Chapter 1

INTRODUCTION

Just-in-Time (JIT) is defined as "a philosophy of manufacturing based on planned elimination of all waste and on continuous improvement of productivity". It also has been described as an approach with the objective of producing of the right product in the right place at the right time. Waste results from any activity that add cost without adding value, such as the unnecessary moving of materials, the accumulation of excess inventory, or the use of faulty production methods that create products requiring subsequent rework. JIT should improve profits and return on investment by reducing inventory levels (increasing the inventory turn over rate), reducing variability, improving product quality, reducing other costs (such as those associated with machine setup and equipment breakdown). In a JIT system, underutilized (excess) capacity is used instead of buffering inventories to hedge against problems that may arise.

The primary characteristics differentiating JIT system from conventional systems is that subsequent processes within the manufacturing system "pull" their part requirements from the preceding processes. This pull process results in the production of only the required parts in the required quantities at the required time, Miltenburg et al [21] and Monden [23]. Necessarily, the final assembly process becomes the primary focus for control in JIT manufacturing. The most important goal for a JIT production system is to ensure that the quantity of each part used by the assembly process is kept as close to constant as possible per unit time, Monden [23]. Determining the sequence of final assembly which achieves this goal is commonly referred to in the literature as leveling or balancing the schedule, Hall [9]. A balance schedule minimizes the variability in the production rate of all parts and products within the JIT system. This reduces the possibility of "shock waves" caused by sudden increases in part requirements, which may result in shortages, or by sudden decreases, which may create excessive inventories.

Determining a balanced schedule is the corner stone of the Toyota production system, Monden [23]. To construct such a schedule, Toyota has employed a heuristic procedure known as Goal Chasing Method. For most industrial applications, however, determining an optimal balanced schedule is a very difficult combinatorial problem, Kubaik [15] and Kubaik et al [17].

A considerable amount of research into balanced schedule problems has been undertaken during the past decade. Although much of the interest into JIT manufacturing was spurred on by the description of the Toyota production system Monden [23], the catalyst for balanced schedule research was the seminal work of Miltenburg [21]. Miltenburg [21] transformed Toyota's balanced schedule problem into a nonlinear integer programming problem. The objective of this formulation was to determine the sequence of final assembly which minimize the 'sum of deviations' (min-sum) of actual production from the desired quantity of production. This original model as subsequently extended to multi-level assembly systems where the implied part demands for the outputs from feeder processes were also considered when fixing the sequence of final products assembly, Miltenburg et al [21] [20]. Beside this, several heuristics procedures have been proposed for solving balanced schedule, Inman and Bulfin [11], and Jost [12].

A dynamic programming algorithm for optimizing the single-level (i.e. product level), min-sum problem was provided by Miltenburg et al [22]. Kubaik and Sethi [16] demonstrated that the objective function can be represented by penalties for deviation from the most even but unrealizable (i.e. fractional) distribution of demand and that if these penalty functions are non-negative and convex, then this problem can be reduced to an assignment problem. Steiner \& Yeomans [25] formulated an efficient graph-theoretic optimization algorithm for minimizing the maximum (min-max) absolute deviation of actual production from the desired quantity of production. A procedure for generating several Pareto optimal solutions to the problem combining both the min-sum and min-max objectives is described in Steiner \& Yeomans [25]. Kubaik [15] and Kubaik et al. [17] proved
that balanced schedule problems with two or more productions levels are NPhard. Optimization algorithms for both min-sum and min-max multi-levels problems appear in Kubaik et al. [17]. Beside this, Miltenburg [21] considers the quantity of each part used by mixed model assembly line per unit time should be kept as constant as possible. Beside this, an efficient algorithm for obtaining an optimal solution for maximum absolute-deviation objective in single level with chain constrained had been developed by Dhamala [5]. Kovalyov, Kubiak, and Yeomans [13], have observed the computational complexity of balanced JIT optimization algorithm and showed that most of single-level JIT problems could be efficiently solvable. Similar analytical study had been done by Dhamala and Khadka [6].

This dissertation has been organized as follows. Chapter 2 explains some fundamental concepts of Computational Complexity Theory, Complexity Classes and Scheduling and its related problems. Chapter 3 briefly describes the mixed model production system. It also studied different mathematical models for mixed model JIT problems for single and multi-levels problems.

Chapter 4 explores the solution procedure for min-sum PRVP. Different algorithms for the solution are described in this chapter. The EDD Algorithm to find optimal solution for min-sum problem is reviewed. The nearest integer point method to find a solution for min-sum problem is included. Cost assignment approaches for min-sum PRVP is described. Dynamic Programming approach to solve the min-sum problem, which is found fruitful for large size problem, is illustrated. Moreover, an algorithm so called min-sum absolute chain algorithm with extended EDD is also presented. Chapter 5 considers the combination of different non-overlapping chains to find out all possible sequences from the input chain sequences. Moreover, an attempt to find the best sequence among them is done. Chapter 6 has concluded this study with some remarkable achievements like combining different non-overlapping chains and explores optimal sequence with minimum cost value in mixed-model JIT production system.

Chapter 2

FUNDAMENTAL CONCEPTS

2.1 Turing Machine

Turing Machine is basic abstract symbol-manipulating device which, despite their simplicity, can be adapted to simulate the logic of any computer algorithm. It was described in 1936 by Alan Turing. Turing Machine is not intended as a practical computing technology, but a thought experiment about the limits of mechanical computation. Thus, it was not actually constructed. Studying its abstract properties yields many insights into computer science and complexity theory.

A Turing Machine that is able to simulate any other Turing Machine is called a Universal Turing Machine (UTM, or simply a universal machine). A more mathematically-oriented definition with a similar "universal" nature was introduced by Alonzo Church, whose work on lambda calculus intertwined with Turing's in a formal theory of computation known as the Church-Turing thesis. The thesis states that Turing machines indeed capture the informal notion of effective method in logic and mathematics, and provide a precise definition of an algorithm or 'mechanical procedure'. Some of the examples of Turing Machine are: Turing's very first machine, Copy routine, 3 -state busy beaver, etc.

2.2 Computational Complexity

Computational complexity theory is a branch of the theory of computation in computer science that investigates the problems related to the resources required to run algorithms, and the inherent difficulty in providing algorithms that are efficient algorithms for both general and specific computational problems. Complexity theory attempts to describe how difficult it is for an algorithm to find a solution to a problem. This differs from computability theory, which describes whether a problem can be solved at all. Furthermore, much of complexity theory
deals with decision problems. A decision problem is one where the answer is always "yes" or "no". Some problems are undecidable, or at least seem so, so complexity theory can be used to distinguishes problems where it is certain to get a correct "yes" or "no" (not necessarily both). A problem that reverses which can be relied upon is called a complement of that problem. Complexity theory analyzes the difficulty of computational problems in terms of many different computational resources. A problem can be described in terms of many requirements it makes on resources: time, space, randomness, alternation, and other less-intuitive measures (vague).

2.3 Function

Functions play a fundamental role in all areas of mathematics, as well as in other Sciences, Information Communication Technology and Engineering. However, the intuition pertaining to functions, notation, and even the very meaning of the term "function" varies among the fields. More abstract areas of mathematics, such as set theory, consider very general types of functions that may not be specified by a concrete rule or be governed by familiar principles. In the most abstract sense, the distinguishing feature of a function is that it relates exactly one output to each of its admissible inputs. Such functions need not involve numbers. For example, a function might associate each member of a set of words with its own first letter.

Given two sets A and B , a function f is a binary relation on $A \times B$ such that for all $a \in A$, there exists precisely $b \in B$ such that $(a, b) \in f$. The set A is called domain of f, and the set B is called co-domain of f. We write $f: A \rightarrow \mathrm{~B}$ and if $(a, b) \in f$, we write $b=f(a)$, since b is uniquely determined by choice of a. Two functions f and g are equal if they have the same domain and co-domain and if, for all a in the domain, $f(a)=g(a)$. A finite sequence of length n is a function f whose domain is the set of n integers $\{0,1,2, \ldots, n-1\}$. Finite sequence is denoted by listing its values: $\{f(0), f(1), f(2), \ldots, f(n-1)\}$. An infinite sequence is a function whose
domain is set of N natural numbers. For example, the Fibonacci sequence, defined by recurrence, is the infinite sequence $\{0,1,1,2,3,5,8, \ldots$.$\} .$

2.4 Complexity Classes

In computational complexity theory, a complexity class is a set of problems of related complexity. A typical complexity class has a definition of the form: the set of problems that can be solved by abstract machine M using $O(f(n))$ of resource R (n is the size of the input).A complexity class is the set of all the computational problems which can be solved using a certain amount of a certain computational resources. There are several complexity classes in the theory of computation. Some of the major classes are discussed below.

2.4.1 Class P

The complexity class P is the class of decision problems that can be solved by a deterministic machine in polynomial time. This class corresponds to an intuitive idea of the problems which can be effectively solved in the worst cases.

Example 2.1 The problem of sorting n numbers can be done in $O\left(n^{2}\right)$ time using the quick sort algorithm in worst case. Thus all sorting problems are in P.

2.4.2 Class NP

The complexity class NP is the set of decision problems that can be solved by a non-deterministic Turing machine in polynomial time. This class contains many problems that people would like to be able to solve effectively, including the Boolean satisfiability problem, the Hamiltonian path problem and the vertex cover problem. All the problems in this class have the property that their solutions can be checked efficiently.

Example 2.2 A vertex cover of an undirected graph $G=(V, E)$ is a subset of V ' $\subseteq \mathrm{V}$ such that if $(\mathrm{u}, \mathrm{v}) \in \mathrm{E}$, then $\mathrm{u} \in \mathrm{V}^{\prime}$ and $\mathrm{v} \in \mathrm{V}^{\prime}$ or both. That is, each edge
touches at least one vertex V^{\prime}. The vertex-cover problem is to find such a vertex cover of minimal cardinality. This problem is in NP.

2.4.3 NP-Complete

In computational complexity theory, the complexity class NP-complete (abbreviated NP-C or NPC, NP standing for Nondeterministic Polynomial time) is a class of problems having two properties:
> Any given solution to the problem can be verified quickly (in polynomial time); the set of problems with this property is called NP.
$>$ If the problem can be solved quickly (in polynomial time), then so can every problem in NP.

2.4.4 NP-Hard

NP-hard (nondeterministic polynomial-time hard), in computational complexity theory, is a class of problems informally "at least as hard as the hardest problems in NP." A problem H is NP-hard if and only if there is an NP-complete problem L that is polynomial time Turing-reducible to H . In other words, L can be solved in polynomial time by an oracle machine with an oracle for H . Informally we can think of an algorithm that can call such an oracle machine as subroutine for solving H , and solves L in polynomial time if the subroutine call takes only one step to compute.

2.4.5 P=NP Question

The question of whether $\mathrm{NP}=\mathrm{P}$ (can problems that can be solved in nondeterministic polynomial time also always be solved in deterministic polynomial time?) is one of the most important open questions in theoretical computer science and ultra modern mathematics because of the wide implications of a solution. If the answer is yes, many important problems can be shown to have more efficient
solutions that are now used with reluctance because of unknown edge cases. These include various types of integer programming in operations research, many problems in logistics, protein structure prediction in biology, and the ability to find formal proofs of pure mathematics theorems. The $\mathrm{P}=\mathrm{NP}$ problem is one of the Millennium Prize Problems proposed by the Clay Mathematics Institute the solution of which is a US $\$ 1,000,000$ prize for the first person to provide a solution.

2.4.6 NP- Incomplete

Incomplete problems are those in NP that are neither NP-complete nor in P. In other words, incomplete problems can neither be solved in polynomial time nor are they hard problems. It has been shown that if $\mathrm{P}=\mathrm{NP}$ is found false then there exist NP-incomplete problems.

2.4.7 Co-NP

$\mathrm{Co}-\mathrm{NP}$ is the set containing the complement problems (i.e. problems with the yes/no answers reversed) of NP problems. It is believed that the two classes are not equal; however it has not yet been proven. It has been shown that if these two complexity classes are not equal, then it follows that no NP-Complete problem can be in co-NP and no co-NP-Complete problem can be in NP.

2.5 Graph and Matching Problems

A graph G is a pair $G=(V, E)$, where V is finite non-empty set of nodes(vertices) and $\mathrm{E} \subseteq \mathrm{V} X \mathrm{~V}$ is a relation set of ordered pairs (u, v). An edge between two vertices is denoted by $[u, v]$, consists of pairs (u, v) and (v, u) in the set E. A pair $(u, v) \in E$ is called an arc if pair $(v, u) \notin E$. If all pairs in E are arcs, the graph G is called directed graph. Graph G is called an undirected graph if all pairs in E are edges.

Let $G=(V, E)$ be a graph in which vertex set V can be portioned into two disjoint sets, V_{1} and V_{2}, and each edge in E has one vertex in V_{1} and another in V_{2}. In such case G is called bipartite graph. Bipartite graph is denoted by $\mathrm{G}=$ $\left(V_{1} \cup V_{2}, E\right)$. Otherwise the graph is called non-bipartite graph.

A graph $G=(V, E)$ is called a complete graph if $[u, v] \in E$ for all $u, v \in V$ with $\mathrm{u} \neq \mathrm{v}$. A bipartite graph $\mathrm{G}=\left(\mathrm{V}_{1} \cup \mathrm{~V}_{2}, E\right)$ is called complete bipartite graph if each $u \in V_{1}$ is joined to each $v \in V_{2}$. A graph $G=(V, E)$ with a function $w: ~ E \rightarrow Z$ is called an edge-weighted graph, where Z is usually the set of positive integers.

Given a graph $G=(V, E)$, a matching M in G is a subset of the edge set E with the property that no two edges of M share the same node. A matching M in Graph G is called a maximum matching if no matching in G exists with cardinality more than that of M . The largest possible cardinality of a matching in a graph with $|\mathrm{V}|$ nodes is $\lfloor|V| / 2\rfloor$. When the cardinality of a matching M in a graph $G=(V, E)$ is $\lfloor|\mathrm{V}| / 2\rfloor$, M is called complete graph or perfect matching.

2.6 Scheduling

Definition of Scheduling and its components are described in different literatures in different ways. According to Pinedo," scheduling concerns the allocation of
limited resources to tasks over time. It is a decision-making process that has a goal the optimization of one or more objective", Pinedo [24].

In the words of Carlier and Chretienne [4], "Scheduling is to forecast the processing of a work by assigning resources to tasks and fixing their start times. The different components of scheduling problem are the tasks, the potential constraints, the resources and the objective function. The task must be programmed to optimize a specific objective function. Beside this, sometimes it will be more realistic in practice to consider several criteria", Carlier et al [4]. Furthermore, it is a decision-making problem that plays an important role in most manufacturing and service industries. Scheduling is applied in procurement and production, in transportation and distribution, and in information processing and communication. A scheduling problem typically uses mathematical optimization techniques or heuristic methods to allocate limited resources to the processing of tasks.

In order to determine satisfactory or optimal schedules, it is helpful to formulate the scheduling problem as a mathematical model. Such a model typically describes a number of important characteristics. One characteristic specifies the number of machines or resources as well as their interrelationships with regard to the configuration, for example, machines set up in series, and machines set up in parallel. A second characteristic of a mathematical model concerns the processing requirements and constraints. These include setup costs and setup times, and precedence constraints between various activities. A third characteristic has to do with the objective that has to be optimized, which may be a single objective or a composite of different objectives. For example, the objective may be a combination of maximizing throughput (which is often equivalent to minimizing setup times) and maximizing the number of orders that are shipped on time.

2.6.1 Machine Environment

There can be a single machine, multiple machines, or in some situation, the number of machines may be unknown in advance. The simplest machine environment is the single machine environment, on which each n job J_{i}, each consisting of single operation, have to spend a processing time equal to their given processing requirements $\mathrm{P}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, \mathrm{n}$. In case of multiple machine environments, Blazewicz [1], a job Ji, is a set of n_{i} number of operations, O_{i}. It is not necessary that an arbitrary operation of an arbitrary job can be processed in an arbitrary machine: this restriction inspires to classify the multiple machine environments into two categories: Parallel machine and Dedicated machine.

In parallel machine model, an arbitrary operation O_{i} of an arbitrary job J_{i} can be executed in an arbitrary machine M_{j}. Simply, any machine can execute any operation of any job.

In dedicated machine model, there is a restriction on operations: operations executable on machines is constrained. To be specific, dedicated machine environment has been classified into three categories, viz., flow shop, open shop and job shop.

2.6.2 Some Application Areas of Scheduling

The application of scheduling is seen in diversified sectors of activity. Some application areas in computer science and engineering are described below.

2.6.2.1 Production Scheduling

Scheduling is an important tool for manufacturing and engineering, where it can have a major impact on the productivity of a process. In manufacturing, the
purpose of scheduling is to minimize the production time and costs, by telling a production facility what to make, when, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce costs.

Production scheduling tools greatly outperform older manual scheduling methods. These provide the production scheduler with powerful graphical interfaces which can be used to visually optimize real-time work loads in various stages of production, and pattern recognition allows the software to automatically create scheduling opportunities which might not be apparent without this view into the data. For example, an airline might wish to minimize the number of airport gates required for its aircraft, in order to reduce costs, and scheduling software can allow the planners to see how this can be done, by analyzing time tables, aircraft usage, or the flow of passengers.

2.6.2.2 Operation System Design Scheduling

Scheduling is a key concept in computer multitasking and multiprocessing operating system design, and in real-time operating system design. In modern operating systems, there are typically many more processes running than there are CPUs available to run them. Scheduling refers to the way processes are assigned to run on the available CPUs. This assignment is carried out by software known as a scheduler.

In real-time environments, such as mobile devices for automatic control in industry (for example robotics), the scheduler also must ensure that processes can meet deadlines; this is crucial for keeping the system stable. Scheduled tasks are sent to mobile devices and managed through an administrative back end.

Beside this, some basic algorithms used in OS for uni-processor computers are given below.
i. First Come First Serve (FCFS): At any instance when machine is idle, select the available jobs in the order they request. When the first job enters in the system it is started immediately and allowed to run as long as it wants.
ii. Shortest Job First (SJF): At any instance when the machine is idle, select the available job having shortest expected processing time. In the case of tie the FCFS is used.
iii. Shortest Remaining Time Next (SRTN): At any instance schedule the job whose remaining time is the shortest. When a new job arrives, its time is compared with the current process' remaining time. If new job needs less time to finish than the current process, the current process is suspended and new job started. It is applicable to preemptive system.
iv. Round-Robin: Each process is assigned a time interval, called quantum, which it is allowed to run. If the process is still running at the end of the quantum, the CPU is preempted and given to another process. If the process has finished before the quantum has elapsed, the CPU switching is done when the process blocks, of course.

2.6.2.3 I/O Scheduling

I/O scheduling is the term used to describe the method computer operating systems decide the order that block I/O operations will be submitted to the disk subsystem. I/O scheduling is sometimes called 'disk scheduling'. I/O scheduling usually has to work with hard disks which share the property that there is long access time for requests which are far away from the current position of the disk head (this operation is called a seek). To minimize the effect this has on system performance, most I/O schedulers implement a variant of the elevator algorithm
which re-orders the incoming randomly ordered requests into the order in which they will be found on the disk.

2.6.2.4 Timetable Scheduling

In timetable scheduling problems, examination subjects must be slotted to certain times that satisfy several of constraints. They are NP-completeness problems, which usually lead to satisfactory but suboptimal solutions. Along with this, Timetable scheduling problems concern all educational establishments or universities, since they involve timetabling of courses assuring the availability of teachers, students and classrooms. These problems are just as much the object of studies.

2.6.2.5 Project Scheduling

Project scheduling problems comprise a vast literature. We are interested more generally in problems of scheduling operations which use several resources simultaneously (money, personnel, equipment, raw materials etc.), these resources being available in known amounts. In other words, we deal with the multiresource scheduling problem with cumulative and non-renewable resources.

2.7 Application of Just-in-Time

The followings are some of the application areas of JIT:

2.7.1 Real Time Operating System

Real Time Operating Systems are dedicated to some well-defined jobs which require very fast response time. This system must be fault-tolerant that is OS must handle the error without going to unstable stage. The execution time is the most
critical issue in real time OS and they must finish the execution of job within predefined time-boundary. In a soft-real-time system, early and tardy jobs degrade the quality of the output, while in a hard-real-time system; such jobs make the output invalid. An introduction for real-time scheduling problem in computer system is explained in [27].

2.7.2 Scheduling in Operating System

Scheduling is the key to multiprogramming. Its role is to assign processes to be executed so that some criteria on efficiency are met. Scheduling theory is excessively used in computer manufacturing to schedule the jobs in CPU, memory, printing buffer and other devices for processing jobs. The multiprogramming characteristic of computer is due to the good scheduling of jobs in the CPU because the CPU can only process the job at a time. In this case the objective function is to maximize the CPU utilization (see [28]).

2.7.3 Just-in-Time Compilation

In computing, Just-in-Time, also known as dynamic translation for improving the runtime performance of a computer program. It converts, at runtime, code from one format into another, for example bytecode into native machine code. The performance improvement originates from caching the results of translating blocks of code, not simply evaluating each line or operand separately, or compiling the code at development time. JIT builds upon two earlier ideas in runtime environments: bytecode compilation and dynamic compilation (see Error! Reference source not found.).

2.7.4 Just-in-Time Sensor Networks

Many areas of research in sensor networks deal directly with the ability to adapt to changing conditions. This has resulted in the ability to dynamically change attributes such as routing paths, MAC protocols, program images, and duty cycling. Yet there are several sensor network optimizations and adaptations that cannot be accomplished through software changes alone. The lack of hardware capabilities or poor geographic layouts of nodes are characteristics that create upper bounds on the ability of software protocols to optimize communication and coverage capabilities. Specifically, a sensor network is deployed (either randomly or placed in a specific location), sits statically for several months collecting data, and adapts itself through various protocols. Yet this often overlooks potential optimizations gained by adding motes to the network on-demand and within seconds. This introduces a shift in the traditional outdoor, static sensor network paradigm by considering the possibilities and limitations of a rapid, just-in-time deployment (see [28]).

2.7.5 Just-in-Time to Enable Optical Networking for Grids

Many of today's compute- and data-intensive e-science applications are looking to Grid-based technologies to meet their high demands. Until recently, the Grid community focused primarily on maximizing the availability, sharing, and utilization of resources such as CPU power and storage. Now, many in the Grid community are starting to regard the network as another vital Grid resource, to be used to provide large, fast data flows with minimal latency and jitter. MCNC Research and Development Institute and North Carolina State University (NCSU) have developed a Just-In-Time control plane, signaling scheme, and various software and hardware components that are synergistic with these needs. This includes an overview of the Just-In-Time control plane and GridJIT service that has been developed for optical networks and describes several related projects (see [29]).

Chapter 3

JIT PRODUCTION SYSTEM

Just-in-time working is also known as "lean manufacturing"(simply, "Lean", is a production practice that considers the expenditure of resources for any goal other than the creation of value for the end customer to be wasteful, and thus a target for elimination). The term comes from quality management theory and the goal is to produce high quality products in the most efficient and economical way. The aim of JIT is to deliver the required production items, at the required quality in the required quantities, at the time they are needed. JIT seeks to achieve zero inventories, zero defects, zero breakdowns, elimination of non-value added activities (e.g., setups and lead times) and delivery of production items on time 100% of the time.

Just-in-time is an inventory strategy implemented to improve the return on investment of a business by reducing in-process inventory and its associated carrying costs. In order to achieve JIT, the process must have signals of what is going on elsewhere within the process. This means, that the process is often driven by a series of signals, which can be Kamban, that tell production processes when to make the next part. Kamban are usually 'tickets' but can be simple visual signals, such as the presence or absence of a part on a shelf. When implemented correctly, JIT can lead to dramatic improvements in a manufacturing organization's return on investment, quality, and efficiency.

Just-in-Time has been implemented in mixed-model assembly line or flexible assembly processes in order to increase profit by reducing cost, and have been used for controlling such flexible assembly system. The intention of these methods is to satisfy the customer demands for a variety of models without holding large inventories or incurring large shortages of the products, Dhamala and Khadka [6]. The most important optimization problem that has to be solved
for the mixed models, just-in-time systems is to determine the sequence in which different models are produced. A great deal of research has been going on JIT system Monden [23]. The quantity of each part used by the mixed-model assembly line per unit of time should be kept as constant as possible Miltenburg and Sinnamon [21]. Monden [23] states this as the most important goal of a JIT production system implemented by the Toyota Company. Toyota's so-called Goal Chasing Method, a local search heuristic, has been most popular for solving the problem. The sequences refereed to as level, balanced or fair sequences always keep the actual production level and the desired production level as close to each other as possible all the times.

The philosophy of JIT is simple - inventory is defined to be waste. JIT inventory systems expose the hidden causes of inventory keeping and are therefore not a simple solution a company can adopt; there is a whole new way of working the company must follow in order to manage its consequences. The ideas in this way of working come from many different disciplines including statistics, industrial engineering, production management and behavioral science. It is more popularized now a days because of its computer applications like real time system and networking. In the JIT inventory philosophy there are views with respect to how inventory is looked upon, what it says about the management within the company, and the main principle behind JIT. Inventory is seen as incurring costs, or waste, instead of adding value, contrary to traditional accounting. This does not mean to say JIT is implemented without awareness that removing inventory exposes pre-existing manufacturing issues. Under this way of working, businesses are encouraged to eliminate inventory that does not compensate for manufacturing issues, and then to constantly improve processes so that less inventory can be kept. Secondly, allowing any stock habituates the management to stock keeping and it can then be a bit like a narcotic. Management is then tempted to keep stock there to hide problems within the production system. These problems include backups at work centers, machine reliability, process variability, lack of flexibility of employees and equipment, and inadequate capacity among other things. In
short, the just-in-time inventory system is all about having "the right material, at the right time, at the right place, and in the exact amount", without the safety net of inventory. The JIT system has implications of which are broad for the implementers.

3.1 Kamban-an Integrated JIT System

Most Japanese manufacturing companies view the making of a product as continuous from design, manufacture, and distribution to sales and customer service. For many Japanese companies the heart of this process is the Kamban, a Japanese term for "visual record", which directly or indirectly drives much of the manufacturing organization. It as originally developed at Toyota in the 1950s as a way of managing material flow on the assembly line. Over the past three decades the Kamban process, identified as "a highly efficient and effective factory production system", has developed into an optimum manufacturing environment leading to global competitiveness.
The Japanese Kamban process of production is sometimes incorrectly described as a simple just-in-time management technique, a concept which attempts to maintain minimum inventory. The Japanese Kamban process involves more than fine tuning production and supplier scheduling systems, where inventories are minimized by supplying these when needed in production and work in progress in closely monitored. It also encourages; Industrial re-engineering, such as a 'module and cellular production' system, and, Japanese human resources management, where team members are responsible for specific work elements and employees are encouraged to effectively participate in continuously improving Kamban processes within the Kaizen concept.

3.2 Kamban-a Communication Tool in JIT Production System

Kamban has become synonymous with the JIT production system because it has become a very important tool for just-in-time production. Kamban, meaning label or signboard, is used as a communication tool in JIT system. A Kamban is attached to each box of parts as they go to the assembly line. A worker from the following process goes to collect parts from the previous process leaving a kamban signifying the delivery of a given quantity of specific parts. Having all the parts funneled to the line and used as required, the same kamban is returned back to serve as both a record of work done and an order for new parts. Thus Kamban coordinates the inflow of parts and components to the assembly line, minimizing the processes.

3.3 Push versus Pull production system

$>$ Push System: total demand is forecast, and the producer allocates ("pushes") items to user based on the expected needs of all users. Finished goods accumulate in inventory. It is known as "Produce for Forecast".
$>$ Pull System: each user requests ("pulls") items from the producer only as they are required. Units are only produced if there is demand for them. It is known as "Produce for Demand".

Current pull systems - JIT, Quick Response, Efficient Consumer Response, and Continuous Replacement.

3.4 Objective of Just-in-Time

Just-in-Time is the name used to describe a manufacturing system where the parts which are needed to complete the finished products are produced or arrive at the assembly site as they are needed.
$>$ Increasing the organization's ability to compete with others and remain competitive over the long run. The competitiveness of the firms is increased by the use of JIT manufacturing process as they can develop a more optimal process for their firms.
$>\quad$ Increasing efficiency within the production process. Efficiency is obtained through the increase of productivity and decrease of cost.
$>$ Reducing wasted materials, time and effort. Wastes that do not add value to the products itself should be eliminated. JIT helps significantly in reducing wastes.
$>\quad$ Identify and response to consumers needs. Customers' needs and wants seem to be the major focus for business now, this objective will help the firm on what is demanded from customers, and what is required of production.
$>$ Optimal quality/cost relationship. The organization should focus on zerodefect production process. Although it seems to be unrealistic, in the long run, it will eliminate a huge amount of resources and effort in inspecting, reworking and the production of defected goods.
$>$ Develop a reliable relationship between the suppliers. A good and longterm relationship between organization and its suppliers helps to manage a more efficient process in inventory management, material management and delivery system. It will also assure that the supply is stable and available when needed.
$>\quad$ Adopt the work ethnic of Japanese workers for continuous improvement. Commit a long-term continuous improvement throughout the organization. It will help the organization to remain competitive in the long run.
$>$ Plant design for maximizing efficiency. The design of plant is essential in terms of manufacturing efficiency and utility of resources.

3.5 Toyota Production System

In post-World War II Japan, the founder of Toyota, Sakichi Toyoda, his son Kiichiro Toyoda, and their chief engineer, Taiichi Ohno, developed the Toyota Production System (TPS). TPS is the philosophy that still organizes manufacturing and logistics at Toyota, including the interaction with suppliers and customers. The Toyota Production System refers to an integrated sociotechnical system that comprises its management philosophy and practices. The TPS organizes manufacturing and logistics for the automobile manufacturer, including interaction with suppliers and customers. The system is a major precursor of the more generic "Lean manufacturing". The main objectives of the TPS are to design out overburden and inconsistency, and to eliminate waste.

3.6 Lean Manufacturing

Lean Manufacturing, also called Lean Production, is a set of tools and methodologies that aims for the continuous elimination of all waste in the production process. Lean is a business system and philosophy approach to identifying and eliminating waste (non-value-added activities) through continuous process improvement by following the product at the pull of the customer. The goal of Lean is to turn continuous process improvement into a competitive weapon. Lean is all about shortening order to delivery times, lowering costs,
adding higher quality and becoming more flexible simultaneously. Lean can have immediate positive impact on a company. Lean offers many advantages in material handling, inventory, quality, scheduling, personnel and customer satisfaction.

Following are the Objectives of Lean Manufacturing.
$>$ Defects and wastage - Reduce defects and unnecessary physical wastage, including excess use of raw material inputs, preventable defects, costs associated with reprocessing defective items, and unnecessary product characteristics which are not required by customers.
$>$ Cycle times - Reduce manufacturing lead times and production cycle times by reducing waiting times between processing stages, as well as process preparation times and product/model conversion times.
$>\quad$ Inventory levels - Minimize inventory levels at all stages of production, particularly works-in-progress between production stages. Lower inventories also mean lower working capital requirements.
$>$ Labor productivity - Improve labor productivity, both by reducing the idle time of workers and ensuring that when workers are working, they are using their effort as productively as possible (including not doing unnecessary tasks or unnecessary motions).
> Utilization of equipment and space - Use equipment and manufacturing space more efficiently by eliminating bottlenecks and maximizing the rate of production through existing equipment, while minimizing machine downtime.
$>\quad$ Flexibility - Have the ability to produce a more flexible range of products with minimum changeover costs and changeover time.
$>$ Output - Insofar as reduced cycle times, increased labor productivity and elimination of bottlenecks and machine downtime can be achieved, companies can generally significantly increased output from their existing facilities.

3.7 Mixed-Model Production System

The increasing market demand for product variety forces manufacturers to design mixed- model assembly lines on which different product models can be switched back and forth and mixed together with little changeover costs. Furthermore, Mixed-model production is the practice of assembling several distinct models of a product on the same assembly line with little changeover costs and then sequencing those models in a way that smoothes the demands for upstream components.

Mixed-Model JIT assembly systems are a fundamental part of the well known "Toyota Production System". Mixed-Model assembly lines are used to produce many different products without carrying large inventories or incurring large shortages. The effective utilization of these lines requires that a schedule for assembling the different products be defined. Each product assembled on the mixed model assembly line requires variety of parts. Often these parts vary from product to product. Scheduling large lots of each product requires large lots of parts. When a part is only needed for certain products, its usage will be high when those products are being assembled and will be low otherwise. This is that Just-inTime systems wish to avoid. Just-in-Time systems only work when there is constant rate of usage of all parts. To minimize the variation of usage in each part, products will be sequenced in very small number and mix of parts. In this case we can achieve constant rate of part usage by considering only the demand rates for the products. The objective is then to schedule a constant rate of production for each product.

3.8 Mathematical Model Formulation

When production system consists of constant rate of usage of all parts, Just-intime systems are suitable. However, the variability between the actual and the ideal production due to integral nature of production appears. This leads the sequencing problem to minimize the variation so that a balanced sequence of diversified products that minimizes the earliness and tardiness penalties could be obtained in a reasonable time. Before starting problem formulation, we assume that the systems have sufficient capacity, negligible switch-over cost and production in unit time. Kubiak [14] refers to single level problem as Product Rate Variation (PRV) problem and multi level problem as Output Rate Variation (ORV) problem.

3.8.1 The PRV Problem Formulation

In Product Rate Variation (PRV) problem, Miltenburg assumes product require approximately the same number and mix of parts. This is a single level case.

Let D units of n products be produced to meet the demands d_{i} where $i=1,2, \ldots, n$ and $\mathrm{D}=\sum_{i=1}^{n} \mathrm{~d}_{\mathrm{i}}$ during a specified time horizon. The objective is to maintain cumulative production x_{ik}, a non-negative integer, $\mathrm{i}=1,2, \ldots, \mathrm{n}$ and $\mathrm{k}=1,2, \ldots, \mathrm{D}$ of product i during time period 1 through k as close to ideal production kr_{i}, a nonnegative rational number, $\mathrm{i}=1,2, \ldots$, n and $\mathrm{k}=1,2, \ldots, \mathrm{D}$ with $\mathrm{r}_{\mathrm{i}}=d_{i} / D$ with $\sum_{i=1}^{n} \mathrm{r}_{\mathrm{i}}$ $=1$ as possible. The specified time horizon is portioned into D equal times of which one unit time is required for a unit of a product to be produced.

The mathematical model of the PRV problem P_{1} is as follows:
$\operatorname{minimize}\left[F={ }_{i, k}^{\max } f_{i}\left(x_{i, k}-k r_{i}\right)\right]$
and
$\operatorname{minimize}\left[G=\sum_{k=1}^{D} \sum_{i=1}^{n} f_{i}\left(x_{i, k}-k r_{i}\right)\right]$
subject to
$\sum_{i=1}^{n} x_{i, k}=\mathrm{k}, \quad \mathrm{k}=1,2, \ldots, \mathrm{D}$
$x_{i, k-1} \leq x_{i, k}, \mathrm{i}=1,2, \ldots, \mathrm{n}$ and $\mathrm{k}=1,2, \ldots, \mathrm{D}$
$x_{i, D} \leq \mathrm{d}_{\mathrm{i}} ; x_{i, 0}=0, \mathrm{i}=1,2, \ldots, \mathrm{n}$
$x_{i, k} \geq 0$, integer

The constraint (3.3) shows that exactly k units of products are produced in the periods 1 through k. (3.4) states that the total production is a non-decreasing function of k. (3.5) guarantees the demands are met exactly. (3.3), (3.4) and (3.6) ensure that exactly one unit of a product is sequenced during a time unit.

This model minimizes the perennial objective functions, the bottleneck measure of deviation F that produces smooth sequence in every time unit and the total measure of deviation G (for min-sum) that produces smooth sequence on the average Jost [12].

The exact complexity of the PRV problem still remains open. The problem has been proven to be Co-NP but remains open whether Co-NP-complete or polinomially solvable, Brouner and Crama [2].

3.8.2 The ORV Problem Formulation

The production system consists of hierarchy of several distinct production levels such as products, sub-assemblies, component parts, raw materials, etc. A mixed model multi-level problem falls under ORV problem. Consideration of part demand rate reduces problems into the ORV problem.

Fig: Mixed-Model Multi-Level Production System

Consider L different production levels $l ; l=1,2, \ldots, L$; where level 1 is the final assembly line. For each $l=1,2, \ldots, L$; let there be n_{l} different part types with demands $d_{i l} ; i=1,2, \ldots, n_{l}$. Let $t_{i l p}$ denote the total number of units of output i at
level l required to produce one unit of product $p ; p=1,2, \ldots, n_{1}$ so that the dependent demand for part i of level l determined by the final product demands $d_{p 1}$ is $d_{i l}=\sum_{p=1}^{n_{1}} t_{i l p} d_{p 1}$. We see that $t_{i 1 p}=1$ for $i=1$ and 0 otherwise. For each $l=1,2, \ldots, L$; let $D_{l}=\sum_{i=1}^{n_{l}} d_{i l}$ be the total output demand of level l. The demand ratio for part i at level l is $r_{i l}=\frac{d_{i l}}{D_{l}}$ for each $i=1,2, \ldots, n_{l}$ and we have $\sum_{i=1}^{n_{l}} r_{i l}=1$ for each $i=1,2, \ldots, n_{l}$.

A copy of a product (model) is said to be in stage $k ; k=1,2, \ldots, D_{1}$ if k units of products have been produced at level1. The product level (level1) has a time horizon of D_{1} units and there will be k units of various products p, completely produced, at level 1 during the first k stages. Let the cumulative production of part i at level l during the first k stages be denoted by $x_{i l k}$ so that the total quantity of various parts produced at level l during the first k stages is $y_{l k}=\sum_{i=1}^{n_{l}} x_{i l k}$ units. We have $y_{1 k}=\sum_{i=1}^{n_{1}} x_{i l k}=k$ at level1. In fact, $x_{i l k}=\sum_{p=1}^{n_{1}} t_{i l p} x_{p 1 k}$ must hold for $l \geq 2$.

With these notations, the constraints and various objectives for mixed model multi-level JIT assembly systems are formulated as the following [19].

For each $i=1,2, \ldots, n_{l}$; let $f_{\text {il }}$ be a unimodal, symmetric, convex function with $f_{i l}(0)=0$, minimum. Then the mixed model multi-level JIT scheduling problem defined by (3.7) is to minimize one of the objectives:

$$
\begin{equation*}
G_{\max }=\max _{i, l, k} f_{i l}\left(x_{i l k}-y_{l k} r_{i l}\right) \tag{3.7}
\end{equation*}
$$

and $\quad G_{\text {sum }}=\sum_{k=1}^{D_{1}} \sum_{l=1}^{L} \sum_{i=1}^{n_{l}} f_{i l}\left(x_{i l k}-y_{l k} r_{i l}\right)$

Subject to the constraints

$$
\begin{array}{ll}
x_{i l k}=\sum_{p=1}^{n_{1}} t_{i l p} x_{p 1 k}, & i=1,2, \ldots, n_{l} ; l=1,2, \ldots, L ; k=1,2, \ldots, D_{1} \\
y_{l k}=\sum_{i=1}^{n_{l}} x_{i l k}, & l=2, \ldots, L ; k=1,2, \ldots, D_{1} \\
y_{1 k}=\sum_{i=1}^{n_{1}} x_{i 1 k}=k, & k=1,2, \ldots, D_{1} \\
x_{p 1 k} \geq x_{p 1(k-1)}, & p=1,2, \ldots, n_{1} ; k=1,2, \ldots, D_{1} \\
x_{p 1 D_{1}}=d_{p 1}, x_{p 10}=0, & p=1,2, \ldots, n_{1} \\
x_{i l k} \geq 0, \text { integer, } & i=1,2, \ldots, n_{l} ; l=1,2, \ldots, L ; k=1,2, \ldots, D_{1} . \tag{3.14}
\end{array}
$$

Constraint (3.9) indicates that the necessary cumulative production of part i of level l by the end of stage k is determined explicitly by the quantity of products produced at product level. Constraints (3.10) and (3.11) compute the total cumulative production at level l and level1, respectively, during the first k stages. Constraint (3.12) shows that the total production of every product over k stages is a non-decreasing function of k. Constraint (3.13) ensures that the production requirements for each product are met exactly. Constraints (3.11), (3.12) and (3.13) indicate that exactly one unit of a product is to be produced in the product level during each stage. ORV problems are NP-hard in general. Two level ORV problems can be solved in pseudo-polynomial time.

Chapter 4

SOLUTION PROCEDURE FOR PRV PROBLEM

The PRV problem is an important production problem that arises on mixed-model assembly lines. The minsum PRV problem consists in sequencing units of different types minimizing the sum of discrepancy functions between the actual and ideal production rates. This problem can be reduced to Assignment Problem (AP) with a matrix of a special structure.

4.1 Release Date/Due Date Decision Problem

To handle large integer programming problems, general solution techniques are not sufficient. A special solution procedure is developed for the specific problem under considerations, Miltenburg [19]. Denote a target value for the objective function by the variable B. The goal is to determine the smallest possible B for which a sequence can be created for each $j(i)$ has a completion time k, such that $\mathrm{f}_{\mathrm{j}}^{\mathrm{i}}(\mathrm{k}) \leq B$ for $\mathrm{k} \in\left[\mathrm{k}_{\mathrm{j}},\left(\mathrm{k}_{\mathrm{j}+1}-1\right)\right]$. For target value $B, \mathrm{j}(\mathrm{i})$ can not start before $\mathrm{k} \leq 1$ if $\mathrm{g}_{\mathrm{j}}{ }^{\mathrm{i}}$ $-\mathrm{j}-\mathrm{kr}_{\mathrm{i}}>B$ and can start k if $\mathrm{f}_{\mathrm{j}}^{\mathrm{i}}(\mathrm{k}+1)=\mathrm{j}-(\mathrm{k}+1) \mathrm{r}_{\mathrm{i}} \measuredangle B$. Therefore, any fixed target value B allows the calculation of a release date and a due date for a specific copy of a product. For a given B early and late starting dates can be calculated for each copy of each product in a one pass procedure and, hence, can be constructed in O(D) time.

The earliest starting time $E(\mathrm{i}, \mathrm{j})$ for (i, j) must be the unique integer satisfying $\frac{j-B}{r_{i}}-1 \leq E(i, j)<\frac{j-B}{r_{i}}$ and latest starting time $L(\mathrm{i}, \mathrm{j})$ of (i, j) must be the unique integer satisfying $\frac{j-1+B}{r_{i}}-1<L(i, j) \leq \frac{j-1+B}{r_{i}}$. This provides the formulae:
$E(i, j)=\left\lceil\frac{j-B}{r_{i}}-1\right\rceil$
and
$L(i, j)=\left\lfloor\frac{j-1+B}{r_{i}}\right\rfloor$
For a given B, we can determine $E(i, j)$ and $L(i, j)$ for all i and for all j in $O(D)$ time.

4.2 Earliest Due Date Algorithms

In this section we describe a graph theoretic approach for solving the maxabs problem, Steiner and Yeomans [25]. In this procedure, decision version of the problem with certain target value for objective as a threshold value, is reduced to a perfect matching problem in a bipartite graph. Then Glover's modified EDD rule is used for the matching problem to decide whether the decision problem has 'yes' answer. Then an optimal solution is obtained by using the matching problem and bisection search within the bounds for target value after determination of the bounds, Steiner and Yeomans [25].

4.2.1 Perfect Matching Problem and EDD Rule

For a given target value B as threshold value for decision problem, determine $E(i, j)$ and $L(i, j)$ for all i and for all j according to (4.1) and (4.2). Define the bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$;

Where, $V_{1}=\{0,1,2, \ldots, D-1\}, \quad V_{2}=\left\{(i, j) \mid i=1,2, \ldots, n ; j=1,2, \ldots, d_{i}\right\} \quad$ and $(k,(i, j)) \in E$ if and only if $k \in[E(i, j), L(i, j)]$ i.e. if and only if (i, j) may start at time k. Then the bipartite graph G is V_{1}-convex. Here finding a feasible sequence for problem (4.1) is analogous to finding a perfect matching in G such that lower numbered copies of a product are matched to earlier starting times than higher numbered copies. Such a matching is called Order Preserving.

4.2.2 EDD for min-sum-sqr

Inman and Bulfin [11] define the ideal position for copy (i, j) as

$$
k_{i, j}=\frac{2 j-1}{2 r_{i}}=\left[\frac{\left(j-\frac{1}{2}\right) D}{d_{i}}\right]
$$

Let $Z_{i, j}$ denotes the time at which copy (i, j) actually produced. Then, Inman and Bulfin [11] consider the following problem:

Minimize $\quad \sum_{i=1}^{n} \sum_{j=1}^{d_{i}}\left(Z_{i, j}-k_{i, j}\right)^{2}$

Subject to

$$
\begin{array}{ll}
Z_{i, j} \leq Z_{i,(j+1)}, & i=1, \ldots, n ; \quad j=1, \ldots, d_{i}-1 \\
1 \leq Z_{i, j} \leq D, & i=1, \ldots, n ; \quad j=1, \ldots, d_{i} \\
Z_{i, j} \neq Z_{i^{\prime}, j^{\prime}}, & (i, j) \neq\left(i^{\prime}, j^{\prime}\right) \\
Z_{i, j} \in \mathrm{~W}, & i=1, \ldots, d_{i} \tag{4.7}
\end{array}
$$

Constraint (4.4) ensures that the production time of each copy of a product type i is a strictly increasing function of each copy j . Constraint (4.5) guarantees that the production time of any copy of any product lies in the internal [1...D].

Constraint (4.6) is the only linking constraint and is not in the standard integer programming format and it specifies that only one copy of any product type can be produced in each period. By defining $k_{i j}$ as the due-date of copy (i, j) where each copy of product is treated as a separate job, Inman and Bulfin [11] observe that problem defined by (4.3) may be interpreted as a single machine scheduling problem

$$
\begin{equation*}
1\left|p_{(i, j)}=1\right| \sum_{(i, j) \in I}\left(E_{(i, j)}+T_{(i, j)}\right), \tag{4.8}
\end{equation*}
$$

where $p_{(i, j)}, E_{(i, j)}$ and $T_{(i, j)}$ respectively represents the processing time, earliness and tardiness of copy (i, j) and $I=\left\{(i, j) \mid i=1, \ldots, n ; j=1, \ldots, d_{i}\right\}$.

4.3 Nearest Integer Point Problem

This algorithm aims to minimize the total deviation or sum of all deviation of the real production from the ideal but rational production, Miltenburg [21].

Problem statement

Define the point $X_{k}=\left(x_{1}, x_{2}, \ldots \ldots \ldots x_{n},\right) \in R_{n}$ where $\mathrm{x}_{\mathrm{i}, \mathrm{k}}=\mathrm{kr}_{\mathrm{i}}, \sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}, \mathrm{k}}=\mathrm{k}$, and R is the set of real number. Problem is to find the "nearest" integer point $\mathrm{M}_{\mathrm{k}}=$ $\left(m_{1, k}, m_{2, k}, \ldots \ldots \ldots \ldots, m_{n, k},\right) \in \mathrm{Z}^{\mathrm{n}}$ to the point M_{k} where $\sum_{i=1}^{n} \mathrm{~m}_{\mathrm{i}, \mathrm{k}}=\mathrm{k}, \mathrm{Z}$ is the set of nonnegative integers and "nearest" means minimize $\sum_{i=1}^{n}\left(\mathrm{~m}_{\mathrm{i}, \mathrm{k}}-\mathrm{x}_{\mathrm{i}, \mathrm{k}}\right)^{2}$

Algorithm 1

The following algorithm finds the nearest integer point $\mathrm{M}=\left(m_{1, k}, m_{2, k}\right.$, $\left.\ldots \ldots \ldots \ldots, m_{n, k},\right) \in \mathrm{Z}^{\mathrm{n}}$ to a point $\mathrm{X}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots \ldots \ldots \mathrm{x}_{\mathrm{n}},\right) \in \mathrm{R}_{\mathrm{n}} . \quad$ where $\sum_{i=1}^{n} \mathrm{~m}_{\mathrm{i}}=\sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}}=\mathrm{k}$.

1. Calculate $\mathrm{k}=\sum_{i=1}^{n} \mathrm{x}_{\mathrm{i}}$
2. Find the nearest nonnegative integer m, to each coordinate x_{i}. That is, find m, so that $\left|m_{i}-x_{i}\right| \leq 0.5, i=1,2, \ldots \ldots \ldots \ldots ., n$.
3. Calculate $\mathrm{k}_{\mathrm{m}}=\sum_{i=1}^{n} \mathrm{~m}_{\mathrm{i}}$
a. if $k-k_{m}=0$ stop. The nearest integer point is $M=\left(m_{1}, m_{2}\right.$, \ldots, m_{n})
b. if $\mathrm{k}-\mathrm{k}_{\mathrm{m}}>0$ go to step 5 .
c. if $\mathrm{k}-\mathrm{k}_{\mathrm{m}}<0$ go to step 6 .
4. Find the coordinate x_{i}, with the smallest $\mathrm{m}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}$. Increment the value of this mi;

$$
\mathrm{m}_{\mathrm{i}} \rightarrow \mathrm{~m}_{\mathrm{i}+1} . \text { Go to step } 3 .
$$

5. Find the coordinate x_{i}, with the largest $\mathrm{m}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}$. Decrease the value of this m_{i};

$$
\mathrm{m}_{\mathrm{i}} \rightarrow \mathrm{~m}_{\mathrm{i}-1}
$$

Problem with Algorithm 1

For $\mathrm{X}=(30 / 13,30 / 13,5 / 13)$ the integer point is $(2,2,1)$. Then for $\mathrm{X}=(36 / 13$, $36 / 13,6 / 13$) the integer point is $(3,3,0)$. Production schedule is $1,2,-3$ which in impossible as production cannot be destroyed. Hence the schedule is not feasible.

Conclusion

Algorithm-1 may lead to infeasible solution.

Algorithm 2

1. Solve the problem P1 (using Algorithm 1), and determine whether the schedule is feasible. (It is feasible if $m_{i, k}-m_{i, k-1} \geq 0$ for all i, k.) If the schedule is feasible, stop. Otherwise, go to step 2.
2. For the infeasible schedule determined in step 1 , find the first (or next) stage 1 where $m_{i, 1}-m_{i, l-1}<0$. Set $\partial=$ number of product i, for which $m_{i, j}-m_{i, l-1}<0$. Reschedule stages $1-\partial, 1-\partial+1, \ldots ., 1+1$ by considering all possible sequences that begin with the schedule for stage $1-\partial-1$ and end with the schedule for stage 1 +1 .
3. Repeat step 2 for other stages where $m_{i, k}-m_{i, k-1}<0$. Then stop.

Problem with Algorithm 2

In general there are $n!/(n-\partial-2)$! possible sequences, each of length $\partial+2$, to consider for each infeasibility. While total enumeration works for small problems of this type (products where similar part requirements) it does not work well for larger problems, nor for problems where products have differing part requirements.

Algorithm 3

1. Solve problem P1 (using Algorithm-1), and determine whether the schedule is feasible. (It is feasible if $\mathrm{m}_{\mathrm{i}, \mathrm{k}}-\mathrm{m}_{\mathrm{i}, \mathrm{k}-1} \geq 0$ for all i, k.) If the schedule is feasible, stop.
2. For the infeasible schedule determine in step 1 , find the first (or next) stage 1 where $m_{i, 1}-m_{i, 1-1}<0$. set $\partial=$ number of products i, for which $m_{i, 1}-m_{i, 1-1}<0$, and beginning at stage $1-\partial$ use Heuristic 1 or Heuristic 2 to schedule stages $1-\partial$, 1 $-\partial+1, \ldots . ., 1+W$, where $\mathrm{W} \geq 0.1+\mathrm{W}$ is the first stage where the schedule determined by heuristic matches the schedule determined in step 1.
3. Repeat step 2 for other schedule determined in step 1.

Heuristic 1

For a stage k , schedule the product i with the lowest $\mathrm{X}_{\mathrm{i}, \mathrm{k}}-\mathrm{kr}_{\mathrm{i},}$.

Heuristic 2

For each stage k :

1. Set $\mathrm{h}=1$
2. Tentatively schedule products h to be produced in stage k. Calculate the variation for stage k and call it $\mathrm{V} 1_{\mathrm{h}}$
3. Schedule the product I with the lowest $\mathrm{x}_{\mathrm{i}, \mathrm{k}}-(\mathrm{k}+1) \mathrm{r}_{\mathrm{i}}$,
4. Increment $h ; h \rightarrow h+1$. If $h>n$ go to step 5 , otherwise go to step 2
5. Schedule the product h with the lowest V_{h}.

4.4 Dynamic Programming Algorithm

In this section we discuss a dynamic programming (DP) algorithm that deals with JIT production schedule in mixed model facility. The procedure has considered the joint problem with the two typical goals.

1. Usage Goal: maintaining a constant rate of usage of all items in the facility.
2. Loading Goal: smoothing the work load on the final assembly process to reduce the chance of production delays and stoppages.

In this dissertation, we mainly focus on goal 1 which is more important than goal 2, classical goal.

Let there are n products to be produced with demands $d_{1}, d_{2}, \ldots, d_{n}$ in a certain time horizon. The time to produce one unit of product i be denoted by t_{i}; $i=1,2, \ldots, n$ and put $D=\sum_{i=1}^{n} d_{i}, r_{i}=\frac{d_{i}}{D}$.

The specified time horizon be inferred into D time units and during each time period $k ; k=1,2, \ldots, D$; exactly one unit of a product should be produced. Let $x_{i, k}$ denote the total production of product i over the first k periods; where $0 \leq x_{i, k} \leq d_{i}$ for all $k=1,2, \ldots, D$. Then $\sum_{i=1}^{n} x_{i, k}=k ; k=1,2, \ldots, D$ and $x_{i, k}$ is non negative integer for all $i=1,2, \ldots, n ; k=1,2, \ldots, D$.

Suppose that the schedule for the first k stages be determined i.e. $x_{i, k}$ for $i=1,2, \ldots, n$ be known. Then the usage variability at stage k is $U_{k}=\sum_{i=1}^{n}\left(x_{i, k}-k r_{i}\right)^{2} \quad$ and the loading variability at stage k is $L_{k}=\sum_{i=1}^{n} t_{i}^{2}\left(x_{i, k}-k r_{i}\right)^{2}$.

Therefore the problem defined by (4.2) can be formulated as
$\operatorname{Minimize} \sum_{k=1}^{D}\left(\alpha_{U} U_{k}+\alpha_{L} L_{k}\right)$
Subjected to the Constraints (3.3) - (3.6)
Where α_{U}, α_{L} are relative weights for the Usage Goal and Loading Goal respectively? So the problem defined by (4.2) is a joint problem.

Let f_{k} denote the joint variability at stage k. Then

$$
\begin{aligned}
f_{k} & =\alpha_{U} \sum_{i=1}^{n}\left(x_{i, k}-k r_{i}\right)^{2}+\alpha_{L} \sum_{i=1}^{n} t_{i}^{2}\left(x_{i, k}-k r_{i}\right)^{2} \\
& =\sum_{i=1}^{n}\left(\alpha_{U}+\alpha_{L} t_{i}^{2}\right)\left(x_{i, k}-k r_{i}\right)^{2}
\end{aligned}
$$

$$
=\sum_{i=1}^{n} T_{i}^{2}\left(x_{i, k}-k r_{i}\right)^{2} ; \text { Where } T_{i}^{2}=\alpha_{U}+\alpha_{L} t_{i}^{2}
$$

Therefore the objective function of the problem defined by (5.2) takes the form:
Minimize $\sum_{k=1}^{D} \sum_{i=1}^{n} T_{i}^{2}\left(x_{i, k}-k r_{i}\right)^{2} ;$ where call T_{i}, the implied production time for period i. Now we consider the DP procedure presented by Miltenburg et al. [22].

Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the product requirements vector. Define subsets in a schedule as $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$; where x_{i} is a non negative integer representing the production of exactly x_{i} units of product $i, x_{i} \leq d_{i}$ for all i. Let e_{i} be the $i^{\text {th }}$ unit vector; with n entries, having $i^{t h}$ entry 1 and remaining all zero. A subset X can be scheduled in the first k stages if $k=|X|=\sum_{i=1}^{n} x_{i}$.

Let $f(X)$ be the minimal total variation of any schedule where the products in X are scheduled (produced) during the first k stages. Let $g(X)=\sum_{j=1}^{n} T_{j}^{2}\left(x_{j}-k r_{j}\right)^{2}$. The following $(D P)$ recursion (R1) holds for $f(X)$:

$$
\begin{aligned}
& f(X)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\min \left\{f\left(X-e_{i}\right)+g(X) \mid i=1, \ldots, n ; x_{i}-1 \geq 0\right\} \\
& f(X)=f\left(X \mid x_{i}=0 ; i=1, \ldots, n\right)=f(0,0, \ldots, 0)=0
\end{aligned}
$$

Clearly $f(X) \geq 0$ and $g\left(X \mid x_{i}=0 ; i=1, \ldots, n\right)=0$. The following theorem tells about the computational efficiency of the above procedure, Miltenburg et al. [22].

4.5 Cost Assignment Problem

Let $Z_{i j}$ denotes the period in which the copy (i, j) is produced. Then the problem defined by (3.2) can be restated as
$\operatorname{minimize} F_{\text {sum }}=\sum_{i=1}^{n}\left[\sum_{k=0}^{z_{i n}-1} f_{i}\left(0-k r_{i}\right)+\sum_{k=Z_{i 1}}^{z_{i 2}-1} f_{i}\left(1-k r_{i}\right)+\ldots+\sum_{k=Z_{i_{i}}}^{D} f_{i}\left(d_{i}-k r_{i}\right)\right]$
such that

$$
\begin{align*}
& Z_{i, j+1} \geq Z_{i j}+1, j=1, \ldots, d_{i} ; i=1, \ldots, n \tag{4.10}\\
& 1 \leq Z_{i j} \leq D, j=1, \ldots, d_{i} ; i=1, \ldots, n \tag{4.11}\\
& Z_{i j} \neq Z_{i^{\prime} j^{\prime}} \text { for }(i, j) \neq\left(i^{\prime}, j^{\prime}\right), Z_{i j} \geq 0 \tag{4.12}
\end{align*}
$$

Note that constraint (4.12) is the only linking constraint in problem defined by (4.9), which aims specify that only copy of each product can be produced in each period.
The min-sum PRVP can be reduced to an assignment problem and hence can be solved by Hungarian method. For the corresponding assignment problem, we consider the vertex sets $V_{1}=\left\{(i, j): i=1, \ldots, n, j=1, \ldots, d_{i}\right\}$ and $V_{2}=\{1, \ldots, D\}$.
We now have to calculate the appropriate costs to specify its objective function. More specifically, these costs must be such that the assignment problem with these costs has an optimal solution, which is both optimal and feasible for problem (4.9).

Let $C_{i, j, k}$ denotes the cost of assigning (i, j) to the $k^{\text {th }}$ period and let
$x_{i, j, k}= \begin{cases}1, & \text { if }(i, j) \text { is assigned to } k \\ 0, & \text { otherwise }\end{cases}$
Then the assignment problem is

$$
\begin{equation*}
\operatorname{minimize} C=\sum_{i=1}^{n} \sum_{j=1}^{d_{i}} \sum_{k=1}^{D} C_{i, j, k} x_{i, j, k} \tag{4.13}
\end{equation*}
$$

$$
\begin{align*}
& \text { such that } \sum_{i=1}^{n} \sum_{j=1}^{d_{i}} x_{i, j, k}=1, k=1, \ldots, D \tag{4.14}\\
& \sum_{k=1}^{D} x_{i, j, k}=1, i=1, \ldots, n, j=1, \ldots, d_{i} \tag{4.15}
\end{align*}
$$

Constraints on the assignment problem require that
a) For each (i, j) in V_{1} there is exactly one k in V_{2}, i.e. each copy is produced exactly once.
b) For each k in V_{2}, there is exactly one (i, j) in V_{1}, i.e. exactly one copy is produced at a time.

But Constraints (4.10) on problem defined by (4.9) requires an additional property that
c) For any two copies (i, j) and $\left(i, j^{\prime}\right)$ of a product i, with $j<j^{\prime}$, if (i, j) is produced at k and $\left(i, j^{\prime}\right)$ is produced at k^{\prime} then $k<k^{\prime}$.

4.6 Min-sum-absolute-chain Algorithm with EDD

Given:

1. chain ${ }_{1}$, chain ${ }_{2}, \ldots \ldots \ldots .$. ,........ain ${ }_{t}, \ldots \ldots . .$. chain $_{m}$ with chain constraint defined in section (4.6.1)
2. Calculate $\mathrm{d}_{\mathrm{i}}{ }^{\mathrm{t}}$ for $\mathrm{i}=1,2, \ldots \ldots \ldots \ldots \ldots \ldots, n_{t}$

$$
t=1,2, \ldots \ldots \ldots \ldots \ldots \ldots . m
$$

3. Introduce a new pseudo-job representing each chain by one job as
$\mathrm{j}_{i}^{\prime} \quad=\quad$ pseudo-job for chain ${ }_{\mathrm{i}}$

$$
\begin{aligned}
\mathrm{d}_{i}^{\prime} & =\text { demand for pseudo job } \mathrm{j}_{i}^{\prime} \\
& =\quad \text { length of chain }
\end{aligned}
$$

4. Calculate due date value for each pseudo- $\mathrm{job}_{\mathrm{j}}^{\mathrm{i}} ; \mathrm{i}=1,2, \ldots \ldots$., n by Steiner and Yeoman[25].
5. Schedule this pseudo-job j_{i} using EDD Algorithm of Horn [10].
6. Replace each pseudo-job by the real job of the respective chain such that order is preserved.

4.6.1 Chain constraints

1. Chains are non-overlapping.
2. Cyclic chains are not considered.
3. Chains are considered to be optimal sequence.

Example

Input:
Chain1: ababab
Chain 2: ccdcc

Step 1:

Pseudo Job	Demand
J1	6
J2	5

Step 2:
EDD Schedule:
J1-J2-J1-J2-J1-J2-J1-J2-J1-J2-J1

Step 3:

```
a-c-b-c-a-d-b-c-a-c-b
```


Chapter 5

IMPLEMENTING AND TESTING

The Proposed min-sum-absolute-chain algorithms mentioned in Chapter 5 has been implemented. The program scripts are written in Java Version 1.6.0. The source codes for these programs are included in Appendix. The input data set (chains) represent the demands of products in the mixed model assembly line manufacturing system.

The lists of all possible sequences for given input chains are generated. Cost for each arrangement is calculated (see Appendix for formula). Finally the most efficient chain is selected based on proposed EDD algorithm.

A. 1. Input Chain

Chain $1=$	"ab"
Chain $2=$	"cdc"

Table 1: Input Data
2. Table which includes the steps how given chains are combined.

a	ab	abc	abcd	abcdc
	ac	acb	acbd	acbdc
		acd	acdb	acdbc
			acdc	acdcb
c	cd	cdc	cdca	cdcab
		cda	cdab	cdabc
			cdac	cdacb
	ca	cab	cabd	cabdc
		cad	cadc	cadcb
			cadb	cadbc

Table 2: Combination of Chains

3. Replacement of Chain with Pseudo-Jobs

Chain	Pseudo-Job
ab	Job 1
cdc	Job 2

Table 3: Replacement of Chain with Pseudo-Jobs

4. Pseudo-job passed to EDD by Proposed-EDD

Table 4: Pseudo-job passed to EDD
5. Schedule Generated by EDD with considering the due date $\left[\frac{\left(j-\frac{1}{2}\right) D}{d_{i}}\right]$ for the $\mathbf{j}^{\text {th }}$ copy of product \boldsymbol{i} over pseudo-Jobs

Earliest Due Date			- $]$]
Product	Unit	Dje [ate	
- Pror	1	1.25	
-	2	3.75	
2	1	0.833	
-	2	2.5	
-	3	$4.16{ }^{\text {a }}$	
Schedule List:2-1.2-1-2.			

Table 5: Generation of Schedule by EDD

6. Pseudo-Job generated by EDD Replaced by Proposed-EDD

Pseudo EDD Schedule: cadbc

7. Possible Schedule List generated by Possible Scheduling Algorithm

Sequence No: 1 Evaluating Sequence: abcdc

```
Index :1 J :a pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value 2.25
Index :2 J :b pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:2.5
Index :3 J :c pos :1 R :0.4 Zval :1.25 Cur Value :3.0625 CumValue:5.5625
Index :4 J :d pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :7.8125
Index :5 J :c pos :2 R :0.4 Zval :3.75 Cur Value :1.5625 Cum Value :9.375
    Total Cost: 9.375
    Sequence No: 2 Evaluating Sequence: acbdc
Index :1 J :a pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :2.25
Index :2 J :c pos :1 R :0.4 Zval :1.25 Cur Value :0.5625 Cum Value :2.8125
Index :3 J :b pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value :3.0625
Index :4 J :d pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :5.3125
Index :5 J :c pos :2 R :0.4 Zval :3.75 Cur Value :1.5625 Cum Value :6.875
    Total Cost: 6.875
```

 Sequence No: 3 Evaluating Sequence: acdbc

Total Cost: 6.875
Sequence No: 4 Evaluating Sequence: acdcb

Index	: 1	J	: a pos : 1	R	:0.2	Zval	: 2.5	Cur	Value	:2.25	Cum	Value	:2.25
Index	: 2	J	:c pos :1	R	:0.4	Zval	:1.25	Cur	Value	:0.5625	Cum	Value	:2.8125
Index	: 3	J	:d pos : 1	R	:0.2	Zval	: 2.5	Cur	V Value	:0.25	Cum	Value	: 3.0625
Index	: 4	J	:c pos : 2	R	:0.4	Zval	: 3.75	Cur	Value	:0.0625	Cum	Value	: 3.125
Index	: 5	J	:b pos : 1	R	:0.2	Zval Tot	$: 2.5$ 1 Cost	Cur	$\begin{aligned} & \text { r Value } \\ & 9.375 \end{aligned}$	$: 6.25$	Cum	Value	:9.375
Sequence No: 5 Evaluating Sequence: cabdc													
Index	: 1	J	:c pos :1	R	:0.4	Zva	:1.25		rValue	$: 0.0625$	Cum	Value	$: 0.0625$
Index	: 2	J	:a pos :1	R	:0.2	Zva	: 2.5		urValue	:0.25	Cum	Value	:0.3125
Index	: 3	J	:b pos : 1	R	:0.2	Zva	:2.5		ur Value	:0.25	Cum	Value	: 0.5625
Index	: 4	J	: d pos : 1	R	:0.2	Zva	:2.5		ur Value	:2. 25	Cum	Value	:2.8125
Index	: 5	J	:c pos :2	R	: 0.4	Zval	:3.75		ur Value	:1.5625	Cum	Value	: 4.375

 Total Cost: 4.375
 Sequence No: 6 Evaluating Sequence: cadbc

Sequence No: 7 Evaluating Sequence: cadcb

Total Cost: 6.875
Sequence No: 8 Evaluating Sequence: cdabc

Index $: 1$	J	:c pos	$: 1$	R	$: 0.4$	Zval	$: 1.25$		Cur Value $: 0.0625$
Cum Value:0.0625									

Total Cost: 4.375

Sequence No: 9 Evaluating Sequence: cdacb

Total Cost: 6.875

Sequence No: 10 Evaluating Sequence: cdcab

Total Cost: 9.375

---Min Value---

Minimal Cost-value: 4.375
8. Minimal Possible Schedules

S.No.	Possible Sequence	Cost-Value
1	cabdc ---	4.375
2	cadbc ---	$\mathbf{4 . 3 7 5}$
3	cdabc ---	4.375

Output:

cadbc is the schedule generated by Proposed -EDD is found in Possible sequence list(Feasibility case).Moreover, this sequence is also found in list of minimal-cost sequence(Optimal case).Hence, it is shown empirically that Proposed-EDD is both feasible and optimal.

B.1.Input Chain

Chain $1=$	"aba"
Chain $2=$	"ccdcc"

Table 6: Input Data
2. Replacement of Chain with Pseudo-Job

chain	Pseudo-Job
aba	Job 1
ccdcc	Job 2

Table 7: Replacing Chain with Pseudo-Jobs

3. Pseudo-job passed to EDD by Proposed -EDD

Table 8: Pseudo-job passed to EDD
4. Schedule Generated by EDD with considering the due date $\left[\frac{\left(j-\frac{1}{2}\right) D}{d_{i}}\right]$ for the $j^{\text {th }}$ copy of product \boldsymbol{i} over pseudo-Jobs

Table 9: Generation of Schedule by EDD
5. Pseudo-Job generated by EDD Replaced by Proposed -EDD

Pseudo EDD Schedule: cacbdcac

6. Possible Schedule List generated by Possible Scheduling Algorithm
S.No. Possible Sequence Cost-Value

2	abcacdcc	36.0
3	abccadcc	20.0
4	abccdacc	16.0
5	abccdcac	14.0
6	abccdcca	16.0
7	acbacdcc	20.0
8	acbcadcc	14.0
9	acbcdacc	10.0
10	acbcdcac	8.0
11	acbcdcca	10.0
12	accbadcc	12.0
13	accbdacc	8.0
14	accbdcac	6.0
15	accbdcca	8.0

16	accdbacc	8.0
17	accdbcac	6.0
18	accdbcca	8.0
19	accdcbac	8.0
20	accdcbca	10.0
21	accdccba	16.0
22	cabacdcc	18.0
23	cabcadcc	12.0
24	cabcdacc	8.0
25	cabcdcac	6.0
26	cabcdcca	8.0
27	cacbadcc	10.0
28	cacbdacc	6.0
29	cacbdcac	4.0
30	cacbdcca	6.0
31	cacdbacc	6.0
32	cacdbcac	4.0
33	cacdbcca	6.0
34	cacdcbac	6.0
35	cacdcbca	8.0
36	cacdccba	14.0
37	ccabadcc	12.0
38	ccabdacc	8.0
39	ccabdcac	6.0
40	ccabdcca	8.0
41	ccadbacc	8.0
42	ccadbcac	6.0
43	ccadbcca	8.0
44	ccadcbac	8.0
45	ccadcbca	10.0
46	ccadccba	16.0
47	ccdabacc	12.0
48	ccdabcac	10.0
49	ccdabcca	12.0
50	ccdacbac	12.0
51	ccdacbca	14.0
52	ccdaccba	20.0
53	ccdcabac	18.0
54	ccdcabca	20.0
55	ccdcacba	26.0
56	ccdccaba	36.0

[^0]
7. Minimal Possible Schedules

S.No. Possible Sequence Cost-Value
1 cacbdcac --- 4.0
2 cacdbcac --- 4.0

Output:

cacbdcac is the schedule generated by Proposed-EDD is found in Possible sequence list(Feasibility case).Moreover, this sequence is also found in list of minimal-cost sequence(Optimal case). Hence, it is shown empirically that Proposed -EDD is both feasible and optimal.

C.1. Input Chain

Chain $1=$	"ab"
Chain2 $=$	"ccdc"
Chain3 $=$	"mnm"

Table 10: Input Data

2. Replacement of Chain with Pseudo-Job

Chain	Pseudo-Job
Ab	Job1
ccdc	Job2
mnm	Job3

Table 11: Replacing Chain with Pseudo-job

3. Pseudo-job passed to EDD by Proposed -EDD

Table 12: Pseudo-job passed to EDD
4. Schedule Generated by EDD with considering the due date $\left[\frac{\left(j-\frac{1}{2}\right) D}{d_{i}}\right]$ for the $j^{\text {th }}$ copy of product i over pseudo-Jobs

Table 13: Generation of Schedule by EDD

5. Pseudo-Job generated by EDD Replaced by Proposed -EDD

6. Possible Schedule List generated by Possible Scheduling Algorithm

S.No.	Possible Sequence	Cost-Value
1	abccdcmnm	63.375
2	abccdmcnm	52.875
3	abccdmncm	46.875
4	abccdmnmc	45.375
5	abccmdcnm	48.375
6	abccmdncm	42.375
7	abccmdnmc	40.875
8	abccmndem	42.375
9	abccmndmc	40.875
10	abccmnmdc	45.375
11	abcmcdcnm	43.875
12	abcmcdncm	37.875
13	abcmcdnmc	36.375
14	abcmendem	37.875
15	abcmendmc	36.375
16	abcmenmdc	40.875
17	abcmncdem	37.875
18	abcmncdmc	36.375
19	abcmncmdc	40.875
20	abcmnmcdc	45.375
21	abmccdenm	45.375
22	abmccdncm	39.375
23	abmccdnmc	37.875
24	abmcendem	39.375
25	abmcendmc	37.875
26	abmcenmdc	42.375
27	abmencdem	39.375
28	abmcncdmc	37.875
29	abmencmdc	42.375
30	abmcnmcdc	46.875
31	abmnccdem	45.375
32	abmnccdmc	43.875
33	abmncemdc	48.375
34	abmncmcdc	52.875
35	abmnmecdc	63.375
36	acbedcmnm	57.375
37	acbedmcnm	46.875
38	acbedmncm	40.875
39	acbcdmnmc	39.375
40	acbemdcnm	42.375
41	acbemdncm	36.375
42	acbemdnmc	34.875
43	acbemndcm	36.375
44	acbemndmc	34.875
45	acbemnmdc	39.375
46	acbmcdenm	37.875
47	acbmcdncm	31.875
48	acbmcdnmc	30.375
49	acbmendem	31.875

50	acbmendmc		30.375
51	acbmenmdc	---	34.875
52	acbmncdem	---	31.875
53	acbmncdmc	--	30.375
54	acbmncmdc	---	34.875
55	acbmnmcdc	---	39.375
56	accbdcmnm	---	57.375
57	accbdmenm	---	46.875
58	accbdmncm	---	40.875
59	accbdmnmc	---	39.375
60	accbmdenm	--	42.375
61	accbmdncm	---	36.375
62	accbmdnmc	---	34.875
63	accbmndcm	---	36.375
64	accbmndmc	--	34.875
65	accbmnmdc	---	39.375
66	accdbcmnm	---	57.375
67	accdbmenm	---	46.875
68	accdbmncm	---	40.875
69	accdbmnmc	---	39.375
70	accdcbmnm	---	63.375
71	accdembnm	---	58.875
72	accdcmnbm	---	58.875
73	accdcmnmb	--	63.375
74	accdmbenm	--	42.375
75	accdmbncm		36.375
76	accdmbnmc	---	34.875
77	accdmcbnm	---	48.375
78	accdmcnbm	--	48.375
79	accdmcnmb	-	52.875
80	accdmnbcm	---	36.375
81	accdmnbmc	---	34.875
82	accdmncbm	--	42.375
83	accdmncmb	--	46.875
84	accdmnmbc	---	39.375
85	accdmnmcb	---	45.375
86	accmbdenm	---	37.875
87	accmbdncm	---	31.875
88	accmbdnmc	---	30.375
89	accmbndcm	---	31.875
90	accmbndmc	---	30.375
91	accmbnmdc	---	34.875
92	accmdbenm	---	37.875
93	accmdbncm	---	31.875
94	accmdbnmc	---	30.375
95	accmdcbnm	---	43.875
96	accmdcnbm	---	43.875
97	accmdcnmb	---	48.375
98	accmdnbem	---	31.875
99	accmdnbmc	-	30.375
100	accmdncbm	---	37.875
101	accmdncmb	---	42.375
102	accmdnmbc	---	34.875
103	accmdnmcb	--	40.875
104	accmnbdem	---	31.875
105	accmnbdmc	---	30.375

106	accmnbmdc		34.875
107	accmndbcm	---	31.875
108	accmndbmc		30.375
109	accmndcbm		37.875
110	accmndcmb	---	42.375
111	accmndmbc	---	34.875
112	accmndmcb		40.875
113	accmnmbdc		39.375
114	accmnmdbc	---	39.375
115	accmnmdcb		45.375
116	acmbcdenm		33.375
117	acmbcdncm		27.375
118	acmbcdnmc	---	25.875
119	acmbendem	---	27.375
120	acmbendmc	--	25.875
121	acmbenmdc	---	30.375
122	acmbncdem		27.375
123	acmbncdmc	---	25.875
124	acmbncmdc	---	30.375
125	acmbnmcdc	--	34.875
126	acmebdenm		33.375
127	acmcbdncm	---	27.375
128	acmebdnmc	---	25.875
129	acmcbndcm	--	27.375
130	acmcbndmc		25.875
131	acmebnmdc		30.375
132	acmcdbcnm	---	33.375
133	acmcdbncm	--	27.375
134	acmcdbnmc		25.875
135	acmcdcbnm		39.375
136	acmcdenbm	---	39.375
137	acmcdenmb	---	43.875
138	acmcdnbem	--	27.375
139	acmcdnbmc		25.875
140	acmcdncbm	---	33.375
141	acmcdncmb	---	37.875
142	acmcdnmbc	--	30.375
143	acmednmcb	--	36.375
144	acmenbdem		27.375
145	acmenbdmc	---	25.875
146	acmenbmdc	---	30.375
147	acmendbcm	---	27.375
148	acmendbmc		25.875
149	acmendcbm	---	33.375
150	acmendemb	---	37.875
151	acmendmbc	---	30.375
152	acmendmcb		36.375
153	acmenmbdc	---	34.875
154	acmenmdbc	---	34.875
155	acmenmdcb	---	40.875
156	acmnbcdem	---	27.375
157	acmnbcdmc	---	25.875
158	acmnbemdc	---	30.375
159	acmnbmcdc	---	34.875
160	acmncbdcm	---	27.375
161	acmncbdmc	---	25.875

162	acmncbmdc		30.375
163	acmncdbcm	---	27.375
164	acmncdbmc	---	25.875
165	acmncdcbm		33.375
166	acmncdemb	---	37.875
167	acmncdmbc	---	30.375
168	acmncdmcb		36.375
169	acmncmbdc		34.875
170	acmncmdbc		34.875
171	acmncmdcb		40.875
172	acmnmbcdc		39.375
173	acmnmcbdc		39.375
174	acmnmcdbc	---	39.375
175	acmnmcdeb	---	45.375
176	ambccdenm	--	40.875
177	ambccdncm	--	34.875
178	ambccdnmc		33.375
179	ambecndem	---	34.875
180	ambccndmc	---	33.375
181	ambecnmdc	--	37.875
182	ambencdem		34.875
183	ambencdmc	---	33.375
184	ambencmdc	---	37.875
185	ambenmcdc	--	42.375
186	ambnccdem		40.875
187	ambnccdmc		39.375
188	ambncemdc	---	43.875
189	ambncmcdc	---	48.375
190	ambnmccdc	--	58.875
191	amcbcdenm		34.875
192	amcbcdncm	---	28.875
193	amcbcdnmc	---	27.375
194	amcbendem	--	28.875
195	amcbendmc		27.375
196	amcbenmdc	---	31.875
197	amcbncdem	---	28.875
198	amcbncdmc	---	27.375
199	amcbncmdc	--	31.875
200	amcbnmedc		36.375
201	amccbdenm	---	34.875
202	amccbdncm	---	28.875
203	amccbdnmc	---	27.375
204	amccbndem		28.875
205	amccbndmc	---	27.375
206	amccbnmdc	---	31.875
207	amccdbenm	---	34.875
208	amccdbncm	---	28.875
209	amccdbnmc	---	27.375
210	amccdcbnm	---	40.875
211	amccdenbm	---	40.875
212	amccdenmb	---	45.375
213	amccdnbcm	---	28.875
214	amccdnbmc	---	27.375
215	amccdncbm	---	34.875
216	amccdncmb	---	39.375
217	amccdnmbc	---	31.875

218	amccdnmeb		37.875
219	amcenbdem	---	28.875
220	amcenbdmc	---	27.375
221	amcenbmdc		31.875
222	amcendbcm	---	28.875
223	amcendbmc	---	27.375
224	amcendcbm	---	34.875
225	amcendemb		39.375
226	amcendmbc		31.875
227	amcendmcb		37.875
228	amcenmbdc		36.375
229	amcenmdbc		36.375
230	amcenmdcb		42.375
231	amcnbcdem	---	28.875
232	amcnbcdmc	--	27.375
233	amcnbemdc	--	31.875
234	amcnbmcdc		36.375
235	amcncbdcm	---	28.875
236	amcncbdmc	---	27.375
237	amcncbmdc	--	31.875
238	amcncdbcm		28.875
239	amcncdbmc	---	27.375
240	amcncdcbm	---	34.875
241	amcncdemb	--	39.375
242	amcncdmb c		31.875
243	amcncdmcb		37.875
244	amcncmbdc	---	36.375
245	amcncmdbc	---	36.375
246	amcncmdcb	--	42.375
247	amcnmbcdc		40.875
248	amcnmcbdc	---	40.875
249	amcnmcdbc	---	40.875
250	amcnmcdcb	---	46.875
251	amnbccdem	--	40.875
252	amnbccdmc	--	39.375
253	amnbcemdc	---	43.875
254	amnbcmcdc	---	48.375
255	amnbmccdc	---	58.875
256	amncbedcm		34.875
257	amncbcdmc	---	33.375
258	amncbcmdc	---	37.875
259	amncbmcdc	---	42.375
260	amnccbdem		34.875
261	amnccbdmc	---	33.375
262	amnccbmdc	---	37.875
263	amnccdbcm	---	34.875
264	amnccdbmc	---	33.375
265	amnccdebm	---	40.875
266	amnccdemb	---	45.375
267	amnccdmbc	---	37.875
268	amnccdmcb	---	43.875
269	amnccmbdc	---	42.375
270	amnccmdbc	---	42.375
271	amnccmdcb	---	48.375
272	amncmbcdc	---	46.875
273	amncmcbdc	---	46.875

274	amncmcdbc		46.875
275	amncmcdeb		52.875
276	amnmbccdc	---	63.375
277	amnmcbedc		57.375
278	amnmccbdc		57.375
279	amnmccdbc		57.375
280	amnmccdeb		63.375
281	cabcdcmnm		51.375
282	cabcdmenm		40.875
283	cabcdmncm		34.875
284	cabcdmnmc		33.375
285	cabcmdenm		36.375
286	cabcmdncm		30.375
287	cabcmdnmc	---	28.875
288	cabcmndem		30.375
289	cabcmndmc		28.875
290	cabcmnmdc		33.375
291	cabmcdenm	---	31.875
292	cabmcdncm	---	25.875
293	cabmcdnmc		24.375
294	cabmendem		25.875
295	cabmendmc		24.375
296	cabmenmdc	---	28.875
297	cabmncdem	--	25.875
298	cabmncdmc		24.375
299	cabmncmdc		28.875
300	cabmnmcdc	---	33.375
301	cacbdcmnm	---	51.375
302	cacbdmenm	--	40.875
303	cacbdmncm		34.875
304	cacbdmnmc	---	33.375
305	cacbmdenm	---	36.375
306	cacbmdncm	--	30.375
307	cacbmdnmc		28.875
308	cacbmndcm		30.375
309	cacbmndmc	---	28.875
310	cacbmnmdc	--	33.375
311	cacdibcmnm	--	51.375
312	cacdbmenm		40.875
313	cacdbmncm	---	34.875
314	cacdbmnmc	---	33.375
315	cacdcbmnm	---	57.375
316	cacdcmbnm	--	52.875
317	cacdcmnbm	---	52.875
318	cacdcmnmb	---	57.375
319	cacdmbenm	---	36.375
320	cacdmbncm	---	30.375
321	cacdmbnmc	---	28.875
322	cacdmcbnm	---	42.375
323	cacdmenbm	---	42.375
324	cacdmenmb	---	46.875
325	cacdmnbcm		30.375
326	cacdmnbmc	---	28.875
327	cacdmncbm	---	36.375
328	cacdmncmb	---	40.875
329	cacdmnmbc	---	33.375

330	cacdmnmeb		39.375
331	cacmbdenm	---	31.875
332	cacmbdncm	---	25.875
333	cacmbdnmc		24.375
334	cacmbndem	---	25.875
335	cacmbndmc	---	24.375
336	cacmbnmdc	--	28.875
337	cacmdbenm		31.875
338	cacmdbncm		25.875
339	cacmdbnmc		24.375
340	cacmdcbnm	--	37.875
341	cacmdcnbm	--	37.875
342	cacmdcnmb		42.375
343	cacmdnbcm	---	25.875
344	cacmdnbmc	--	24.375
345	cacmdncbm	--	31.875
346	cacmdncmb		36.375
347	cacmdnmbc	---	28.875
348	cacmdnmeb	---	34.875
349	cacmnbdem	--	25.875
350	cacmnbdmc		24.375
351	cacmnbmdc	---	28.875
352	cacmndbcm	---	25.875
353	cacmndbmc	--	24.375
354	cacmndcbm	--	31.875
355	cacmndemb		36.375
356	cacmndmbc	---	28.875
357	cacmndmcb	---	34.875
358	cacmnmbdc	--	33.375
359	cacmnmdbc		33.375
360	cacmnmdcb	---	39.375
361	cambcdenm	---	27.375
362	cambcdncm	---	21.375
363	cambednmc	--	19.875
364	cambendem	--	21.375
365	cambendmc	---	19.875
366	cambenmdc	---	24.375
367	cambncdem	---	21.375
368	cambncdmc		19.875
369	cambncmdc	---	24.375
370	cambnmcdc	---	28.875
371	camcbdenm	---	27.375
372	camcbdncm	--	21.375
373	camcbdnmc	---	19.875
374	camcbndem	---	21.375
375	camcbndmc	---	19.875
376	camcbnmdc	---	24.375
377	camcdbenm	---	27.375
378	camcdbncm	---	21.375
379	camcdbnmc	---	19.875
380	camcdcbnm	---	33.375
381	camcdcnbm	---	33.375
382	camcdcnmb	---	37.875
383	camcdnbem	---	21.375
384	camcdnbmc	---	19.875
385	camcdncbm	---	27.375

386	camcdncmb		31.875
387	camcdnmbc		24.375
388	camcdnmcb	---	30.375
389	camcnbdcm		21.375
390	camcnbdmc		19.875
391	camcnbmdc		24.375
392	camcndbcm		21.375
393	camcndbmc		19.875
394	camcndcbm		27.375
395	camcndemb		31.875
396	camcndmbc		24.375
397	camcndmcb		30.375
398	camcnmbdc		28.875
399	camcnmdbc		28.875
400	camcnmdcb		34.875
401	camnbcdem		21.375
402	camnbcdmc		19.875
403	camnbemdc		24.375
404	camnbmcdc		28.875
405	camncbdem		21.375
406	camncbdmc		19.875
407	camncbmdc		24.375
408	camncdbcm		21.375
409	camncdbmc		19.875
410	camncdcbm		27.375
411	camncdemb		31.875
412	camncdmbc		24.375
413	camncdmcb		30.375
414	camncmbdc	---	28.875
415	camncmdbc		28.875
416	camncmdcb		34.875
417	camnmbcdc	---	33.375
418	camnmcbdc	---	33.375
419	camnmcdbc		33.375
420	camnmcdcb		39.375
421	ccabdcmnm		51.375
422	ccabdmenm		40.875
423	ccabdmncm	---	34.875
424	ccabdmnmc		33.375
425	ccabmdenm		36.375
426	ccabmdncm	---	30.375
427	ccabmdnmc	---	28.875
428	ccabmndem		30.375
429	ccabmndmc		28.875
430	ccabmnmdc	---	33.375
431	ccadbcmnm	---	51.375
432	ccadbmenm	---	40.875
433	ccadbmncm		34.875
434	ccadbmnmc		33.375
435	ccadcbmnm	---	57.375
436	ccadcmbnm	---	52.875
437	ccadcmnbm		52.875
438	ccadcmnmb	---	57.375
439	ccadmbcnm	---	36.375
440	ccadmbncm	---	30.375
441	ccadmbnmc		28.875

442	ccadmcbnm		42.375
443	ccadmcnbm	---	42.375
444	ccadmcnmb	---	46.875
445	ccadmnbcm		30.375
446	ccadmnbmc	---	28.875
447	ccadmncbm	---	36.375
448	ccadmncmb	--	40.875
449	ccadmnmbc		33.375
450	ccadmnmeb		39.375
451	ccambdenm		31.875
452	ccambdncm	--	25.875
453	ccambdnmc		24.375
454	ccambndem		25.875
455	ccambndmc	---	24.375
456	ccambnmdc	--	28.875
457	ccamdbenm	--	31.875
458	ccamdbncm		25.875
459	ccamdbnmc	---	24.375
460	ccamdcbnm	---	37.875
461	ccamdcnbm	--	37.875
462	ccamdcnmb	--	42.375
463	ccamdnbem	---	25.875
464	ccamdnbmc	---	24.375
465	ccamdncbm	--	31.875
466	ccamdncmb	--	36.375
467	ccamdnmbc		28.875
468	ccamdnmcb	---	34.875
469	ccamnbdcm	---	25.875
470	ccamnbdmc	--	24.375
471	ccamnbmdc	---	28.875
472	ccamndbcm	---	25.875
473	ccamndbmc	---	24.375
474	ccamndcbm	---	31.875
475	ccamndcmb	--	36.375
476	ccamndmbc	--	28.875
477	ccamndmcb	---	34.875
478	ccamnmbdc	---	33.375
479	ccamnmdbc	---	33.375
480	ccamnmdcb		39.375
481	ccdabcmnm	---	51.375
482	ccdabmenm	---	40.875
483	ccdabmncm	---	34.875
484	ccdabmnmc		33.375
485	ccdacbmnm	---	57.375
486	ccdacmbnm	---	52.875
487	ccdacmnbm	---	52.875
488	ccdacmnmb	---	57.375
489	ccdambenm	---	36.375
490	ccdambncm	---	30.375
491	ccdambnmc	---	28.875
492	ccdamcbnm	---	42.375
493	ccdamcnbm	---	42.375
494	ccdamenmb	---	46.875
495	ccdamnbem	---	30.375
496	ccdamnbmc	---	28.875
497	ccdamncbm	---	36.375

498	ccdamncmb		40.875
499	ccdamnmb c	---	33.375
500	ccdamnmcb	---	39.375
501	ccdcabmnm		63.375
502	ccdcambnm		58.875
503	ccdcamnbm		58.875
504	ccdcamnmb		63.375
505	ccdcmabnm		54.375
506	ccdcmanbm		54.375
507	ccdcmanmb		58.875
508	ccdcmnabm		54.375
509	ccdcmnamb		58.875
510	ccdcmnmab		63.375
511	ccdmabcnm		31.875
512	ccdmabncm		25.875
513	ccdmabnmc		24.375
514	ccdmacbnm		37.875
515	ccdmacnbm		37.875
516	ccdmacnmb		42.375
517	ccdmanbem		25.875
518	ccdmanbmc		24.375
519	ccdmancbm		31.875
520	ccdmancmb	---	36.375
521	ccdmanmbc		28.875
522	ccdmanmcb		34.875
523	ccdmcabnm		43.875
524	ccdmcanbm	---	43.875
525	ccdmcanmb	---	48.375
526	ccdmenabm		43.875
527	ccdmenamb		48.375
528	ccdmenmab	---	52.875
529	ccdmnabcm		25.875
530	ccdmnabmc		24.375
531	ccdmnacbm		31.875
532	ccdmnacmb		36.375
533	ccdmnamb c	---	28.875
534	ccdmnamcb	---	34.875
535	ccdmncabm	---	37.875
536	ccdmncamb		42.375
537	ccdmncmab	---	46.875
538	ccdmnmabc	---	33.375
539	ccdmnmacb	---	39.375
540	ccdmnmcab		45.375
541	cemabdenm	---	27.375
542	ccmabdncm		21.375
543	ccmabdnmc	---	19.875
544	cemabndem		21.375
545	ccmabndmc	---	19.875
546	ccmabnmdc	---	24.375
547	ccmadbenm	---	27.375
548	ccmadbncm	---	21.375
549	ccmadbnmc	---	19.875
550	ccmadcbnm	---	33.375
551	ccmadcnbm	---	33.375
552	ccmadcnmb	---	37.875
553	ccmadnbem	---	21.375

554	ccmadnbmc		19.875
555	ccmadncbm		27.375
556	ccmadncmb	---	31.875
557	ccmadnmbc		24.375
558	ccmadnmcb		30.375
559	ccmanbdcm		21.375
560	ccmanbdmc		19.875
561	ccmanbmdc		24.375
562	ccmandbcm		21.375
563	ccmandbmc		19.875
564	ccmandcbm		27.375
565	ccmandemb		31.875
566	ccmandmbc		24.375
567	ccmandmcb		30.375
568	ccmanmbdc		28.875
569	ccmanmdbc		28.875
570	ccmanmdcb		34.875
571	ccmdabcnm		27.375
572	cemdabncm	---	21.375
573	ccmdabnmc		19.875
574	ccmdacbnm		33.375
575	ccmdacnbm		33.375
576	ccmdacnmb		37.875
577	ccmdanbem		21.375
578	ccmdanbmc		19.875
579	ccmdancbm		27.375
580	ccmdancmb		31.875
581	ccmdanmbc	---	24.375
582	ccmdanmcb	---	30.375
583	ccmdcabnm		39.375
584	ccmdcanbm		39.375
585	ccmdcanmb	---	43.875
586	ccmdenabm	---	39.375
587	cemdenamb		43.875
588	cemdenmab		48.375
589	ccmdnabem		21.375
590	ccmdnabmc		19.875
591	ccmdnacbm	---	27.375
592	ccmdnacmb		31.875
593	ccmdnambc		24.375
594	ccmdnamcb	---	30.375
595	ccmdncabm	---	33.375
596	ccmdncamb	---	37.875
597	ccmdncmab	---	42.375
598	ccmdnmabc	---	28.875
599	ccmdnmacb	---	34.875
600	ccmdnmeab	---	40.875
601	ccmnabdem		21.375
602	ccmnabdmc		19.875
603	ccmnabmdc	---	24.375
604	ccmnadbcm	---	21.375
605	ccmnadbmc		19.875
606	ccmnadcbm	---	27.375
607	ccmnademb	---	31.875
608	ccmnadmbc	---	24.375
609	ccmnadmcb	---	30.375

610	ccmnambdc		28.875
611	ccmnamdbc		28.875
612	ccmnamdcb		34.875
613	ccmndabcm		21.375
614	ccmndabmc		19.875
615	ccmndacbm		27.375
616	ccmndacmb		31.875
617	ccmndamb c		24.375
618	ccmndameb		30.375
619	ccmndcabm		33.375
620	ccmndcamb		37.875
621	ccmndcmab		42.375
622	ccmndmabc		28.875
623	ccmndmacb		34.875
624	ccmndmcab		40.875
625	ccmnmabdc		33.375
626	ccmnmadbc		33.375
627	ccmnmadcb		39.375
628	ccmnmdabc		33.375
629	ccmnmdacb		39.375
630	ccmnmdcab		45.375
631	cmabcdcnm		22.875
632	cmabcdncm		16.875
633	cmabcdnme	---	15.375
634	cmabendem	---	16.875
635	cmabendmc		15.375
636	cmabenmdc		19.875
637	cmabncdem	---	16.875
638	cmabncdmc		15.375
639	cmabncmdc		19.875
640	cmabnmcdc		24.375
641	cmacbdcnm		22.875
642	cmacbdncm		16.875
643	cmacbdnmc		15.375
644	cmacbndem		16.875
645	cmacbndmc		15.375
646	cmacbnmdc	---	19.875
647	cmacdbcnm	---	22.875
648	cmacdbncm		16.875
649	cmacdbnmc		15.375
650	cmacdcbnm	---	28.875
651	cmacdenbm	---	28.875
652	cmacdenmb		33.375
653	cmacdnbcm		16.875
654	cmacdnbmc		15.375
655	cmacdncbm	---	22.875
656	cmacdncmb		27.375
657	cmacdnmbc		19.875
658	cmacdnmcb	---	25.875
659	cmacnbdem	---	16.875
660	cmacnbdmc	---	15.375
661	cmacnbmdc	---	19.875
662	cmacndbcm	---	16.875
663	cmacndbmc	---	15.375
664	cmacndcbm	---	22.875
665	cmacndcmb	---	27.375

666	cmacndmbc		19.875
667	cmacndmcb	---	25.875
668	cmacnmbdc	---	24.375
669	cmacnmdbc		24.375
670	cmacnmdcb	---	30.375
671	cmanbcdem	---	16.875
672	cmanbcdmc	---	15.375
673	cmanbcmdc		19.875
674	cmanbmcdc		24.375
675	cmancbdcm		16.875
676	cmancbdmc	--	15.375
677	cmancbmdc	--	19.875
678	cmancdbem		16.875
679	cmancdbmc	---	15.375
680	cmancdebm	--	22.875
681	cmancdcmb	--	27.375
682	cmancdmbc		19.875
683	cmancdmcb	---	25.875
684	cmancmbdc	---	24.375
685	cmancmdbc	--	24.375
686	cmancmdcb		30.375
687	cmanmbcdc	---	28.875
688	cmanmcbdc	---	28.875
689	cmanmcdbc	--	28.875
690	cmanmcdcb	--	34.875
691	cmcabdenm		22.875
692	cmcabdncm	---	16.875
693	cmcabdnmc	---	15.375
694	cmcabndcm	--	16.875
695	cmcabndmc		15.375
696	cmcabnmdc	---	19.875
697	cmcadbenm	---	22.875
698	cmcadbncm	---	16.875
699	cmcadbnmc	--	15.375
700	cmcadcbnm	--	28.875
701	cmcadcnbm	---	28.875
702	cmcadcnmb	---	33.375
703	cmcadnbem	---	16.875
704	cmcadnbmc	--	15.375
705	cmcadncbm	---	22.875
706	cmcadncmb	---	27.375
707	cmcadnmbc	---	19.875
708	cmcadnmeb		25.875
709	cmcanbdem	---	16.875
710	cmcanbdmc	---	15.375
711	cmcanbmdc	---	19.875
712	cmcandbcm	---	16.875
713	cmcandbmc	---	15.375
714	cmcandcbm	---	22.875
715	cmcandcmb	---	27.375
716	cmcandmbc	---	19.875
717	cmcandmcb	---	25.875
718	cmcanmbdc	---	24.375
719	cmcanmdbc	---	24.375
720	cmcanmdcb	---	30.375
721	cmcdabenm	---	22.875

722	cmcdabncm	---	16.875
723	cmcdabnmc	---	15.375
724	cmcdacbnm		28.875
725	cmcdacnbm	---	28.875
726	cmcdacnmb	---	33.375
727	cmcdanbem	---	16.875
728	cmcdanbmc		15.375
729	cmcdancbm		22.875
730	cmcdancmb		27.375
731	cmcdanmbc	---	19.875
732	cmcdanmeb		25.875
733	cmcdcabnm		34.875
734	cmcdcanbm	---	34.875
735	cmcdcanmb	---	39.375
736	cmcdenabm	---	34.875
737	cmcdenamb		39.375
738	cmedenmab	---	43.875
739	cmcdnabcm	---	16.875
740	cmcdnabmc	---	15.375
741	cmcdnacbm		22.875
742	cmcdnacmb	---	27.375
743	cmcdnambc	---	19.875
744	cmcdnamcb	---	25.875
745	cmcdncabm	-	28.875
746	cmcdncamb		33.375
747	cmcdncmab	---	37.875
748	cmcdnmabc	---	24.375
749	cmcdnmacb	--	30.375
750	cmcdnmcab	-	36.375
751	cmenabdem	---	16.875
752	cmenabdmc	---	15.375
753	cmenabmdc	---	19.875
754	cmenadbcm	--	16.875
755	cmenadbmc		15.375
756	cmenadcbm	---	22.875
757	cmenademb	---	27.375
758	cmenadmbc	---	19.875
759	cmenadmcb	---	25.875
760	cmenambdc	---	24.375
761	cmenamdbc	---	24.375
762	cmenamdcb	---	30.375
763	cmendabcm	---	16.875
764	cmendabmc	---	15.375
765	cmendacbm	---	22.875
766	cmendacmb	---	27.375
767	cmendamb c	---	19.875
768	cmendamcb	---	25.875
769	cmendcabm	---	28.875
770	cmendcamb	---	33.375
771	cmendemab	---	37.875
772	cmendmabc	---	24.375
773	cmendmacb	---	30.375
774	cmendmcab	---	36.375
775	cmenmabdc	---	28.875
776	cmenmadbc	---	28.875
777	cmenmadcb	---	34.875

778	cmenmdabc		28.875
779	cmenmdacb	---	34.875
780	cmenmdcab		40.875
781	cmnabcdem		16.875
782	cmnabcdmc		15.375
783	cmnabcmdc		19.875
784	cmnabmcdc		24.375
785	cmnacbdem		16.875
786	cmnacbdmc		15.375
787	cmnacbmdc		19.875
788	cmnacdbcm		16.875
789	cmnacdbmc		15.375
790	cmnacdcbm		22.875
791	cmnacdemb		27.375
792	cmnacdmbc		19.875
793	cmnacdmcb		25.875
794	cmnacmbdc		24.375
795	cmnacmdbc		24.375
796	cmnacmdcb		30.375
797	cmnambcdc		28.875
798	cmnamcbdc		28.875
799	cmnamcdbc		28.875
800	cmnamcdcb		34.875
801	cmncabdem		16.875
802	cmncabdmc		15.375
803	cmncabmdc		19.875
804	cmncadbcm	---	16.875
805	cmncadbmc		15.375
806	cmncadcbm		22.875
807	cmncadcmb		27.375
808	cmncadmb c	---	19.875
809	cmncadmcb		25.875
810	cmncambdc		24.375
811	cmncamdbc		24.375
812	cmncamdcb	---	30.375
813	cmncdabcm		16.875
814	cmncdabmc	---	15.375
815	cmncdacbm		22.875
816	cmncdacmb		27.375
817	cmncdambc		19.875
818	cmncdamcb	---	25.875
819	cmncdcabm	---	28.875
820	cmncdcamb	---	33.375
821	cmncdemab	---	37.875
822	cmncdmabc	---	24.375
823	cmncdmacb	---	30.375
824	cmncdmcab	--	36.375
825	cmncmabdc	---	28.875
826	cmncmadbc	---	28.875
827	cmncmadcb	---	34.875
828	cmncmdabc	---	28.875
829	cmncmdacb	---	34.875
830	cmncmdcab	---	40.875
831	cmnmabcdc	---	33.375
832	cmnmacbdc	---	33.375
833	cmnmacdbc	---	33.375

834	cmnmacdeb		39.375
835	cmnmcabdc		33.375
836	cmnmcadbc	---	33.375
837	cmnmcadcb		39.375
838	cmnmcdabc	---	33.375
839	cmnmcdacb	---	39.375
840	cmnmcdcab	---	45.375
841	mabccdenm		36.375
842	mabccdncm		30.375
843	mabccdnmc		28.875
844	mabcendem		30.375
845	mabcondmc		28.875
846	mabcenmdc		33.375
847	mabcncdem		30.375
848	mabcncdmc		28.875
849	mabcncmdc		33.375
850	mabcnmcdc		37.875
851	mabnccdem	---	36.375
852	mabnccdmc		34.875
853	mabncemdc	---	39.375
854	mabncmcdc		43.875
855	mabnmccdc	---	54.375
856	macbedcnm	---	30.375
857	macbedncm	--	24.375
858	macbednmc		22.875
859	macbendem		24.375
860	macbendmc	---	22.875
861	macbenmdc		27.375
862	macbncdem		24.375
863	macbncdmc		22.875
864	macbncmdc		27.375
865	macbnmcdc		31.875
866	maccbdenm	---	30.375
867	maccbdncm		24.375
868	maccbdnmc		22.875
869	maccbndem	---	24.375
870	maccbndmc	---	22.875
871	maccbnmdc	---	27.375
872	maccdbenm		30.375
873	maccdbncm		24.375
874	maccdbnmc	---	22.875
875	maccdcbnm	---	36.375
876	maccdenbm		36.375
877	maccdenmb	---	40.875
878	maccdnbem	---	24.375
879	maccdnbmc	---	22.875
880	maccdncbm	---	30.375
881	maccdncmb	---	34.875
882	maccdnmbc	---	27.375
883	maccdnmeb	---	33.375
884	maccnbdem	---	24.375
885	maccnbdmc		22.875
886	maccnbmdc	---	27.375
887	maccndbem	---	24.375
888	maccndbmc	---	22.875
889	maccndcbm	---	30.375

890	macendemb		34.875
891	macendmbc	---	27.375
892	maccndmcb		33.375
893	maccnmbdc		31.875
894	macenmdbc	---	31.875
895	maccnmdcb	---	37.875
896	macnbcdem		24.375
897	macnbcdmc		22.875
898	macnbcmdc		27.375
899	macnibmcdc		31.875
900	macncbdem		24.375
901	macncbdmc		22.875
902	macncbmdc		27.375
903	macncdbcm	---	24.375
904	macncdbmc	--	22.875
905	macncdcbm	--	30.375
906	macncdemb		34.875
907	macncdmbc	---	27.375
908	macncdmcb	---	33.375
909	macncmbdc	--	31.875
910	macncmdbc		31.875
911	macncmdcb	---	37.875
912	macnmbcdc	---	36.375
913	macnmcbdc	--	36.375
914	macnmcdbc		36.375
915	macnmcdeb		42.375
916	manbccdem	---	36.375
917	manbccdmc	--	34.875
918	manbccmdc	--	39.375
919	manbcmcdc		43.875
920	manbmccdc	---	54.375
921	mancbcdem	---	30.375
922	mancbcdmc	---	28.875
923	mancbemdc		33.375
924	mancbmcdc	---	37.875
925	manccbdem	---	30.375
926	manccbdmc	---	28.875
927	manccbmdc	---	33.375
928	manccdbem		30.375
929	manccdbmc	---	28.875
930	manccdcbm	---	36.375
931	manccdemb	---	40.875
932	manccdmbc		33.375
933	manccdmcb	---	39.375
934	manccmbdc	---	37.875
935	mancemdbc	---	37.875
936	mancemdcb	---	43.875
937	mancmbcdc	---	42.375
938	mancmcbdc	---	42.375
939	mancmcdbc	---	42.375
940	mancmcdeb	---	48.375
941	manmbccdc	---	58.875
942	manmcbedc	---	52.875
943	manmccbdc	---	52.875
944	manmccdbc	---	52.875
945	manmecdcb	---	58.875

946	mcabcdenm		24.375
947	mcabcdncm	---	18.375
948	mcabcdnmc	---	16.875
949	mcabondcm	---	18.375
950	mcabendmc	---	16.875
951	mcabcnmdc	---	21.375
952	mcabncdem		18.375
953	mcabncdmc		16.875
954	mcabncmdc		21.375
955	mcabnmcdc		25.875
956	mcacbdenm	---	24.375
957	mcacbdncm		18.375
958	mcacbdnmc		16.875
959	mcacbndem		18.375
960	mcacbndmc		16.875
961	mcacbnmdc		21.375
962	mcacdbcnm		24.375
963	mcacdbncm	---	18.375
964	mcacdbnmc		16.875
965	mcacdcbnm		30.375
966	mcacdenbm		30.375
967	mcacdenmb	---	34.875
968	mcacdnbem	---	18.375
969	mcacdnbmc		16.875
970	mcacdncbm		24.375
971	mcacdncmb	---	28.875
972	mcacdnmbc	---	21.375
973	mcacdnmeb		27.375
974	mcacnbdem		18.375
975	mcacnbdmc		16.875
976	mcacnbmdc	---	21.375
977	mcacndbem	---	18.375
978	mcacndbmc		16.875
979	mcacndcbm		24.375
980	mcacndemb	---	28.875
981	mcacndmbc		21.375
982	mcacndmcb	---	27.375
983	mcacnmbdc		25.875
984	mcacnmdbc		25.875
985	mcacnmdcb	---	31.875
986	mcanbcdem	---	18.375
987	mcanbcdmc	---	16.875
988	mcanbcmdc		21.375
989	mcanbmcdc	---	25.875
990	mcancbdem	---	18.375
991	mcancbdmc	---	16.875
992	mcancbmdc		21.375
993	mcancdbcm	---	18.375
994	mcancdbmc	---	16.875
995	mcancdcbm	---	24.375
996	mcancdemb		28.875
997	mcancdmbc	---	21.375
998	mcancdmcb	---	27.375
999	mcancmbdc	---	25.875
1000	mcancmdbc	---	25.875
1001	mcancmdcb	---	31.875

1002	mcanmbcdc		30.375
1003	mcanmcbdc	---	30.375
1004	mcanmcdbc	---	30.375
1005	mcanmcdcb		36.375
1006	mecabdenm		24.375
1007	mccabdncm	---	18.375
1008	mccabdnmc	---	16.875
1009	mecabndcm	---	18.375
1010	mccabndmc		16.875
1011	mccabnmdc	---	21.375
1012	mccadbenm	---	24.375
1013	mccadbncm	---	18.375
1014	mccadbnmc	---	16.875
1015	mccadcbnm	---	30.375
1016	mccadcnbm	---	30.375
1017	mccadcnmb	---	34.875
1018	mccadnbem	---	18.375
1019	mccadnbmc	---	16.875
1020	mccadncbm	---	24.375
1021	mccadncmb	---	28.875
1022	mccadnmbc	---	21.375
1023	mccadnmeb		27.375
1024	mccanbdem	---	18.375
1025	mccanbdmc	---	16.875
1026	mccanbmdc	--	21.375
1027	mccandbem	---	18.375
1028	mccandbmc	---	16.875
1029	mccandcbm	---	24.375
1030	mccandemb	---	28.875
1031	mccandmbc	---	21.375
1032	mccandmcb		27.375
1033	mccanmbdc	---	25.875
1034	mccanmdbc	---	25.875
1035	mccanmdcb	---	31.875
1036	mccdabenm	-	24.375
1037	mccdabncm	---	18.375
1038	mccdabnmc	---	16.875
1039	mccdacbnm	---	30.375
1040	mccdacnbm	---	30.375
1041	mccdacnmb	---	34.875
1042	mccdanbem	---	18.375
1043	mccdanbmc	---	16.875
1044	mccdancbm	---	24.375
1045	mccdancmb	---	28.875
1046	mccdanmbc	---	21.375
1047	mccdanmcb	---	27.375
1048	mccdcabnm	---	36.375
1049	mccdcanbm	---	36.375
1050	mccdcanmb	---	40.875
1051	mccdenabm	---	36.375
1052	mccdenamb	---	40.875
1053	mccdenmab	---	45.375
1054	mccdnabcm	---	18.375
1055	mccdnabmc	---	16.875
1056	mccdnacbm	---	24.375
1057	mccdnacmb	---	28.875

1058	mccdnambc		21.375
1059	mccdnamcb	---	27.375
1060	mccdncabm	---	30.375
1061	mccdncamb		34.875
1062	mccdncmab	---	39.375
1063	mccdnmabc	---	25.875
1064	mccdnmacb	---	31.875
1065	mccdnmeab		37.875
1066	mcenabdem		18.375
1067	mccnabdmc		16.875
1068	mcenabmdc		21.375
1069	mccnadbcm	---	18.375
1070	mcenadbmc		16.875
1071	mccnadcbm	---	24.375
1072	mcenademb		28.875
1073	mccnadmbc		21.375
1074	mccnadmcb		27.375
1075	mccnambdc	---	25.875
1076	mcenamdbc		25.875
1077	mcenamdcb	---	31.875
1078	mcendabcm		18.375
1079	mcendabmc	---	16.875
1080	mcendacbm		24.375
1081	mcendacmb		28.875
1082	mcendambc		21.375
1083	mcendamcb		27.375
1084	mcendcabm	---	30.375
1085	mcendcamb	---	34.875
1086	mecndcmab		39.375
1087	mcendmabc		25.875
1088	mccndmacb	---	31.875
1089	mcendmcab	---	37.875
1090	mccnmabdc	---	30.375
1091	mccnmadbc		30.375
1092	mcenmadcb		36.375
1093	mcenmdabc	---	30.375
1094	mcenmdacb	---	36.375
1095	mcenmdcab	---	42.375
1096	menabcdem		18.375
1097	menabcdmc	---	16.875
1098	menabcmdc	---	21.375
1099	menabmcdc	---	25.875
1100	menacbdem		18.375
1101	menacbdmc	---	16.875
1102	menacbmdc	---	21.375
1103	menacdbcm	---	18.375
1104	menacdbmc		16.875
1105	menacdebm	---	24.375
1106	menacdemb	---	28.875
1107	menacdmbc	---	21.375
1108	menacdmcb	---	27.375
1109	menacmbdc	---	25.875
1110	menacmdbc	-	25.875
1111	menacmdcb	---	31.875
1112	menambedc	---	30.375
1113	menamcbdc	---	30.375

1114	mcnamcdbc		30.375
1115	mcnamcdcb		36.375
1116	mencabdem		18.375
1117	mencabdmc		16.875
1118	mencabmdc		21.375
1119	mencadbcm		18.375
1120	mencadbmc		16.875
1121	mencadcbm		24.375
1122	mcncadcmb		28.875
1123	mencadmbc		21.375
1124	mencadmcb		27.375
1125	mencambdc		25.875
1126	mcncamdbc		25.875
1127	mencamdcb		31.875
1128	mencdabcm		18.375
1129	mencdabmc		16.875
1130	mcncdacbm		24.375
1131	mencdacmb		28.875
1132	mencdambc		21.375
1133	mencdameb		27.375
1134	mencdcabm		30.375
1135	mcncdcamb		34.875
1136	mencdemab		39.375
1137	mcncdmabc		25.875
1138	mencdmacb		31.875
1139	mcncdmcab		37.875
1140	mencmabdc		30.375
1141	mcncmadbc		30.375
1142	mencmadcb		36.375
1143	mencmdabc		30.375
1144	mcncmdacb	---	36.375
1145	mcncmdcab		42.375
1146	mcnmabcdc	---	34.875
1147	mcnmacbdc		34.875
1148	mcnmacdbc		34.875
1149	mcnmacdeb	---	40.875
1150	menmcabdc	---	34.875
1151	menmcadbc		34.875
1152	mcnmcadcb		40.875
1153	menmcdabc		34.875
1154	mcnmcdacb	---	40.875
1155	mcnmedcab	---	46.875
1156	mnabccdem		36.375
1157	mnabccdmc	---	34.875
1158	mnabcemdc	---	39.375
1159	mnabcmcdc	---	43.875
1160	mnabmccdc		54.375
1161	mnacbedcm	---	30.375
1162	mnacbcdmc	---	28.875
1163	mnacbomdc	---	33.375
1164	mnacbmcdc	---	37.875
1165	mnaccbdem	---	30.375
1166	mnaccbdmc	---	28.875
1167	mnaccbmdc	---	33.375
1168	mnaccdbcm	---	30.375
1169	mnaccdbmc	---	28.875

1170	mnaccdcbm		36.375
1171	mnaccdemb	---	40.875
1172	mnaccdmbc	---	33.375
1173	mnaccdmcb		39.375
1174	mnaccmbdc	---	37.875
1175	mnaccmdbc	---	37.875
1176	mnaccmdcb	---	43.875
1177	mnacmbcdc		42.375
1178	mnacmcbdc		42.375
1179	mnacmcdbc		42.375
1180	mnacmcdcb		48.375
1181	mnambccdc	---	58.875
1182	mnamcbcdc		52.875
1183	mnamccbdc	---	52.875
1184	mnamccdbc		52.875
1185	mnamccdcb	---	58.875
1186	mncabcdem		24.375
1187	mncabcdmc	---	22.875
1188	mncabcmdc		27.375
1189	mncabmcdc	---	31.875
1190	mncacbdcm		24.375
1191	mncacbdmc	---	22.875
1192	mncacbmdc		27.375
1193	mncacdbcm		24.375
1194	mncacdbmc		22.875
1195	mncacdcbm		30.375
1196	mncacdemb	---	34.875
1197	mncacdmbc		27.375
1198	mncacdmcb	---	33.375
1199	mncacmbdc		31.875
1200	mncacmdbc	---	31.875
1201	mncacmdcb	---	37.875
1202	mncambcdc	---	36.375
1203	mncamcbdc		36.375
1204	mncamcdbc		36.375
1205	mncamcdcb	---	42.375
1206	mnccabdem	---	24.375
1207	mnccabdmc	---	22.875
1208	mnccabmdc		27.375
1209	mnccadbem	---	24.375
1210	mnccadbmc	---	22.875
1211	mnccadcbm	---	30.375
1212	mnccadcmb		34.875
1213	mnccadmbc	---	27.375
1214	mnccadmcb	---	33.375
1215	mnccambdc	---	31.875
1216	mnccamdbc	---	31.875
1217	mnccamdcb	---	37.875
1218	mnccdabcm	---	24.375
1219	mnccdabmc	---	22.875
1220	mnccdacbm	---	30.375
1221	mnccdacmb	---	34.875
1222	mnccdambc	-	27.375
1223	mnccdamcb	---	33.375
1224	mnccdcabm	---	36.375
1225	mnccdcamb	---	40.875

1226	mnccdcmab	---	45.375
1227	mnccdmabc	---	31.875
1228	mnccdmacb	---	37.875
1229	mnccdmcab	---	43.875
1230	mnccmabdc	---	36.375
1231	mnccmadbc	---	36.375
1232	mnccmadcb	---	42.375
1233	mnccmdabc	---	36.375
1234	mnccmdacb	---	42.375
1235	mnccmdcab	---	48.375
1236	mncmabcdc	---	40.875
1237	mncmacbdc	---	40.875
1238	mncmacdbc	---	40.875
1239	mncmacdcb	---	46.875
1240	mncmcabdc	---	40.875
1241	mncmcadbc	---	40.875
1242	mncmcadcb	---	46.875
1243	mncmcdabc	---	40.875
1244	mncmcdacb	---	46.875
1245	mncmcdcab	---	52.875
1246	mnmabccdc	---	63.375
1247	mnmacbcdc	---	57.375
1248	mnmaccbdc	---	57.375
1249	mnmaccdbc	---	57.375
1250	mnmaccdcb	---	63.375
1251	mnmcabcdc	---	51.375
1252	mnmcacbdc	---	51.375
1253	mnmcacdbc	---	51.375
1254	mnmcacdcb	---	57.375
1255	mnmccabdc	---	51.375
1256	mnmccadbc	---	51.375
1257	mnmccadcb	---	57.375
1258	mnmccdabc	---	51.375
1259	mnmccdacb	---	57.375
1260	mnmccdcab	---	63.375

---Min Value---

Minimal Cost-Value: 15.375

7. Minimal Possible Schedules

S.No. Possible Sequence Cost-Value

$$
\begin{array}{lll}
\text { cmabcdnmc } & --- & 15.375 \\
\text { cmabcndmc } & --- & 15.375 \\
\text { cmabncdmc } & --- & 15.375 \\
\text { cmacbdnmc } & --- & 15.375 \\
\text { cmacbndmc } & --- & 15.375 \\
\text { cmacdbnmc } & --- & 15.375 \\
\text { cmacdnbmc } & --- & 15.375 \\
\text { cmacnbdmc } & --- & 15.375
\end{array}
$$

9	cmacndbmc	---	15.375
10	cmanbcdmc	---	15.375
11	cmancbdmc	---	15.375
12	cmancdbmc	---	15.375
13	cmcabdnmc	---	15.375
14	cmcabndmc	---	15.375
15	cmcadbnmc	---	15.375
16	cmcadnbmc	---	15.375
17	cmcanbdmc	---	15.375
18	cmcandbmc	---	15.375
19	cmcdabnmc	---	15.375
20	cmcdanbmc	---	15.375
21	cmcdnabmc	---	15.375
22	cmcnabdmc	---	15.375
23	cmcnadbmc	---	15.375
24	cmcndabmc	---	15.375
25	cmnabcdmc	---	15.375
26	cmnacbdmc	---	15.375
27	cmnacdbmc	---	15.375
28	cmncabdmc	---	15.375
29	cmncadbmc	---	15.375
30	cmncdabmc	---	15.375

Output:

cmacndbmc is the schedule generated by Proposed -EDD is found in Possible sequence list(Feasibility case).Moreover, this sequence is also found in list of minimal cost sequence(Optimal case). Hence, it is shown empirically that Proposed -EDD is both feasible and optimal.

Chapter 7

CONCLUSION AND FUTURE RECOMMENDATION

Flexible assembly lines that have negligible switch-over costs from one product to another make it possible to implement flexible JIT production, which requires producing only the necessary products in the necessary quantities at necessary times. A JIT system being a pull system initiates any supplying process only if there is another process that requires the supplying process output (subassembly, part, raw material). As a result, it is the final assembly which is the focus for scheduling. The problem of determining a sequence of final assembly such that the quantity of each part used in the assembly process is kept as close to constant as possible throughout the working time which is known as balancing the schedule. Our concern in this dissertation, however, is to extract the best schedule from the possible schedule.

In this dissertation, under the constraint that none of the chains are overlapping, it is shown that by considering each chain as a pseudo job and their length as a demands, we can have a pseudo schedule from EDD, which is later replaced by the real job, can lead a combined chain sequences which is both feasible and optimal (shown practically).

Still a lot of questions are left open. It is let to identify either we can establish the mathematical derivations of Proposed EDD's feasibility and optimality. It is also remain open either we can achieve a similar algorithm for overlapping sequences. Moreover, it is also let open that a similar achievement can be obtained with other algorithms like Cost Assignment, Nearest Integer Point, Dynamic Programming, and so on.

REFERENCES

1. Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, C. and Weglarz, J., "Scheduling computer and manufacturing processes", Springer, Berlin (1996).
2. Brouner, N. and Crama, Y., "The maximum deviation just-in-time scheduling problem", Discrete Applied Mathematics 134 (2004) 25-50.
3. Brucker, P., "Scheduling Algorithms", Springer, Verlag 2 (1995).
4. Carlier, J. and Chretienne, P., "Problemes d'ordonnancement: modelisation / complexite / algorithms", Masson, Paris (1988).
5. Dhamala, T. N., "Just-in-time sequencing algorithms for mixed-model production system", The Nepali Math. Sci. report 24, 1 (2005), 25-34.
6. Dhamala, T. N. and Khadka, S.R., "Just-in-time sequencing for mixed-model production systems revisited", submitted to Discrete Optimization 2007.
7. Dhamala, T. N. and Kubiak, W., "A brief survey of just-in-time sequencing for mixed-model systems", International Journal of Operational Research 2, 2 (2005) 38-47.
8. Graham, R.E., Lawer, E.L., Lenstra, J.K., and Rinnooy Kan, "Optimization and approximation in deterministic sequencing and scheduling, a survey", Annals of Discrete Mathematics 5 (1979) 287-326.
9. Hall, R.W., "Cyclic scheduling for improvement", International Journal of Production Research 26, 3 (1988) 457-472.
10. Horn, W. A., "Some simple scheduling algorithms", Naval Research Logistics Quarterely 21 (1974) 177-185.
11. Inman, R. R. and Bulfin, R. L., "Sequencing just-in-time mixed-model assembly lines", Management Science 37, 7 (1991) 901-904.
12. Jost, V., "Deux problems d'approximation diophantin: le patage proportionnel en numbers entries et les pavages equilibres de z", DEA ROCO, Laboratorie Leibniz-IMAG (2003).
13. Kovalyov, M. Y., Kubiak, W., Yeomans, J. S., A computational analysis of balanced JIT optimization algorithm, Information Processing and Operational Research, 39, 3 (2004) 4955-4974.
14. Kubiak, W., "Cyclic just-in-time sequence are optimal", Journal of Global Optimization 27 (2003) 333-347.
15. Kubiak, W., "Minimizing variation of production rates in just-in-time systems: A survey", European Journal of Operational Research 66 (1993) 259-271.
16. Kubiak, W. and Sethi, S., "Level schedules for mixed model assembly lines in just-in-time" production system", Management Science 37, 1 (1991) 121-122.
17. Kubiak, W., Steiner, G. and Yeomans, J.S., "Optimal level schedules for mixedmodel, multi-level just-in-time assembly systems", Annals of Operations Research 69 (1997) 241-259.
18. Lebacque, V., Jost, V., Brauner, N., "Simultaneous optimization of classical objectives in JIT scheduling", submitted to Elsevier Science, 2005.
19. Miltenburg, J., "Level schedules for mixed-model assembly lines in just-in-time production system", Management Science 35, 2 (1989) 192-207.
20. Miltenburg, J. and Goldstein, T., "Developing production schedules which balance part usage and smooth production loads for just-in-time production systems", Naval Research Logistics 38 (1991) 893-910.
21. Miltenburg, J. and Sinnamon, G., "Scheduling mixed-model multi-level just-intime production systems", International Journal of Production Research 27, 9 (1989) 1487-1509.
22. Miltenburg, J., Steiner, G and Yeomans, S., "A dynamic programming algorithm for scheduling mixed-model just-in-time production systems", Mathematical and Computer Modeling, 13 (1990) 57-66.
23. Monden, Y., "Toyota production system", Industrial Engineers and Management Press, Norcross, GA (1983).
24. Pinedo, M., "Scheduling - theory, algorithms, and systems", Prentice Hall, Englewood Cliffs (1995).
25. Steiner, G. and Yeomans, S., "Level schedules for just-in-time production process", Management Science 39 (1993) 728-735.
26. Suganuma, T. and Ogasawara, T., "Overview of the IBM Java Just-in-Time Compiler", IBM System Journal, 39, 1 (2000).
27. Tanenbaun, A., "Modern Operating System", Prentice-Hall of India Pvt. Ltd. (2004).
28. Thorpe, S.R., Stevenson, D.S., Edwards, G.K., "Using Just-in-Time to Enable Optical Networking for Grids", In Workshop on Grids and Networks held in conjunction with CCGrid, April, 2004.
29. Yee, G.V., Shucker, B., Dunn, J., Sheth, A., Han, R., "Just-in-Time Sensor Networks" In Information Processing in Sensor Networks: Second International Workshop, IPSN, 2003.
30. Toyota Motor Corporation Global Site, www.toyota.co.jp.
31. www.assignmentproblem.com.
32. Wikipedia, the Free Encyclopedia(http://en.wikipedia.org 2008).

Appendix A

Basic Mathematical Notations

Set theory

N	Set of natural numbers
R	Set of real numbers
$\mathrm{R}+$	Set of positive real numbers

Sequence and series

$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \quad$ Set of objects $a_{1}, a_{2}, \ldots, a_{n}$
$\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad$ A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$

Data

n
Number of jobs
m
Number of machines
J_{i}
Job number $\mathrm{i}, \mathrm{i}=1, \ldots, \mathrm{n}$
Number of operations of job J_{i}
$\mathrm{m}^{1} \quad$ Number of machines at stage 1
$\mathrm{M}_{\mathrm{j}} \quad$ Machine number $\mathrm{j}, \mathrm{j}=1, \ldots, \mathrm{~m}$
$\mathrm{O}_{\mathrm{i}, \mathrm{j}} \quad$ Operation j of job J_{i}
r_{i}
Release time of job J_{i}
d_{i}
Due date of job J_{i}
S_{i}
$\mathrm{p}_{\mathrm{i}, \mathrm{j}}$
Desired start time of job J_{i}
Processing time of operation $\mathrm{O}_{\mathrm{j}, \mathrm{j}}$
W_{i} or w_{i}
D

Weight associated to job J_{i}
Total demand

Machine environment

$\mathrm{t}_{\mathrm{i}, \mathrm{j}} \quad$ Start time of operation $\mathrm{O}_{\mathrm{i}, \mathrm{j}}$
$\mathrm{C}_{\mathrm{i}, \mathrm{j}} \quad$ Completion time of operation $\mathrm{O}_{\mathrm{i}, \mathrm{j}}$
$\mathrm{C}_{\mathrm{i}} \quad$ Completion time of job J_{i}
Φ
P
Q
R
m

Miscellaneous

Ti
E_{i}
L_{i}
$E(i, j)$
L(i, j)

Single machine
Identical machines
Uniform machines
Unrelated machines
The number of machines or stages is fixed

Tardiness of job J_{i}
Earliness of job J_{i}
Lateness of job J_{i}
Release date of the copy (i, j)
Due date of the copy (i, j)

Modeling the cost Value

Mathematical Function:

$$
k_{i, j}=\frac{2 j-1}{2 r_{i}}=\left[\frac{\left(j-\frac{1}{2}\right) D}{d_{i}}\right]
$$

Program:

public double getEvaluation(String abc) \{
double eval=0.0;
String newStr="";
for(int $\mathrm{i}=0 ; \mathrm{i}<$ abc.length();i++) $\{$
newStr $\quad=$ newStr+abc.charAt(i);
char jobChar $\quad=($ char $)$ abc.charAt(i);
Job j =jobModel.getJob(jobChar);
int pos $\quad=$ getLastPos(newStr,jobChar);
double Zval $\quad=(($ double $)(2 *$ pos-1) $) /(2.0 *$ j.getR($)$);
double Cur_eval =Math.pow((((double)(i+1))-Zval),2);
eval
= eval + Cur_eval;
\}
return eval;
\}

Mapping:

getLastPos(jobChar) returns the j value for the below mathematical formula.
j.getR() returns the ratio of D / di for job j

Then our formula becomes:

$$
\begin{aligned}
((\mathrm{j}-1 / 2) \mathrm{D}) / \mathrm{di} & = \\
& =(2 \mathrm{j}-1) \mathrm{D} / 2 * \mathrm{di} \\
& = \\
& = \\
& =(2 \mathrm{j}-1)^{*}(\mathrm{D} / \mathrm{di})^{*} 1 / 2 \\
& =(2 \mathrm{j}-1)^{*}(1 /(\mathrm{di} / \mathrm{D}))^{*}(1 / 2) \\
& =(2 \mathrm{j}-1) /(2 * \mathrm{ri}) *(1 / 2) \\
& =(2 * \text { pos }-1) / 2 * \mathrm{j} . \operatorname{getR}()
\end{aligned}
$$

Eval is the cumulative sum calculated by the help of loop.

Appendix B

Program Source Code

1. ScheduleImage.java

```
class ScheduleImage{
private String schedule;
private int index[];
int noOfChain;
double cost;
ScheduleImage(int i){
    this.noOfChain=i;
    schedule=new String();
    index=new int[this.noOfChain];
    }
    public int[] getIndex() {
        return index;
    }
    public void setIndex(int[] index) {
        for(int i=0;i<index.length;i++)
            this.index[i]=(int)index[i];
    }
    public String getSchedule() {
        return schedule;
    }
    public void setSchedule(String schedule) {
        this.schedule = schedule;
    }
    public void incrIndex(int i){
        this.index[i]++;
    }
    public void printIndex(){
        for(int i=0;i<this.noOfChain;i++){
            System.out.print(this.index[i]);
        }
    }
    public double getCost() {
        return cost;
    }
    public void setCost(double cost) {
        this.cost = cost;
    }
}
```


2. PossibleSchedule.java

import java.util.Vector; public class PossibleSchedule \{

Vector <ScheduleImage>cat=new Vector<ScheduleImage>(); int totalDemand $=0$;
double $\mathrm{Z}[$][] $=\quad$ new double [100][100]; double $r[] \quad=\quad$ new double[100]; int $\operatorname{pos}[][]=$ new int[100][100];

```
private String chain[]={
```

 "aba",
 "ccdcc"
 \};
int startIndex=0;
int finalIndex=0;
JobModel jobModel=new JobModel();
public double getEvaluation(String abc)\{
double eval=0.0;
String newStr="'";
for(int $\mathbf{i}=\mathbf{0} ; \mathbf{i}<$ abc.length ()$; \mathbf{i}++$) $\{$
newStr $=$ newStr+abc.charAt(i);
char jobChar $=$ (char)abc.charAt(i);
Job j $\quad=\quad$ jobModel.getJob(jobChar);
int pos $=$ getLastPos(newStr,jobChar);
double Zval $\quad=\quad(($ double $)(2 *$ pos-1 $)) /(2.0 *$ j.getR());
double Cur_eval = Math.pow ((((double)(i+1))-Zval),2);
eval $=\quad$ eval + Cur_eval;
\}
return eval;
\}
public int getLastPos(String newStr,char c) $\{$
int retVal=0;
for(int $\mathbf{i}=\mathbf{0} ; \mathbf{i}<$ newStr.length();i++)\{
char chr=newStr.charAt(i);
if(chr==c)\{
retVal++;
\}
\}
return retVal;
\}

PossibleSchedule()\{
int noOfChain=chain.length;
int length $=0$;
for(int $i=0 ; \mathbf{i}$ <noOfChain; $\mathbf{i}++$) $\{$

```
    length+=chain[i].length();
    ScheduleImage s=new ScheduleImage(noOfChain);
    int index[]=new int[noOfChain];
    index[i]=1;
    String schedule='''+chain[i].charAt(0);
    s.setIndex(index);
    s.setSchedule(schedule);
    cat.add(s);
    finalIndex++;
}
int jobIndex=0;
for(int i=0;i<noOfChain;i++){
    for(int j=0;j<chain[i].length();j++){
    char c=((String)chain[i]).charAt(j);
    int index=this.jobModel.getIndex(c);
    if(index==-1){
        jobModel.addJob(c,jobIndex++);
    }
    jobModel.incJobCount(c);
    }
}
jobModel.setRatio();
int prevIndex;
for(int i=1;i<length;i++){
    prevIndex=startIndex;
    startIndex=finalIndex;
    try{
    for(int k=prevIndex;k<startIndex;k++){
        ScheduleImage s=new ScheduleImage(noOfChain);
        s=(ScheduleImage)cat.get(k);
        for(int j=0;j<noOfChain;j++){
        int index[]=new int[noOfChain];
        index= s.getIndex();
        if(index[j]<chain[j].length()){
        try{
        String
schedule=s.getSchedule()+chain[j].charAt(index[j]);
            ScheduleImage s1=new ScheduleImage(noOfChain);
            s1.setIndex(s.getIndex());
            s1.incrIndex(j);
            s1.setSchedule(schedule);
            cat.add(s1);
            finalIndex++;
            }catch(Exception e){
            System.out.println('Error TrAp'');
                        }
            }
            }
            }
    }catch(Exception e){
        System.out.println('erer');
    }
```

```
}
showFinalSchedule(startIndex);
}
public static void main(String abc[]){
new PossibleSchedule();
}
public void showVector(){
for(int i=0;i<cat.size();i++){
    ScheduleImage s=(ScheduleImage)cat.get(i);
    s.printIndex();
    System.out.print(" '');
    System.out.println(s.getSchedule());
    }
}
public void showFinalSchedule(int startIndex){
int count=1;
for(int i=startIndex;i<cat.size();i++){
    ScheduleImage s=(ScheduleImage)cat.get(i);
    s.setCost(getEvaluation(s.getSchedule()));
    System.out.print(count+" '');
    System.out.print(" '');
    System.out.println(s.getSchedule()+' --- ''+s.getCost());
    count++;
    }
}
```


3. JobModel.java

```
class JobModel{
Vector <Job>cat=new Vector<Job>();
public void addJob(char c,int jobIndex){
    Job j=new Job();
    j.setJobChar(c);
    j.setJobCount(0);
    j.setR(0.0);
    j.setJobIndex(jobIndex);
    this.cat.add(j);
}
public void setRatio(){
    for(int i=0;i<cat.size();i++){
        totalDemand+=((Job)cat.get(i)).getJobCount();
    }
    for(int i=0;i<cat.size();i++){
        Job j=(Job)cat.get(i);
```

\}
public void addJob(Job j)\{
cat.add(j);
\}
Job getJob(char c)\{
for(int $\mathbf{i = 0 ;} \mathbf{i < c a t . s i z e () ; i + +) \{ ~}$
Job $\mathbf{j}=$ cat.get(\mathbf{i});
if(j.getJobChar()==c)
return \mathbf{j};
\}
return null;
\}
int getIndex(char c)\{
for(int $i=0 ; i<$ cat.size ()$; \mathbf{i}++)\{$
Job $\mathbf{j}=$ cat.get (\mathbf{i});
if(j.getJobChar()==c)
return i;
\}
return -1;
\}
void incJobCount(char c)\{
for(int $\mathbf{i = 0 ; i < c a t . s i z e () ; ~} \mathbf{i + +})\{$
Job j=cat.get(i);
if(j.getJobChar()==c)
j.incrJobCount();
\}
\}
public void viewJobList $(\}\{$
System.out.println("Job Demand Ratio");
for(int $\mathbf{i = 0 ;} \mathbf{i}<$ cat.size(); $\mathbf{i}++$) $\{$
Job $\mathbf{j}=$ cat.get(i);
System.out.println(j.jobChar+" "+j.getJobCount()+" "+j.getR());
\}\}\}

4. Job.java

```
class Job{
double r;
char jobChar;
int jobCount=0;
int actualPos=-1;
int pos=-1;
int jobIndex=-1;
public int getJobCount() {
    return jobCount;
}
```

```
public void setJobCount(int jobCount) {
    this.jobCount = jobCount;
}
public char getJobChar() {
    return jobChar;
}
public void setJobChar(char jobChar) {
    this.jobChar = jobChar;
}
public double getR() {
    return r;
}
public void setR(double r) {
    this.r = r;
}
public void incrJobCount(){
    this.jobCount++;
}
public int getActualPos() {
    return actualPos;
}
public void setActualPos(int actualPos) {
    this.actualPos = actualPos;
}
public int getPos() {
    return pos;
}
public void setPos(int pos) {
    this.pos = pos;
}
public int getJobIndex() {
    return jobIndex;
}
public void setJobIndex(int jobIndex) {
    this.jobIndex = jobIndex;
}}}
```


5. MinSumAbsoluteChainAlgo.java

```
public class minSumAbsoluteChainAlgo {
private int demand[]=new int[100];
private String scheduleEDD,scheduleCost;
private String realEddSchedule,realCostSchedule;
private String chain[]={
        "aba",
        "ccdcc"
};
public static void main(String abc[]){
new minSumAbsoluteChainAlgo();
}
minSumAbsoluteChainAlgo(){
for(int i=0;i<chain.length;i++){
    demand[i]=chain[i].length();
```

EDD edd=new EDD(demand);

```
scheduleEDD=edd.getSchedule();
this.realEddSchedule=convertSchedule(scheduleEDD);
System.out.println('EDD Schedule :"+realEddSchedule);
}
private String convertSchedule(String pseudoSchedule){
String realSchedule=''';
int chainPtr[]=new int[100];
for(int i=0;i<chain.length;i++){
    chainPtr[i]=0;
}
for(int i=0;i<pseudoSchedule.length();i++){
    int index=Integer.parseInt(pseudoSchedule.charAt(i)+''');
    char job=chain[index-1].charAt(chainPtr[index-1]++);
    realSchedule=realSchedule+job;
}
return realSchedule;
}
}
```


6. EDD.java

```
import util.DoubleUtil;
public class EDD {
private String schedule=''';
public EDD(int demand[]){
int product=demand.length;
int current[]=new int[100];
double dueDate[][]=new double [100][100];
int totalDemand=0;
for(int i=0;i<product;i++){
    totalDemand+=demand[i];
}
int index=1;
for(int i=0;i<product;i++){
    for(int k=1;k<=demand[i];k++,++index ){
dueDate[i][k-1]=DoubleUtil.getRoundDouble((()(double)k-
0.5)*(double)totalDemand)/demand[i]),3);
    }
}
for(int i=0;i<product;i++){
    current[i]=0;
}
int minIndex;
double minValue;
```

```
for(int j=0;j<totalDemand;j++){
    minIndex=0;
    minValue=Double.MAX_VALUE;//dueDate[0][current[0]];
    for(int i=0;i<product;i++){
        if(minValue>dueDate[i][current[i]]&&current[i]<demand[i]){
                        minIndex=i;
                minValue=dueDate[i][current[i]];
                        }
    }
    current[minIndex]=current[minIndex]+1;
    schedule=schedule + (minIndex+1);
    }
}
    public String getSchedule() {
    return schedule;
    }
    public void setSchedule(String schedule) {
    this.schedule = schedule;
    }
}
```


7. DoubleUtil.java

```
package util;
public class DoubleUtil {
public static double getRoundDouble(double value,int decimal){
double fact=0.500000/Math.pow(10.0,decimal);
int temp=(int)((value+fact)*Math.pow(10.0,decimal));
value=temp/Math.pow(10.0,decimal);
return value;
}
public static void main(String abc[]){
System.out.println(upperFloor(56.1));
System.out.println(Double.MAX_VALUE);
System.out.println(Math.E);
}
public static int upperFloor(double d){
if((double)(int)d==d)
    return (int)d;
return (int)(d+1.0);
}
}
```

8. Earliest Due Date. java
import java.util.Vector; import earliestDueDate.model.*; import earliestDueDate.POJO.Job; import util.DoubleUtil; import util.ListViewModel; import util.ShowSchedule;
```
public class EarliestDueDate {
    int demand[]=new int[100];
    int product;
    int totalDemand;
    double dueDate[[][]=new double[100][100];
    int current[]=new int[100];
    int schedule[]=new int[100];
    Vector <Job>jobList=new Vector<Job>();
    private ListViewModel Datamodel=new ListViewModel();
    String color[]=null;
    public EarliestDueDate(){
    this.jobList=new JobDataModel().getJob();
        runEarliestDueDateAlgo();
    }
    public void runEarliestDueDateAlgo(){
        this.product=this.jobList.size();
        totalDemand=0;
            for(int i=0;i<product;i++)
        demand[i]=this.jobList.get(i).getDemand();
            totalDemand+=demand[i];
        }
        this.Datamodel.setMatrix(this.totalDemand,3);
        String []dataColName={"Product","Unit","Due Date"};
        Datamodel.setColName(dataColName);
        color=new String[this.totalDemand];
        int index=0;
        for(int i=0;i<product;i++){
            this.Datamodel.setValueAt(index,"'+(i+1));
            index=index+3*demand[i];
        }
        index=1;
        for(int i=0;i<product;i++){
        for(int k=1;k<=demand[i];k++,++index ){
        dueDate[i][k-1]=DoubleUtil.getRoundDouble((()(double)k-
        0.5)*(double)totalDemand)/demand[i],3);
            if(k!=1){
        this.Datamodel.setValueAt(index-1,"--'");
            }
    this.Datamodel.setValueAt(index++,"'+k);
        this.Datamodel.setValueAt(index++,"'+dueDate[i][k-1]);
        }
            try{
            }catch(Exception e){
            this.Datamodel.setValueAt(index,"'+(i+2));
            }
}
for(int i=0;i<product;i++){
            current[i]=0;
}
int minIndex;
double minValue;
for(int j=0;j<totalDemand;j++){
```

```
    minIndex=0;
minValue=Double.MAX_VALUE;//dueDate[0][current[0]];
for(int i=0;i<product;i++){
if(minValue>dueDate[i][current[i]]&&current[i]<demand[i
]){
    minIndex=i;
    minValue=dueDate[i][current[i]];
        }
    }
    current[minIndex]=current[minIndex]+1;
    schedule[j]=minIndex+1;
    color[j]='#'"+minIndex+"''+minIndex+'"'+minIndex+'"'+
    minIndex+'"'+minIndex+'"'+minIndex;
    }
    String scheduleList="<HTML>Schedule List :<br>";
    for(int i=0;i<totalDemand;i++){
        scheduleList+=schedule[i]+" - '';
    }
    scheduleList+='"</html>';
        new ShowSchedule(this.Datamodel,'Earliest Due
        Date",scheduleList);
    }
```


9. Input demand. Java

```
import java.awt.BorderLayout;
import java.awt.FlowLayout;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.awt.event.WindowListener;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.JTextField;
import javax.swing.JFrame;
import earliestDueDate.POJO.Job;
import earliestDueDate.com.EarliestDueDate;
import earliestDueDate.model.JobDataModel;
import earliestDueDate.model.TabelModelForJob;
public class InputDemand extends JFrame implements ActionListener{
    JTable table=new JTable();
    TabelModelForJob model=new TabelModelForJob();
    JButton jbtAdd=new JButton('Add New");
    JButton jbtSave=new JButton('Save'');
```

```
JButton jbtSchedule=new JButton("Schedule");
JTextField jtfJob=new JTextField(5);
JTextField jtfJobDemand=new JTextField(5);
private String MODE="ADD";
private void init(){
    JPanel jpCenter=new JPanel();
    jpCenter.setLayout(new FlowLayout());
    JScrollPane jspTable=new JScrollPane(this.table);
    this.table.setModel(this.model);
    jpCenter.add(jspTable);
    JPanel jpButton =new JPanel();
    jpButton.setLayout(new FlowLayout());
    jpButton.add(this.jbtAdd);
    jpButton.add(this.jbtSave);
    jpButton.add(this.jbtSchedule);
    JPanel jpData=new JPanel();
    jpData.setLayout(new FlowLayout());
    jpData.add(new JLabel("Job Id:"));
    jpData.add(this.jtfJob);
    jpData.add(new JLabel("Demand :"));
    jpData.add(this.jtfJobDemand);
    this.jtfJob.setEditable(false);
    this.setLayout(new BorderLayout());
    JPanel jpDownHolder=new JPanel();
    jpDownHolder.setLayout(new GridLayout(2,1,5,5));
    jpDownHolder.add(jpData);
    jpDownHolder.add(jpButton);
    JPanel jpDown=new JPanel();
    jpDown.setLayout(new FlowLayout());
    jpDown.add(jpDownHolder);
    this.add(jpDown,BorderLayout.SOUTH);
    this.add(jpCenter,BorderLayout.CENTER);
    this.jbtSave.addActionListener(this);
    this.jbtAdd.addActionListener(this);
    this.jbtSchedule.addActionListener(this);
    this.setTitle('Earliest Due Date - Input Demand ");
}
    public static void main(String abc[]){
    InputDemand mf=new InputDemand();
    mf.setSize(400,400);
    mf.setVisible(true);
    mf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
    public InputDemand(){
    init();
    this.table.addMouseListener(new MouseAdapter(){
    public void mouseClicked(MouseEvent arg0) {
    InputDemand.this.MODE="EDIT";
    int i=InputDemand.this.table.getSelectedRow();
    Job j=InputDemand.this.model.getJobAt(i);
    InputDemand.this.jtfJob.setText('"'+j.getJobId());
InputDemand.this.jtfJobDemand.setText("''+j.getDemand());
    }
    });
```

\}
public void actionPerformed(ActionEvent ae) \{
if(ae.getSource().equals(this.jbtSchedule))\{
System.out.println(new JobDataModel().getJob().size()); long 11=System.currentTimeMillis(); EarliestDueDate dp=new EarliestDueDate(); long $12=$ System.currentTimeMillis(); JOptionPane.showMessageDialog(this,''Total Run Time :"+(12-11)+" milisecond");
\}
if(ae.getSource().equals(this.jbtAdd))\{ clearBox();
this.MODE="ADD";
\}
if(ae.getSource().equals(this.jbtSave))\{ Job j=new Job();
if(this.MODE.equals("ADD"))\{
j.setDemand(Integer.parseInt(this.jtfJobDemand.getText())); this.model.addJob(j);
\}
else\{
System.out.printll("EDIT"'); try\{
j.setJobId(Integer.parseInt(this.jtfJob.getText()));
j.setDemand(Integer.parseInt(this.jtfJobDemand.getText()));
this.model.editJob(j);
\}catch(Exception e)\{
e.printStackTrace();
\}
\}
this.table.updateUI();
clearBox();
\}
\}
public void clearBox()\{
this.jtfJob.setText("'");
this.jtfJobDemand.setText("'");
\}
\}

[^0]: ---Min Value---
 Minimal Cost-value: 4.0

