that keeps a constant rate of usage of every part used by the line. In other words,

the quantity of each part used by the mixed model assembly line per unit of time should

be kept as constant as possible. This allows very little variability in the usage of each part

from one time horizon to the other. Miltenburg and Sinnamon [25] and Miltenburg and

Goldstein [26] extend the formulation to multi-level system. Kubiak [18] gave a more

specific distinction between these problems and referred single-level problem as the

Product Rate Variation (PRV) problem and the multi-level problem as the Output Rate
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Variation (ORV) problem. He districted PRV problem as total deviation PRV problem

and maximum deviation PRV problem. Such problem represent the problem considered

by Steiner and Yeomans [35]. The pull system where the final assembly line defines the

scheduling and requests for demand down the level is represented by ORV problem. The

problems consider by Miltenburg and Sinnamon [25] and Miltenburg and Goldstein [26]

are categorized as ORV problem.

Miltenburg [24] and Miltenburg and Sinnamon [25] observe the existence of the cyclic

sequences for the total PRV problem. Kubiak [21] proves that optimal JIT sequences are

cyclic. Dhamala and Kubiak [11] conjecture that cyclic sequences in the ORV are

optimal, too. This provided an important theoretical support to the usual for JIT systems

practice of repeating relatively short sequence to build a sequence for a longer time

horizon [24][28]. It also has important consequences on the computational time

complexity of all existing algorithms for PRV [17]. Steiner and Yeoman [35], following

the optimization algorithm for the total deviation given in Kubiak and Sethi [18] give a

graph theoretic optimization algorithm for minimizing maximum deviation JIT single-

level sequencing problem. They also give an algorithm for minimizing multi-level

maximum deviation JIT assembly systems under the pegging assumption, Steiner and

Yeoman [36]. If outputs at production levels which feed the final assembly level are

dedicated to the final product into which they will be assembled, then the problem with

pegging is equivalent to a weighted single level problem which can then be minimized by

modified algorithm for un-weighted single-level problem. Kovalov et al [16] perform a

large–scale computational study to examine various optimization algorithms formulating

several open questions of previous time as conjectures and answer them by means of

extensive computational testing.

The upper and lower bounds on the threshold value of the un-weighted max-abs problem

are established in Steiner and Yeoman [35], for the first time. Consequently they

established the bounds for the same problem with the weighted case [36]. Dhamala et al.

[12] established the lower and upper bounds on the threshold value both for weighted and

un-weighted max-sqr problems. Dhamala and Khadka [10] and Dhamala et al. [13]
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established that there exists no feasible solution for any instance of the max-absolute

problem when the deviation is less than 1/3 and no feasible solutions for any instance of

the max-sqr problem when the deviation is less than 1/9 (cf. [12]).

This dissertation has been divided in 7 chapters. The brief descriptions of these are as

follows: Chapter 2 reviews some fundamental definitions relating to the subsequent study

of this work. In Chapter 3 a synopsis introduction of the scheduling problem is given. In

Chapter 4, the mathematical formulation of JIT production system is given with

multilevel and single level formulation. Finally the pegged ORVP problem which can be

reduced to weighted single level problem is formulated in Section 4.3.

Chapter 5 is the main focus of this thesis in which the solution procedure both for min-

sum and min-max PRVP are explored. Since the cyclic solutions are optimal for both

problems with corresponding program, the optimal cyclic sequences for both problems

are presented for some instances. The implementation issue of EDD methods for optimal

solutions for min-max problem is the contents of Section 5.2. The nearest integer point

method to find a solution for min-sum problem with an example is presented in Section

under different algorithms and heuristics established in Miltenburg [24]. In Section

cost assignment approaches to the solution for min-sum PRVP is given. As the cost

assignment is fruitful only for the practical sized problem, the dynamic programming

approach to the min-sum is the content of Section 5.5. In Chapter 6, the Toyota’s Goal

Chasing method for sum-deviation ORVP is explored under parts usage goal. As the min-

sum ORVP is NP-hard, the heuristic approaches purposed by Miltenburg and Sinnamon

[25] is analyzed in detail with implementation and an example is presented in which

cyclic solution is obtained. Chapter 7 contains the conclusion, further suggestions and

recommendations.

The main work of this dissertation is to study the different cyclic sequencing procedures

to PRVP with their implementation issues. The heuristic to solve ORVP approaches are

explored. Moreover examples are presented for some solution approaches.
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2 FUNDAMENTAL BACKGROUND

Functions

Given two sets A and B, a function f is a binary relation on A  B such that for all a A,

there exists precisely one b B such that (a, b) f. the set A is called the domain of f,

and the set B is called the co-domain of f. We sometimes write f : A B; and if (a, b)

f, we writeb  f (a) , since b is uniquely determined by the choice of a.

A function f whose values are in the set of real numbers R is called a real-valued

function and is non-negative if f  0 . Since we shall be mostly interested in real valued

function of real variable throughout this thesis, we write only “function” to mean the real-

valued function of real variable unless otherwise specified. The function f is said to be

monotonically increasing if f x  f ywhenever x  y . Similarly, f is called

monotonically decreasing if f x  f y whenever x  y .

The function f defined over a set AR is said to take on its maximum and minimum

over A at the points x*and x' respectively if f x'  f x  f x * for all x A .

The function

or (ii) holds:

f is said to be unimodal if for some value a (the mode) such that either (i)

(i) f is monotonically increasing for x  a and monotonically decreasing for x  a . In

that case, the maximum value of f is f aand there are no other local maxima.

(ii) f is monotonically decreasing for x  a and monotonically increasing for x  a . In

that case, the minimum value of f is f aand there are no other local minima.

A function f is said to be  convex over a convex  set AR if for any two points

x, y  A and for all , 0    1 , f x  1 y f x  1   f y .

The floor function (it is often also called greatest integer function) denoted by
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x assigns to the real number x the largest integer that is less than or equal to x .

The ceiling function denoted by x

is greater than or equal to x

assigns to the real number x the smallest integer that

Graph Theoretical Denotations

A graph as a mathematical structure is a pair G  V , E  where V  v1 ,...,vn is a non-

empty finite set of vertices, and E has as elements subsets of V of cardinality two called

edges. An edge between two vertices vi and v j for i  j is denoted by[vi ,v j ] . A

directed graph (or diagraph) G is a pair, (V , E) where V is called a finite set of vertices

and E is a is a set of ordered pairs of vertices called arcs; that is, AV V .. In an

undirected graph G  (V , E) , the edge set E consists of unordered pairs of vertices, rather

than ordered pairs. That is, an edge is a set {u, v}, where u, v

unqualified term graph usually means undirected graph.

V and u  v. The

A path of length k from u to a vertex u in a graph G  (V , E) , where{u, u} E , is a

sequence {v0 , v1 ,....,vk }of vertices such thatu  v0 , u  vk and (vi1 , vi )E

for i 1,2,...k . The length of the path is the number of edges in the path.

Let G  (V , E) be a graph in which the vertex set V can be partitioned into two disjoint

sets, V1 andV2 , and each edge in E has one vertex in V1 and another inV2 . In such a case

G is called a bipartite graph and we denote byG  (V1 V2 , E) . If a graph has no such a

partition, we say it non-bipartite. A bipartite graph G  (V1 V2 , E) is said to be

complete if each vertex of V1 is connected to each vertex ofV2 . The bipartite graph

G  V ∪U , E is V-convex if there is an ordering on V such that [vi ,uk ]E and

[v j ,uk ]E with vi ,v j V , vi  v j implies that [vp ,uk ]E for vi  vp  v j (see [34]).
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The graph G  (V , E) together with a function W : E  R  is called the edge weighted

graph and together with a function W :V  R  is called vertex weighted graph, where

R  the set of all nonnegative real numbers is.

Algorithms and Heuristics

A computational problem is a mathematical object representing a general question that

might want to solve and is independent of its specific input. A problem with a specific set

of inputs is called an instance. Hence, a computational problem is a function  :Z ,

where Z is the set of all problems instances I and  is the set of solutions. An algorithm

is a set of precise instructions for performing a computation or solving an optimization

problem [31].

In other words, an algorithm is any well-defined computation procedure that takes some

value, or set of values, as input and produces some value, or set of values, as output. An

algorithm is thus a sequence of computational steps that transform the input into the

output. To represent algorithms we use English language however for the simplicity we

use pseudo code that can represent an algorithms in clear manner like in English language

and gives the implementation view as in the programming languages.

There are several properties that algorithms generally share. They are useful to keep in

mind when algorithms are described. These properties are:

1. Input/output: An algorithm has input or set of inputs values from the set that has

possible input values and for each inputs an algorithm produces the solution of the

problem that are in the set of output values.

2. Definiteness: Each step must be clear and unambiguous.

3. Correctness: An algorithm produced output must be correct for each set of input

values.

4. Finiteness: An algorithm must terminate after finite amount of time for every

possible set of values.
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5. Effectiveness: Each step must be executable in finite time.

6. Generality: The devised algorithm must be capable of solving the problem of

similar kind for all possible inputs.

Heuristic is the art and science of discovery and invention. The word comes from the

Greek root as “eureka”, means “to find”. A heuristic for a given problem is a way of

direction towards a solution (see [32]). It is different from an algorithm in that it merely

serves as a rule of thumb or guideline, as opposed to an invariant procedure. Heuristics

may not achieve the desired outcome, but can be extremely valuable to problem-solving

(see [43]). Good heuristics can dramatically reduce the time required to solve a problem

by eliminating the need to consider unlikely possibilities or irrelevant states.

The mathematician Gege Polya popularized heuristics in the twentieth century in his

book How to solve it [43]. He was motivated by his experiences in mathematics

education where students are taught mathematical proofs, without learning techniques to

formulate proofs themselves. How to solve it is a collection of ideas about heuristics that

he taught to math students: ways of looking at problem and casting about for solutions

that often give results very quickly (see [43]).

Complexity of Algorithms

When an algorithm is designed it must be analyzed for its efficiency. The efficiency of an

algorithm is measured in terms of complexity. The complexity of algorithms is

mentioned in terms of resource needed by the algorithm. We generally consider two

kinds of resources used by an algorithm time and space. The measure of time required by

an algorithm to run is given by time complexity and the measure of space (compute

memory) required by an algorithm is given by space complexity. Here in this dissertation

we generally discuss time complexity of an algorithm that is given by the number of

operations needed by an algorithm for given set of inputs. Since actual time required may

vary from computers to computers we use number of operations required to measure the

time complexity.
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Let f and g be functions from the set of real numbers to the set of real numbers. A

function f (x)  O(g (x)) if and only if there exists two constants c and n0 such that for

all n  n0 , 0  f (n)  c  g(n)

Figure 1:  Graphical notation of f (n) = O (g (n))

A polynomial time (polynomial) algorithm is the one whose time complexity

functionsT (k )O(h(k )) , where h is some polynomial and k is the input length of an

instance I. If time complexity function cannot be bounded by the polynomial function, it

is called exponential time algorithm. A computational problem  is called polynomial

solvable if there is a polynomial time algorithm solving it. A problem  is called

pseudo-polynomial solvable if the time complexity function T (k) is polynomial with

respect to I and max(I ) , where I and max(I ) respectively denotes the input length and

the largest number appearing in the instance I  . Hence, the notion of pseudo-

polynomial solvable depends on the magnitude of the largest input data involved.

Given any problem instance I Z of an optimization problem to minimize a certain sum

or bottleneck objective function with respect to constraint set X, the optimal solution is

given by  (x0 )  min (x) | x X, therefore(I )   (x0 ) . However, the range  must

contain elements to represent “unbounded” and “infeasibility”, too, in general. A problem

 is called decision problem if   yes, no. Each optimization problem has its decision

counterpart which is associated by defining  an additional threshold value y for the
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corresponding objective function . For example, given an additional threshold value y

for the objective function

that (x)  y ?

we ask: does there is a feasible solution x X such

In complexity classes, the set of all decision problems which are polynomial solvable is

denoted by P. The class of all decision problems whose all yes instances can be checked

for validity in polynomial time, given some additional information called certificate, is

denoted by NP (Non-deterministic Polynomial Time).

Similarly, the class of all problems that are the complements of the problems in NP, i. e.

for every no instance I there exists a concise certificate for I, which can be checked for

validity in polynomial time, is denoted by Co-NP.

We say that a decision problem  2 reduces to another decision problem1 , denoted

by 2  1 , if there exists a polynomial time transformation function h :Z2Z1 such

that  2 (I )  yes for I  Z2 if and only if 1 (h(I ))  yes for h(I )Z1. A decision

problem 1 is called NP-complete if 1  NP and for any other known decision

problem  2  NP we have 2  1 . Since it follows from  2  1 that the problem

1 is at least as hard as the problem,  2 it is sufficient to consider any known NP-

complete problem  2 in the complexity hierarchy. The “problem reducibility” relation

is a transitive relation on the class of decision problems. A decision problem in NP is

called NP-complete in strong sense if it can be solved pseudo-polynomial only if    P =

NP, which is one of the major open problems in modern mathematics. An optimization

problem is called NP-hard if the corresponding decision problem is NP-complete.

Dynamic Programming

Dynamic programming solves problems by combining the solutions to sub-problems.

This is a modification of the divide-and-conquers approach. Divide-and-conquer

algorithms partition the problem into independent sub-problems, solve the sub-
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problem recursively, and then combine their solutions to solve the original problem. In

contrast, dynamic programming is application when the sub-problems are not

independent, that is, when sub-problems share sub-sub-problems.

A dynamic programming algorithm solves every sub-problem just once and then saves its

answer in a table, there by avoiding the work of re-computing the answer every time the

sub-problem is encountered.

Dynamic programming is typically applied to optimization problems. In such problems

there can be many possible solutions. Each solution has a value, and we wish to find a

solution with the optimal (minimum or maximum) value. We call such a solution an

optimal solution to the problem, as opposed to the optimal solution, since there may be

several solutions that achieve the optimal value.

The development of a dynamic programming algorithm can be broken into a sequence of

four steps.

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution in a bottom-up fashion.

4. Construct an optimal solution from computed information.

Steps 1-3 form the basis of a dynamic programming solution to a problem. Step 4 can be

omitted if only the value of an optimal solution is required. When we do perform Step 4,

we sometimes maintain additional information during the computation in Step 3 to ease

the construction of an optimal solution.

Combinatorial Optimization

Some scheduling problem can be solved efficiently by reducing them to well known

combinatorial optimization problems like linear programs, maximum flow problem
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or transportation problem. Others can be solved by using standard techniques like

dynamic programming and branch and bound methods. Here we give a brief sketch of

these combinatorial optimization problem and also discuss some of the methods.

Integer Programming

A linear programming refers to an optimization problem in which the objective and the

constraints are linear in the variables to be determined. An LP can be expressed as

follows:

Minimize c1 x1  c2 x2  ...  cn xn . (2.1)

Subjected to:

a11 x1 a12 x2 ...  a1n xn b1

a21 x1  a22 x2  ...  a2n xn  b2

.

.

.

am1 x1  am2 x2  ...  amn xn  bm

(2.2)

x j  0 for j 1,2,...n

The objective is to minimize the costs. The c1 ,c2 ,...,cn vector is referred to as the cost

vector. The variables x1 , x2 ,...xn have to be determined so that the objective function

c1 x1  c2 x2  ...  cn xn is minimized. The quantities a1 j , a2 j ,...amj defines the activity

vector j. The b1 ,b2 ,...bm are referred to as the resource.

A nonlinear program (NLP) is a generalization of a linear program that allows the

objective function and/or the constraints to be nonlinear in x1 , x2 ,...xn . An integer



12

program (IP) is a linear program with the additional requirements that the variables

x1 , x2 ,...xn have to be integers.

The linear program (LP) is solvable problem and integer program is NP-hard problem.

Bipartite Matching Problem

A matching M of a graph G  V , E is a subset of the edges with the property that no two

edges of M share the same node. Given a graph G  V , E , the matching problem is to

V 
find a maximum matching M of G (see [29]). When the cardinality of a matching is 

2
 ,

 


the largest possible in a graph with V

perfect and the problem of finding a

matching problem (see [29]).

nodes, we say that the matching is complete, or

perfect matching M of G is called the perfect

Let us consider a graph G  V , E together with a fixed matching M of G. Edges in M

are called a matched edges; the other edges are free. If [u,v] is a matched edge, then u

and v are mate to each other. Nodes that are not incident upon any matched edges are

called exposed; the remaining nodes are matched.

Now, consider a bipartite graph G  V ∪U , E  with n  V  U  m . For any subset X

of vertices, denote by N X  the neighborhood of X, i.e. the set of all vertices adjacent to

at least one vertex in X. Clearly, n is an upper bound for the perfect matching in G. The

following theorem due to Hall [1935] (see [6, 7]) gives necessary and sufficient

conditions for the existence of a matching with cardinality n.

Theorem 2.6.2.1 ([6, 7]) Let G  V ∪U , Ebe a bipartite graph with n  V  U  m .

Then there exists in G a matching with cardinality n if and only if
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NX   X for all X V .

A maximum matching M in a bipartite graph

OminV , U . E time (see [29]).

Algorithm 2.6.2.1 The Bipartite Algorithm

G  V ∪U , Ecan be calculated in

Input: A bipartite graph B  (V1 V2 , E) ,

Output: The maximum matching of B, represented by the array mate.

begin

for all vV1 V2 do mate[v]=0; (comment: initialize)

stage: begin

for all vV1 do exposed[v]=0;

A   ; (comment: begin construction of the auxiliary graph (V , A) )

for all [v,u] E do

if mate[u]=0 then exposed[v]=u else

if mate[u]  v

Q   ;

then A  A (v, mate[u]);

for all vV1 do if mate[v] then Q  Q{v}, label[v]=0;

while Q   do

begin

let v be a node in Q;

remove v from Q;
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if exposed[v]  0 then argument(v), go to stage;

else

for all unlabeled v' such that (v,v') A do

label[v']=v, Q  Q{v'};

end

end

end

procedure augment(v)

if label[v]=0 then mate[v]=exposed[v],

mate[exposed[v]]=v;

else begin

exposed[label[v]]=mate[v];

mate[v]=exposed[v];

mate[exposed[v]]=v;

augment(label[v])

end

Figure 2: The Bipartite Matching Algorithm

Assignment Problem

Consider the complete bipartite graph, G  (V1 V2 ,V1 V2 ) . Assume w.l.o.g that

n  V1  V2 m . Associated with each arc (i, j) there is a real number cij . An

assignment is given by a one-to-one mapping :V1 V2

find an assignment such that

. The assignment problem is to
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ij i j

 ci (i)

iV1

is minimized.

Assume that V1 i,..., n and V2  1,..., m. Then the assignment problem has the

following linear programming formulation with 0-1- variable xij :

minimize 
i1

j1

cijxij

Such that:

 xij
j1

1 i= 1, …., n

 xij 1 j=1, ……, m
i1

xij0,1 i = 1, …., n; j = 1, ……., m

We describe the Hungarian method [29], and use the following terminology and

notations:

A label of vertices in a graph G  V , Ais an array with V entries representing the

predecessor vertex of all vertices. The label of a vertex vV is denoted by label[v] . To

represent the current matching in the complete bipartite graph G  V ∪U , Ewe use the

array mate having 2n entries where mate[w] for any vertex wV ∪U denotes the vertex

w' which is the mate of w . For any vV exposed [v] is a node of U that is exposed and is

adjacent to v ; if no such node exists, exposed[v]  0 . Now, for j  1,..., n , slack [u j ] is the

minimum of c     over all labeled vertices vi of V and nhbor[u j ] is the

particular   labeled vertex vi with which slack[v j ] is achieved.

n

m

mn
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Algorithm 2.6.3.1 [29] The Hungarian method

Input: An n  n, matrix [cij] of nonnegative integers.

Output: An optimal complete matching (given in terms of the array mate) of the

complete bipartite graph G  V ∪U , E  with V  U  n under the

cost cij .

begin

for all viV do mate[vi ] : 0,i  0 ;

for all u jU do mate [uj] :=0,  j : min {cij};
i

(comment : initialize)

for i := 1,…,n do ( comment : repeat for n stages)

begin

A := Ø;

for all v  V do exposed[v] := 0;

for all u  U do exposed[u] :=  ;

for all vi, ui with vi  V, uj  U , and i + j = cij do

if mate[uj] = 0 then exposed [vi] := uj

else A:= A  {(vi, mate[uj])};

(comment : construct the auxiliary graph)

Q := Ø;

for all viV do

if mate[vi]=0 then

begin
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if exposed[vi]  0 then augment (vi ), go to endstage;

Q := Q  {vi};

label[vi] := 0;

for all uk U do

:= vi;

if 0<cik -  i - k <slack[uk] then slake[uk] := cik -  i - k , nhbor[uk]

end

search: while Q 


begin

Ø do

let vi be any node in Q;

remove vi from Q;

for all unlabeled vj  V with (vi,v)  A do

begin

label[vj] := vi;

Q := Q  {vj};

:= vj;

if exposed[vj]  0 then augment (vj ), go to endstage;

for all uk  U do

if 0<cjk -  j - k <slack[uk] then slake[uk] := cjk -  j - k , nhbor[uk]

end;

end

modify;

go to search
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endstage: end

end

procedure modify

(comment : it calculate
continue the search)

1 , updates the  ' s and  's , and activates new  nodes to

begin

 :=
1

min {slake[u]>0};
1 2 uU

for all vi  V do

if vi is labeled then  i :=  i +1 else  i :=  i -1 ;

for all uj  U do

if slack [uj] =0 then  j :=  j - 1 else  j :=  j + 1 ;

for all uU with slack[u]>0 do

begin

slack[u]:=slack[u]-21 ;

if slack[u]=0 then (comment: new admissible edge)

mate[u])};

if mate[u]=0 then exposed[nhbor[u]]:=, augment(nhbor[u]), go to endstage;

else (comment: mate[u]  0)

label[mate[u]]:=nhbor[u], Q:=Q {mate[u]}, A:=A {(nhbor[u],

end

end

procedure argument (v)
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if label [v] =0 then mate[v]:= exposed [v],

mate [exposed[v]]:=v;

else begin

exposed[label [v]] := mate[v];

mate[v]:= exposed [v];

mate[exposed[v]]:= v;

augment(label[v])

end

Figure 3: The Hungarian method

Theorem 2.6.3.1 [29] The Algorithm 2.6.3.1 correctly solves the assignment problem for

a complete bipartite graph with 2n nodes in On3  time.
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3 SCHEDULING PROBLEMS

In this chapter, the basic formulations of the scheduling problem are described. The

classification of scheduling problems mentioned in this chapter follows the notation used

in [7].

A schedule is an allocation of one or more time intervals to each job on one or more

machines. A scheduling is called optimal if it minimized a given objective function

means to establish an assignment of resources to consumers for a certain period of time in

a way that a certain objective is optimized [9]. The policy used to determine this

assignment is called scheduling algorithm.

Scheduling theory is excessively used in the computer manufacturing to schedule the

jobs. The multiprogramming characteristic of computer is due to the good scheduling of

jobs in the CPU because the CPU can only process one job at a time. In this case the

objective function is to maximize the CPU utilization.

Schedules and their Representations

Let there be m number of machines, Mi, i = 1, 2….m, which have to process n jobs, Jj, j =

1, 2…n. Besides, there is an objective function which gives the cost of scheduling. The

problem is to assign the jobs an allocation of one or more time intervals on one or more

machines; such an assignment is called a schedule (see [7]). A schedule is often

represented by a Gantt chart. Gantt chart can be machine oriented or Job oriented.
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Figure 4: Gantt chart

H. Brasel introduced a new approach of modeling scheduling problems called block-

matrix model in 1990 (see [4, 5]). It is easy, comprehensible and can be applied to

simplify the algorithm in this field. In the block-matrices model, all graph theoretical

structures of scheduling problems are basically described by means of special kind of

matrix called latin rectangles with sequence property (see also [9])

The disjunctive graph is proposed by B. Roy and B. Sussman in 1964 (see [7, 38, 39])

and is used in the literature of scheduling theory. It is based upon the mathematical

discipline graph theory. Disjunctive graphs are widely used to represent certain feasible

for scheduling problems. The set of feasible schedules, which are represented in this way,
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always contains an optimal solution for the problem if the objective is regular (see also

[9]).

Three Field Notation

For specifying scheduling problems, three-field notation is popularly used. This notation

is due to Graham et al. [14] (also see [1, 7]). In this scheme, a problem is denoted

as   , where the first field   1 2 describes the machine environment, where

1 denotes the machine characteristic and  2 denotes the number of machines used. The

single machine environment is described by1  ∘ , and 2  1, i.e.  1, where ∘ denotes

the empty symbol. The second field  describes the job characteristic. If we denote

preemption, precedence relation, release date ( ri ), processing time ( pi ) and due date

( di ), respectively, by 1 , 2 ,3 , 4 , and 5 , then  1 ,2 ,3 , 4 ,5. The third

field, , denotes the sum and max objective function. Generally, the objective function

will be the completion time Ci of job i . For the fixed parameter di as the due dates of

job i , lateness, tardiness and earliness of job i are defined, respectively, by

Li  Ci  di , Ti maxCi  d i ,0, Ei  max0, di  Ci,

which are usual objective functions to be measured under the JIT environments.

Earliest Due Date (EDD) Algorithm

Whenever a machine is freed, the job with the earliest due date is selected to be processed

next. This rule is to minimize the maximum lateness among the jobs waiting for

processing. Actually, in a single machine setting, with n- jobs available at time 0, the

EDD rule does minimize the maximum lateness.
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i i

Example 3.3.1: 1ri ; di ; pmtn Li max

Is the problem of finding a preemptive schedule on one machine for a set of n-jobs with

given release times r  0 and due dates d  0 such that the objective function

Li max is minimized.

Benefits of Just-in-Time Production Systems

JIT makes production operation more efficient, cost effective and customer responsive.

JIT allows manufacturers to purchase and receive components just before they are needed

on the assembly line, thus relieving manufacturers of the cost and burden of housing and

managing idle parts.

The main benefits of the JIT manufacturing environment are listed below (see [33, 41]):

1. Set up times are significantly reduced in the warehouse: Cutting down the set up

time to be more productive will allow the company to improve their bottom line to

look more efficient and focus time spent on other areas may need improvement.

2. The flows of goods from warehouse to shelves are improved: Having employees

focused on specific areas of the system will allow them to process goods faster

instead of having them vulnerable to fatigue from doing too many jobs at once and

simplifies the tasks at hand.

3. Employees who possess multiple skills are utilized more efficiently: Having

employees trained to work on different parts of the inventory cycle system will allow

companies to use workers in situations where they are needed when there is a

shortage of workers and a high demand for a particular product.

4. Better consistency of scheduling and consistency of employee work hours: if

there is no demand for a product at the time, workers don’t have to be working. This

can save the company money by not having to pay workers for a job not completed or
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could have them focus on other jobs around the warehouse that would not necessarily

be done on a normal day.

5. Increased emphasis on supplier relationships: No company wants a break in their

inventory system that would create a shortage of supplies while not having inventory

sit on shelves. Having a trusting supplier relationship means that we can rely on

goods being there when we need them in order to satisfy the company and keep the

company name in good standing with the public.

6. Supplies continue around the clock keeping workers productive and business

focused on turnover: Having management focused on meeting deadline will make

employees work hard to meet the company goals to see benefits in terms of job

satisfaction, promotion or even higher pay.

Applications of Just-in-Time Production System

The following are the applications of JIT:

1. In real time scheduling: Real time scheduling problems are principally online

versions of Just-in-Time scheduling problems, but popularly, the nomenclature “real

time” refers to computer related problems. These types of scheduling problems occur

in real-time system. Generally a real-time system is an operating system embedded in

some electrical device. In a real-time system, the correct functioning of the system

depends on the time when jobs are completed. In a soft-real-time system, early and

tardy jobs degrade the quality of the output, while in a hard-real-time system; such

jobs make the output invalid. The book of Tanenbaum [40] provides an introduction

for real-time scheduling problem in computer system.

2. Scheduling in operating system: Scheduling theory is excessively used in computer

manufacturing to schedule the jobs in CPU, memory, printing buffer and other

devices for processing jobs. The multiprogramming characteristic of computer is due

to the good scheduling of jobs in the CPU because the CPU can only process the job

at a time. In this case the objective function is to maximize the CPU
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utilization (see [40]). Some basic algorithm used in OS (see [23, 40])for uniprocessor

computer are:

i. First Come First Serve (FCFS): At any instance when machine is idle, select the

available jobs in the order they request. When the first job enters in the system it

is started immediately and allowed to run as long as it wants.

ii. Shortest Job First (SJF): At any instance when the machine is idle, select the

available job having shortest expected processing time. In the case of tie the FCFS

is used.

iii. Shortest Remaining Time Next (SRTN): At any instance schedule the job whose

remaining time is the shortest. When a new job arrives, its time is compared with

the current process’ remaining time. If new job needs less time to finish than the

current process, the current process is suspended and new job started. It is

applicable to preemptive system.

iv. Round-Robin: Each process is assigned a time interval, called quantum, which it

is allowed to run. If the process is still running at the end of the quantum, the CPU

is preempted and given to another process. If the process has finished before the

quantum has elapsed, the CPU switching is done when the process blocks, of

course.

3. Just-in-Time compilation: In computing, Just-in-Time, also known as dynamic

translation for improving the runtime performance of a computer program. It

converts, at runtime, code from one format into another, for example bytecode into

native machine code. The performance improvement originates from caching the

results of translating blocks of code, not simply evaluating each line or operand

separately, or compiling the code at development time. JIT builds upon two earlier

ideas in run-time environments: bytecode compilation and dynamic compilation (see

[37]).
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4 MATHEMATICAL MODEL OF JIT PRODUCTION

Output Rate Variation Problem

Consider L different production levels l; l  1,2,..., L; where level 1 is the final assembly

line. For each l  1,2,..., L ; let there be nl different part types with

demands dil ;i 1,2,...,nl . Let tilp denote the total number of units of output i at level l

required to produce one unit of product p; p  1,2,..., n1 so that the dependent demand for

part i of level l determined by the final product demands d p1 is dil

n1

 tilp d p1 . We see
p1

that ti1p  1 for i  1and 0 otherwise. For each l  1,2,..., L ; let
n

Dl  dil be the total
i1

output demand of level l . The demand ratio for part i at level l is r 
dil

l

for

each i 1,2,...,nl

n

and we have  ril
i1

 1 for each i 1,2,...,nl .

A copy of a product (model) is said to be in stage k;k  1,2,..., D1 if k units of products

have been produced at level1. The product level (level1) has a time horizon of D1 units

and there will be k units of various products p , completely produced, at level1 during

the first k stages. Let the cumulative production of part i at level l during the first k

stages be denoted by xilk so that the total quantity of various parts produced at level l

during the first k stages is ylk

n

 xilk

i1

units. We have y1k

n1

 xi1k  k
i1

at level1. In

fact, xilk

n1

 tilp xp1k

p1

must hold for l  2 .

With these notations, the constraints and various objectives for mixed model multi-level

JIT assembly systems are formulated as the following [20, 24].
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

l



For each i 1,2,...,nl ; let fil be a unimodal symmetric convex function with fil (0)  0 ,

minimum. Then the mixed model multi-level JIT scheduling problem defined by (4.1) is

to minimize one of the objectives:

Gmax max f il (xilk
i,l ,k

 ylk ril ) , (4.1)

D1 L nl

and Gsum  fil (xilk

k1 l1 i1

 ylk ril ) (4.2)

Subject to the constraints

xilk

n1

 tilp xp1k ,
p1

i 1,2,...,nl ; l  1,2,..., L ; k  1,2,..., D1 (4.3)

ylk

n

 xilk ,
i1

l  2,..., L ; k  1,2,..., D1 (4.4)

y1k

n1

 xi1k

i1

 k , k  1,2,..., D1 (4.5)

xp1k  xp1(k1) , p  1,2,..., n1 ; k  1,2,..., D1 (4.6)

xp1D  d p1 , xp10  0 , p  1,2,..., n1 (4.7)

xilk  0 , integer, i 1,2,...,nl ; l  1,2,..., L ; k  1,2,..., D1 . (4.8)

Constraint (4.3) indicates that the necessary cumulative production of part i of level l by

the end of stage k is determined explicitly by the quantity of products produced at

product level. Constraints (4.4) and (4.5) compute the total cumulative production at

level l and level1, respectively, during the first k stages. Constraint (4.6) shows that the

total production of every product over k stages is a non-decreasing function of k .

Constraint (4.7) ensures that the production requirements for each product are met

1
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il

exactly. Constraints (4.5), (4.6) and (4.8) indicate that exactly one unit of a product is to

be produced in the product level during each stage.

The deviation between actual and ideal production can be visualized as in Figure 5.

Figure 5: The ideal and actual commutative production quantities

In particular, taking fil (x) | x | (3.1) and (3.2) take the forms:

'
max  max | x

i,l ,k
ilk  ylkril | (4.9)

D1 L nl

and '
sum  | x

k1 l1 i1
ilk  ylkril | , respectively. (4.10)

Also, taking f (x)  x 2 (3.7) and (3.8) take the forms:

"
max  max(x

i,l ,k
ilk  ylkril ) (4.11)

G

G

G 2



29

D1 L nl

and "
sum (x

k1 l1 i1
ilk  ylkril )

2 , respectively. (4.12)

The multi-level problem is a difficult optimization problem; however, various heuristic

solution procedures of finding good solution with reasonable computational effort are

desired, in literature, to solve real-life instances of the problem. Here, we focus the

following particular case.

Product Rate Variation Problem

Mixed model single-level JIT assembly system, a particular case of multi-level system

with only one level, the product level; assumes that different products (or models) require

the same number and mix of components and that the processes have negligible switch

over costs from one product to another and so allow for diversified small–lot production.

In this section the mathematical formulation of the single-level system are discussed.

Assume that there are n products (or models) to be produced during a specified planning

time horizon with demands d1 , d2 ,...,dn for all i  1,2,..., n . Put D di
i1

and the time

horizon be divided into D time units (i.e. an implied time horizon of D time units can

be inferred), where one copy of a product will be produced in each time period. A

schedule is called an ideal schedule if at each time period k ; k  1,2,..., D the line has

been assembled k
di parts of product i ; i  1,2,..., n . The aim of JIT sequence is to keep
D

the real production of a product i in each time unit k as close as possible to the ideal

production rate r 
di . Let x denote the real cumulative production of product i in

i D i,k

time periods 1 to k , inclusive.

The most important goal of JIT production system is to keep the schedule as balanced as

possible. Thus, our objective is to schedule the assembly line so that the proportion of

each product i produced over a time period to the total production is as close to ri as

n

G
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 

possible. In other words, this model aims to hold inventory and shortage costs as smooth

as possible by keeping the production rate of each product as balanced as possible by

keeping the quantity of each product used by assembly line as constant as possible. The

objectives formulated in [24] and generalized in [20] are given as follows.

For each i  1,2,..., n ; let fi be a unimodal symmetric convex function with fi (x)  0 for

x  0 ; fi (0)  0 , minimum. The problem defined by (4.2) is to minimize one of the

objectives:

Fmax  max fi (xi,k  kri ) , (4.13)
1 i n

D n

Fsum  fi (xi,k
k1 i1

 kri ) (4.14)

Subject to the constraints:

 xi,k  k ,
i1

k  1,2,..., D (4.15)

xi,D = di , i  1,2,..., n (4.16)

xi,0  0 , i  1,2,..., n (4.17)

xi,k  xi,k 1  0 , i  1,2,..., n ; k 1,2,..., D (4.18)

xi,k  0 , integer, i  1,2,..., n ; k  1,2,..., D . (4.19)

Here, equality (4.15) means that k parts (copies) have to be produced in first k time

periods ; equality (4.16) indicates that all demands must be fulfilled within D time

periods; inequality (4.18) shows that a produced copy cannot be destroyed (i.e. for each

i , the number of produced copies of i cannot decrease with time).

n
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i

i

i

max

sum

Here, Fmax seeks to minimize the deviations for each product and hence the maximum

deviation, whereas Fsum objective is to find the lowest possible total deviation. More

specifically we consider the following cases:

Case (1): If fi (x)  x for all i  1,2,. .. , n . Under this case, (4.13) takes the form:

a
max
 max

1in;1kD
| xi,k  kri | (4.20)

and (4.14) takes the form:

D n

a
sum  | x

k1 i1
i,k  kri | (4.21)

Case (2): If f (x)  x2 under which (4.18) takes the form:

s
max
 max

1in;1kD
(xi,k  kr )2 (4.22)

and (4.19) takes the form:

D n

s
sum (x

k1 i1
i,k  kr )2 (4.23)

For simplicity, we introduce the abbreviation that problem F a means the problem

defined by (4.2) with objective function (4.20) under the constraints (4.15), (4.16), (4.17),

(4.18) and (4.19); problem F a means the problem defined by (4.2) with objective

function (4.21) under the constraints (4.15), (4.16), (4.17), (4.18) and (4.19); etc. We find

the pseudo-polynomial algorithms separately for the problem F a , F s , F in [35, 6]
max max sum

The mixed-model maximum deviation and sum deviation JIT sequencing problems are,

respectively, denoted by maximum deviation just-in-time (MDJIT) and sum deviation

just-in-time (SDJIT) problems (see [6, 11]). Similarly the abbreviated form

F

F

F

F
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max



MMJIT refers to mixed-model Just-in-Time and MMJITSP refers to MMJIT sequencing

problem. The bottleneck objective functions seek to find smooth sequences at each stage

and as a result it precludes the possibility of relatively large deviations in every time

period. In contrast the min-sum objective functions are concerned for finding the smooth

sequences on the average which may result in relatively large deviations in certain time

periods

Pegged ORV Problem

Steiner and Yeomans [36] shows that the ORV problem under the pegging assumption

can be reduced to weighted PRV problem. Under the pegging assumption, parts of output

i at production levels which fed the level 1 are dedicated or pegged to the specific final

product into which they will be assembled. This assumption decomposes the lower level

parts that will be assembled into different level 1 products into disjoint sets. As a result, a

distinction is made between tilh and tilp , h  p for each part i at level l . With this

assumption the multi level min-sum JIT sequencing problem can be reduced to a

weighted single level problem (cf. [44], also see [13, 11]). Similarly with the same

assumption the weighted max-abs ORV problem can be formulated as (cf. [36], also see

[11]).

peg
max maxW p1

p , i , l , k
x p1k  kr p1 , Wil x p1k t ilp  ktilp rp1 

 max W
p ,i ,l ,k

il t ilp
x plk  kr p1



p 1,...,n ; i 1,...,n ; k 1,...,D ; l 1,...,L . Now letting w maxw t the objective
1 l 1 p1

i,l
il ilp

function reduced to G peg  maxwp1
p,i,l ,k

x p1k  krp1. Now dropping out the superfluous

subscript 1 the problem is reduced to the weighted PRV problem.
 peg maxw x  kr  , i  1,..., n; k  1,..., D

minGmax


i ik i 

i,k 

G
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5 SOLUTION PROCEDURE FOR PRV PROBLEM

Cyclic Sequences

An instance of PRV-JIT problem is said to be standard if 0  d1  d2  ...  dn , n  1and

the greatest common divisor of d1 ,...,dn , D is 1, i.e., gcd(d1 ,...,dn , D)  1.

Let  be the optimal solution to the mixed model Just-in-Time production system for the

standard demand vector (d1 , d 2 ,...,dn ) . Now if the concatenation of m copies of  for

any m 1is an optimal solution to the mixed model Just-in-Time production system with
demand vector (md1 , md2 ,...,mdn ) , then the solution  is called the cyclic solution with

m

a cycle  and number of cycle m . The existence of cyclic sequences significantly

reduces the computational complexity. In fact the optimal sequence to original problem

can be obtained by first calculating the gcd (Greatest Common Divisor) m of

d1 , d2 ,...,dn then by obtaining the optimal sequence for the demand vector

d1 ,
d 2 ,...,

dn
and finally by concatenating the sequence m times to construct an optimal

m m m

sequence for the original demand vector (d1 , d2 ,...,dn ) . The existence of optimal cyclic

sequence for the problem s
sum with n  3, and for demand vector (600, 600, 100) is

presented in [24] for the first time. Consequently Kubiak [17] proves this concept

analytically. We sketch the proof here.

Theorem 5.1.1: [17] Let   1 , ... , D , D1 , ... , 2D , be a feasible sequence

for 2d1 , ... ,2dn . Then, a sequence  1 , ... ,D ,D 1 , ... ,2 D , where i occurs di times

in the second half D1 , ... ,2 D can be constructed such that Fsum ()  Fsum ( ) .

F
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1 2 n 1 2 n

2

Theorem 5.1.2: [17] Let  be an optimal sequence for the problem Fsum with the

demands d ,d , ... ,d . Then m , m  1 , is optimal for the demands md ,md , ... ,md .

Proof: The theorem obviously holds for m  1. Suppose, by the induction, that the

theorem holds for any m ,1 m  k . We prove that it also holds for m  k 1. Consider an

optimal sequence 1 , ... , mD for md1 ,md2 , ... , mdn . If m is even, then by Theorem

, this sequence can be transformed without cost increasing into a

sequence 1, ... , 


D ,


2
1m D , ... ,mD , where i occurs

mdi

2
times in each of the two halves

of . Thus, each half must be optimal for
md1 , ... ,

mdn . Therefore, by the inductive
2 2

assumption, each half is the concatenation of
m

copies of  and the theorem holds for
2

even m  k 1. If m is odd, then consider sequence  for (m 1)d1 , ... , (m 1)dn . We

have Fsum ( )  Fsum ( )  Fsum ( ) . By Theorem 5.1.1,  can be transformed without

cost increasing into a sequence 1 , ... , 
(m1) D , 

1(m1) D , ... , (m1) D where i occurs
2 2

(m 1)
di

2
times in each of the two halves of . Thus, each half must be optimal

for (m 1)
d1 , ... , (m 1)

dn
. Therefore, by the inductive assumption, each half is the

2

concatenation of
(m1)

2

2

copies of  , and

Fsum ( )  Fsum ( )  Fsum ( )  (m 1)Fsum ( ) . Consequently, Fsum ( )  mFsum ( ) this

proves the theorem for odd m  k 1. This completes the proof.

Clearly this idea reduces computational requirements considerably when the greatest

common divisor m  1.

The existence of cyclic solutions to the max-abs PRVP is established by Steiner

and Yeomans [36] for the first time both for weighted and un-weighted PRVPs. This

m
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concept is generalized by Dhamala et al. [12] to established that the optimal sequences to

the max-sqr PRVP are cyclic both for weighted and un-weighted cases. Now as

m  gcd(d1 ,...,dn ) , then the demand requirement vector becomes

d  d1 ,...,dn   mm1 ,...,mmn  with d i  mmi , i 1,...,n .

Letting A mi
i1

, then D  di
i1

 mA and ri 
di

D


mmi

mA


mi .
A

Let each copy of the product be labeled as k 1mi  c , where

k 1,...,m and c 1,...,mi . Then for each fixed value of k, there will be a group of

mi copies of product i in the range

k 1mi 1...k 1mi  mi  .

This range will be referred to as the k th tier of copies for product i (cf. [36]).

Lemma 5.1.1 [12, 36] For a threshold value

Ei, kmi  c  Ei,c kA and

B  1, we have the linear relations

Li, kmi  c  Li,c kA.

Proof: We give the proof only for the case a
max of Steiner and Yeomans [36] and the

proof for the case s
max can be obtained similarly from [10].

E(i, km  c) 
kmi  c  B






i  1
 ri 




k 1mi  c  B mi 


  1

 ri 

nn

F

F
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
k 1mi  c  B

1


  A
 ri 




(k 1)mi  c  B








 A

 1
 ri 



 Ei, k 1mi  c A

 Ei,c kA .

Similarly, it can be proved that Li, kmi  c  Li,c kA

The Lemma 5.1.1 implies that only the early and late producing times for copies

c 1,...,mi in the first tier need to be calculated, as the produce times for all copies in the

remaining tiers are linear function of those in the first tier.

Lemma 5.1.2 [36] For bottleneck B  1 , then for all i  1,..., n and k  1,..., m , we have

a Li, kmi   kA

b k 1A  Ei, k 1mi 1


c Ei, (k 1mi 1)...Li, kmi ∩ Ei,kmi 1...Li, k 1mi  Ø,

where [a...b] denotes the set of all integers between a and b including both.

Now, we state the main result from [36]
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max

max

Theorem 5.1.3 Let m  gcdd1,..., dn  . Then the problem

(a) F a has an optimal sequence which consists of m repetitions of the optimal

sequence to the sub-problem where d  m1,..., mn .

(b) F s has an optimal sequence which consists of m repetitions of the optimal

sequence to the sub-problem where d  m1 ,...,mn .

Proof:

(a) Consider any optimal sequence s  s1,...,sD 




to the problem a

max with objective

value B*  1 . Such a solution always exists as the optimal value for max-abs is strictly

less than one. If s itself is an m repetitions of the optimal sequence to the sub-problem

where d  m1 ,..., mn , then there is nothing to prove further. Else, a copy i, j of product

i occupies a position in the intervalEi, j...Li, j. Moreover, Lemma 5. 1.1 implies that

each interval k 1A...kA1 consists of m units of products and hence by Lemma

5.1.2(c) we can rearrange the products sub-sequence on each of the

intervalk 1A...kA 1, for k  2,..., m as in the first interval 0...A1 without

destroying the B * feasibility of the sequence.

(b) The proof directly follows from Theorem 5.1.3 and (a).

It is also noted that the cyclic sequence analogously exists for the weighted problem with

appropriate weights (see [10, 36])

Earliest Due Date Algorithms

In this section we describe a graphic approach for solving the max-abs problem [35]. In

this procedure, decision version of the problem with certain target value for objective as a

threshold value, is reduced to a perfect matching problem in a bipartite graph. Then

Glover's modified EDD rule is used for the matching problem  to decide whether the

F
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decision problem has 'yes' answer. Then an optimal is obtained by using the matching

problem and bisection search within the bounds for target value after determination of the

bounds. The procedure in detail is presented in [35]

Release Date/Due Date Decision Problem

For n products with demands di ; i  1,2,..., n ; di being positive integers ; consider the

problem a
max

Let B be a target value for the objective function; (i, j) denote the j th copy of product i .

Then the earliest starting time E(i, j) for (i, j) must be the unique integer satisfying

j  B
1 E(i, j) 

j  B
and latest starting time L(i, j) of (i, j) must be the unique

ri ri

integer satisfying

j 1 B
1 L(i, j) 



j 1 B

. This provides the formulae:
ri ri

E(i, j) 
 j  B








 (5.1)
 1
 ri 


and L(i, j) 

 j 1  B 





 (5.2)
 
 ri 


For a given B , we can determine E(i, j) and L(i, j) for all i and for all j in O(D) time.

Consider the decision problem defined by (5.1): "Does there exist a nD matrix (xi,k )

with max
1in;1k D

| xi,k  kri | B satisfying all constraints of (4.15)-(4.19)?” This problem

can be viewed as the problem of determining whether there is a feasible schedule of D

unit-time jobs on a single machine with release dates and due dates for each job. So the

F
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decision problem can be represented as a matching problem in a bipartite graph as in the

next subsection.

Perfect Matching Problem and EDD Rule

For a given target value B as threshold value for decision problem, determine E(i, j)

and L(i, j) for all i and for all j according to (5.1) and (5.2). Define the bipartite

graph G  (V1 V2 , E) ;

Where,V1  {0,1,2,..., D 1} , V2  {(i, j) | i  1,2,...,n; j  1,2,...,di } and (k,(i, j)) E if

and only if k [E(i, j), L(i, j)] i.e. if and only if (i, j) may start at time k . Then the

bipartite graph G isV1  convex . Here finding a feasible sequence for problem (P5.1) is

analogous to finding a perfect matching in G such that lower numbered copies of a

product are matched to earlier starting times than higher numbered copies. Such a

matching is called order preserving.

Example: 5.2.1 For Demand vector (300, 600, 900), the schedule so constructed by the

EDD algorithm with considering the upper bound

consists of 300 cycles of the sequence 3-2-3-1-2-3.

1
1

is presented in Table 1. This
D

Table 1: Schedule generated by EDD for max-abs
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5.2.3 EDD for min-sum-sqr

Inman and Bulfin [15] define the ideal position for copy (i, j) as

 j 
1 D


 2 j 1  2
 

k     
2ri  di 

 


Let Zij denotes the time at which copy (i, j) actually produced. Then Inman and Bulfin

[15] consider the following problem:

n di   2
Minimize  Zij kij (5.3)

i1 j1

Subject to

Z ij  Zi( j1) , i 1,...,n; j 1,...,di 1 (5.4)

1 Zij  D, i 1,...,n; j 1,...,di (5.5)

Zij  Zi ' j ' , (i, j)  (i', j') (5.6)

Zij W, i  1,...,di (5.7)

Constraint (5.4) ensures that the production time of each copy of a product type i is a

strictly increasing function of each copy j. Constraint (5.5) guarantees that the

production time of any copy of any product lies in the internal [1...D]. Constraint (5.6) is

the only linking constraint and is not in the standard integer programming format and it

specifies that only one copy of any product type can be produced in each period. By

defining kij as the due-date of copy (i, j) where each copy of product is treated as a

ij
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

separate job, Inman and Bulfin [15] observe that problem defined by (5.3) may be

interpreted as a single machine scheduling problem

1 p(i, j )  1  (E(i, j ) T(i, j ) ) , (5.8)
(i, j )I

where p(i, j ) , E(i, j ) and T(i, j ) respectively represents the processing time, earliness and

tardiness of copy (i, j) and I  i, j | i  1,...,n; j  1,...,di. And in conclusion they

suggest the following.

Theorem 5.2.1 The optimal sequence for problem defined by (5.3) is to order the copies

following the EDD rule for the problem (5.8).

The EDD procedure can run in O(nD) time and the EDD rule also gives an optimal

sequence for the sum of absolute deviations as well (see [15, 18]).

Example: 5.2.2 For Demand vector (300, 600, 900), the schedule so constructed by the

 j 
1 D


 
2
 

EDD algorithm with considering the due date    for the jth copy of product i of
 di 

 

min-sum-sqr is presented in Table 2: Schedule generated by EDD for min-sum This

consists of 300 cycles of the sequence 3-2-1-3-2-3.
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n

Table 2: Schedule generated by EDD for min-sum

Nearest Integer Point Problem

This algorithm obtains the optimal solution for problem defined by (4.23) with finding

the 'nearest' integer point M  (m1 ,...,mn ) Wn to a point X  (x1 ,....xn ) Rn where

n n

mi  xi  k .
i1 i1

Step1: Calculate  xi  k .
i1

Step2: Find the nearest nonnegative integer mi to each co-ordinate xi. That is, find mi ,

such that mi  xi


1
,

2
i  1,2,..., n .

Step3: Calculate km mi
i1

Step4: i) If k  km  0 stop. The nearest integer point is M  (m1 , m2 ..., mn ) .

ii) If k  km  0 go to Step 5.

n
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iii) If k  km  0 go to Step 6.

Step5: Find xi with the smallest mi  xi . Put mi mi 1, Go to Step 3.

Step6: Find xi with the largest mi  xi .

Put mi  mi 1. Go to Step 3.

Miltenburg [24] has proven that this algorithm provides an optimal solution to the

problem defined by (4.23) with neglecting the Constraints (4.16), (4.17), and (4.18) and

clearly this optimal solution also satisfy the Constraint (4.16) and (4.17) of problem

defined by (4.23). But unfortunately, solution given by this algorithm generally may- not

satisfy the order Constraint (4.18). Hence, this algorithm will not give, in general, the

feasible solution for product rate variation Just-in-Time problems with sum-square

deviation objective function.

Example 5.3.1 Suppose there are n=4 products with the demands vector D = (2, 3, 5, 7)

to be produced on a mixed model JIT production system under sum-sqr objective. The

vector of demand ratio is r = (2/17, 3/17, 5/17.7/17). Now the schedule given by nearest

integer point is shown in Table 3. In this table there is no possibility of destroying any

products at any stage and the so obtained schedule is optimal to the problem defined by

(4.23).
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Table 3: Schedule generated for demand vector D = (2, 3, 5, 7) by nearest integer point

Example 5.3.2 The schedule constructed by the nearest integer point corresponding to

the JIT scheduling problem with demand vector D = (2, 3, 5, 1) is presented in Table 4

which does not produce the optimal schedule as the product 4 must be destroyed at stage

6.

Table 4: Schedule generated for demand vector D = (2, 3, 5, 1) by nearest integer point

The solution to problem defined by (4.23) neglecting the Constraints (4.16), (4.17), (4.18)

obtained by algorithm1 is a level or balanced schedule for the mixed-model single-level

JIT assembly systems. However, the schedule may not be feasible. Therefore, the

following algorithm is proposed by Miltenburg [24] which ensures that a feasible
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schedule is found.

Step1: Solve problem defined by (4.23) without Constraints (4.16), (4.17), (4.18) using

nearest integer point, and determine whether the schedule is feasible. The schedule will

be feasible if mi,k  mi,k1  0 for all i and k . If the schedule is feasible, stop. This is

the optimal schedule. Otherwise go to Step 2.

Step2: For the infeasible schedule determined in Step 3 find the first (or next) stage l

where mi,l  mi,l1  0 .Set = number of products i , for which mi,l  mi,l1  0 .

Reschedule stage l- , l-+1, ...,l +1 by considering all possible sequences that began

with schedule for stage l - -1, and end with the schedule for stage l +1.

Step3: Repeat Step 2 for other stages where mi,l  mi,l1  0 . Then stop.

In general there are
n!

(n    2)!
possible sequences each of length 


+2 to consider,

for each infeasibility. And so to determine the best one, i.e. the minimum variation

among all possible sequences the total enumeration is needed and consequently the time

complexity of this algorithm will not be polynomial in the input size of the instance.

Therefore, practically this algorithm works for those instances with small number of

input size (products with similar part requirements) and it will not perform efficiently for

those problems with large number of input size not for problems where products have

different part requirements. As a result to perform large sized problems efficiently,

Miltenburg [24] proposed other scheduling algorithms. Computationally, the following

algorithm is faster, and can be used for large problems obtaining a feasible schedule for

the mixed model JIT assembly systems.

Step1: Solve problem defined by (4.23) with out Constraints (4.16), (4.17), (4.18), using

nearest integer point, and determine whether the schedule is feasible. It is feasible

if mi,k-mi,l-1 0 for all i and k. If the schedule is feasible, stop. This is optimal
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schedule. Otherwise go to step 2.

Step2: For the infeasible schedule determined in Step 1, find the first (or next) Stage l

where mi,l-mi,l-1< 0. Set  = number of product i, for which mi,l-mi,l-1< 0, and

beginning at stage l -  use heuristic nearest integer point to schedule stages l - ,

l-+1,..., l+ ; where  0. l+ is the first stage where the schedule

determined by the heuristic matches the schedule determined in Step 1.

Step3: Repeat Step 2 for other stages where mi,k-mi,k-1 < 0. Then stop.

Heuristic nearest integer point

For a stage k, schedule the product i with the lowest xi,k-1-kri.

This is a myopic heuristic in that it does not consider the effect on future stages of its

current decision. Its great advantage is that it is one-pass algorithm. It does one

calculation for each product and then makes a selection. For each stage the computational

complexity is O(n) since n comparison should be made in each stage (period). This is

found to be satisfactory algorithm. Because of the myopic nature of this heuristic the

following two pass heuristic of complexity

Miltenburg [24]

O(n2 ) for each stage was developed by

Step1: Set h=1

Step2: Tentatively schedule product h to be produced in stage k. calculates the

variation for stage k and calls it V1h.

Step3: Schedule the product i with lowest xi,x-(k+1) ri for stage k+1. Notice that

this is the decision rule of heuristic. Calculate the variation for stage

k+1 & call it V2h. Calculate Vh = V1h+V2h.
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Step4: Put h = h+1. If h>n go to Step 5, otherwise go to Step 2, where n is the

number of products.

Step5: Schedule the product h with the lowest Vh.

It is observed that this heuristic bases its scheduling decision on two stages- the current

stage and the next stage. It approximates the variability over these two stages &

schedules so that this variability is as small as possible.

Example 5.3.3 For the demand vector (2000, 3000, 5000, 1000) the corresponding data

are presented in Table 5: Schedule generated for demand vector D = (2000, 3000, 5000,

1000) using heuristic, in which the sequence is the 1000 repetition of the cycle 3-2-1-3-4-

3-2-3-1-2-3.

Table 5: Schedule generated for demand vector D = (2000, 3000, 5000, 1000) using

heuristic nearest integer point

Dynamic Programming Algorithm

In this section we discuss a dynamic programming (DP) algorithm to deal with JIT

production schedule for a mixed model facility. The procedure has considered the joint

problem with the two typical goals.
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i

t (x i

D

1. USAGE GOAL: maintaining a constant rate of usage of all items in the facility.

2. LOADING GOAL: smoothing the work load on the final assembly process to reduce

the chance of production delays and stoppages.

It is to be noted that goal 1 is mainly focused in this dissertation and is more important

than goal 2. Indeed, goal 2 is a classical one.

Let there are n products to be produced with demands d1 , d2 ,...,dn in a certain time

horizon. The time to produce one unit of product i be denoted by ti ; i  1,2,..., n and

put D d i ,
i1

ri 
di .
D

The specified time horizon be inferred into D time units and during each time period k ;

k  1,2,..., D ; exactly one unit of a product should be produced. Let xi,k denote the total

production of product i over the first k periods; where 0  xi,k  di for all k  1,2,..., D .

Then,  xi,k  k
i1

; k  1,2,..., D and xi,k is non negative integer for all i  1,2,..., n ;

k  1,2,..., D .

Suppose that the schedule for the first k stages be determined i.e. xi ,k for i  1,2,..., n be

known. Then the usage variability at stage k is Uk  (x
i1

i,k  kr )2 and the loading

variability at stage k is Lk

n
2

i
i1

i,k  kr )2 .

Therefore the problem defined by (5.2) can be formulated as

Minimize  (UU k  L Lk )
k1

n

n

n



49

i t (x i

L i
i

n

i i

n

j j

Subjected to the Constraints (4.15) - (4.19)

WhereU ,  L are relative weights for the USAGE goal and LOADING goal

respectively. So the problem defined by (5.2) is a joint problem.

Let f k denote the joint variability at stage k . Then

f k  U (x
i1

i,k  kr )2 


n

2
i

i1
i,k  kr )2

 (U 
i1

t 2 )(x i,k  kr )2

 T 2 (x  kr )2 ; WhereT 2    t 2 .
i

i1
i,k i i U L i

Therefore the objective function of the problem defined by (5.2) takes the form:

D n

Minimize T 2 (x i,k  kr )2 ; where callTi , the implied production time for period i .
k1 i1

Now we consider the DP procedure presented by Miltenburg et al. [27]

Let d  (d1, d2 ,...,dn ) be the product requirements vector. Define subsets in a schedule

as X  (x1 , x2 ,..., xn ) ; where xi is a non negative integer representing the production of

exactly xi units of product i , xi  di for all i . Let ei be the i th unit vector; with n

entries, having i th entry 1 and remaining all zero. A subset X can be scheduled in the

first k stages if k | X | xi .
i1

Let f X  be the minimal total variation of any schedule where the products in X are

scheduled (produced) during the first k stages. Let gX  T 2 (x  kr )2 . The
j1

n

n

n

L

j
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following (DP) recursion (R1) holds for f (X ) :

f X   f x1 , x2 ,..., xn   minf X  ei  gX  | i 1,...,n; xi 1 0


f X   f X | xi  0;i  1,...,n  f 0,0,...,0  0 .

Clearly f X   0 and gX | xi  0;i  1,...,n  0 . The following theorem tells about the

computational efficiency of the above procedure [27]

Example 5.4.1 Demand vector (300, 600, 900) and Time T = (2, 5, 1) the schedule

generated by DP for min-sum is shown in Table 6: Schedule generated by dynamic

programming, with number of cycle 300.

Table 6: Schedule generated by dynamic programming
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Theorem 5.4.1 [27]

The DP recursion solves the JIT scheduling problem in
 n   n 

On (d i 1) time and On (d i 1) space.
 i1   i1 


Proof:

Suppose g(X) represents the contribution of each product to the objective function at

stage k. The minimization in recursion (R1) is done over all possible choices of the

product to be in this last position. Since xi can assume the values 0, 1, 2, .. di, the number

of sets, or states, in the DP recursion is (di 1) .
i1

For each set X there are at most n f (X  ei ) values, to each of which must be added

g( X ) , whose calculation required O(n) times. Therefore, the computational time is

 n 
O(n) for each set, and On (d i 1)

 i1 


for the entire problem. The value ƒ(X) and the produce i, where the minimum occurs in

recursion (R1), must be saved for each set X, so that the optimal solution can be
 n 

constructed at the end. Therefore, the space requirements are O (d i 1)
 i1 


Notice that the total number of feasible schedules is

D!
d1!d 2!.......... dl !

This is considerably larger than the number of states in the DP recursion. Furthermore

n
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i

n  d  d  ........ d  n 
n

(di 1)   1 2 n 
i1  n 

 D  n n
= 
 n 


Therefore the growth rate of the number of sets is polynomial in D although  it is

exponential with n . this clearly shows that the procedure is effective for small n even

with large D. we see that the DP algorithms is efficient only for practical sized problems

with the analysis are proposed in [27].

Min-max Absolute-chain Algorithm

In [8] Dhamala, extended the formulation of single-level JIT sequencing problem under a

number of chain constraints. He purposed the following min-max-absolute-chain-

algorithm.

Given: d t for i = 1, 2, ……, nt and t=1, 2, .......... , m;

an upper bound B for min-max-absolute-chain-problem;

chain1, chain2, ………., chaint, ................ , chainm;

Update: number of demands n = nt;

demand rates di for i = 1, 2, ……, n;

total demand D =  di.

Step 1: Calculate windows [E( i , j), L( i, j)] for j = 1, 2, ……, di and i = 1, 2, ……, n

by Steiner/ Yeomans [35]

Step 2: Modify the due date L ( i, j).

if ( i, j)  (i’, j’) then L(i, j) := min {L(i, j), L(i’, j’)}.

Step 3: Schedule the jobs by EDD .
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Output : B feasible for (n, D) if Lmax  0.

Example: 5.5.1 The schedule for min-max absolute chain algorithm is shown Table 8,

for inputs of Figure 6: Input data for min-max absolute-chain algorithm.

Figure 6: Input data for min-max absolute-chain algorithm

Table 7: Calculation of window value
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Table 8: Output of min-max absolute chain algorithm

Cost Assignment Problem

Let Zij denotes the period in which the copy (i, j) is produced. Then the problem defined

by (4.14) can be restated as

n Zi11 Zi 2 1 D 
minimize Fsum  fi (0  kri )   f i (1  kri )  . . .   fi (di  kri ) (5.9)

i1  k0 k  Zi1 kZidi 


such that

Zi, j1  Zij 1, j 1, . . . , di ; i  1, . . . , n (5.10)

1 Zij  D, j 1, . . . , di ; i 1, . . . , n (5.11)

Zij  Zi ' j' for (i, j)  (i', j'), Zij  0 (5.12)

Note that Constraint (5.12) is the only linking constraint in problem defined by
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
0,

(5.9), which aims specify that only copy of each product can be produced in each period.

The min-sum PRVP can be reduced to an assignment problem and hence can be solved

by Hungarian method which is presented in Figure 3: The Hungarian method. For the

corresponding assignment problem we consider the vertex sets

V1  (i, j) : i  1, . . . , n, j  1, . . . , di and V2  1, . . . , D. We now have to calculate the

appropriate costs to specify its objective function. More specifically, these costs must be

such that the assignment problem with these costs has an optimal solution, which is both

optimal and feasible for problem (5.9).

Let Cijk denotes the cost of assigning (i, j) to the k th period and let

xijk 
1,




if (i, j) is assigned to k

otherwise

Then the assignment problem is

n di D

minimize C Cijk xijk
i1 j1 k1

(5.13)

n di

such that xijk
i1 j1

1, k 1, . . . , D (5.14)

 xijk
k1

1, i 1, . . . , n, j 1, . . . , di (5.15)

Constraints on the assignment problem require that

a) For each (i, j)

once.

in V1 there is exactly one k in V2 , i.e. each copy is produced exactly

D
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b) For each k

at a time.

in V2 , there is exactly one (i, j) in V1 , i.e. exactly one copy is produced

But Constraints (5.10) on problem defined by (5.9) requires an additional property that

c) For any two copies (i, j) and (i, j' ) of a product i , with j  j' , if (i, j) is produced

at k and (i, j' ) is produced at k' then k  k' .

Example 5.6.1 For demand vector D = (300, 600, 900) the schedule generated by cost

assignment method is shown in Table 10: Schedule generated by cost assignment

problem, with the repetition of 300 cycles.

Table 9: Excess inventory or shortage costs calculated

Table 10: Schedule generated by cost assignment problem
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6 SOLUTION PROCEDURE FOR ORV PROBLEM

Here, we introduce the solution procedure for ORVP. The ORVP has been shown to be

strongly NP-hard by reducing the known NP-hard scheduling problem “Around the

shortest job to ORVP.

Toyota used the goal chasing methods GCM I and GCM II, Monden [28]. The heuristics

GCM I and GCM II construct a sequence filling one position at a time from first slot to

the last one. They, designed with product level and sub-assembly level, consider the

variability at the sub-assembly level. GCM II compared to GCM I represents a decrease

in computational time because the sum is formed only on the components of a given

product.

Miltenburg and Sinnamon [25] extend GCM to extended goal chasing method with more

levels. GCM is a special case of their myopic polynomial heuristic. They also introduce

another polynomial heuristic to remedy the myopic problems of the previous heuristic.

In Section 5.1 it is shown that the optimal sequence both for min-max and min-sum

PRVPs are cyclic. But Dhamala and Kubiak [11] conjecture that whether the optimal

sequence to ORVP are cyclic.

Toyota’s Goal Chasing Method (GCM)

Among the major car manufactures, Toyota has always been an innovator in the areas of

manufacturing and assembly. Toyota operates according to the JIT principle. Toyota’s

most important goal in the operation of its mixed-model production system is to keep the

rates of consumption of all parts constant. For sequencing mixed model multi level JIT

production system, Toyota developed and used an algorithm known as the GCM to

schedule automobile final assembly lines, (cf. [28] and also see [25]).
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2

i

p k 

Goal chasing method (GCM) for a stage k

products at with the lowest

(1 k  D) schedule the product p among n1

GCM pk

n

[(x
i1

i,2,k 1  ti,,2, p )  k  d i,2 ) / D ]2 (6.1)

To minimize this objective the GCM algorithm is described as:

Algorithm 6.1 [30] Goal Chasing Method

Step1.Set xi20  0, S0  1,2,...,n1 and k 1

Step 2.Select for k th position in the sequence model p* that minimizes the measure

GCM *  min
psk 1

 n2
2 

 [(xi,2,k1  ti,,2, p )  k  di,2 ) / Di ] 
 i1 


Step3.If more copies of model p* remain to be sequenced set Sk Sk1. If all

Copies of model p* now already have been sequenced set

Sk Sk1 p *.

Step 4. If Sk , then stop.

If Sk  ,set xi2k  xi,2,k1  ti2 p* , i  1,...,n2

Set k = k+1 and go to step 2

Figure 7: The Goal Chasing Algorithm

But in practice it is difficult to apply the Goal Chasing Method to all parts as the total

number of parts required for a car is in around 20,000. Therefore, the parts are
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represented only by their respective subassemblies. The number of subassemblies is

around 20 and Toyota gives the important subassemblies additional weights. The sub

assemblies include the following items (see [30]):

Engines, Bumpers,

Transmissions, steering assemblies,

Frames, Wheels,

Front axles, Doors,

Rear axles, Air conditioners.

Since the GCM is developed only for two levels, it considers only the variability at the

subassembly and the variability at final assembly is ignored. The GCM can also be

extended for all levels and is known as Extended Goal Chasing Method (EGCM) (see

[25]) in which, for example with L levels and for the objective
D1 L nl   wl

k 1 l1 i1

xijk  d il k / Dl schedule the product p at stage k with the lowest

EGCM pk  plk
l1

(6.2)

Where  plk  xil (k1)  t ilp  k  d il / Dl 


(6.3)

And to minimize this objective, a similar algorithm as that of 6.1 can be developed

Miltenburg and Sinnamon Heuristic Approach

Suppose that each product has significantly different sub-assembly, component and raw

material requirements. Then the variation at all levels in the system must be considered

when selecting a product schedule. Beginning with stage 1, compose a schedule stage by

stage using the following decision rule at each stage k, taking the schedule already

determined for stages 1,2,3,...k 1as fixed.

L

2

2
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l

l

l

p p/

The mathematical expression of this decision rule is:

Schedule the product i with the lowest

H pk Wl (xp1(k 1)  krpl )  0.5  plk
l2

Where  plk

n

Wl (x
i1

pl (k1)
 tilp )  (y l (k1)

lp ) ril ]

And

n

 lp  t ilp
i1

To see this consider a stage k , if product p is  scheduled, the affected terms  in the

objective function of P4.1 for stage k are:

L nl       2
Vp Wl Wl

l2 i1

xil (k1) tilp yl (k 1) lp rip

where
n

 lp  t ilp . Since the objective function is to be minimized. Let product
i1

p be

scheduled rather than product p / ifV V . Canceling the identical terms and

simplifying the expression will show that this is equivalent to saying that H pk  H
p / k

.

This is a myopic heuristic in that it does not consider the effect of its current decision on

the variation in future cycles. That is, it may achieve low variability at stage k at the

expense of high variability at stage k 1.

Miltenburg and Sinnamon [25] introduce another scheduling heuristic of complexity

L

2


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1 l

1

2O(n2 (n  ... n )2 for each stage. This is heuristic attempts to remedy the myopic

problem of previous heuristic.

For each cycle k :

Step 1: Set l 1.

Step 2: Tentatively schedule product l to be produced in stage k . Calculate the variation

for stage k and call itV .
l

Step 3: Find the product p with the lowest H p(k1) for stage k 1. Calculate the variation

for stage k 1and call itV2 . Compute Vl V1 V2
l l l

Step 4: Increment l(l  l 1) . If

number of product.

l  n1 go to Step 5, otherwise go to Step 2. Where n1 is

Step 5: Schedule the product p with the lowest Vl in stage k .

Figure 8: Miltenburg and Sinnamon heuristic approach

Example 6.2.1: we consider only two levels-product and sub-assembly. Suppose n1  2

products with demands 600, 500 units. The product consists of

assemblies. The bills of material are shown in Figure 9.

n2  3 different sub-
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Product
Sub-assembly 1 2

Product Sub-assembly, l  2 Demand Ratio

tilp – Number of parts for one unit of product l

1 1 2
2 0 4
3 1 0

Figure 9: Input demand for ORVP

To develop a production schedule tilp , dil and ril are calculated from these data and shown

in Table 11: Assembly and demand data for Example 6.2.1.

l 1 i = 1 2 3 Total d l1 ri1

1 1 0 1 2 6 .5455

2 2 4 0 6 5 .4545

Demand
d il

Ratios
ril

16

.38

20

.4762

6

.1429

42

Table 11: Assembly and demand data for Example 6.2.1

The calculations for heuristic of Miltenburg and Sinnamon [25] for the first 13 stages are

shown in Table 12: Detail Schedule of Example 6.2.1. This procedure is repeated for 100

times and final schedule is 1- 2 -1- 2 -1 - 2 -1- 2 -1- 2 -1 with a total variation of

163.5116484000000159over 13 cycles.
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Stage Product    H Product Variation
Total

k p p1k p1k p 2k pk Schedule Variation

1 -0.5455 0.4131405 1.4737914
0.19139570

1 000000006 1 1.8869 1.8869
2 -0.4545 0.5951405

2.12292259

99999994
0.60696129
99999997

319 319

-
0.09099991
99999999

2
97

1.652562 5.8951656 2.8565828
3.3642

2 52400
5.2511
84300

2 -0.909

1

3

2

-
1.60696879
99999998

0.5963

1 26899
5.8475
11200

1 -1.182 3.338248 5.8951656
1.76558280

00000002

5
2 -1.2725

-

3.34769040
0000001

0.05906239
999999996

- 2
0.14415479
999999947

-2.6979688
1

1 2.2729999
99999999

9.05705800
0000001

5.8951656 0.67458280
00000005 11.496 27.420

99999997

2 -2.1815 15.9768844 21.9731615 8.80508079 029
99999999 99999997 9999999

00000 00000
0.01656199 3.34769040 0.76484520 1 1
999999999 0000001 00000006

- 99999 00000
0.3635000 3.08326449 21.9731615 10.6230807 99 09
00000000 99999994 99999997 99999999

16

7.51351250 21.9731615 9.71408079 749 00000
0000001 99999997 9999998 019

5.4139 11.261
38400 44960
00000 00000

1 019

15.924
4.6625 02450

4
2 -1.818 2.066248

1 -2.7275 4.6035125

-
1.6364999 0.53726449 0.05906239
99999999 99999999 999999996

8

74840 77290
00000 00000

01 029

40.182

12.761
9469

71980
00000

6

2

7
-

2.7270000
00000000

3

8.149058
3.34769040

0000001

-
1.05315479

2

1 -3.8185 12.7028845 0.05906239
999999996

-
3.78896879

7 99999997 1
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max sum

8

1 -3.364 18.808992 5.8951656
-

0.41641719
99999997 2

21.612
6824

61.795
40220
00000

0292 -3.636 18.264992
3.34769040

0000001

-
1.96215479
99999995

9

1

-
4.9094999
99999999

5

24.8353805
0.05906239
999999996

-
4.87996879

9999999
1

24.894
44289
99999

86.689
84510
00000

009-

2
3.0905000
00000000

28.4733804
99999998

21.9731615
99999997

7.89608079
9999998

98

5
1 -4.455 32.59405 5.8951656 -1.5074172

35.761
74040
00000

1

122.45
15855
00000
0109

10
2 -4.545 32.41405

3.34769040
0000001

-
2.87115479
99999993

2

1 -6.0005 41.0010005
0.05906239

-5.9709688999999996 41.060 163.51

11
2

-
3.9995000
00000000

45.0030005
21.9731615
99999997

6.98708079
9999998

1
06290
00000

05

16484
00000
0159

3

Table 12: Detail Schedule of Example 6.2.1

Dynamic Programming Algorithm

The weighted case of the objective G ' and G " can be formulated as:

G 'w max w x  y r (6.1)
max

i,l ,k
il ilk lk il

D1 L nl

"w
sum
 wil

k1 l1 i1

(xilk  ylkril ) (6.2)

Subjected to the Constraints (4.3) – (4.8) where wil be a weighting factor which reflect

the relative importance of balancing the sequence for part i at level l .

G 2
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max

1

l

Now, in this section we summarized an implicit enumeration dynamic programming (DP)

procedure which can optimize the problem G 'w . By definition, we have

n1 n1 nl

xilk  ylk ril  t ilp x p1k  ril t ilp x p1k

p1

n1 
p1 i1

nl t ilp  ril t ilp x p1k

p1
n

 ilp x p1k ,
p1

i1 



where

n

 ilp  t ilp  ril t ilp.

i1

Since wil  0, xilk  0 and ril  0 , then the deviation for part i of level l at stage k for

'w
max would be

 n1  n1

wil xilk  ylk ril  wil
 ilp x p1k

   ilp x p1k ,

 p1  p1

where  ilp  wililp is the measure of the weighted deviation in the usage of part i in

level l from the proportional usage per unit of product p. Let   


ilp nn1

be the matrix

where n nl is the total number of different parts and products. Each row of
l1

 corresponds to either a product or a part at the corresponding levels. The value  ilp

will be the element appearing in the 
l1

n 
 th m

 m1

ith row and the p


column of the matrix

 . The maximum norm of a vector a  a1 ,...,an  is defined to be

L

G


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11 n11 1 n1

1 n1

1

1

1

max



1

 max a
1 1in i . Then the objective function 'w

max can be written as 'w
max  max X k

k

where X k 11k ,..., x n11k  is the cumulative, level 1 production vector through the first k

stages. Let the demand vector at level 1 be d  d ,...,d  d ,..., d  and the states in

a sequence be X  x ,..., x 

with

n

X  xi ,
i1

i  1,..., n1 where xi is the cumulative

production of product i , x i  d i . Let ei  0,...,1,...,0 be the unit vector with

n entries all of which are zero except for a single 1 in the ith row. Let X  be the

minimum value of the maximum deviation for all parts and products over all partial

sequences which lead to state X. The norm X represents the maximum deviation of

actual production from desired one over all products and parts in state X at stage k  X .

The following DP recursion holds for X  (cf. [22], see also [13]):

Ø  X : X  0  0
X   x ,..., x  minmaxX  e , X : i  1,...,n ;

x 1.
(6.3)

1 n1 i i 1 1 i

It can be observed that X ≥ 0 and X : X  d   0 for any state X.

Theorem 6.3.1 [22] The DP Recursion (6.3) solves the MMJITSP G 'w in

 n1 
On1n d i 1 Time and
 i1 


 n1 

On1n d i 1 Space.
 i1 

G G

 x

a ,
1
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7 CONCLUSION

In this dissertation, the MMJITSP with respect to different mathematical models and

sequencing approaches developed till date have been analyzed. The mathematical

formulations of the MMJITSP in scheduling theory are in the more challenging non-

integer programming form. It is because the linear case of the integer programming has

already been NP-hard. We implement some of the algorithms and heuristics both for

single-level and multi-level JIT sequencing problem to obtain the cyclic sequences by

which the computational complexity is significantly reduced. Our study shows that the

MMJITSP has real world like existing application as well as in operating system.

When selecting a schedule for a mixed-model multi-level production system, is to keep a

constant rate of usage for every part used by the system. In this dissertation we studied a

theoretical basis of doing this. A mathematical model is explored and analyzed. Two

scheduling heuristics of Miltenburg and Sinnamon are implemented and we give an

example of it (cf. Example 6.2.1). Another heuristic called GCM to sum-deviation ORVP

and dynamic programming approach both for sum-deviation and max-deviation ORVP

are studied and explored.

The different solution approaches such as nearest integer point, dynamic programming,

cost assignment and earliest due date algorithms for sum deviation PRVP are

implemented with optimal cyclic solutions for some particular instances. Likewise, min-

max absolute-chain and earliest due date algorithms are implemented to sequence

products under the min-max objective for a pre-specified threshold value. The modified

proof of the existence of cyclic solutions to min-max absolute problem is presented (cf.

Theorem 5.1.3)

Most of the PRVP Just-in-Time problem had been efficiently solved by pseudo-

polynomial algorithms depending on the input size of the demands; their complexity

status is not yet clear. Even the basic min-max absolute deviation problem is Co-NP but it
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is still open whether the problem is Co-NP-Complete or polynomial solvable.

ORVPs even with two levels are strongly NP-hard; however the developments of

approximation procedures like GCM and dynamic programming procedure provide an

interest to the researchers for the further improvements. But the problem, under the

assumption that the products require approximately the same number and mix of parts or

the pegging assumptions (single-level) is solvable.

The relation between optimal sequences of the min-sum and min-max problem will be

the foremost topic for the further investigation and to determine an algorithm which

simultaneously optimizes both min-sum and min-max objectives will be the most

interesting topic for the research.

Cyclic JIT sequences for PRVP are optimal and existence of such sequences considerably

reduces the computational effort. The question, whether cyclic sequences to ORVP are

optimal, is still open.
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