
1

Chapter 1

INTRODUCTION

Just-in-Time (JIT) is defined as “a philosophy of manufacturing based on planned

elimination of all waste and on continuous improvement of productivity”. It also

has been described as an approach with the objective of producing of the right

product in the right place at the right time. Waste results from any activity that

add cost without adding value, such as the unnecessary moving of materials, the

accumulation of excess inventory, or the use of faulty production methods that

create products requiring subsequent rework. JIT should improve profits and

return on investment by reducing inventory levels (increasing the inventory turn

over rate), reducing variability, improving product quality, reducing other costs

(such as those associated with machine setup and equipment breakdown). In a JIT

system, underutilized (excess) capacity is used instead of buffering inventories to

hedge against problems that may arise.

The primary characteristics differentiating JIT system from conventional systems

is that subsequent processes within the manufacturing system “pull” their part

requirements from the preceding processes. This pull process results in the

production of only the required parts in the required quantities at the required

time, Miltenburg et al [21] and Monden [23]. Necessarily, the final assembly

process becomes the primary focus for control in JIT manufacturing. The most

important goal for a JIT production system is to ensure that the quantity of each

part used by the assembly process is kept as close to constant as possible per unit

time, Monden [23]. Determining the sequence of final assembly which achieves

this goal is commonly referred to in the literature as leveling or balancing the

schedule, Hall [9]. A balance schedule minimizes the variability in the production

rate of all parts and products within the JIT system. This reduces the possibility of

“shock waves” caused by sudden increases in part requirements, which may result

in shortages, or by sudden decreases, which may create excessive inventories.

2

Determining a balanced schedule is the corner stone of the Toyota production

system, Monden [23]. To construct such a schedule, Toyota has employed a

heuristic procedure known as Goal Chasing Method. For most industrial

applications, however, determining an optimal balanced schedule is a very

difficult combinatorial problem, Kubaik [15] and Kubaik et al [17].

A considerable amount of research into balanced schedule problems has been

undertaken during the past decade. Although much of the interest into JIT

manufacturing was spurred on by the description of the Toyota production system

Monden [23], the catalyst for balanced schedule research was the seminal work of

Miltenburg [21]. Miltenburg [21] transformed Toyota’s balanced schedule

problem into a nonlinear integer programming problem. The objective of this

formulation was to determine the sequence of final assembly which minimize the

‘sum of deviations’ (min-sum) of actual production from the desired quantity of

production. This original model as subsequently extended to multi-level assembly

systems where the implied part demands for the outputs from feeder processes

were also considered when fixing the sequence of final products assembly,

Miltenburg et al [21] [20]. Beside this, several heuristics procedures have been

proposed for solving balanced schedule, Inman and Bulfin [11], and Jost [12].

A dynamic programming algorithm for optimizing the single–level (i.e. product

level), min–sum problem was provided by Miltenburg et al [22]. Kubaik and Sethi

[16] demonstrated that the objective function can be represented by penalties for

deviation from the most even but unrealizable (i.e. fractional) distribution of

demand and that if these penalty functions are non-negative and convex, then this

problem can be reduced to an assignment problem. Steiner & Yeomans [25]

formulated an efficient graph-theoretic optimization algorithm for minimizing the

maximum (min-max) absolute deviation of actual production from the desired

quantity of production. A procedure for generating several Pareto optimal

solutions to the problem combining both the min-sum and min-max objectives is

described in Steiner & Yeomans [25]. Kubaik [15] and Kubaik et al. [17] proved

3

that balanced schedule problems with two or more productions levels are NP-

hard. Optimization algorithms for both min-sum and min-max multi-levels

problems appear in Kubaik et al. [17]. Beside this, Miltenburg [21] considers the

quantity of each part used by mixed model assembly line per unit time should be

kept as constant as possible. Beside this, an efficient algorithm for obtaining an

optimal solution for maximum absolute-deviation objective in single level with

chain constrained had been developed by Dhamala [5]. Kovalyov, Kubiak, and

Yeomans [13], have observed the computational complexity of balanced JIT

optimization algorithm and showed that most of single-level JIT problems could

be efficiently solvable. Similar analytical study had been done by Dhamala and

Khadka [6].

This dissertation has been organized as follows. Chapter 2 explains some

fundamental concepts of Computational Complexity Theory, Complexity Classes

and Scheduling and its related problems. Chapter 3 briefly describes the mixed

model production system. It also studied different mathematical models for mixed

model JIT problems for single and multi-levels problems.

Chapter 4 explores the solution procedure for min-sum PRVP. Different

algorithms for the solution are described in this chapter. The EDD Algorithm to

find optimal solution for min-sum problem is reviewed. The nearest integer point

method to find a solution for min-sum problem is included. Cost assignment

approaches for min-sum PRVP is described. Dynamic Programming approach to

solve the min-sum problem, which is found fruitful for large size problem, is

illustrated. Moreover, an algorithm so called min-sum absolute chain algorithm

with extended EDD is also presented. Chapter 5 considers the combination of

different non-overlapping chains to find out all possible sequences from the input

chain sequences. Moreover, an attempt to find the best sequence among them is

done. Chapter 6 has concluded this study with some remarkable achievements like

combining different non-overlapping chains and explores optimal sequence with

minimum cost value in mixed-model JIT production system.

4

Chapter 2

FUNDAMENTAL CONCEPTS

2.1 Turing Machine

Turing Machine is basic abstract symbol-manipulating device which, despite their

simplicity, can be adapted to simulate the logic of any computer algorithm. It was

described in 1936 by Alan Turing. Turing Machine is not intended as a practical

computing technology, but a thought experiment about the limits of mechanical

computation. Thus, it was not actually constructed. Studying its abstract

properties yields many insights into computer science and complexity theory.

A Turing Machine that is able to simulate any other Turing Machine is called a

Universal Turing Machine (UTM, or simply a universal machine). A more

mathematically-oriented definition with a similar "universal" nature was

introduced by Alonzo Church, whose work on lambda calculus intertwined with

Turing's in a formal theory of computation known as the Church-Turing thesis.

The thesis states that Turing machines indeed capture the informal notion of

effective method in logic and mathematics, and provide a precise definition of an

algorithm or 'mechanical procedure'. Some of the examples of Turing Machine

are: Turing's very first machine, Copy routine, 3-state busy beaver, etc.

2.2 Computational Complexity

Computational complexity theory is a branch of the theory of computation in

computer science that investigates the problems related to the resources required

to run algorithms, and the inherent difficulty in providing algorithms that are

efficient algorithms for both general and specific computational problems.

Complexity theory attempts to describe how difficult it is for an algorithm to find

a solution to a problem. This differs from computability theory, which describes

whether a problem can be solved at all. Furthermore, much of complexity theory

5

deals with decision problems. A decision problem is one where the answer is

always "yes" or "no". Some problems are undecidable, or at least seem so, so

complexity theory can be used to distinguishes problems where it is certain to get

a correct "yes" or "no" (not necessarily both). A problem that reverses which can

be relied upon is called a complement of that problem. Complexity theory

analyzes the difficulty of computational problems in terms of many different

computational resources. A problem can be described in terms of many

requirements it makes on resources: time, space, randomness, alternation, and

other less-intuitive measures (vague).

2.3 Function

Functions play a fundamental role in all areas of mathematics, as well as in other

Sciences, Information Communication Technology and Engineering. However,

the intuition pertaining to functions, notation, and even the very meaning of the

term "function" varies among the fields. More abstract areas of mathematics, such

as set theory, consider very general types of functions that may not be specified

by a concrete rule or be governed by familiar principles. In the most abstract

sense, the distinguishing feature of a function is that it relates exactly one output

to each of its admissible inputs. Such functions need not involve numbers. For

example, a function might associate each member of a set of words with its own

first letter.

Given two sets A and B, a function f is a binary relation on A x B such that for all

aA, there exists precisely bB such that (a, b) f. The set A is called domain of

f, and the set B is called co-domain of f. We write f : A→B and if (a, b)  f, we

write b = f(a), since b is uniquely determined by choice of a. Two functions f and

g are equal if they have the same domain and co-domain and if, for all a in the

domain, f(a) = g(a). A finite sequence of length n is a function f whose domain is

the set of n integers {0, 1, 2, …, n-1}. Finite sequence is denoted by listing its

values: {f(0), f(1), f(2), …, f(n-1)}. An infinite sequence is a function whose

6

domain is set of N natural numbers. For example, the Fibonacci sequence, defined

by recurrence, is the infinite sequence {0, 1, 1, 2, 3, 5, 8, …..}.

2.4 Complexity Classes

In computational complexity theory, a complexity class is a set of problems of

related complexity. A typical complexity class has a definition of the form: the set

of problems that can be solved by abstract machine M using O(f(n)) of resource R

(n is the size of the input).A complexity class is the set of all the computational

problems which can be solved using a certain amount of a certain computational

resources. There are several complexity classes in the theory of computation.

Some of the major classes are discussed below.

2.4.1 Class P

The complexity class P is the class of decision problems that can be solved by a

deterministic machine in polynomial time. This class corresponds to an intuitive

idea of the problems which can be effectively solved in the worst cases.

Example 2.1 The problem of sorting n numbers can be done in O(n2) time using

the quick sort algorithm in worst case . Thus all sorting problems are in P.

2.4.2 Class NP

The complexity class NP is the set of decision problems that can be solved by a

non-deterministic Turing machine in polynomial time. This class contains many

problems that people would like to be able to solve effectively, including the

Boolean satisfiability problem, the Hamiltonian path problem and the vertex

cover problem. All the problems in this class have the property that their solutions

can be checked efficiently.

Example 2.2 A vertex cover of an undirected graph G= (V, E) is a subset of V’
 V such that if (u, v)E, then uV’ and vV’ or both. That is, each edge

7

touches at least one vertex V’. The vertex-cover problem is to find such a vertex

cover of minimal cardinality. This problem is in NP.

2.4.3 NP-Complete

In computational complexity theory, the complexity class NP-complete

(abbreviated NP-C or NPC, NP standing for Nondeterministic Polynomial time) is

a class of problems having two properties:

 Any given solution to the problem can be verified quickly (in polynomial

time); the set of problems with this property is called NP.

 If the problem can be solved quickly (in polynomial time), then so can

every problem in NP.

2.4.4 NP-Hard

NP-hard (nondeterministic polynomial-time hard), in computational complexity

theory, is a class of problems informally "at least as hard as the hardest problems

in NP." A problem H is NP-hard if and only if there is an NP-complete problem L

that is polynomial time Turing-reducible to H. In other words, L can be solved in

polynomial time by an oracle machine with an oracle for H. Informally we can

think of an algorithm that can call such an oracle machine as subroutine for

solving H, and solves L in polynomial time if the subroutine call takes only one

step to compute.

2.4.5 P=NP Question

The question of whether NP = P (can problems that can be solved in non-

deterministic polynomial time also always be solved in deterministic polynomial

time?) is one of the most important open questions in theoretical computer science

and ultra modern mathematics because of the wide implications of a solution. If

the answer is yes, many important problems can be shown to have more efficient

8

solutions that are now used with reluctance because of unknown edge cases.

These include various types of integer programming in operations research, many

problems in logistics, protein structure prediction in biology, and the ability to

find formal proofs of pure mathematics theorems. The P = NP problem is one of

the Millennium Prize Problems proposed by the Clay Mathematics Institute the

solution of which is a US$1,000,000 prize for the first person to provide a

solution.

2.4.6 NP- Incomplete

Incomplete problems are those in NP that are neither NP-complete nor in P. In

other words, incomplete problems can neither be solved in polynomial time nor

are they hard problems. It has been shown that if P = NP is found false then there

exist NP-incomplete problems.

2.4.7 Co-NP

Co-NP is the set containing the complement problems (i.e. problems with the

yes/no answers reversed) of NP problems. It is believed that the two classes are

not equal; however it has not yet been proven. It has been shown that if these two

complexity classes are not equal, then it follows that no NP-Complete problem

can be in co-NP and no co-NP-Complete problem can be in NP.

9

2.5 Graph and Matching Problems

A graph G is a pair G = (V, E), where V is finite non-empty set of nodes(vertices)

and EV X V is a relation set of ordered pairs (u, v). An edge between two

vertices is denoted by [u, v], consists of pairs (u, v) and (v, u) in the set E. A pair

(u, v)E is called an arc if pair (v, u)E. If all pairs in E are arcs, the graph G is

called directed graph. Graph G is called an undirected graph if all pairs in E are

edges.

Let G = (V, E) be a graph in which vertex set V can be portioned into two

disjoint sets, V1 and V2, and each edge in E has one vertex in V1 and another in

V2. In such case G is called bipartite graph. Bipartite graph is denoted by G =

(V1V2, E). Otherwise the graph is called non-bipartite graph.

A graph G = (V, E) is called a complete graph if [u, v]E for all u, vV with

u v. A bipartite graph G = (V1V2, E) is called complete bipartite graph if each

uV1 is joined to each vV2. A graph G = (V, E) with a function w: E→Z is

called an edge-weighted graph, where Z is usually the set of positive integers.

Given a graph G = (V, E), a matching M in G is a subset of the edge set E with

the property that no two edges of M share the same node. A matching M in Graph

G is called a maximum matching if no matching in G exists with cardinality more

than that of M. The largest possible cardinality of a matching in a graph with |V|

nodes is  /2|V| . When the cardinality of a matching M in a graph G = (V, E) is

 /2|V| , M is called complete graph or perfect matching.

2.6 Scheduling

Definition of Scheduling and its components are described in different literatures

in different ways. According to Pinedo,” scheduling concerns the allocation of

10

limited resources to tasks over time. It is a decision-making process that has a

goal the optimization of one or more objective”, Pinedo [24].

In the words of Carlier and Chretienne [4], “Scheduling is to forecast the

processing of a work by assigning resources to tasks and fixing their start times.

The different components of scheduling problem are the tasks, the potential

constraints, the resources and the objective function. The task must be

programmed to optimize a specific objective function. Beside this, sometimes it

will be more realistic in practice to consider several criteria”, Carlier et al [4].

Furthermore, it is a decision-making problem that plays an important role in most

manufacturing and service industries. Scheduling is applied in procurement and

production, in transportation and distribution, and in information processing and

communication. A scheduling problem typically uses mathematical optimization

techniques or heuristic methods to allocate limited resources to the processing of

tasks.

In order to determine satisfactory or optimal schedules, it is helpful to formulate

the scheduling problem as a mathematical model. Such a model typically

describes a number of important characteristics. One characteristic specifies the

number of machines or resources as well as their interrelationships with regard to

the configuration, for example, machines set up in series, and machines set up in

parallel. A second characteristic of a mathematical model concerns the processing

requirements and constraints. These include setup costs and setup times, and

precedence constraints between various activities. A third characteristic has to do

with the objective that has to be optimized, which may be a single objective or a

composite of different objectives. For example, the objective may be a

combination of maximizing throughput (which is often equivalent to minimizing

setup times) and maximizing the number of orders that are shipped on time.

11

2.6.1 Machine Environment

There can be a single machine, multiple machines, or in some situation, the

number of machines may be unknown in advance. The simplest machine

environment is the single machine environment, on which each n job Ji, each

consisting of single operation, have to spend a processing time equal to their

given processing requirements Pi ,i=1, 2, …,n. In case of multiple machine

environments, Blazewicz [1], a job Ji, is a set of ni number of operations, Oi. It is

not necessary that an arbitrary operation of an arbitrary job can be processed in an

arbitrary machine: this restriction inspires to classify the multiple machine

environments into two categories: Parallel machine and Dedicated machine.

In parallel machine model, an arbitrary operation Oi of an arbitrary job Ji can be

executed in an arbitrary machine Mj. Simply, any machine can execute any

operation of any job.

In dedicated machine model, there is a restriction on operations: operations

executable on machines is constrained. To be specific, dedicated machine

environment has been classified into three categories, viz., flow shop, open shop

and job shop.

2.6.2 Some Application Areas of Scheduling

The application of scheduling is seen in diversified sectors of activity. Some

application areas in computer science and engineering are described below.

2.6.2.1 Production Scheduling

Scheduling is an important tool for manufacturing and engineering, where it can

have a major impact on the productivity of a process. In manufacturing, the

12

purpose of scheduling is to minimize the production time and costs, by telling a

production facility what to make, when, with which staff, and on which

equipment. Production scheduling aims to maximize the efficiency of the

operation and reduce costs.

Production scheduling tools greatly outperform older manual scheduling methods.

These provide the production scheduler with powerful graphical interfaces which

can be used to visually optimize real-time work loads in various stages of

production, and pattern recognition allows the software to automatically create

scheduling opportunities which might not be apparent without this view into the

data. For example, an airline might wish to minimize the number of airport gates

required for its aircraft, in order to reduce costs, and scheduling software can

allow the planners to see how this can be done, by analyzing time tables, aircraft

usage, or the flow of passengers.

2.6.2.2 Operation System Design Scheduling

Scheduling is a key concept in computer multitasking and multiprocessing

operating system design, and in real-time operating system design. In modern

operating systems, there are typically many more processes running than there are

CPUs available to run them. Scheduling refers to the way processes are assigned

to run on the available CPUs. This assignment is carried out by software known

as a scheduler.

In real-time environments, such as mobile devices for automatic control in

industry (for example robotics), the scheduler also must ensure that processes can

meet deadlines; this is crucial for keeping the system stable. Scheduled tasks are

sent to mobile devices and managed through an administrative back end.

13

Beside this, some basic algorithms used in OS for uni-processor computers are

given below.

i. First Come First Serve (FCFS): At any instance when machine is idle, select

the available jobs in the order they request. When the first job enters in the system

it is started immediately and allowed to run as long as it wants.

ii. Shortest Job First (SJF): At any instance when the machine is idle, select the

available job having shortest expected processing time. In the case of tie the FCFS

is used.

iii. Shortest Remaining Time Next (SRTN): At any instance schedule the job

whose remaining time is the shortest. When a new job arrives, its time is

compared with the current process’ remaining time. If new job needs less time to

finish than the current process, the current process is suspended and new job

started. It is applicable to preemptive system.

iv. Round-Robin: Each process is assigned a time interval, called quantum,

which it is allowed to run. If the process is still running at the end of the quantum,

the CPU is preempted and given to another process. If the process has finished

before the quantum has elapsed, the CPU switching is done when the process

blocks, of course.

2.6.2.3 I/O Scheduling

I/O scheduling is the term used to describe the method computer operating

systems decide the order that block I/O operations will be submitted to the disk

subsystem. I/O scheduling is sometimes called 'disk scheduling'. I/O scheduling

usually has to work with hard disks which share the property that there is long

access time for requests which are far away from the current position of the disk

head (this operation is called a seek). To minimize the effect this has on system

performance, most I/O schedulers implement a variant of the elevator algorithm

14

which re-orders the incoming randomly ordered requests into the order in which

they will be found on the disk.

2.6.2.4 Timetable Scheduling

In timetable scheduling problems, examination subjects must be slotted to certain

times that satisfy several of constraints. They are NP-completeness problems,

which usually lead to satisfactory but suboptimal solutions. Along with this,

Timetable scheduling problems concern all educational establishments or

universities, since they involve timetabling of courses assuring the availability of

teachers, students and classrooms. These problems are just as much the object of

studies.

2.6.2.5 Project Scheduling

Project scheduling problems comprise a vast literature. We are interested more

generally in problems of scheduling operations which use several resources

simultaneously (money, personnel, equipment, raw materials etc.), these resources

being available in known amounts. In other words, we deal with the multi-

resource scheduling problem with cumulative and non-renewable resources.

2.7 Application of Just-in-Time

The followings are some of the application areas of JIT:

2.7.1 Real Time Operating System

Real Time Operating Systems are dedicated to some well-defined jobs which

require very fast response time. This system must be fault-tolerant that is OS must

handle the error without going to unstable stage. The execution time is the most

15

critical issue in real time OS and they must finish the execution of job within pre-

defined time-boundary. In a soft-real-time system, early and tardy jobs degrade

the quality of the output, while in a hard-real-time system; such jobs make the

output invalid. An introduction for real-time scheduling problem in computer

system is explained in [27].

2.7.2 Scheduling in Operating System

Scheduling is the key to multiprogramming. Its role is to assign processes to be

executed so that some criteria on efficiency are met. Scheduling theory is

excessively used in computer manufacturing to schedule the jobs in CPU,

memory, printing buffer and other devices for processing jobs. The

multiprogramming characteristic of computer is due to the good scheduling of

jobs in the CPU because the CPU can only process the job at a time. In this case

the objective function is to maximize the CPU utilization (see [28]).

2.7.3 Just-in-Time Compilation

In computing, Just-in-Time, also known as dynamic translation for improving the

runtime performance of a computer program. It converts, at runtime, code from

one format into another, for example bytecode into native machine code. The

performance improvement originates from caching the results of translating

blocks of code, not simply evaluating each line or operand separately, or

compiling the code at development time. JIT builds upon two earlier ideas in run-

time environments: bytecode compilation and dynamic compilation (see Error!

Reference source not found.).

2.7.4 Just-in-Time Sensor Networks

16

Many areas of research in sensor networks deal directly with the ability to adapt

to changing conditions. This has resulted in the ability to dynamically change

attributes such as routing paths, MAC protocols, program images, and duty

cycling. Yet there are several sensor network optimizations and adaptations that

cannot be accomplished through software changes alone. The lack of hardware

capabilities or poor geographic layouts of nodes are characteristics that create

upper bounds on the ability of software protocols to optimize communication and

coverage capabilities. Specifically, a sensor network is deployed (either randomly

or placed in a specific location), sits statically for several months collecting data,

and adapts itself through various protocols. Yet this often overlooks potential

optimizations gained by adding motes to the network on-demand and within

seconds. This introduces a shift in the traditional outdoor, static sensor network

paradigm by considering the possibilities and limitations of a rapid, just-in-time

deployment (see [28]).

2.7.5 Just-in-Time to Enable Optical Networking for Grids

Many of today's compute- and data-intensive e-science applications are looking to

Grid-based technologies to meet their high demands. Until recently, the Grid

community focused primarily on maximizing the availability, sharing, and

utilization of resources such as CPU power and storage. Now, many in the Grid

community are starting to regard the network as another vital Grid resource, to be

used to provide large, fast data flows with minimal latency and jitter. MCNC

Research and Development Institute and North Carolina State University (NCSU)

have developed a Just-In-Time control plane, signaling scheme, and various

software and hardware components that are synergistic with these needs. This

includes an overview of the Just-In-Time control plane and GridJIT service that

has been developed for optical networks and describes several related projects

(see [29]).

17

Chapter 3

JIT PRODUCTION SYSTEM

Just-in-time working is also known as "lean manufacturing"(simply, "Lean", is a

production practice that considers the expenditure of resources for any goal other

than the creation of value for the end customer to be wasteful, and thus a target

for elimination). The term comes from quality management theory and the goal is

to produce high quality products in the most efficient and economical way. The

aim of JIT is to deliver the required production items, at the required quality in the

required quantities, at the time they are needed. JIT seeks to achieve zero

inventories, zero defects, zero breakdowns, elimination of non-value added

activities (e.g., setups and lead times) and delivery of production items on time

100% of the time.

Just-in-time is an inventory strategy implemented to improve the return on

investment of a business by reducing in-process inventory and its associated

carrying costs. In order to achieve JIT, the process must have signals of what is

going on elsewhere within the process. This means, that the process is often

driven by a series of signals, which can be Kamban, that tell production processes

when to make the next part. Kamban are usually 'tickets' but can be simple visual

signals, such as the presence or absence of a part on a shelf. When implemented

correctly, JIT can lead to dramatic improvements in a manufacturing

organization's return on investment, quality, and efficiency.

Just-in-Time has been implemented in mixed-model assembly line or flexible

assembly processes in order to increase profit by reducing cost, and have been

used for controlling such flexible assembly system. The intention of these

methods is to satisfy the customer demands for a variety of models without

holding large inventories or incurring large shortages of the products, Dhamala

and Khadka [6]. The most important optimization problem that has to be solved

18

for the mixed models, just-in-time systems is to determine the sequence in which

different models are produced. A great deal of research has been going on JIT

system Monden [23]. The quantity of each part used by the mixed-model

assembly line per unit of time should be kept as constant as possible Miltenburg

and Sinnamon [21]. Monden [23] states this as the most important goal of a JIT

production system implemented by the Toyota Company. Toyota’s so-called Goal

Chasing Method, a local search heuristic, has been most popular for solving the

problem. The sequences refereed to as level, balanced or fair sequences always

keep the actual production level and the desired production level as close to each

other as possible all the times.

The philosophy of JIT is simple - inventory is defined to be waste. JIT inventory

systems expose the hidden causes of inventory keeping and are therefore not a

simple solution a company can adopt; there is a whole new way of working the

company must follow in order to manage its consequences. The ideas in this way

of working come from many different disciplines including statistics, industrial

engineering, production management and behavioral science. It is more

popularized now a days because of its computer applications like real time system

and networking. In the JIT inventory philosophy there are views with respect to

how inventory is looked upon, what it says about the management within the

company, and the main principle behind JIT. Inventory is seen as incurring costs,

or waste, instead of adding value, contrary to traditional accounting. This does not

mean to say JIT is implemented without awareness that removing inventory

exposes pre-existing manufacturing issues. Under this way of working, businesses

are encouraged to eliminate inventory that does not compensate for manufacturing

issues, and then to constantly improve processes so that less inventory can be

kept. Secondly, allowing any stock habituates the management to stock keeping

and it can then be a bit like a narcotic. Management is then tempted to keep stock

there to hide problems within the production system. These problems include

backups at work centers, machine reliability, process variability, lack of flexibility

of employees and equipment, and inadequate capacity among other things. In

19

short, the just-in-time inventory system is all about having “the right material, at

the right time, at the right place, and in the exact amount”, without the safety net

of inventory. The JIT system has implications of which are broad for the

implementers.

3.1 Kamban-an Integrated JIT System

Most Japanese manufacturing companies view the making of a product as

continuous from design, manufacture, and distribution to sales and customer

service. For many Japanese companies the heart of this process is the Kamban, a

Japanese term for "visual record", which directly or indirectly drives much of the

manufacturing organization. It as originally developed at Toyota in the 1950s as a

way of managing material flow on the assembly line. Over the past three decades

the Kamban process, identified as "a highly efficient and effective factory

production system", has developed into an optimum manufacturing environment

leading to global competitiveness.

The Japanese Kamban process of production is sometimes incorrectly described

as a simple just-in-time management technique, a concept which attempts to

maintain minimum inventory. The Japanese Kamban process involves more than

fine tuning production and supplier scheduling systems, where inventories are

minimized by supplying these when needed in production and work in progress in

closely monitored. It also encourages; Industrial re-engineering, such as a 'module

and cellular production' system, and, Japanese human resources management,

where team members are responsible for specific work elements and employees

are encouraged to effectively participate in continuously improving Kamban

processes within the Kaizen concept.

20

3.2 Kamban–a Communication Tool in JIT Production System

Kamban has become synonymous with the JIT production system because it has

become a very important tool for just-in-time production. Kamban, meaning label

or signboard, is used as a communication tool in JIT system. A Kamban is

attached to each box of parts as they go to the assembly line. A worker from the

following process goes to collect parts from the previous process leaving a

kamban signifying the delivery of a given quantity of specific parts. Having all

the parts funneled to the line and used as required, the same kamban is returned

back to serve as both a record of work done and an order for new parts. Thus

Kamban coordinates the inflow of parts and components to the assembly line,

minimizing the processes.

3.3 Push versus Pull production system

 Push System: total demand is forecast, and the producer allocates

(“pushes”) items to user based on the expected needs of all users. Finished goods

accumulate in inventory. It is known as “Produce for Forecast”.

 Pull System: each user requests (“pulls”) items from the producer only as

they are required. Units are only produced if there is demand for them. It is

known as “Produce for Demand”.

Current pull systems - JIT, Quick Response, Efficient Consumer Response, and

Continuous Replacement.

21

3.4 Objective of Just-in-Time

Just-in-Time is the name used to describe a manufacturing system where the parts

which are needed to complete the finished products are produced or arrive at the

assembly site as they are needed.

 Increasing the organization's ability to compete with others and remain

competitive over the long run. The competitiveness of the firms is increased by

the use of JIT manufacturing process as they can develop a more optimal process

for their firms.

 Increasing efficiency within the production process. Efficiency is obtained

through the increase of productivity and decrease of cost.

 Reducing wasted materials, time and effort. Wastes that do not add value

to the products itself should be eliminated. JIT helps significantly in reducing

wastes.

 Identify and response to consumers needs. Customers’ needs and wants

seem to be the major focus for business now, this objective will help the firm on

what is demanded from customers, and what is required of production.

 Optimal quality/cost relationship. The organization should focus on zero-

defect production process. Although it seems to be unrealistic, in the long run, it

will eliminate a huge amount of resources and effort in inspecting, reworking and

the production of defected goods.

 Develop a reliable relationship between the suppliers. A good and long-

term relationship between organization and its suppliers helps to manage a more

efficient process in inventory management, material management and delivery

system. It will also assure that the supply is stable and available when needed.

22

 Adopt the work ethnic of Japanese workers for continuous improvement.

Commit a long-term continuous improvement throughout the organization. It will

help the organization to remain competitive in the long run.

 Plant design for maximizing efficiency. The design of plant is essential in

terms of manufacturing efficiency and utility of resources.

3.5 Toyota Production System

In post-World War II Japan, the founder of Toyota, Sakichi Toyoda, his son

Kiichiro Toyoda, and their chief engineer, Taiichi Ohno, developed the Toyota

Production System (TPS). TPS is the philosophy that still organizes

manufacturing and logistics at Toyota, including the interaction with suppliers

and customers. The Toyota Production System refers to an integrated socio-

technical system that comprises its management philosophy and practices. The

TPS organizes manufacturing and logistics for the automobile manufacturer,

including interaction with suppliers and customers. The system is a major

precursor of the more generic "Lean manufacturing". The main objectives of the

TPS are to design out overburden and inconsistency, and to eliminate waste.

3.6 Lean Manufacturing

Lean Manufacturing, also called Lean Production, is a set of tools and

methodologies that aims for the continuous elimination of all waste in the

production process. Lean is a business system and philosophy approach to

identifying and eliminating waste (non-value-added activities) through continuous

process improvement by following the product at the pull of the customer. The

goal of Lean is to turn continuous process improvement into a competitive

weapon. Lean is all about shortening order to delivery times, lowering costs,

23

adding higher quality and becoming more flexible simultaneously. Lean can have

immediate positive impact on a company. Lean offers many advantages in

material handling, inventory, quality, scheduling, personnel and customer

satisfaction.

Following are the Objectives of Lean Manufacturing.

 Defects and wastage - Reduce defects and unnecessary physical wastage,

including excess use of raw material inputs, preventable defects, costs associated

with reprocessing defective items, and unnecessary product characteristics which

are not required by customers.

 Cycle times - Reduce manufacturing lead times and production cycle

times by reducing waiting times between processing stages, as well as process

preparation times and product/model conversion times.

 Inventory levels - Minimize inventory levels at all stages of production,

particularly works-in-progress between production stages. Lower inventories also

mean lower working capital requirements.

 Labor productivity - Improve labor productivity, both by reducing the

idle time of workers and ensuring that when workers are working, they are using

their effort as productively as possible (including not doing unnecessary tasks or

unnecessary motions).

 Utilization of equipment and space - Use equipment and manufacturing

space more efficiently by eliminating bottlenecks and maximizing the rate of

production through existing equipment, while minimizing machine downtime.

 Flexibility - Have the ability to produce a more flexible range of products

with minimum changeover costs and changeover time.

24

 Output – Insofar as reduced cycle times, increased labor productivity and

elimination of bottlenecks and machine downtime can be achieved, companies

can generally significantly increased output from their existing facilities.

3.7 Mixed-Model Production System

The increasing market demand for product variety forces manufacturers to design

mixed- model assembly lines on which different product models can be switched

back and forth and mixed together with little changeover costs. Furthermore,

Mixed-model production is the practice of assembling several distinct models of a

product on the same assembly line with little changeover costs and then

sequencing those models in a way that smoothes the demands for upstream

components.

Mixed-Model JIT assembly systems are a fundamental part of the well known

“Toyota Production System”. Mixed-Model assembly lines are used to produce

many different products without carrying large inventories or incurring large

shortages. The effective utilization of these lines requires that a schedule for

assembling the different products be defined. Each product assembled on the

mixed model assembly line requires variety of parts. Often these parts vary from

product to product. Scheduling large lots of each product requires large lots of

parts. When a part is only needed for certain products, its usage will be high when

those products are being assembled and will be low otherwise. This is that Just-in-

Time systems wish to avoid. Just-in-Time systems only work when there is

constant rate of usage of all parts. To minimize the variation of usage in each part,

products will be sequenced in very small number and mix of parts. In this case we

can achieve constant rate of part usage by considering only the demand rates for

the products. The objective is then to schedule a constant rate of production for

each product.

25

3.8 Mathematical Model Formulation

When production system consists of constant rate of usage of all parts, Just-in-

time systems are suitable. However, the variability between the actual and the

ideal production due to integral nature of production appears. This leads the

sequencing problem to minimize the variation so that a balanced sequence of

diversified products that minimizes the earliness and tardiness penalties could be

obtained in a reasonable time. Before starting problem formulation, we assume

that the systems have sufficient capacity, negligible switch-over cost and

production in unit time. Kubiak [14] refers to single level problem as Product

Rate Variation (PRV) problem and multi level problem as Output Rate Variation

(ORV) problem.

3.8.1 The PRV Problem Formulation

In Product Rate Variation (PRV) problem, Miltenburg assumes product require

approximately the same number and mix of parts. This is a single level case.

Let D units of n products be produced to meet the demands di where i=1, 2, …,n

and D=


n

i 1

di during a specified time horizon. The objective is to maintain

cumulative production xik, a non-negative integer, i=1, 2, ..., n and k=1, 2, …, D of

product i during time period 1 through k as close to ideal production kri, a non-

negative rational number, i=1, 2, ..., n and k=1, 2, …, D with ri= Ddi with 


n

i

i

1

ri

=1 as possible. The specified time horizon is portioned into D equal times of

which one unit time is required for a unit of a product to be produced.

26

The mathematical model of the PRV problem P1 is as follows:

minimize 







)(

,

max
, ikii krxf

ki
F (3.1)

and

minimize 







 



)(,
11

ikii

n

i

D

k

krxfG (3.2)

subject to




n

i
kix

1
, = k, k=1, 2, ..., D (3.3)

1, kix ≤ kix , , i=1, 2, ...,n and k=1, 2, …., D (3.4)

Dix , ≤ di ; 0,ix = 0, i=1, 2, ..., n (3.5)

kix , ≥ 0, integer (3.6)

The constraint (3.3) shows that exactly k units of products are produced in the

periods 1 through k. (3.4) states that the total production is a non-decreasing

function of k. (3.5) guarantees the demands are met exactly. (3.3), (3.4) and (3.6)

ensure that exactly one unit of a product is sequenced during a time unit.

This model minimizes the perennial objective functions, the bottleneck measure

of deviation F that produces smooth sequence in every time unit and the total

measure of deviation G (for min-sum) that produces smooth sequence on the

average Jost [12].

27

The exact complexity of the PRV problem still remains open. The problem has

been proven to be Co-NP but remains open whether Co-NP-complete or

polinomially solvable, Brouner and Crama [2].

3.8.2 The ORV Problem Formulation

The production system consists of hierarchy of several distinct production levels

such as products, sub-assemblies, component parts, raw materials, etc. A mixed

model multi-level problem falls under ORV problem. Consideration of part

demand rate reduces problems into the ORV problem.

Consider L different production levels ;,...,2,1; Lll  where level 1 is the final

assembly line. For each Ll ,...,2,1 ; let there be ln different part types with

demands lil nid ,...,2,1;  . Let ilpt denote the total number of units of output i at

1 2Level 1: Products
…… n1

Level 2: Sub-Products 1 2 3 4 ……n2

1 2 3Level 3: Components ……n3

Fig: Mixed-Model Multi-Level Production System

28

level l required to produce one unit of product 1,...,2,1; npp  so that the

dependent demand for part i of level l determined by the final product

demands 1pd is 



1

1
1

n

p
pilpil dtd . We see that 11 pit for 1i and 0 otherwise. For

each Ll ,...,2,1 ; let 



ln

i
ill dD

1

be the total output demand of level l . The

demand ratio for part i at level l is
l

il
il D

d
r  for each lni ,...,2,1 and we have

1
1




ln

i
ilr for each lni ,...,2,1 .

A copy of a product (model) is said to be in stage 1,...,2,1; Dkk  if k units of

products have been produced at level1. The product level (level1) has a time

horizon of 1D units and there will be k units of various products p , completely

produced, at level1 during the first k stages. Let the cumulative production of

part i at level l during the first k stages be denoted by ilkx so that the total

quantity of various parts produced at level l during the first k stages is





ln

i
ilklk xy

1

units. We have kxy
n

i
kik 



1

1
11 at level1. In fact, 




1

1
1

n

p
kpilpilk xtx

must hold for 2l .

With these notations, the constraints and various objectives for mixed model

multi-level JIT assembly systems are formulated as the following [19].

For each lni ,...,2,1 ; let ilf be a unimodal, symmetric, convex function

with 0)0(ilf , minimum. Then the mixed model multi-level JIT scheduling

problem defined by (3.7) is to minimize one of the objectives:

)(max
,,

max illkilkil
kli

ryxfG  , (3.7)

and 
  


1

1 1 1

)(
D

k

L

l

n

i
illkilkilsum

l

ryxfG (3.8)

29

Subject to the constraints





1

1
1

n

p
kpilpilk xtx , lni ,...,2,1 ; Ll ,...,2,1 ; 1,...,2,1 Dk  (3.9)





ln

i
ilklk xy

1

, Ll ,...,2 ; 1,...,2,1 Dk  (3.10)

kxy
n

i
kik 



1

1
11 , 1,...,2,1 Dk  (3.11)

)1(11  kpkp xx , 1,...,2,1 np  ; 1,...,2,1 Dk  (3.12)

11 1 pDp dx  , 010 px , 1,...,2,1 np  (3.13)

0ilkx , integer, lni ,...,2,1 ; Ll ,...,2,1 ; 1,...,2,1 Dk  . (3.14)

Constraint (3.9) indicates that the necessary cumulative production of part i of

level l by the end of stage k is determined explicitly by the quantity of products

produced at product level. Constraints (3.10) and (3.11) compute the total

cumulative production at level l and level1, respectively, during the first k

stages. Constraint (3.12) shows that the total production of every product over k

stages is a non-decreasing function of k . Constraint (3.13) ensures that the

production requirements for each product are met exactly. Constraints (3.11),

(3.12) and (3.13) indicate that exactly one unit of a product is to be produced in

the product level during each stage. ORV problems are NP-hard in general. Two

level ORV problems can be solved in pseudo-polynomial time.

30

Chapter 4

SOLUTION PROCEDURE FOR PRV PROBLEM

The PRV problem is an important production problem that arises on mixed-model

assembly lines. The minsum PRV problem consists in sequencing units of

different types minimizing the sum of discrepancy functions between the actual

and ideal production rates. This problem can be reduced to Assignment Problem

(AP) with a matrix of a special structure.

4.1 Release Date/Due Date Decision Problem

To handle large integer programming problems, general solution techniques are

not sufficient. A special solution procedure is developed for the specific problem

under considerations, Miltenburg [19]. Denote a target value for the objective

function by the variable B. The goal is to determine the smallest possible B for

which a sequence can be created for each j(i) has a completion time k, such that

fj
i(k) ≤ B for k[kj, (kj+1-1)]. For target value B, j(i) can not start before k ≤ 1 if gj

i

– j-kri > B and can start k if fj
i(k+1) = j-(k+1)ri≤B. Therefore, any fixed target

value B allows the calculation of a release date and a due date for a specific copy

of a product. For a given B early and late starting dates can be calculated for each

copy of each product in a one pass procedure and, hence, can be constructed in

O(D) time.

The earliest starting time E(i, j) for (i, j) must be the unique integer satisfying

ii r

Bj
jiE

r

Bj 



),(1 and latest starting time L(i, j) of (i, j) must be the

unique integer satisfying
ii r

Bj
jiL

r

Bj 


 1
),(1

1
. This provides the

formulae:

31












 1),(

ir

Bj
jiE (4.1)

and








 


ir

Bj
jiL

1
),((4.2)

For a given B , we can determine),(jiE and),(jiL for all i and for all j in)(DO

time.

4.2 Earliest Due Date Algorithms

In this section we describe a graph theoretic approach for solving the max-

abs problem, Steiner and Yeomans [25]. In this procedure, decision version of the

problem with certain target value for objective as a threshold value, is reduced to

a perfect matching problem in a bipartite graph. Then Glover's modified EDD rule

is used for the matching problem to decide whether the decision problem has 'yes'

answer. Then an optimal solution is obtained by using the matching problem and

bisection search within the bounds for target value after determination of the

bounds, Steiner and Yeomans [25].

4.2.1 Perfect Matching Problem and EDD Rule

For a given target value B as threshold value for decision problem, determine

),(jiE and),(jiL for all i and for all j according to (4.1) and (4.2). Define the

bipartite graph),(21 EVVG  ;

32

Where, }1,...,2,1,0{1  DV , },...,2,1;,...,2,1|),{(2 idjnijiV  and

Ejik )),(,(if and only if)],(),,([jiLjiEk  i.e. if and only if),(ji may start

at time k . Then the bipartite graph G is convexV 1 . Here finding a feasible

sequence for problem (4.1) is analogous to finding a perfect matching in G such

that lower numbered copies of a product are matched to earlier starting times than

higher numbered copies. Such a matching is called Order Preserving.

4.2.2 EDD for min-sum-sqr

Inman and Bulfin [11] define the ideal position for copy),(ji as
























 





ii

ji d

Dj

r

j
k

2

1

2

12
,

Let jiZ , denotes the time at which copy),(ji actually produced. Then, Inman and

Bulfin [11] consider the following problem:

Minimize  
 


n

i

d

j
jiji

i

kZ
1 1

2
,, (4.3)

Subject to

1,...,1;,...,1,)1(,,   ijiji djniZZ (4.4)

iji djniDZ ,...,1;,...,1,1 ,  (4.5)

)','(),(,',', jijiZZ jiji  (4.6)

jiZ , W, idi ,...,1 (4.7)

Constraint (4.4) ensures that the production time of each copy of a product type i

is a strictly increasing function of each copy j. Constraint (4.5) guarantees that

the production time of any copy of any product lies in the internal [1...D].

33

Constraint (4.6) is the only linking constraint and is not in the standard integer

programming format and it specifies that only one copy of any product type can

be produced in each period. By defining ijk as the due-date of copy),(ji where

each copy of product is treated as a separate job, Inman and Bulfin [11] observe

that problem defined by (4.3) may be interpreted as a single machine scheduling

problem





Iji

jijiji TEp
),(

),(),(),()(11 , (4.8)

where),(jip ,),(jiE and),(jiT respectively represents the processing time, earliness

and tardiness of copy),(ji and   idjnijiI ,...,1;,...,1|,  .

4.3 Nearest Integer Point Problem

This algorithm aims to minimize the total deviation or sum of all deviation of the

real production from the ideal but rational production, Miltenburg [21].

Problem statement

Define the point Xk = (x1, x2, ……… xn,)  Rn where xi,k = kri, 


n

i 1
ki,x = k, and R

is the set of real number. Problem is to find the “nearest” integer point Mk =

(km ,1 , km ,2 ,, …………., knm , ,)  Zn to the point Mk where 


n

i 1
ki,m = k, Z is the

set of nonnegative integers and “nearest” means minimize 


n

i 1

2
ki,ki,)x-(m

34

Algorithm 1

The following algorithm finds the nearest integer point M = (km ,1 , km ,2 ,,

…………., knm , ,)  Zn to a point X = (x1, x2, ……… xn,)  Rn. where




n

i 1
im =



n

i 1
ix = k.

1. Calculate k = 


n

i 1
ix

2. Find the nearest nonnegative integer m, to each coordinate xi. That is, find m,

so that |mi - xi |  0.5, i = 1, 2, ………….., n.

3. Calculate km=


n

i 1
im

a. if k - km = 0 stop. The nearest integer point is M = (m1, m2,

………, mn)

b. if k - km > 0 go to step 5.

c. if k – km < 0 go to step 6.

4. Find the coordinate xi, with the smallest mi-xi. Increment the value of this mi;

mi  mi+1. Go to step 3.

5. Find the coordinate xi, with the largest mi – xi. Decrease the value of this mi;

mi  mi-1

Problem with Algorithm 1

For X = (30/13, 30/13, 5/13) the integer point is (2, 2, 1). Then for X = (36/13,

36/13, 6/13) the integer point is (3, 3, 0). Production schedule is 1, 2, -3 which in

impossible as production cannot be destroyed. Hence the schedule is not feasible.

Conclusion

Algorithm-1 may lead to infeasible solution.

35

Algorithm 2

1. Solve the problem P1 (using Algorithm 1), and determine whether the schedule

is feasible. (It is feasible if mi, k – mi, k-1  0 for all i, k.) If the schedule is feasible,

stop. Otherwise, go to step 2.

2. For the infeasible schedule determined in step l, find the first (or next) stage l

where mi,l – mi,l-1 < 0. Set ∂ = number of product i, for which mi,j – mi,l-1 < 0.

Reschedule stages l - ∂, l - ∂ + 1, ….., l+1 by considering all possible sequences

that begin with the schedule for stage l -∂ - 1 and end with the schedule for stage l

+ 1.

3. Repeat step 2 for other stages where mi, k – mi, k-1 < 0. Then stop.

Problem with Algorithm 2

In general there are n! / (n - ∂ -2)! possible sequences, each of length ∂ + 2, to

consider for each infeasibility. While total enumeration works for small problems

of this type (products where similar part requirements) it does not work well for

larger problems, nor for problems where products have differing part

requirements.

Algorithm 3

1. Solve problem P1 (using Algorithm-1), and determine whether the schedule is

feasible. (It is feasible if mi,k – mi,k-1  0 for all i, k.) If the schedule is feasible,

stop.

2. For the infeasible schedule determine in step 1, find the first (or next) stage l

where mi, l – mi, l-1 < 0. set ∂ = number of products i, for which mi, l – mi, l-1 < 0,

and beginning at stage l - ∂ use Heuristic 1 or Heuristic 2 to schedule stages l - ∂, l

- ∂+1, ….., l + W, where W  0. l + W is the first stage where the schedule

determined by heuristic matches the schedule determined in step 1.

36

3. Repeat step 2 for other schedule determined in step 1.

Heuristic 1

For a stage k, schedule the product i with the lowest Xi,k – kri,.

Heuristic 2

For each stage k:

1. Set h=1

2. Tentatively schedule products h to be produced in stage k. Calculate the

variation for stage k and call it V1h

3. Schedule the product I with the lowest xi,k – (k+1)ri,

4. Increment h; h  h + 1. If h > n go to step 5, otherwise go to step 2

5. Schedule the product h with the lowest Vh.

4.4 Dynamic Programming Algorithm

In this section we discuss a dynamic programming (DP) algorithm that deals with

JIT production schedule in mixed model facility. The procedure has considered

the joint problem with the two typical goals.

1. Usage Goal: maintaining a constant rate of usage of all items in the facility.

2. Loading Goal: smoothing the work load on the final assembly process to reduce

the chance of production delays and stoppages.

In this dissertation, we mainly focus on goal 1 which is more important than goal

2, classical goal.

37

Let there are n products to be produced with demands nddd ,...,, 21 in a certain

time horizon. The time to produce one unit of product i be denoted by it ;

ni ,...,2,1 and put 



n

i
idD

1

,
D

d
r i

i  .

The specified time horizon be inferred into D time units and during each time

period k ; Dk ,...,2,1 ; exactly one unit of a product should be produced. Let kix ,

denote the total production of product i over the first k periods; where

iki dx  ,0 for all Dk ,...,2,1 . Then kx
n

i
ki 

1
, ; Dk ,...,2,1 and kix , is non

negative integer for all ni ,...,2,1 ; Dk ,...,2,1 .

Suppose that the schedule for the first k stages be determined i.e. kix , for

ni ,...,2,1 be known. Then the usage variability at stage k is





n

i
ikik krxU

1

2
,)(and the loading variability at stage k

is 



n

i
ikiik krxtL

1

2
,

2)(.

Therefore the problem defined by (4.2) can be formulated as

Minimize 



D

k
kLkU LU

1

)(

Subjected to the Constraints (3.3) - (3.6)

Where U , L are relative weights for the Usage Goal and Loading Goal

respectively? So the problem defined by (4.2) is a joint problem.

Let kf denote the joint variability at stage k . Then





n

i
ikiiL

n

i
ikiUk krxtkrxf

1

2
,

2

1

2
,)()(





n

i
ikiiLU krxt

1

2
,

2))((

38





n

i
ikii krxT

1

2
,

2)(; Where 22
iLUi tT   .

Therefore the objective function of the problem defined by (5.2) takes the form:

Minimize 
 


D

k

n

i
ikii krxT

1 1

2
,

2)(; where call iT , the implied production time for

period i . Now we consider the DP procedure presented by Miltenburg et al. [22].

Let),...,,(21 ndddd  be the product requirements vector. Define subsets in a

schedule as),...,,(21 nxxxX  ; where ix is a non negative integer representing the

production of exactly ix units of product i , ii dx  for all i . Let ie be the thi unit

vector; with n entries, having thi entry 1 and remaining all zero. A subset X can

be scheduled in the first k stages if 



n

i
ixXk

1

|| .

Let  Xf be the minimal total variation of any schedule where the products in X

are scheduled (produced) during the first k stages. Let   



n

j
jjj krxTXg

1

22)(.

The following)(DP recursion (R1) holds for)(Xf :

        01;,...,1|min,...,, 21  iin xniXgeXfxxxfXf

      00,...,0,0,...,1;0|  fnixXfXf i .

Clearly   0Xf and   0,...,1;0|  nixXg i . The following theorem tells

about the computational efficiency of the above procedure, Miltenburg et al. [22].

39

4.5 Cost Assignment Problem

Let ijZ denotes the period in which the copy),(ji is produced. Then the problem

defined by (3.2) can be restated as

   








  












n

i

Z

k

Z

Zk

D

Zk
iiiiiiisum

i i

i iid

krdfkrfkrfF
1

1

0

11 2

1

)(...)1()0(minimize (4.9)

such that

nidjZZ iijji ,...,1;,...,1,11,  (4.10)

nidjDZ iij ,...,1;,...,1,1  (4.11)

0),','(),(for''  ijjiij ZjijiZZ (4.12)

Note that constraint (4.12) is the only linking constraint in problem defined by

(4.9), which aims specify that only copy of each product can be produced in each

period.

The min-sum PRVP can be reduced to an assignment problem and hence can be

solved by Hungarian method. For the corresponding assignment problem, we

consider the vertex sets  idjnijiV ,...,1,,...,1:),(1  and  DV ,...,12  .

We now have to calculate the appropriate costs to specify its objective function.

More specifically, these costs must be such that the assignment problem with

these costs has an optimal solution, which is both optimal and feasible for

problem (4.9).

Let kjiC ,, denotes the cost of assigning),(ji to the thk period and let






otherwise,0

 toassignedis),(if,1
,,

kji
x kji

Then the assignment problem is


  


n

i

d

j

D

k
kjikji

i

xCC
1 1 1

,,,,minimize (4.13)

40

such that Dkx
n

i

d

j
kji

i

,...,1,1
1 1

,, 
 

(4.14)





D

k
ikji djnix

1
,, ,...,1,,...,1,1 (4.15)

Constraints on the assignment problem require that

a) For each),(ji in 1V there is exactly one k in 2V , i.e. each copy is

produced exactly once.

b) For each k in 2V , there is exactly one),(ji in 1V , i.e. exactly one copy is

produced at a time.

But Constraints (4.10) on problem defined by (4.9) requires an additional property

that

c) For any two copies),(ji and)',(ji of a product i , with 'jj  , if),(ji is

produced at k and)',(ji is produced at 'k then 'kk  .

4.6 Min-sum-absolute-chain Algorithm with EDD

Given:

1. chain1, chain2,………….,chaint,……….,chainm with chain constraint

defined in section (4.6.1)

2. Calculate di
t for i = 1,2,………………..,nt

t = 1, 2,………..…….m

3. Introduce a new pseudo-job representing each chain by one job as

j '
i = pseudo-job for chaini

41

d '
i = demand for pseudo job j '

i

= length of chaini

4. Calculate due date value for each pseudo–job j '
i ; i = 1,2,…….,n by Steiner

and Yeoman[25].

5. Schedule this pseudo-job j '
i using EDD Algorithm of Horn [10].

6. Replace each pseudo-job by the real job of the respective chain such that

order is preserved.

4.6.1 Chain constraints

1. Chains are non-overlapping.

2. Cyclic chains are not considered.

3. Chains are considered to be optimal sequence.

Example

Input:

Chain1: ababab

Chain 2: ccdcc

Step 1:

Pseudo Job Demand

J1 6

J2 5

Step 2:

EDD Schedule:

J1-J2-J1-J2-J1-J2-J1-J2-J1-J2-J1

Step 3:

a-c-b-c-a-d-b-c-a-c-b

42

Chapter 5

IMPLEMENTING AND TESTING

The Proposed min-sum-absolute-chain algorithms mentioned in Chapter 5 has

been implemented. The program scripts are written in Java Version 1.6.0. The

source codes for these programs are included in Appendix. The input data set

(chains) represent the demands of products in the mixed model assembly line

manufacturing system.

The lists of all possible sequences for given input chains are generated. Cost for

each arrangement is calculated (see Appendix for formula). Finally the most

efficient chain is selected based on proposed EDD algorithm.

A. 1. Input Chain

Chain 1 = "ab"
Chain 2 = "cdc"

Table 1: Input Data

2. Table which includes the steps how given chains are combined.

a ab abc abcd abcdc
ac acb acbd acbdc

acd acdb acdbc
acdc acdcb

c cd cdc cdca cdcab
cda cdab cdabc

cdac cdacb
ca cab cabd cabdc

cad cadc cadcb
cadb cadbc

Table 2: Combination of Chains

43

3. Replacement of Chain with Pseudo-Jobs

Table 3: Replacement of Chain with Pseudo-Jobs

4. Pseudo-job passed to EDD by Proposed-EDD

Table 4: Pseudo-job passed to EDD

5. Schedule Generated by EDD with considering the due date
























 

id

Dj
2

1

for

the jth copy of product i over pseudo-Jobs

Table 5: Generation of Schedule by EDD

Chain Pseudo-Job
ab Job 1
cdc Job 2

44

6. Pseudo-Job generated by EDD Replaced by Proposed-EDD

Pseudo EDD Schedule: cadbc

7. Possible Schedule List generated by Possible Scheduling Algorithm

Sequence No: 1 Evaluating Sequence: abcdc

Index :1 J :a pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value 2.25
Index :2 J :b pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:2.5
Index :3 J :c pos :1 R :0.4 Zval :1.25 Cur Value :3.0625 CumValue:5.5625
Index :4 J :d pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :7.8125
Index :5 J :c pos :2 R :0.4 Zval :3.75 Cur Value :1.5625 Cum Value :9.375

Total Cost: 9.375

Sequence No: 2 Evaluating Sequence: acbdc

Index :1 J :a pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :2.25
Index :2 J :c pos :1 R :0.4 Zval :1.25 Cur Value :0.5625 Cum Value :2.8125
Index :3 J :b pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value :3.0625
Index :4 J :d pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :5.3125
Index :5 J :c pos :2 R :0.4 Zval :3.75 Cur Value :1.5625 Cum Value :6.875

Total Cost: 6.875

Sequence No: 3 Evaluating Sequence: acdbc

Index :1 J :a pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :2.25
Index :2 J :c pos :1 R :0.4 Zval :1.25 Cur Value :0.5625 Cum Value :2.8125
Index :3 J :d pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value :3.0625
Index :4 J :b pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :5.3125
Index :5 J :c pos :2 R :0.4 Zval :3.75 Cur Value :1.5625 Cum Value :6.875

Total Cost: 6.875

Sequence No: 4 Evaluating Sequence: acdcb

Index :1 J :a pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :2.25
Index :2 J :c pos :1 R :0.4 Zval :1.25 Cur Value :0.5625 Cum Value :2.8125
Index :3 J :d pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value :3.0625
Index :4 J :c pos :2 R :0.4 Zval :3.75 Cur Value :0.0625 Cum Value :3.125
Index :5 J :b pos :1 R :0.2 Zval :2.5 Cur Value :6.25 Cum Value :9.375

Total Cost: 9.375

Sequence No: 5 Evaluating Sequence: cabdc

Index :1 J :c pos :1 R :0.4 Zval :1.25 CurValue :0.0625 Cum Value :0.0625
Index :2 J :a pos :1 R :0.2 Zval :2.5 CurValue :0.25 Cum Value :0.3125
Index :3 J :b pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value :0.5625
Index :4 J :d pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value :2.8125
Index :5 J :c pos :2 R :0.4 Zval :3.75 Cur Value :1.5625Cum Value :4.375

Total Cost: 4.375

45

Sequence No: 6 Evaluating Sequence: cadbc

Index :1 J :c pos :1 R :0.4 Zval :1.25 Cur Value :0.0625 Cum Value:0.0625
Index :2 J :a pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:0.3125
Index :3 J :d pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:0.5625
Index :4 J :b pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value:2.8125
Index :5 J :c pos :2 R :0.4 Zval :3.75 Cur Value :1.5625 Cum Value:4.375

Total Cost: 4.375

Sequence No: 7 Evaluating Sequence: cadcb

Index :1 J :c pos :1 R :0.4 Zval :1.25 Cur Value :0.0625 Cum Value:0.0625
Index :2 J :a pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:0.3125
Index :3 J :d pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:0.5625
Index :4 J :c pos :2 R :0.4 Zval :3.75 Cur Value :0.0625 Cum Value:0.625
Index :5 J :b pos :1 R :0.2 Zval :2.5 Cur Value :6.25 Cum Value:6.875

Total Cost: 6.875

Sequence No: 8 Evaluating Sequence: cdabc

Index :1 J :c pos :1 R :0.4 Zval :1.25 Cur Value :0.0625 Cum Value:0.0625
Index :2 J :d pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:0.3125
Index :3 J :a pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:0.5625
Index :4 J :b pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value:2.8125
Index :5 J :c pos :2 R :0.4 Zval :3.75 Cur Value :1.5625 Cum Value:4.375

Total Cost: 4.375

Sequence No: 9 Evaluating Sequence: cdacb

Index :1 J :c pos :1 R :0.4 Zval :1.25 Cur Value :0.0625 Cum Value:0.0625
Index :2 J :d pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:0.3125
Index :3 J :a pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:0.5625
Index :4 J :c pos :2 R :0.4 Zval :3.75 Cur Value :0.0625 Cum Value:0.625
Index :5 J :b pos :1 R :0.2 Zval :2.5 Cur Value :6.25 Cum Value:6.875

Total Cost: 6.875

Sequence No: 10 Evaluating Sequence: cdcab

Index :1 J :c pos :1 R :0.4 Zval :1.25 Cur Value :0.0625 Cum Value:0.0625
Index :2 J :d pos :1 R :0.2 Zval :2.5 Cur Value :0.25 Cum Value:0.3125
Index :3 J :c pos :2 R :0.4 Zval :3.75 Cur Value :0.5625 Cum Value:0.875
Index :4 J :a pos :1 R :0.2 Zval :2.5 Cur Value :2.25 Cum Value:3.125
Index :5 J :b pos :1 R :0.2 Zval :2.5 Cur Value :6.25 Cum Value:9.375

Total Cost: 9.375

---Min Value---
Minimal Cost-value: 4.375

8. Minimal Possible Schedules

S.No. Possible Sequence Cost-Value
1 cabdc --- 4.375
2 cadbc --- 4.375
3 cdabc --- 4.375

46

Output:

cadbc is the schedule generated by Proposed -EDD is found in Possible sequence

list(Feasibility case).Moreover, this sequence is also found in list of minimal-cost

sequence(Optimal case).Hence, it is shown empirically that Proposed-EDD is

both feasible and optimal.

B.1.Input Chain

Chain 1 = “aba”

Chain 2 = “ccdcc”

Table 6: Input Data

2. Replacement of Chain with Pseudo-Job

Table 7: Replacing Chain with Pseudo-Jobs

3. Pseudo-job passed to EDD by Proposed -EDD

Table 8: Pseudo-job passed to EDD

chain Pseudo-Job
aba Job 1
ccdcc Job 2

47

4. Schedule Generated by EDD with considering the due date
























 

id

Dj
2

1

for the jth copy of product i over pseudo-Jobs

Table 9: Generation of Schedule by EDD

5. Pseudo-Job generated by EDD Replaced by Proposed -EDD

Pseudo EDD Schedule: cacbdcac

6. Possible Schedule List generated by Possible Scheduling Algorithm

S.No. Possible Sequence Cost-Value

1 abaccdcc 36.0
2 abcacdcc 26.0
3 abccadcc 20.0
4 abccdacc 16.0
5 abccdcac 14.0
6 abccdcca 16.0
7 acbacdcc 20.0
8 acbcadcc 14.0
9 acbcdacc 10.0
10 acbcdcac 8.0
11 acbcdcca 10.0
12 accbadcc 12.0
13 accbdacc 8.0
14 accbdcac 6.0
15 accbdcca 8.0

48

16 accdbacc 8.0
17 accdbcac 6.0
18 accdbcca 8.0
19 accdcbac 8.0
20 accdcbca 10.0
21 accdccba 16.0
22 cabacdcc 18.0
23 cabcadcc 12.0
24 cabcdacc 8.0
25 cabcdcac 6.0
26 cabcdcca 8.0
27 cacbadcc 10.0
28 cacbdacc 6.0
29 cacbdcac 4.0
30 cacbdcca 6.0
31 cacdbacc 6.0
32 cacdbcac 4.0
33 cacdbcca 6.0
34 cacdcbac 6.0
35 cacdcbca 8.0
36 cacdccba 14.0
37 ccabadcc 12.0
38 ccabdacc 8.0
39 ccabdcac 6.0
40 ccabdcca 8.0
41 ccadbacc 8.0
42 ccadbcac 6.0
43 ccadbcca 8.0
44 ccadcbac 8.0
45 ccadcbca 10.0
46 ccadccba 16.0
47 ccdabacc 12.0
48 ccdabcac 10.0
49 ccdabcca 12.0
50 ccdacbac 12.0
51 ccdacbca 14.0
52 ccdaccba 20.0
53 ccdcabac 18.0
54 ccdcabca 20.0
55 ccdcacba 26.0
56 ccdccaba 36.0

---Min Value---
Minimal Cost-value: 4.0

49

7. Minimal Possible Schedules

S.No. Possible Sequence Cost-Value

1 cacbdcac --- 4.0
2 cacdbcac --- 4.0

Output:

cacbdcac is the schedule generated by Proposed-EDD is found in Possible

sequence list(Feasibility case).Moreover, this sequence is also found in list of

minimal-cost sequence(Optimal case). Hence, it is shown empirically that

Proposed -EDD is both feasible and optimal.

C.1. Input Chain

Chain1= "ab"
Chain2= "ccdc"
Chain3= "mnm"

Table 10: Input Data

2. Replacement of Chain with Pseudo-Job

Table 11: Replacing Chain with Pseudo-job

Chain Pseudo-Job
Ab Job1
ccdc Job2
mnm Job3

50

3. Pseudo-job passed to EDD by Proposed -EDD

Table 12: Pseudo-job passed to EDD

4. Schedule Generated by EDD with considering the due date
























 

id

Dj
2

1

for the jth copy of product i over pseudo-Jobs

Table 13: Generation of Schedule by EDD

5. Pseudo-Job generated by EDD Replaced by Proposed -EDD

Pseudo EDD Schedule: cmacndbmc

51

6. Possible Schedule List generated by Possible Scheduling Algorithm

S.No. Possible Sequence Cost-Value
1 abccdcmnm --- 63.375
2 abccdmcnm --- 52.875
3 abccdmncm --- 46.875
4 abccdmnmc --- 45.375
5 abccmdcnm --- 48.375
6 abccmdncm --- 42.375
7 abccmdnmc --- 40.875
8 abccmndcm --- 42.375
9 abccmndmc --- 40.875
10 abccmnmdc --- 45.375
11 abcmcdcnm --- 43.875
12 abcmcdncm --- 37.875
13 abcmcdnmc --- 36.375
14 abcmcndcm --- 37.875
15 abcmcndmc --- 36.375
16 abcmcnmdc --- 40.875
17 abcmncdcm --- 37.875
18 abcmncdmc --- 36.375
19 abcmncmdc --- 40.875
20 abcmnmcdc --- 45.375
21 abmccdcnm --- 45.375
22 abmccdncm --- 39.375
23 abmccdnmc --- 37.875
24 abmccndcm --- 39.375
25 abmccndmc --- 37.875
26 abmccnmdc --- 42.375
27 abmcncdcm --- 39.375
28 abmcncdmc --- 37.875
29 abmcncmdc --- 42.375
30 abmcnmcdc --- 46.875
31 abmnccdcm --- 45.375
32 abmnccdmc --- 43.875
33 abmnccmdc --- 48.375
34 abmncmcdc --- 52.875
35 abmnmccdc --- 63.375
36 acbcdcmnm --- 57.375
37 acbcdmcnm --- 46.875
38 acbcdmncm --- 40.875
39 acbcdmnmc --- 39.375
40 acbcmdcnm --- 42.375
41 acbcmdncm --- 36.375
42 acbcmdnmc --- 34.875
43 acbcmndcm --- 36.375
44 acbcmndmc --- 34.875
45 acbcmnmdc --- 39.375
46 acbmcdcnm --- 37.875
47 acbmcdncm --- 31.875
48 acbmcdnmc --- 30.375
49 acbmcndcm --- 31.875

52

50 acbmcndmc --- 30.375
51 acbmcnmdc --- 34.875
52 acbmncdcm --- 31.875
53 acbmncdmc --- 30.375
54 acbmncmdc --- 34.875
55 acbmnmcdc --- 39.375
56 accbdcmnm --- 57.375
57 accbdmcnm --- 46.875
58 accbdmncm --- 40.875
59 accbdmnmc --- 39.375
60 accbmdcnm --- 42.375
61 accbmdncm --- 36.375
62 accbmdnmc --- 34.875
63 accbmndcm --- 36.375
64 accbmndmc --- 34.875
65 accbmnmdc --- 39.375
66 accdbcmnm --- 57.375
67 accdbmcnm --- 46.875
68 accdbmncm --- 40.875
69 accdbmnmc --- 39.375
70 accdcbmnm --- 63.375
71 accdcmbnm --- 58.875
72 accdcmnbm --- 58.875
73 accdcmnmb --- 63.375
74 accdmbcnm --- 42.375
75 accdmbncm --- 36.375
76 accdmbnmc --- 34.875
77 accdmcbnm --- 48.375
78 accdmcnbm --- 48.375
79 accdmcnmb --- 52.875
80 accdmnbcm --- 36.375
81 accdmnbmc --- 34.875
82 accdmncbm --- 42.375
83 accdmncmb --- 46.875
84 accdmnmbc --- 39.375
85 accdmnmcb --- 45.375
86 accmbdcnm --- 37.875
87 accmbdncm --- 31.875
88 accmbdnmc --- 30.375
89 accmbndcm --- 31.875
90 accmbndmc --- 30.375
91 accmbnmdc --- 34.875
92 accmdbcnm --- 37.875
93 accmdbncm --- 31.875
94 accmdbnmc --- 30.375
95 accmdcbnm --- 43.875
96 accmdcnbm --- 43.875
97 accmdcnmb --- 48.375
98 accmdnbcm --- 31.875
99 accmdnbmc --- 30.375
100 accmdncbm --- 37.875
101 accmdncmb --- 42.375
102 accmdnmbc --- 34.875
103 accmdnmcb --- 40.875
104 accmnbdcm --- 31.875
105 accmnbdmc --- 30.375

53

106 accmnbmdc --- 34.875
107 accmndbcm --- 31.875
108 accmndbmc --- 30.375
109 accmndcbm --- 37.875
110 accmndcmb --- 42.375
111 accmndmbc --- 34.875
112 accmndmcb --- 40.875
113 accmnmbdc --- 39.375
114 accmnmdbc --- 39.375
115 accmnmdcb --- 45.375
116 acmbcdcnm --- 33.375
117 acmbcdncm --- 27.375
118 acmbcdnmc --- 25.875
119 acmbcndcm --- 27.375
120 acmbcndmc --- 25.875
121 acmbcnmdc --- 30.375
122 acmbncdcm --- 27.375
123 acmbncdmc --- 25.875
124 acmbncmdc --- 30.375
125 acmbnmcdc --- 34.875
126 acmcbdcnm --- 33.375
127 acmcbdncm --- 27.375
128 acmcbdnmc --- 25.875
129 acmcbndcm --- 27.375
130 acmcbndmc --- 25.875
131 acmcbnmdc --- 30.375
132 acmcdbcnm --- 33.375
133 acmcdbncm --- 27.375
134 acmcdbnmc --- 25.875
135 acmcdcbnm --- 39.375
136 acmcdcnbm --- 39.375
137 acmcdcnmb --- 43.875
138 acmcdnbcm --- 27.375
139 acmcdnbmc --- 25.875
140 acmcdncbm --- 33.375
141 acmcdncmb --- 37.875
142 acmcdnmbc --- 30.375
143 acmcdnmcb --- 36.375
144 acmcnbdcm --- 27.375
145 acmcnbdmc --- 25.875
146 acmcnbmdc --- 30.375
147 acmcndbcm --- 27.375
148 acmcndbmc --- 25.875
149 acmcndcbm --- 33.375
150 acmcndcmb --- 37.875
151 acmcndmbc --- 30.375
152 acmcndmcb --- 36.375
153 acmcnmbdc --- 34.875
154 acmcnmdbc --- 34.875
155 acmcnmdcb --- 40.875
156 acmnbcdcm --- 27.375
157 acmnbcdmc --- 25.875
158 acmnbcmdc --- 30.375
159 acmnbmcdc --- 34.875
160 acmncbdcm --- 27.375
161 acmncbdmc --- 25.875

54

162 acmncbmdc --- 30.375
163 acmncdbcm --- 27.375
164 acmncdbmc --- 25.875
165 acmncdcbm --- 33.375
166 acmncdcmb --- 37.875
167 acmncdmbc --- 30.375
168 acmncdmcb --- 36.375
169 acmncmbdc --- 34.875
170 acmncmdbc --- 34.875
171 acmncmdcb --- 40.875
172 acmnmbcdc --- 39.375
173 acmnmcbdc --- 39.375
174 acmnmcdbc --- 39.375
175 acmnmcdcb --- 45.375
176 ambccdcnm --- 40.875
177 ambccdncm --- 34.875
178 ambccdnmc --- 33.375
179 ambccndcm --- 34.875
180 ambccndmc --- 33.375
181 ambccnmdc --- 37.875
182 ambcncdcm --- 34.875
183 ambcncdmc --- 33.375
184 ambcncmdc --- 37.875
185 ambcnmcdc --- 42.375
186 ambnccdcm --- 40.875
187 ambnccdmc --- 39.375
188 ambnccmdc --- 43.875
189 ambncmcdc --- 48.375
190 ambnmccdc --- 58.875
191 amcbcdcnm --- 34.875
192 amcbcdncm --- 28.875
193 amcbcdnmc --- 27.375
194 amcbcndcm --- 28.875
195 amcbcndmc --- 27.375
196 amcbcnmdc --- 31.875
197 amcbncdcm --- 28.875
198 amcbncdmc --- 27.375
199 amcbncmdc --- 31.875
200 amcbnmcdc --- 36.375
201 amccbdcnm --- 34.875
202 amccbdncm --- 28.875
203 amccbdnmc --- 27.375
204 amccbndcm --- 28.875
205 amccbndmc --- 27.375
206 amccbnmdc --- 31.875
207 amccdbcnm --- 34.875
208 amccdbncm --- 28.875
209 amccdbnmc --- 27.375
210 amccdcbnm --- 40.875
211 amccdcnbm --- 40.875
212 amccdcnmb --- 45.375
213 amccdnbcm --- 28.875
214 amccdnbmc --- 27.375
215 amccdncbm --- 34.875
216 amccdncmb --- 39.375
217 amccdnmbc --- 31.875

55

218 amccdnmcb --- 37.875
219 amccnbdcm --- 28.875
220 amccnbdmc --- 27.375
221 amccnbmdc --- 31.875
222 amccndbcm --- 28.875
223 amccndbmc --- 27.375
224 amccndcbm --- 34.875
225 amccndcmb --- 39.375
226 amccndmbc --- 31.875
227 amccndmcb --- 37.875
228 amccnmbdc --- 36.375
229 amccnmdbc --- 36.375
230 amccnmdcb --- 42.375
231 amcnbcdcm --- 28.875
232 amcnbcdmc --- 27.375
233 amcnbcmdc --- 31.875
234 amcnbmcdc --- 36.375
235 amcncbdcm --- 28.875
236 amcncbdmc --- 27.375
237 amcncbmdc --- 31.875
238 amcncdbcm --- 28.875
239 amcncdbmc --- 27.375
240 amcncdcbm --- 34.875
241 amcncdcmb --- 39.375
242 amcncdmbc --- 31.875
243 amcncdmcb --- 37.875
244 amcncmbdc --- 36.375
245 amcncmdbc --- 36.375
246 amcncmdcb --- 42.375
247 amcnmbcdc --- 40.875
248 amcnmcbdc --- 40.875
249 amcnmcdbc --- 40.875
250 amcnmcdcb --- 46.875
251 amnbccdcm --- 40.875
252 amnbccdmc --- 39.375
253 amnbccmdc --- 43.875
254 amnbcmcdc --- 48.375
255 amnbmccdc --- 58.875
256 amncbcdcm --- 34.875
257 amncbcdmc --- 33.375
258 amncbcmdc --- 37.875
259 amncbmcdc --- 42.375
260 amnccbdcm --- 34.875
261 amnccbdmc --- 33.375
262 amnccbmdc --- 37.875
263 amnccdbcm --- 34.875
264 amnccdbmc --- 33.375
265 amnccdcbm --- 40.875
266 amnccdcmb --- 45.375
267 amnccdmbc --- 37.875
268 amnccdmcb --- 43.875
269 amnccmbdc --- 42.375
270 amnccmdbc --- 42.375
271 amnccmdcb --- 48.375
272 amncmbcdc --- 46.875
273 amncmcbdc --- 46.875

56

274 amncmcdbc --- 46.875
275 amncmcdcb --- 52.875
276 amnmbccdc --- 63.375
277 amnmcbcdc --- 57.375
278 amnmccbdc --- 57.375
279 amnmccdbc --- 57.375
280 amnmccdcb --- 63.375
281 cabcdcmnm --- 51.375
282 cabcdmcnm --- 40.875
283 cabcdmncm --- 34.875
284 cabcdmnmc --- 33.375
285 cabcmdcnm --- 36.375
286 cabcmdncm --- 30.375
287 cabcmdnmc --- 28.875
288 cabcmndcm --- 30.375
289 cabcmndmc --- 28.875
290 cabcmnmdc --- 33.375
291 cabmcdcnm --- 31.875
292 cabmcdncm --- 25.875
293 cabmcdnmc --- 24.375
294 cabmcndcm --- 25.875
295 cabmcndmc --- 24.375
296 cabmcnmdc --- 28.875
297 cabmncdcm --- 25.875
298 cabmncdmc --- 24.375
299 cabmncmdc --- 28.875
300 cabmnmcdc --- 33.375
301 cacbdcmnm --- 51.375
302 cacbdmcnm --- 40.875
303 cacbdmncm --- 34.875
304 cacbdmnmc --- 33.375
305 cacbmdcnm --- 36.375
306 cacbmdncm --- 30.375
307 cacbmdnmc --- 28.875
308 cacbmndcm --- 30.375
309 cacbmndmc --- 28.875
310 cacbmnmdc --- 33.375
311 cacdbcmnm --- 51.375
312 cacdbmcnm --- 40.875
313 cacdbmncm --- 34.875
314 cacdbmnmc --- 33.375
315 cacdcbmnm --- 57.375
316 cacdcmbnm --- 52.875
317 cacdcmnbm --- 52.875
318 cacdcmnmb --- 57.375
319 cacdmbcnm --- 36.375
320 cacdmbncm --- 30.375
321 cacdmbnmc --- 28.875
322 cacdmcbnm --- 42.375
323 cacdmcnbm --- 42.375
324 cacdmcnmb --- 46.875
325 cacdmnbcm --- 30.375
326 cacdmnbmc --- 28.875
327 cacdmncbm --- 36.375
328 cacdmncmb --- 40.875
329 cacdmnmbc --- 33.375

57

330 cacdmnmcb --- 39.375
331 cacmbdcnm --- 31.875
332 cacmbdncm --- 25.875
333 cacmbdnmc --- 24.375
334 cacmbndcm --- 25.875
335 cacmbndmc --- 24.375
336 cacmbnmdc --- 28.875
337 cacmdbcnm --- 31.875
338 cacmdbncm --- 25.875
339 cacmdbnmc --- 24.375
340 cacmdcbnm --- 37.875
341 cacmdcnbm --- 37.875
342 cacmdcnmb --- 42.375
343 cacmdnbcm --- 25.875
344 cacmdnbmc --- 24.375
345 cacmdncbm --- 31.875
346 cacmdncmb --- 36.375
347 cacmdnmbc --- 28.875
348 cacmdnmcb --- 34.875
349 cacmnbdcm --- 25.875
350 cacmnbdmc --- 24.375
351 cacmnbmdc --- 28.875
352 cacmndbcm --- 25.875
353 cacmndbmc --- 24.375
354 cacmndcbm --- 31.875
355 cacmndcmb --- 36.375
356 cacmndmbc --- 28.875
357 cacmndmcb --- 34.875
358 cacmnmbdc --- 33.375
359 cacmnmdbc --- 33.375
360 cacmnmdcb --- 39.375
361 cambcdcnm --- 27.375
362 cambcdncm --- 21.375
363 cambcdnmc --- 19.875
364 cambcndcm --- 21.375
365 cambcndmc --- 19.875
366 cambcnmdc --- 24.375
367 cambncdcm --- 21.375
368 cambncdmc --- 19.875
369 cambncmdc --- 24.375
370 cambnmcdc --- 28.875
371 camcbdcnm --- 27.375
372 camcbdncm --- 21.375
373 camcbdnmc --- 19.875
374 camcbndcm --- 21.375
375 camcbndmc --- 19.875
376 camcbnmdc --- 24.375
377 camcdbcnm --- 27.375
378 camcdbncm --- 21.375
379 camcdbnmc --- 19.875
380 camcdcbnm --- 33.375
381 camcdcnbm --- 33.375
382 camcdcnmb --- 37.875
383 camcdnbcm --- 21.375
384 camcdnbmc --- 19.875
385 camcdncbm --- 27.375

58

386 camcdncmb --- 31.875
387 camcdnmbc --- 24.375
388 camcdnmcb --- 30.375
389 camcnbdcm --- 21.375
390 camcnbdmc --- 19.875
391 camcnbmdc --- 24.375
392 camcndbcm --- 21.375
393 camcndbmc --- 19.875
394 camcndcbm --- 27.375
395 camcndcmb --- 31.875
396 camcndmbc --- 24.375
397 camcndmcb --- 30.375
398 camcnmbdc --- 28.875
399 camcnmdbc --- 28.875
400 camcnmdcb --- 34.875
401 camnbcdcm --- 21.375
402 camnbcdmc --- 19.875
403 camnbcmdc --- 24.375
404 camnbmcdc --- 28.875
405 camncbdcm --- 21.375
406 camncbdmc --- 19.875
407 camncbmdc --- 24.375
408 camncdbcm --- 21.375
409 camncdbmc --- 19.875
410 camncdcbm --- 27.375
411 camncdcmb --- 31.875
412 camncdmbc --- 24.375
413 camncdmcb --- 30.375
414 camncmbdc --- 28.875
415 camncmdbc --- 28.875
416 camncmdcb --- 34.875
417 camnmbcdc --- 33.375
418 camnmcbdc --- 33.375
419 camnmcdbc --- 33.375
420 camnmcdcb --- 39.375
421 ccabdcmnm --- 51.375
422 ccabdmcnm --- 40.875
423 ccabdmncm --- 34.875
424 ccabdmnmc --- 33.375
425 ccabmdcnm --- 36.375
426 ccabmdncm --- 30.375
427 ccabmdnmc --- 28.875
428 ccabmndcm --- 30.375
429 ccabmndmc --- 28.875
430 ccabmnmdc --- 33.375
431 ccadbcmnm --- 51.375
432 ccadbmcnm --- 40.875
433 ccadbmncm --- 34.875
434 ccadbmnmc --- 33.375
435 ccadcbmnm --- 57.375
436 ccadcmbnm --- 52.875
437 ccadcmnbm --- 52.875
438 ccadcmnmb --- 57.375
439 ccadmbcnm --- 36.375
440 ccadmbncm --- 30.375
441 ccadmbnmc --- 28.875

59

442 ccadmcbnm --- 42.375
443 ccadmcnbm --- 42.375
444 ccadmcnmb --- 46.875
445 ccadmnbcm --- 30.375
446 ccadmnbmc --- 28.875
447 ccadmncbm --- 36.375
448 ccadmncmb --- 40.875
449 ccadmnmbc --- 33.375
450 ccadmnmcb --- 39.375
451 ccambdcnm --- 31.875
452 ccambdncm --- 25.875
453 ccambdnmc --- 24.375
454 ccambndcm --- 25.875
455 ccambndmc --- 24.375
456 ccambnmdc --- 28.875
457 ccamdbcnm --- 31.875
458 ccamdbncm --- 25.875
459 ccamdbnmc --- 24.375
460 ccamdcbnm --- 37.875
461 ccamdcnbm --- 37.875
462 ccamdcnmb --- 42.375
463 ccamdnbcm --- 25.875
464 ccamdnbmc --- 24.375
465 ccamdncbm --- 31.875
466 ccamdncmb --- 36.375
467 ccamdnmbc --- 28.875
468 ccamdnmcb --- 34.875
469 ccamnbdcm --- 25.875
470 ccamnbdmc --- 24.375
471 ccamnbmdc --- 28.875
472 ccamndbcm --- 25.875
473 ccamndbmc --- 24.375
474 ccamndcbm --- 31.875
475 ccamndcmb --- 36.375
476 ccamndmbc --- 28.875
477 ccamndmcb --- 34.875
478 ccamnmbdc --- 33.375
479 ccamnmdbc --- 33.375
480 ccamnmdcb --- 39.375
481 ccdabcmnm --- 51.375
482 ccdabmcnm --- 40.875
483 ccdabmncm --- 34.875
484 ccdabmnmc --- 33.375
485 ccdacbmnm --- 57.375
486 ccdacmbnm --- 52.875
487 ccdacmnbm --- 52.875
488 ccdacmnmb --- 57.375
489 ccdambcnm --- 36.375
490 ccdambncm --- 30.375
491 ccdambnmc --- 28.875
492 ccdamcbnm --- 42.375
493 ccdamcnbm --- 42.375
494 ccdamcnmb --- 46.875
495 ccdamnbcm --- 30.375
496 ccdamnbmc --- 28.875
497 ccdamncbm --- 36.375

60

498 ccdamncmb --- 40.875
499 ccdamnmbc --- 33.375
500 ccdamnmcb --- 39.375
501 ccdcabmnm --- 63.375
502 ccdcambnm --- 58.875
503 ccdcamnbm --- 58.875
504 ccdcamnmb --- 63.375
505 ccdcmabnm --- 54.375
506 ccdcmanbm --- 54.375
507 ccdcmanmb --- 58.875
508 ccdcmnabm --- 54.375
509 ccdcmnamb --- 58.875
510 ccdcmnmab --- 63.375
511 ccdmabcnm --- 31.875
512 ccdmabncm --- 25.875
513 ccdmabnmc --- 24.375
514 ccdmacbnm --- 37.875
515 ccdmacnbm --- 37.875
516 ccdmacnmb --- 42.375
517 ccdmanbcm --- 25.875
518 ccdmanbmc --- 24.375
519 ccdmancbm --- 31.875
520 ccdmancmb --- 36.375
521 ccdmanmbc --- 28.875
522 ccdmanmcb --- 34.875
523 ccdmcabnm --- 43.875
524 ccdmcanbm --- 43.875
525 ccdmcanmb --- 48.375
526 ccdmcnabm --- 43.875
527 ccdmcnamb --- 48.375
528 ccdmcnmab --- 52.875
529 ccdmnabcm --- 25.875
530 ccdmnabmc --- 24.375
531 ccdmnacbm --- 31.875
532 ccdmnacmb --- 36.375
533 ccdmnambc --- 28.875
534 ccdmnamcb --- 34.875
535 ccdmncabm --- 37.875
536 ccdmncamb --- 42.375
537 ccdmncmab --- 46.875
538 ccdmnmabc --- 33.375
539 ccdmnmacb --- 39.375
540 ccdmnmcab --- 45.375
541 ccmabdcnm --- 27.375
542 ccmabdncm --- 21.375
543 ccmabdnmc --- 19.875
544 ccmabndcm --- 21.375
545 ccmabndmc --- 19.875
546 ccmabnmdc --- 24.375
547 ccmadbcnm --- 27.375
548 ccmadbncm --- 21.375
549 ccmadbnmc --- 19.875
550 ccmadcbnm --- 33.375
551 ccmadcnbm --- 33.375
552 ccmadcnmb --- 37.875
553 ccmadnbcm --- 21.375

61

554 ccmadnbmc --- 19.875
555 ccmadncbm --- 27.375
556 ccmadncmb --- 31.875
557 ccmadnmbc --- 24.375
558 ccmadnmcb --- 30.375
559 ccmanbdcm --- 21.375
560 ccmanbdmc --- 19.875
561 ccmanbmdc --- 24.375
562 ccmandbcm --- 21.375
563 ccmandbmc --- 19.875
564 ccmandcbm --- 27.375
565 ccmandcmb --- 31.875
566 ccmandmbc --- 24.375
567 ccmandmcb --- 30.375
568 ccmanmbdc --- 28.875
569 ccmanmdbc --- 28.875
570 ccmanmdcb --- 34.875
571 ccmdabcnm --- 27.375
572 ccmdabncm --- 21.375
573 ccmdabnmc --- 19.875
574 ccmdacbnm --- 33.375
575 ccmdacnbm --- 33.375
576 ccmdacnmb --- 37.875
577 ccmdanbcm --- 21.375
578 ccmdanbmc --- 19.875
579 ccmdancbm --- 27.375
580 ccmdancmb --- 31.875
581 ccmdanmbc --- 24.375
582 ccmdanmcb --- 30.375
583 ccmdcabnm --- 39.375
584 ccmdcanbm --- 39.375
585 ccmdcanmb --- 43.875
586 ccmdcnabm --- 39.375
587 ccmdcnamb --- 43.875
588 ccmdcnmab --- 48.375
589 ccmdnabcm --- 21.375
590 ccmdnabmc --- 19.875
591 ccmdnacbm --- 27.375
592 ccmdnacmb --- 31.875
593 ccmdnambc --- 24.375
594 ccmdnamcb --- 30.375
595 ccmdncabm --- 33.375
596 ccmdncamb --- 37.875
597 ccmdncmab --- 42.375
598 ccmdnmabc --- 28.875
599 ccmdnmacb --- 34.875
600 ccmdnmcab --- 40.875
601 ccmnabdcm --- 21.375
602 ccmnabdmc --- 19.875
603 ccmnabmdc --- 24.375
604 ccmnadbcm --- 21.375
605 ccmnadbmc --- 19.875
606 ccmnadcbm --- 27.375
607 ccmnadcmb --- 31.875
608 ccmnadmbc --- 24.375
609 ccmnadmcb --- 30.375

62

610 ccmnambdc --- 28.875
611 ccmnamdbc --- 28.875
612 ccmnamdcb --- 34.875
613 ccmndabcm --- 21.375
614 ccmndabmc --- 19.875
615 ccmndacbm --- 27.375
616 ccmndacmb --- 31.875
617 ccmndambc --- 24.375
618 ccmndamcb --- 30.375
619 ccmndcabm --- 33.375
620 ccmndcamb --- 37.875
621 ccmndcmab --- 42.375
622 ccmndmabc --- 28.875
623 ccmndmacb --- 34.875
624 ccmndmcab --- 40.875
625 ccmnmabdc --- 33.375
626 ccmnmadbc --- 33.375
627 ccmnmadcb --- 39.375
628 ccmnmdabc --- 33.375
629 ccmnmdacb --- 39.375
630 ccmnmdcab --- 45.375
631 cmabcdcnm --- 22.875
632 cmabcdncm --- 16.875
633 cmabcdnmc --- 15.375
634 cmabcndcm --- 16.875
635 cmabcndmc --- 15.375
636 cmabcnmdc --- 19.875
637 cmabncdcm --- 16.875
638 cmabncdmc --- 15.375
639 cmabncmdc --- 19.875
640 cmabnmcdc --- 24.375
641 cmacbdcnm --- 22.875
642 cmacbdncm --- 16.875
643 cmacbdnmc --- 15.375
644 cmacbndcm --- 16.875
645 cmacbndmc --- 15.375
646 cmacbnmdc --- 19.875
647 cmacdbcnm --- 22.875
648 cmacdbncm --- 16.875
649 cmacdbnmc --- 15.375
650 cmacdcbnm --- 28.875
651 cmacdcnbm --- 28.875
652 cmacdcnmb --- 33.375
653 cmacdnbcm --- 16.875
654 cmacdnbmc --- 15.375
655 cmacdncbm --- 22.875
656 cmacdncmb --- 27.375
657 cmacdnmbc --- 19.875
658 cmacdnmcb --- 25.875
659 cmacnbdcm --- 16.875
660 cmacnbdmc --- 15.375
661 cmacnbmdc --- 19.875
662 cmacndbcm --- 16.875
663 cmacndbmc --- 15.375
664 cmacndcbm --- 22.875
665 cmacndcmb --- 27.375

63

666 cmacndmbc --- 19.875
667 cmacndmcb --- 25.875
668 cmacnmbdc --- 24.375
669 cmacnmdbc --- 24.375
670 cmacnmdcb --- 30.375
671 cmanbcdcm --- 16.875
672 cmanbcdmc --- 15.375
673 cmanbcmdc --- 19.875
674 cmanbmcdc --- 24.375
675 cmancbdcm --- 16.875
676 cmancbdmc --- 15.375
677 cmancbmdc --- 19.875
678 cmancdbcm --- 16.875
679 cmancdbmc --- 15.375
680 cmancdcbm --- 22.875
681 cmancdcmb --- 27.375
682 cmancdmbc --- 19.875
683 cmancdmcb --- 25.875
684 cmancmbdc --- 24.375
685 cmancmdbc --- 24.375
686 cmancmdcb --- 30.375
687 cmanmbcdc --- 28.875
688 cmanmcbdc --- 28.875
689 cmanmcdbc --- 28.875
690 cmanmcdcb --- 34.875
691 cmcabdcnm --- 22.875
692 cmcabdncm --- 16.875
693 cmcabdnmc --- 15.375
694 cmcabndcm --- 16.875
695 cmcabndmc --- 15.375
696 cmcabnmdc --- 19.875
697 cmcadbcnm --- 22.875
698 cmcadbncm --- 16.875
699 cmcadbnmc --- 15.375
700 cmcadcbnm --- 28.875
701 cmcadcnbm --- 28.875
702 cmcadcnmb --- 33.375
703 cmcadnbcm --- 16.875
704 cmcadnbmc --- 15.375
705 cmcadncbm --- 22.875
706 cmcadncmb --- 27.375
707 cmcadnmbc --- 19.875
708 cmcadnmcb --- 25.875
709 cmcanbdcm --- 16.875
710 cmcanbdmc --- 15.375
711 cmcanbmdc --- 19.875
712 cmcandbcm --- 16.875
713 cmcandbmc --- 15.375
714 cmcandcbm --- 22.875
715 cmcandcmb --- 27.375
716 cmcandmbc --- 19.875
717 cmcandmcb --- 25.875
718 cmcanmbdc --- 24.375
719 cmcanmdbc --- 24.375
720 cmcanmdcb --- 30.375
721 cmcdabcnm --- 22.875

64

722 cmcdabncm --- 16.875
723 cmcdabnmc --- 15.375
724 cmcdacbnm --- 28.875
725 cmcdacnbm --- 28.875
726 cmcdacnmb --- 33.375
727 cmcdanbcm --- 16.875
728 cmcdanbmc --- 15.375
729 cmcdancbm --- 22.875
730 cmcdancmb --- 27.375
731 cmcdanmbc --- 19.875
732 cmcdanmcb --- 25.875
733 cmcdcabnm --- 34.875
734 cmcdcanbm --- 34.875
735 cmcdcanmb --- 39.375
736 cmcdcnabm --- 34.875
737 cmcdcnamb --- 39.375
738 cmcdcnmab --- 43.875
739 cmcdnabcm --- 16.875
740 cmcdnabmc --- 15.375
741 cmcdnacbm --- 22.875
742 cmcdnacmb --- 27.375
743 cmcdnambc --- 19.875
744 cmcdnamcb --- 25.875
745 cmcdncabm --- 28.875
746 cmcdncamb --- 33.375
747 cmcdncmab --- 37.875
748 cmcdnmabc --- 24.375
749 cmcdnmacb --- 30.375
750 cmcdnmcab --- 36.375
751 cmcnabdcm --- 16.875
752 cmcnabdmc --- 15.375
753 cmcnabmdc --- 19.875
754 cmcnadbcm --- 16.875
755 cmcnadbmc --- 15.375
756 cmcnadcbm --- 22.875
757 cmcnadcmb --- 27.375
758 cmcnadmbc --- 19.875
759 cmcnadmcb --- 25.875
760 cmcnambdc --- 24.375
761 cmcnamdbc --- 24.375
762 cmcnamdcb --- 30.375
763 cmcndabcm --- 16.875
764 cmcndabmc --- 15.375
765 cmcndacbm --- 22.875
766 cmcndacmb --- 27.375
767 cmcndambc --- 19.875
768 cmcndamcb --- 25.875
769 cmcndcabm --- 28.875
770 cmcndcamb --- 33.375
771 cmcndcmab --- 37.875
772 cmcndmabc --- 24.375
773 cmcndmacb --- 30.375
774 cmcndmcab --- 36.375
775 cmcnmabdc --- 28.875
776 cmcnmadbc --- 28.875
777 cmcnmadcb --- 34.875

65

778 cmcnmdabc --- 28.875
779 cmcnmdacb --- 34.875
780 cmcnmdcab --- 40.875
781 cmnabcdcm --- 16.875
782 cmnabcdmc --- 15.375
783 cmnabcmdc --- 19.875
784 cmnabmcdc --- 24.375
785 cmnacbdcm --- 16.875
786 cmnacbdmc --- 15.375
787 cmnacbmdc --- 19.875
788 cmnacdbcm --- 16.875
789 cmnacdbmc --- 15.375
790 cmnacdcbm --- 22.875
791 cmnacdcmb --- 27.375
792 cmnacdmbc --- 19.875
793 cmnacdmcb --- 25.875
794 cmnacmbdc --- 24.375
795 cmnacmdbc --- 24.375
796 cmnacmdcb --- 30.375
797 cmnambcdc --- 28.875
798 cmnamcbdc --- 28.875
799 cmnamcdbc --- 28.875
800 cmnamcdcb --- 34.875
801 cmncabdcm --- 16.875
802 cmncabdmc --- 15.375
803 cmncabmdc --- 19.875
804 cmncadbcm --- 16.875
805 cmncadbmc --- 15.375
806 cmncadcbm --- 22.875
807 cmncadcmb --- 27.375
808 cmncadmbc --- 19.875
809 cmncadmcb --- 25.875
810 cmncambdc --- 24.375
811 cmncamdbc --- 24.375
812 cmncamdcb --- 30.375
813 cmncdabcm --- 16.875
814 cmncdabmc --- 15.375
815 cmncdacbm --- 22.875
816 cmncdacmb --- 27.375
817 cmncdambc --- 19.875
818 cmncdamcb --- 25.875
819 cmncdcabm --- 28.875
820 cmncdcamb --- 33.375
821 cmncdcmab --- 37.875
822 cmncdmabc --- 24.375
823 cmncdmacb --- 30.375
824 cmncdmcab --- 36.375
825 cmncmabdc --- 28.875
826 cmncmadbc --- 28.875
827 cmncmadcb --- 34.875
828 cmncmdabc --- 28.875
829 cmncmdacb --- 34.875
830 cmncmdcab --- 40.875
831 cmnmabcdc --- 33.375
832 cmnmacbdc --- 33.375
833 cmnmacdbc --- 33.375

66

834 cmnmacdcb --- 39.375
835 cmnmcabdc --- 33.375
836 cmnmcadbc --- 33.375
837 cmnmcadcb --- 39.375
838 cmnmcdabc --- 33.375
839 cmnmcdacb --- 39.375
840 cmnmcdcab --- 45.375
841 mabccdcnm --- 36.375
842 mabccdncm --- 30.375
843 mabccdnmc --- 28.875
844 mabccndcm --- 30.375
845 mabccndmc --- 28.875
846 mabccnmdc --- 33.375
847 mabcncdcm --- 30.375
848 mabcncdmc --- 28.875
849 mabcncmdc --- 33.375
850 mabcnmcdc --- 37.875
851 mabnccdcm --- 36.375
852 mabnccdmc --- 34.875
853 mabnccmdc --- 39.375
854 mabncmcdc --- 43.875
855 mabnmccdc --- 54.375
856 macbcdcnm --- 30.375
857 macbcdncm --- 24.375
858 macbcdnmc --- 22.875
859 macbcndcm --- 24.375
860 macbcndmc --- 22.875
861 macbcnmdc --- 27.375
862 macbncdcm --- 24.375
863 macbncdmc --- 22.875
864 macbncmdc --- 27.375
865 macbnmcdc --- 31.875
866 maccbdcnm --- 30.375
867 maccbdncm --- 24.375
868 maccbdnmc --- 22.875
869 maccbndcm --- 24.375
870 maccbndmc --- 22.875
871 maccbnmdc --- 27.375
872 maccdbcnm --- 30.375
873 maccdbncm --- 24.375
874 maccdbnmc --- 22.875
875 maccdcbnm --- 36.375
876 maccdcnbm --- 36.375
877 maccdcnmb --- 40.875
878 maccdnbcm --- 24.375
879 maccdnbmc --- 22.875
880 maccdncbm --- 30.375
881 maccdncmb --- 34.875
882 maccdnmbc --- 27.375
883 maccdnmcb --- 33.375
884 maccnbdcm --- 24.375
885 maccnbdmc --- 22.875
886 maccnbmdc --- 27.375
887 maccndbcm --- 24.375
888 maccndbmc --- 22.875
889 maccndcbm --- 30.375

67

890 maccndcmb --- 34.875
891 maccndmbc --- 27.375
892 maccndmcb --- 33.375
893 maccnmbdc --- 31.875
894 maccnmdbc --- 31.875
895 maccnmdcb --- 37.875
896 macnbcdcm --- 24.375
897 macnbcdmc --- 22.875
898 macnbcmdc --- 27.375
899 macnbmcdc --- 31.875
900 macncbdcm --- 24.375
901 macncbdmc --- 22.875
902 macncbmdc --- 27.375
903 macncdbcm --- 24.375
904 macncdbmc --- 22.875
905 macncdcbm --- 30.375
906 macncdcmb --- 34.875
907 macncdmbc --- 27.375
908 macncdmcb --- 33.375
909 macncmbdc --- 31.875
910 macncmdbc --- 31.875
911 macncmdcb --- 37.875
912 macnmbcdc --- 36.375
913 macnmcbdc --- 36.375
914 macnmcdbc --- 36.375
915 macnmcdcb --- 42.375
916 manbccdcm --- 36.375
917 manbccdmc --- 34.875
918 manbccmdc --- 39.375
919 manbcmcdc --- 43.875
920 manbmccdc --- 54.375
921 mancbcdcm --- 30.375
922 mancbcdmc --- 28.875
923 mancbcmdc --- 33.375
924 mancbmcdc --- 37.875
925 manccbdcm --- 30.375
926 manccbdmc --- 28.875
927 manccbmdc --- 33.375
928 manccdbcm --- 30.375
929 manccdbmc --- 28.875
930 manccdcbm --- 36.375
931 manccdcmb --- 40.875
932 manccdmbc --- 33.375
933 manccdmcb --- 39.375
934 manccmbdc --- 37.875
935 manccmdbc --- 37.875
936 manccmdcb --- 43.875
937 mancmbcdc --- 42.375
938 mancmcbdc --- 42.375
939 mancmcdbc --- 42.375
940 mancmcdcb --- 48.375
941 manmbccdc --- 58.875
942 manmcbcdc --- 52.875
943 manmccbdc --- 52.875
944 manmccdbc --- 52.875
945 manmccdcb --- 58.875

68

946 mcabcdcnm --- 24.375
947 mcabcdncm --- 18.375
948 mcabcdnmc --- 16.875
949 mcabcndcm --- 18.375
950 mcabcndmc --- 16.875
951 mcabcnmdc --- 21.375
952 mcabncdcm --- 18.375
953 mcabncdmc --- 16.875
954 mcabncmdc --- 21.375
955 mcabnmcdc --- 25.875
956 mcacbdcnm --- 24.375
957 mcacbdncm --- 18.375
958 mcacbdnmc --- 16.875
959 mcacbndcm --- 18.375
960 mcacbndmc --- 16.875
961 mcacbnmdc --- 21.375
962 mcacdbcnm --- 24.375
963 mcacdbncm --- 18.375
964 mcacdbnmc --- 16.875
965 mcacdcbnm --- 30.375
966 mcacdcnbm --- 30.375
967 mcacdcnmb --- 34.875
968 mcacdnbcm --- 18.375
969 mcacdnbmc --- 16.875
970 mcacdncbm --- 24.375
971 mcacdncmb --- 28.875
972 mcacdnmbc --- 21.375
973 mcacdnmcb --- 27.375
974 mcacnbdcm --- 18.375
975 mcacnbdmc --- 16.875
976 mcacnbmdc --- 21.375
977 mcacndbcm --- 18.375
978 mcacndbmc --- 16.875
979 mcacndcbm --- 24.375
980 mcacndcmb --- 28.875
981 mcacndmbc --- 21.375
982 mcacndmcb --- 27.375
983 mcacnmbdc --- 25.875
984 mcacnmdbc --- 25.875
985 mcacnmdcb --- 31.875
986 mcanbcdcm --- 18.375
987 mcanbcdmc --- 16.875
988 mcanbcmdc --- 21.375
989 mcanbmcdc --- 25.875
990 mcancbdcm --- 18.375
991 mcancbdmc --- 16.875
992 mcancbmdc --- 21.375
993 mcancdbcm --- 18.375
994 mcancdbmc --- 16.875
995 mcancdcbm --- 24.375
996 mcancdcmb --- 28.875
997 mcancdmbc --- 21.375
998 mcancdmcb --- 27.375
999 mcancmbdc --- 25.875
1000 mcancmdbc --- 25.875
1001 mcancmdcb --- 31.875

69

1002 mcanmbcdc --- 30.375
1003 mcanmcbdc --- 30.375
1004 mcanmcdbc --- 30.375
1005 mcanmcdcb --- 36.375
1006 mccabdcnm --- 24.375
1007 mccabdncm --- 18.375
1008 mccabdnmc --- 16.875
1009 mccabndcm --- 18.375
1010 mccabndmc --- 16.875
1011 mccabnmdc --- 21.375
1012 mccadbcnm --- 24.375
1013 mccadbncm --- 18.375
1014 mccadbnmc --- 16.875
1015 mccadcbnm --- 30.375
1016 mccadcnbm --- 30.375
1017 mccadcnmb --- 34.875
1018 mccadnbcm --- 18.375
1019 mccadnbmc --- 16.875
1020 mccadncbm --- 24.375
1021 mccadncmb --- 28.875
1022 mccadnmbc --- 21.375
1023 mccadnmcb --- 27.375
1024 mccanbdcm --- 18.375
1025 mccanbdmc --- 16.875
1026 mccanbmdc --- 21.375
1027 mccandbcm --- 18.375
1028 mccandbmc --- 16.875
1029 mccandcbm --- 24.375
1030 mccandcmb --- 28.875
1031 mccandmbc --- 21.375
1032 mccandmcb --- 27.375
1033 mccanmbdc --- 25.875
1034 mccanmdbc --- 25.875
1035 mccanmdcb --- 31.875
1036 mccdabcnm --- 24.375
1037 mccdabncm --- 18.375
1038 mccdabnmc --- 16.875
1039 mccdacbnm --- 30.375
1040 mccdacnbm --- 30.375
1041 mccdacnmb --- 34.875
1042 mccdanbcm --- 18.375
1043 mccdanbmc --- 16.875
1044 mccdancbm --- 24.375
1045 mccdancmb --- 28.875
1046 mccdanmbc --- 21.375
1047 mccdanmcb --- 27.375
1048 mccdcabnm --- 36.375
1049 mccdcanbm --- 36.375
1050 mccdcanmb --- 40.875
1051 mccdcnabm --- 36.375
1052 mccdcnamb --- 40.875
1053 mccdcnmab --- 45.375
1054 mccdnabcm --- 18.375
1055 mccdnabmc --- 16.875
1056 mccdnacbm --- 24.375
1057 mccdnacmb --- 28.875

70

1058 mccdnambc --- 21.375
1059 mccdnamcb --- 27.375
1060 mccdncabm --- 30.375
1061 mccdncamb --- 34.875
1062 mccdncmab --- 39.375
1063 mccdnmabc --- 25.875
1064 mccdnmacb --- 31.875
1065 mccdnmcab --- 37.875
1066 mccnabdcm --- 18.375
1067 mccnabdmc --- 16.875
1068 mccnabmdc --- 21.375
1069 mccnadbcm --- 18.375
1070 mccnadbmc --- 16.875
1071 mccnadcbm --- 24.375
1072 mccnadcmb --- 28.875
1073 mccnadmbc --- 21.375
1074 mccnadmcb --- 27.375
1075 mccnambdc --- 25.875
1076 mccnamdbc --- 25.875
1077 mccnamdcb --- 31.875
1078 mccndabcm --- 18.375
1079 mccndabmc --- 16.875
1080 mccndacbm --- 24.375
1081 mccndacmb --- 28.875
1082 mccndambc --- 21.375
1083 mccndamcb --- 27.375
1084 mccndcabm --- 30.375
1085 mccndcamb --- 34.875
1086 mccndcmab --- 39.375
1087 mccndmabc --- 25.875
1088 mccndmacb --- 31.875
1089 mccndmcab --- 37.875
1090 mccnmabdc --- 30.375
1091 mccnmadbc --- 30.375
1092 mccnmadcb --- 36.375
1093 mccnmdabc --- 30.375
1094 mccnmdacb --- 36.375
1095 mccnmdcab --- 42.375
1096 mcnabcdcm --- 18.375
1097 mcnabcdmc --- 16.875
1098 mcnabcmdc --- 21.375
1099 mcnabmcdc --- 25.875
1100 mcnacbdcm --- 18.375
1101 mcnacbdmc --- 16.875
1102 mcnacbmdc --- 21.375
1103 mcnacdbcm --- 18.375
1104 mcnacdbmc --- 16.875
1105 mcnacdcbm --- 24.375
1106 mcnacdcmb --- 28.875
1107 mcnacdmbc --- 21.375
1108 mcnacdmcb --- 27.375
1109 mcnacmbdc --- 25.875
1110 mcnacmdbc --- 25.875
1111 mcnacmdcb --- 31.875
1112 mcnambcdc --- 30.375
1113 mcnamcbdc --- 30.375

71

1114 mcnamcdbc --- 30.375
1115 mcnamcdcb --- 36.375
1116 mcncabdcm --- 18.375
1117 mcncabdmc --- 16.875
1118 mcncabmdc --- 21.375
1119 mcncadbcm --- 18.375
1120 mcncadbmc --- 16.875
1121 mcncadcbm --- 24.375
1122 mcncadcmb --- 28.875
1123 mcncadmbc --- 21.375
1124 mcncadmcb --- 27.375
1125 mcncambdc --- 25.875
1126 mcncamdbc --- 25.875
1127 mcncamdcb --- 31.875
1128 mcncdabcm --- 18.375
1129 mcncdabmc --- 16.875
1130 mcncdacbm --- 24.375
1131 mcncdacmb --- 28.875
1132 mcncdambc --- 21.375
1133 mcncdamcb --- 27.375
1134 mcncdcabm --- 30.375
1135 mcncdcamb --- 34.875
1136 mcncdcmab --- 39.375
1137 mcncdmabc --- 25.875
1138 mcncdmacb --- 31.875
1139 mcncdmcab --- 37.875
1140 mcncmabdc --- 30.375
1141 mcncmadbc --- 30.375
1142 mcncmadcb --- 36.375
1143 mcncmdabc --- 30.375
1144 mcncmdacb --- 36.375
1145 mcncmdcab --- 42.375
1146 mcnmabcdc --- 34.875
1147 mcnmacbdc --- 34.875
1148 mcnmacdbc --- 34.875
1149 mcnmacdcb --- 40.875
1150 mcnmcabdc --- 34.875
1151 mcnmcadbc --- 34.875
1152 mcnmcadcb --- 40.875
1153 mcnmcdabc --- 34.875
1154 mcnmcdacb --- 40.875
1155 mcnmcdcab --- 46.875
1156 mnabccdcm --- 36.375
1157 mnabccdmc --- 34.875
1158 mnabccmdc --- 39.375
1159 mnabcmcdc --- 43.875
1160 mnabmccdc --- 54.375
1161 mnacbcdcm --- 30.375
1162 mnacbcdmc --- 28.875
1163 mnacbcmdc --- 33.375
1164 mnacbmcdc --- 37.875
1165 mnaccbdcm --- 30.375
1166 mnaccbdmc --- 28.875
1167 mnaccbmdc --- 33.375
1168 mnaccdbcm --- 30.375
1169 mnaccdbmc --- 28.875

72

1170 mnaccdcbm --- 36.375
1171 mnaccdcmb --- 40.875
1172 mnaccdmbc --- 33.375
1173 mnaccdmcb --- 39.375
1174 mnaccmbdc --- 37.875
1175 mnaccmdbc --- 37.875
1176 mnaccmdcb --- 43.875
1177 mnacmbcdc --- 42.375
1178 mnacmcbdc --- 42.375
1179 mnacmcdbc --- 42.375
1180 mnacmcdcb --- 48.375
1181 mnambccdc --- 58.875
1182 mnamcbcdc --- 52.875
1183 mnamccbdc --- 52.875
1184 mnamccdbc --- 52.875
1185 mnamccdcb --- 58.875
1186 mncabcdcm --- 24.375
1187 mncabcdmc --- 22.875
1188 mncabcmdc --- 27.375
1189 mncabmcdc --- 31.875
1190 mncacbdcm --- 24.375
1191 mncacbdmc --- 22.875
1192 mncacbmdc --- 27.375
1193 mncacdbcm --- 24.375
1194 mncacdbmc --- 22.875
1195 mncacdcbm --- 30.375
1196 mncacdcmb --- 34.875
1197 mncacdmbc --- 27.375
1198 mncacdmcb --- 33.375
1199 mncacmbdc --- 31.875
1200 mncacmdbc --- 31.875
1201 mncacmdcb --- 37.875
1202 mncambcdc --- 36.375
1203 mncamcbdc --- 36.375
1204 mncamcdbc --- 36.375
1205 mncamcdcb --- 42.375
1206 mnccabdcm --- 24.375
1207 mnccabdmc --- 22.875
1208 mnccabmdc --- 27.375
1209 mnccadbcm --- 24.375
1210 mnccadbmc --- 22.875
1211 mnccadcbm --- 30.375
1212 mnccadcmb --- 34.875
1213 mnccadmbc --- 27.375
1214 mnccadmcb --- 33.375
1215 mnccambdc --- 31.875
1216 mnccamdbc --- 31.875
1217 mnccamdcb --- 37.875
1218 mnccdabcm --- 24.375
1219 mnccdabmc --- 22.875
1220 mnccdacbm --- 30.375
1221 mnccdacmb --- 34.875
1222 mnccdambc --- 27.375
1223 mnccdamcb --- 33.375
1224 mnccdcabm --- 36.375
1225 mnccdcamb --- 40.875

73

1226 mnccdcmab --- 45.375
1227 mnccdmabc --- 31.875
1228 mnccdmacb --- 37.875
1229 mnccdmcab --- 43.875
1230 mnccmabdc --- 36.375
1231 mnccmadbc --- 36.375
1232 mnccmadcb --- 42.375
1233 mnccmdabc --- 36.375
1234 mnccmdacb --- 42.375
1235 mnccmdcab --- 48.375
1236 mncmabcdc --- 40.875
1237 mncmacbdc --- 40.875
1238 mncmacdbc --- 40.875
1239 mncmacdcb --- 46.875
1240 mncmcabdc --- 40.875
1241 mncmcadbc --- 40.875
1242 mncmcadcb --- 46.875
1243 mncmcdabc --- 40.875
1244 mncmcdacb --- 46.875
1245 mncmcdcab --- 52.875
1246 mnmabccdc --- 63.375
1247 mnmacbcdc --- 57.375
1248 mnmaccbdc --- 57.375
1249 mnmaccdbc --- 57.375
1250 mnmaccdcb --- 63.375
1251 mnmcabcdc --- 51.375
1252 mnmcacbdc --- 51.375
1253 mnmcacdbc --- 51.375
1254 mnmcacdcb --- 57.375
1255 mnmccabdc --- 51.375
1256 mnmccadbc --- 51.375
1257 mnmccadcb --- 57.375
1258 mnmccdabc --- 51.375
1259 mnmccdacb --- 57.375
1260 mnmccdcab --- 63.375

---Min Value---
Minimal Cost-Value: 15.375

7. Minimal Possible Schedules

S.No. Possible Sequence Cost-Value

1 cmabcdnmc --- 15.375
2 cmabcndmc --- 15.375
3 cmabncdmc --- 15.375
4 cmacbdnmc --- 15.375
5 cmacbndmc --- 15.375
6 cmacdbnmc --- 15.375
7 cmacdnbmc --- 15.375
8 cmacnbdmc --- 15.375

74

9 cmacndbmc --- 15.375
10 cmanbcdmc --- 15.375
11 cmancbdmc --- 15.375
12 cmancdbmc --- 15.375
13 cmcabdnmc --- 15.375
14 cmcabndmc --- 15.375
15 cmcadbnmc --- 15.375
16 cmcadnbmc --- 15.375
17 cmcanbdmc --- 15.375
18 cmcandbmc --- 15.375
19 cmcdabnmc --- 15.375
20 cmcdanbmc --- 15.375
21 cmcdnabmc --- 15.375
22 cmcnabdmc --- 15.375
23 cmcnadbmc --- 15.375
24 cmcndabmc --- 15.375
25 cmnabcdmc --- 15.375
26 cmnacbdmc --- 15.375
27 cmnacdbmc --- 15.375
28 cmncabdmc --- 15.375
29 cmncadbmc --- 15.375
30 cmncdabmc --- 15.375

Output:

cmacndbmc is the schedule generated by Proposed -EDD is found in Possible

sequence list(Feasibility case).Moreover, this sequence is also found in list of

minimal cost sequence(Optimal case). Hence, it is shown empirically that

Proposed -EDD is both feasible and optimal.

75

Chapter 7

CONCLUSION AND FUTURE RECOMMENDATION

Flexible assembly lines that have negligible switch-over costs from one product to

another make it possible to implement flexible JIT production, which requires

producing only the necessary products in the necessary quantities at necessary

times. A JIT system being a pull system initiates any supplying process only if

there is another process that requires the supplying process output (subassembly,

part, raw material). As a result, it is the final assembly which is the focus for

scheduling. The problem of determining a sequence of final assembly such that

the quantity of each part used in the assembly process is kept as close to constant

as possible throughout the working time which is known as balancing the

schedule. Our concern in this dissertation, however, is to extract the best schedule

from the possible schedule.

In this dissertation, under the constraint that none of the chains are overlapping, it

is shown that by considering each chain as a pseudo job and their length as a

demands, we can have a pseudo schedule from EDD, which is later replaced by

the real job, can lead a combined chain sequences which is both feasible and

optimal (shown practically).

Still a lot of questions are left open. It is let to identify either we can establish the

mathematical derivations of Proposed EDD’s feasibility and optimality. It is also

remain open either we can achieve a similar algorithm for overlapping sequences.

Moreover, it is also let open that a similar achievement can be obtained with other

algorithms like Cost Assignment, Nearest Integer Point, Dynamic Programming,

and so on.

76

REFERENCES

1. Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, C. and Weglarz, J.,

“Scheduling computer and manufacturing processes”, Springer, Berlin (1996).

2. Brouner, N. and Crama, Y., “The maximum deviation just-in-time scheduling

problem”, Discrete Applied Mathematics 134 (2004) 25-50.

3. Brucker, P., “Scheduling Algorithms”, Springer, Verlag 2 (1995).

4. Carlier, J. and Chretienne, P., “Problemes d'ordonnancement: modelisation /

complexite / algorithms”, Masson, Paris (1988).

5. Dhamala, T. N., “Just-in-time sequencing algorithms for mixed-model production

system”, The Nepali Math. Sci. report 24, 1 (2005), 25-34.

6. Dhamala, T. N. and Khadka, S.R., “Just-in-time sequencing for mixed-model

production systems revisited”, submitted to Discrete Optimization 2007.

7. Dhamala, T. N. and Kubiak, W., “A brief survey of just-in-time sequencing for

mixed-model systems”, International Journal of Operational Research 2, 2 (2005)

38-47.

8. Graham, R.E., Lawer, E.L., Lenstra, J.K., and Rinnooy Kan, “Optimization and

approximation in deterministic sequencing and scheduling, a survey”, Annals of

Discrete Mathematics 5 (1979) 287-326.

9. Hall, R.W., “Cyclic scheduling for improvement”, International Journal of

Production Research 26, 3 (1988) 457-472.

77

10. Horn, W. A., “Some simple scheduling algorithms”, Naval Research Logistics

Quarterely 21 (1974) 177-185.

11. Inman, R. R. and Bulfin, R. L., “Sequencing just-in-time mixed-model assembly

lines”, Management Science 37, 7 (1991) 901-904.

12. Jost, V., “Deux problems d’approximation diophantin: le patage proportionnel en

numbers entries et les pavages equilibres de z”, DEA ROCO, Laboratorie

Leibniz-IMAG (2003).

13. Kovalyov, M. Y., Kubiak, W., Yeomans, J. S., A computational analysis of

balanced JIT optimization algorithm, Information Processing and Operational

Research, 39, 3 (2004) 4955-4974.

14. Kubiak, W., “Cyclic just-in-time sequence are optimal”, Journal of Global

Optimization 27 (2003) 333-347.

15. Kubiak, W., “Minimizing variation of production rates in just-in-time systems: A

survey”, European Journal of Operational Research 66 (1993) 259-271.

16. Kubiak, W. and Sethi, S., “Level schedules for mixed model assembly lines in

just-in-time” production system”, Management Science 37, 1 (1991) 121-122.

17. Kubiak, W., Steiner, G. and Yeomans, J.S., “Optimal level schedules for mixed-

model, multi-level just-in-time assembly systems”, Annals of Operations

Research 69 (1997) 241- 259.

18. Lebacque, V., Jost, V., Brauner, N., “Simultaneous optimization of classical

objectives in JIT scheduling”, submitted to Elsevier Science, 2005.

78

19. Miltenburg, J., “Level schedules for mixed-model assembly lines in just-in-time

production system”, Management Science 35, 2 (1989) 192-207.

20. Miltenburg, J. and Goldstein, T., “Developing production schedules which

balance part usage and smooth production loads for just-in-time production

systems”, Naval Research Logistics 38 (1991) 893-910.

21. Miltenburg, J. and Sinnamon, G., “Scheduling mixed-model multi-level just-in-

time production systems”, International Journal of Production Research 27, 9

(1989) 1487-1509.

22. Miltenburg, J., Steiner, G and Yeomans, S., “A dynamic programming algorithm

for scheduling mixed-model just-in-time production systems”, Mathematical and

Computer Modeling, 13 (1990) 57-66.

23. Monden, Y., “Toyota production system”, Industrial Engineers and Management

Press, Norcross, GA (1983).

24. Pinedo, M., “Scheduling - theory, algorithms, and systems”, Prentice Hall,

Englewood Cliffs (1995).

25. Steiner, G. and Yeomans, S., “Level schedules for just-in-time production

process”, Management Science 39 (1993) 728-735.

26. Suganuma, T. and Ogasawara, T., “Overview of the IBM Java Just-in-Time

Compiler”, IBM System Journal, 39, 1 (2000).

27. Tanenbaun, A., “Modern Operating System”, Prentice-Hall of India Pvt. Ltd.

(2004).

79

28. Thorpe, S.R., Stevenson, D.S., Edwards, G.K., “Using Just-in-Time to Enable

Optical Networking for Grids”, In Workshop on Grids and Networks held in

conjunction with CCGrid, April, 2004.

29. Yee, G.V., Shucker, B., Dunn, J., Sheth, A., Han, R., “Just-in-Time Sensor

Networks” In Information Processing in Sensor Networks: Second International

Workshop, IPSN, 2003.

30. Toyota Motor Corporation Global Site, www.toyota.co.jp.

31. www.assignmentproblem.com.

32. Wikipedia, the Free Encyclopedia(http://en.wikipedia.org 2008).

80

Appendix A

Basic Mathematical Notations

Set theory

N Set of natural numbers

R Set of real numbers

R+ Set of positive real numbers

Sequence and series

{a1, a2, ..., an} Set of objects a1, a2, …, an

(a1, a2, ..., an) A sequence of numbers a1, a2, …, an

Data

n Number of jobs

m Number of machines

Ji Job number i, i = 1, ..., n

ni Number of operations of job Ji

ml Number of machines at stage l

Mj Machine number j, j = 1, ..., m

Oi,j Operation j of job Ji

ri Release time of job Ji

di Due date of job Ji

si Desired start time of job Ji

pi,j Processing time of operation Oj,j

Wi or wi Weight associated to job Ji

D Total demand

81

Machine environment

Φ Single machine

P Identical machines

Q Uniform machines

R Unrelated machines

m The number of machines or stages is fixed

Miscellaneous

ti,j Start time of operation Oi,j

Ci,j Completion time of operation Oi,j

Ci Completion time of job Ji

Ti Tardiness of job Ji

Ei Earliness of job Ji

Li Lateness of job Ji

E(i, j) Release date of the copy (i, j)

L(i, j) Due date of the copy (i, j)

Modeling the cost Value

Mathematical Function:
























 





ii

ji d

Dj

r

j
k

2

1

2

12
,

82

Program:

public double getEvaluation(String abc){

double eval=0.0;
String newStr="";
for(int i=0;i<abc.length();i++){

newStr =newStr+abc.charAt(i);
char jobChar =(char)abc.charAt(i);
Job j =jobModel.getJob(jobChar);
int pos =getLastPos(newStr,jobChar);
double Zval = ((double)(2*pos-1))/(2.0*j.getR());
double Cur_eval =Math.pow((((double)(i+1))-Zval),2);
eval = eval + Cur_eval;

}
return eval;

}

Mapping:

getLastPos(jobChar) returns the j value for the below mathematical
formula.

j.getR() returns the ratio of D/di for job j

Then our formula becomes:
((j-1/2)D)/di =

= (2j-1)D/2*di
= (2j-1)*(D/di)*1/2
= (2j-1)*(1/(di/D))*(1/2)
= (2j-1)*(1/ri)*(1/2)
= (2j-1)/(2*ri)
= (2*pos-1)/2*j.getR()

Eval is the cumulative sum calculated by the help of loop.

83

Appendix B

Program Source Code

1. ScheduleImage.java

class ScheduleImage{
private String schedule;
private int index[];
int noOfChain;
double cost;

ScheduleImage(int i){
this.noOfChain=i;
schedule=new String();
index=new int[this.noOfChain];

}

public int[] getIndex() {
return index;

}
public void setIndex(int[] index) {

for(int i=0;i<index.length;i++)
this.index[i]=(int)index[i];

}
public String getSchedule() {

return schedule;
}
public void setSchedule(String schedule) {

this.schedule = schedule;
}
public void incrIndex(int i){

this.index[i]++;
}
public void printIndex(){

for(int i=0;i<this.noOfChain;i++){
System.out.print(this.index[i]);

}
}
public double getCost() {

return cost;
}
public void setCost(double cost) {

this.cost = cost;
}
}

84

2. PossibleSchedule.java

import java.util.Vector;
public class PossibleSchedule {

Vector <ScheduleImage>cat=new Vector<ScheduleImage>();
int totalDemand=0;
double Z[][] = new double[100][100];
double r[] = new double[100];
int pos[][] = new int[100][100];

private String chain[]={
"aba",
"ccdcc"

};

int startIndex=0;
int finalIndex=0;
JobModel jobModel=new JobModel();

public double getEvaluation(String abc){

double eval=0.0;
String newStr="";
for(int i=0;i<abc.length();i++){

newStr = newStr+abc.charAt(i);
char jobChar = (char)abc.charAt(i);
Job j = jobModel.getJob(jobChar);
int pos = getLastPos(newStr,jobChar);
double Zval = ((double)(2*pos-1))/(2.0*j.getR());
double Cur_eval= Math.pow((((double)(i+1))-Zval),2);
eval = eval + Cur_eval;

}
return eval;
}

public int getLastPos(String newStr,char c){

int retVal=0;
for(int i=0;i<newStr.length();i++){

char chr=newStr.charAt(i);
if(chr==c){

retVal++;
}

}
return retVal;
}

PossibleSchedule(){
int noOfChain=chain.length;
int length=0;
for(int i=0;i<noOfChain;i++){

85

length+=chain[i].length();
ScheduleImage s=new ScheduleImage(noOfChain);
int index[]=new int[noOfChain];
index[i]=1;
String schedule=""+chain[i].charAt(0);
s.setIndex(index);
s.setSchedule(schedule);
cat.add(s);
finalIndex++;

}
int jobIndex=0;
for(int i=0;i<noOfChain;i++){

for(int j=0;j<chain[i].length();j++){

char c=((String)chain[i]).charAt(j);
int index=this.jobModel.getIndex(c);
if(index==-1){

jobModel.addJob(c,jobIndex++);
}
jobModel.incJobCount(c);

}
}
jobModel.setRatio();

int prevIndex;
for(int i=1;i<length;i++){

prevIndex=startIndex;
startIndex=finalIndex;
try{
for(int k=prevIndex;k<startIndex;k++){

ScheduleImage s=new ScheduleImage(noOfChain);
s=(ScheduleImage)cat.get(k);
for(int j=0;j<noOfChain;j++){
int index[]=new int[noOfChain];
index= s.getIndex();
if(index[j]<chain[j].length()){
try{
String

schedule=s.getSchedule()+chain[j].charAt(index[j]);
ScheduleImage s1=new ScheduleImage(noOfChain);
s1.setIndex(s.getIndex());
s1.incrIndex(j);
s1.setSchedule(schedule);
cat.add(s1);
finalIndex++;
}catch(Exception e){
System.out.println("Error TrAp");

}
}
}
}

}catch(Exception e){
System.out.println("erer");

}

86

}
showFinalSchedule(startIndex);
}

public static void main(String abc[]){
new PossibleSchedule();
}

public void showVector(){

for(int i=0;i<cat.size();i++){
ScheduleImage s=(ScheduleImage)cat.get(i);

s.printIndex();
System.out.print(" ");
System.out.println(s.getSchedule());
}

}

public void showFinalSchedule(int startIndex){
int count=1;
for(int i=startIndex;i<cat.size();i++){

ScheduleImage s=(ScheduleImage)cat.get(i);
s.setCost(getEvaluation(s.getSchedule()));

System.out.print(count+" ");
System.out.print(" ");
System.out.println(s.getSchedule()+" --- "+s.getCost());
count++;
}

}

3. JobModel.java

class JobModel{
Vector <Job>cat=new Vector<Job>();

public void addJob(char c,int jobIndex){

Job j=new Job();
j.setJobChar(c);
j.setJobCount(0);
j.setR(0.0);
j.setJobIndex(jobIndex);
this.cat.add(j);

}
public void setRatio(){

for(int i=0;i<cat.size();i++){
totalDemand+=((Job)cat.get(i)).getJobCount();

}
for(int i=0;i<cat.size();i++){

Job j=(Job)cat.get(i);

87

j.setR((double)j.getJobCount()/(double)totalDemand);
}

}

public void addJob(Job j){
cat.add(j);

}

Job getJob(char c){
for(int i=0;i<cat.size();i++){

Job j=cat.get(i);
if(j.getJobChar()==c)
return j;

}
return null;

}
int getIndex(char c){

for(int i=0;i<cat.size();i++){
Job j=cat.get(i);
if(j.getJobChar()==c)

return i;
}
return -1;

}

void incJobCount(char c){
for(int i=0;i<cat.size();i++){

Job j=cat.get(i);
if(j.getJobChar()==c)

j.incrJobCount();
}

}

public void viewJobList(){
System.out.println("Job Demand Ratio");
for(int i=0;i<cat.size();i++){

Job j=cat.get(i);
System.out.println(j.jobChar+" "+j.getJobCount()+" "+j.getR());

}}}

4. Job.java

class Job{
double r;
char jobChar;
int jobCount=0;
int actualPos=-1;
int pos=-1;
int jobIndex=-1;

public int getJobCount() {
return jobCount;

}

88

public void setJobCount(int jobCount) {
this.jobCount = jobCount;

}
public char getJobChar() {

return jobChar;
}
public void setJobChar(char jobChar) {

this.jobChar = jobChar;
}
public double getR() {

return r;
}
public void setR(double r) {

this.r = r;
}

public void incrJobCount(){
this.jobCount++;

}
public int getActualPos() {

return actualPos;
}
public void setActualPos(int actualPos) {

this.actualPos = actualPos;
}
public int getPos() {

return pos;
}
public void setPos(int pos) {

this.pos = pos;
}
public int getJobIndex() {

return jobIndex;
}
public void setJobIndex(int jobIndex) {

this.jobIndex = jobIndex;
}}}

5. MinSumAbsoluteChainAlgo.java

public class minSumAbsoluteChainAlgo {
private int demand[]=new int[100];
private String scheduleEDD,scheduleCost;
private String realEddSchedule,realCostSchedule;
private String chain[]={

"aba",
"ccdcc"

};
public static void main(String abc[]){
new minSumAbsoluteChainAlgo();
}
minSumAbsoluteChainAlgo(){

for(int i=0;i<chain.length;i++){
demand[i]=chain[i].length();

89

}

EDD edd=new EDD(demand);
scheduleEDD=edd.getSchedule();
this.realEddSchedule=convertSchedule(scheduleEDD);
System.out.println("EDD Schedule :"+realEddSchedule);
}

private String convertSchedule(String pseudoSchedule){
String realSchedule="";
int chainPtr[]=new int[100];
for(int i=0;i<chain.length;i++){

chainPtr[i]=0;
}
for(int i=0;i<pseudoSchedule.length();i++){

int index=Integer.parseInt(pseudoSchedule.charAt(i)+"");
char job=chain[index-1].charAt(chainPtr[index-1]++);
realSchedule=realSchedule+job;

}
return realSchedule;
}
}

6. EDD.java

import util.DoubleUtil;
public class EDD {
private String schedule="";
public EDD(int demand[]){

int product=demand.length;
int current[]=new int[100];
double dueDate[][]=new double [100][100];
int totalDemand=0;

for(int i=0;i<product;i++){
totalDemand+=demand[i];

}

int index=1;

for(int i=0;i<product;i++){
for(int k=1;k<=demand[i];k++,++index){

dueDate[i][k-1]=DoubleUtil.getRoundDouble(((((double)k-
0.5)*(double)totalDemand)/demand[i]),3);

}
}

for(int i=0;i<product;i++){
current[i]=0;

}

int minIndex;
double minValue;

90

for(int j=0;j<totalDemand;j++){
minIndex=0;
minValue=Double.MAX_VALUE;//dueDate[0][current[0]];

for(int i=0;i<product;i++){
if(minValue>dueDate[i][current[i]]&¤t[i]<demand[i]){

minIndex=i;
minValue=dueDate[i][current[i]];

}
}
current[minIndex]=current[minIndex]+1;
schedule=schedule + (minIndex+1);
}

}
public String getSchedule() {
return schedule;
}
public void setSchedule(String schedule) {
this.schedule = schedule;
}

}

7. DoubleUtil.java

package util;
public class DoubleUtil {

public static double getRoundDouble(double value,int decimal){
double fact=0.500000/Math.pow(10.0,decimal);
int temp=(int)((value+fact)*Math.pow(10.0,decimal));
value=temp/Math.pow(10.0,decimal);
return value;
}
public static void main(String abc[]){

System.out.println(upperFloor(56.1));
System.out.println(Double.MAX_VALUE);
System.out.println(Math.E);
}

public static int upperFloor(double d){
if((double)(int)d==d)

return (int)d;
return (int)(d+1.0);
}
}

8. Earliest Due Date. java

import java.util.Vector;
import earliestDueDate.model.*;
import earliestDueDate.POJO.Job;
import util.DoubleUtil;
import util.ListViewModel;
import util.ShowSchedule;

91

public class EarliestDueDate {
int demand[]=new int[100];
int product;
int totalDemand;
double dueDate[][]=new double[100][100];
int current[]=new int[100];
int schedule[]=new int[100];
Vector <Job>jobList=new Vector<Job>();
private ListViewModel Datamodel=new ListViewModel();
String color[]=null;

public EarliestDueDate(){
this.jobList=new JobDataModel().getJob();

runEarliestDueDateAlgo();
}
public void runEarliestDueDateAlgo(){

this.product=this.jobList.size();
totalDemand=0;

for(int i=0;i<product;i++)
demand[i]=this.jobList.get(i).getDemand();

totalDemand+=demand[i];
}
this.Datamodel.setMatrix(this.totalDemand,3);
String []dataColName={"Product","Unit","Due Date"};
Datamodel.setColName(dataColName);
color=new String[this.totalDemand];
int index=0;
for(int i=0;i<product;i++){

this.Datamodel.setValueAt(index,""+(i+1));
index=index+3*demand[i];

}
index=1;
for(int i=0;i<product;i++){
for(int k=1;k<=demand[i];k++,++index){
dueDate[i][k-1]=DoubleUtil.getRoundDouble(((((double)k-
0.5)*(double)totalDemand)/demand[i]),3);

if(k!=1){
this.Datamodel.setValueAt(index-1,"--");

}
this.Datamodel.setValueAt(index++,""+k);

this.Datamodel.setValueAt(index++,""+dueDate[i][k-1]);
}
try{
}catch(Exception e){
this.Datamodel.setValueAt(index,""+(i+2));
}

}
for(int i=0;i<product;i++){

current[i]=0;
}
int minIndex;
double minValue;
for(int j=0;j<totalDemand;j++){

92

minIndex=0;
minValue=Double.MAX_VALUE;//dueDate[0][current[0]];
for(int i=0;i<product;i++){
if(minValue>dueDate[i][current[i]]&¤t[i]<demand[i
]){
minIndex=i;
minValue=dueDate[i][current[i]];

}
}
current[minIndex]=current[minIndex]+1;
schedule[j]=minIndex+1;
color[j]="#"+minIndex+""+minIndex+""+minIndex+""+
minIndex+""+minIndex+""+minIndex;
}
String scheduleList="<HTML>Schedule List :
";
for(int i=0;i<totalDemand;i++){

scheduleList+=schedule[i]+" - ";
}
scheduleList+="</html>";

new ShowSchedule(this.Datamodel,"Earliest Due
Date",scheduleList);

}

9. Input demand. Java

import java.awt.BorderLayout;
import java.awt.FlowLayout;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.awt.event.WindowListener;
import javax.swing.JButton;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTable;
import javax.swing.JTextField;
import javax.swing.JFrame;
import earliestDueDate.POJO.Job;
import earliestDueDate.com.EarliestDueDate;
import earliestDueDate.model.JobDataModel;
import earliestDueDate.model.TabelModelForJob;

public class InputDemand extends JFrame implements ActionListener{
JTable table=new JTable();
TabelModelForJob model=new TabelModelForJob();
JButton jbtAdd=new JButton("Add New");
JButton jbtSave=new JButton("Save");

93

JButton jbtSchedule=new JButton("Schedule");
JTextField jtfJob=new JTextField(5);
JTextField jtfJobDemand=new JTextField(5);

private String MODE="ADD";
private void init(){

JPanel jpCenter=new JPanel();
jpCenter.setLayout(new FlowLayout());
JScrollPane jspTable=new JScrollPane(this.table);
this.table.setModel(this.model);
jpCenter.add(jspTable);
JPanel jpButton =new JPanel();
jpButton.setLayout(new FlowLayout());
jpButton.add(this.jbtAdd);
jpButton.add(this.jbtSave);
jpButton.add(this.jbtSchedule);
JPanel jpData=new JPanel();
jpData.setLayout(new FlowLayout());
jpData.add(new JLabel("Job Id:"));
jpData.add(this.jtfJob);
jpData.add(new JLabel("Demand :"));
jpData.add(this.jtfJobDemand);
this.jtfJob.setEditable(false);
this.setLayout(new BorderLayout());
JPanel jpDownHolder=new JPanel();
jpDownHolder.setLayout(new GridLayout(2,1,5,5));
jpDownHolder.add(jpData);
jpDownHolder.add(jpButton);
JPanel jpDown=new JPanel();
jpDown.setLayout(new FlowLayout());
jpDown.add(jpDownHolder);
this.add(jpDown,BorderLayout.SOUTH);
this.add(jpCenter,BorderLayout.CENTER);
this.jbtSave.addActionListener(this);
this.jbtAdd.addActionListener(this);
this.jbtSchedule.addActionListener(this);
this.setTitle("Earliest Due Date - Input Demand ");

}
public static void main(String abc[]){
InputDemand mf=new InputDemand();
mf.setSize(400,400);
mf.setVisible(true);
mf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
public InputDemand(){
init();
this.table.addMouseListener(new MouseAdapter(){
public void mouseClicked(MouseEvent arg0) {
InputDemand.this.MODE="EDIT";
int i=InputDemand.this.table.getSelectedRow();
Job j=InputDemand.this.model.getJobAt(i);
InputDemand.this.jtfJob.setText(""+j.getJobId());

InputDemand.this.jtfJobDemand.setText(""+j.getDemand());
}

});

94

}
public void actionPerformed(ActionEvent ae) {

if(ae.getSource().equals(this.jbtSchedule)){
System.out.println(new JobDataModel().getJob().size());

long l1=System.currentTimeMillis();
EarliestDueDate dp=new EarliestDueDate();
long l2=System.currentTimeMillis();
JOptionPane.showMessageDialog(this,"Total Run
Time :"+(l2-l1)+" milisecond");

}
if(ae.getSource().equals(this.jbtAdd)){
clearBox();
this.MODE="ADD";

}
if(ae.getSource().equals(this.jbtSave)){

Job j=new Job();
if(this.MODE.equals("ADD")){

j.setDemand(Integer.parseInt(this.jtfJobDemand.getText()));
this.model.addJob(j);
}
else{

System.out.println("EDIT");
try{

j.setJobId(Integer.parseInt(this.jtfJob.getText()));
j.setDemand(Integer.parseInt(this.jtfJobDemand.getText()));

this.model.editJob(j);
}catch(Exception e){
e.printStackTrace();

}
}
this.table.updateUI();
clearBox();
}

}
public void clearBox(){
this.jtfJob.setText("");
this.jtfJobDemand.setText("");

}

}

