Chapter 1

INTRODUCTION

Just-in-Time (JIT) is defined as “a philosophy of manufacturing based on planned
elimination of all waste and on continuous improvement of productivity”. It also
has been described as an approach with the objective of producing of the right
product in the right place at the right time. Waste results from any activity that
add cost without adding value, such as the unnecessary moving of materials, the
accumulation of excess inventory, or the use of faulty production methods that
create products requiring subsequent rework. JT should improve profits and
return on investment by reducing inventory levels (increasing the inventory turn
over rate), reducing variability, improving product quality, reducing other costs
(such as those associated with machine setup and equipment breakdown). InaJIT
system, underutilized (excess) capacity is used instead of buffering inventories to
hedge against problems that may arise.

The primary characteristics differentiating JIT system from conventiona systems
is that subsequent processes within the manufacturing system “pull” their part
requirements from the preceding processes. This pull process results in the
production of only the required parts in the required quantities at the required
time, Miltenburg et a [21] and Monden [23]. Necessarily, the fina assembly
process becomes the primary focus for control in JT manufacturing. The most
important goal for a JIT production system is to ensure that the quantity of each
part used by the assembly process is kept as close to constant as possible per unit
time, Monden [23]. Determining the sequence of final assembly which achieves
this goa is commonly referred to in the literature as leveling or balancing the
schedule, Hall [9]. A balance schedule minimizes the variability in the production
rate of all parts and products within the JI'T system. This reduces the possibility of
“shock waves” caused by sudden increases in part requirements, which may result

in shortages, or by sudden decreases, which may create excessive inventories.

Determining a balanced schedule is the corner stone of the Toyota production
system, Monden [23]. To construct such a schedule, Toyota has employed a
heuristic procedure known as Goa Chasing Method. For most industrial
applications, however, determining an optimal balanced schedule is a very
difficult combinatorial problem, Kubaik [15] and Kubaik et al [17].

A considerable amount of research into balanced schedule problems has been
undertaken during the past decade. Although much of the interest into JT
manufacturing was spurred on by the description of the Toyota production system
Monden [23], the catalyst for balanced schedul e research was the seminal work of
Miltenburg [21]. Miltenburg [21] transformed Toyota’s balanced schedule
problem into a nonlinear integer programming problem. The objective of this
formulation was to determine the sequence of final assembly which minimize the
‘sum of deviations’ (min-sum) of actual production from the desired quantity of
production. This original model as subsequently extended to multi-level assembly
systems where the implied part demands for the outputs from feeder processes
were aso considered when fixing the sequence of fina products assembly,
Miltenburg et a [21] [20]. Beside this, several heuristics procedures have been
proposed for solving balanced schedule, Inman and Bulfin [11], and Jost [12].

A dynamic programming algorithm for optimizing the single-level (i.e. product
level), min—sum problem was provided by Miltenburg et al [22]. Kubaik and Sethi
[16] demonstrated that the objective function can be represented by penalties for
deviation from the most even but unredizable (i.e. fractional) distribution of
demand and that if these penalty functions are non-negative and convex, then this
problem can be reduced to an assignment problem. Steiner & Yeomans [25]
formulated an efficient graph-theoretic optimization algorithm for minimizing the
maximum (min-max) absolute deviation of actual production from the desired
guantity of production. A procedure for generating several Pareto optimal
solutions to the problem combining both the min-sum and min-max objectives is
described in Steiner & Yeomans [25]. Kubaik [15] and Kubaik et a. [17] proved

that balanced schedule problems with two or more productions levels are NP-
hard. Optimization algorithms for both min-sum and min-max multi-levels
problems appear in Kubaik et a. [17]. Beside this, Miltenburg [21] considers the
quantity of each part used by mixed model assembly line per unit time should be
kept as constant as possible. Beside this, an efficient algorithm for obtaining an
optimal solution for maximum absolute-deviation objective in single level with
chain constrained had been developed by Dhamala [5]. Kovalyov, Kubiak, and
Yeomans [13], have observed the computational complexity of balanced JIT
optimization algorithm and showed that most of single-level JIT problems could
be efficiently solvable. Similar analytical study had been done by Dhamaa and
Khadka [6].

This dissertation has been organized as follows. Chapter 2 explains some
fundamental concepts of Computational Complexity Theory, Complexity Classes
and Scheduling and its related problems. Chapter 3 briefly describes the mixed
model production system. It also studied different mathematical models for mixed
model JIT problems for single and multi-levels problems.

Chapter 4 explores the solution procedure for min-sum PRVP. Different
algorithms for the solution are described in this chapter. The EDD Algorithm to
find optimal solution for min-sum problem is reviewed. The nearest integer point
method to find a solution for min-sum problem is included. Cost assignment
approaches for min-sum PRVP is described. Dynamic Programming approach to
solve the min-sum problem, which is found fruitful for large size problem, is
illustrated. Moreover, an algorithm so called min-sum absolute chain algorithm
with extended EDD is also presented. Chapter 5 considers the combination of
different non-overlapping chains to find out all possible sequences from the input
chain sequences. Moreover, an attempt to find the best sequence among them is
done. Chapter 6 has concluded this study with some remarkable achievements like
combining different non-overlapping chains and explores optimal sequence with

minimum cost value in mixed-model JIT production system.

Chapter 2

FUNDAMENTAL CONCEPTS

2.1 Turing Machine

Turing Machine is basic abstract symbol-manipulating device which, despite their
simplicity, can be adapted to simulate the logic of any computer agorithm. It was
described in 1936 by Alan Turing. Turing Machine is not intended as a practical
computing technology, but a thought experiment about the limits of mechanical
computation. Thus, it was not actualy constructed. Studying its abstract

properties yields many insights into computer science and complexity theory.

A Turing Machine that is able to simulate any other Turing Machine is called a
Universal Turing Machine (UTM, or simply a universal machine). A more
mathematically-oriented definition with a similar "universal” nature was
introduced by Alonzo Church, whose work on lambda calculus intertwined with
Turing's in a formal theory of computation known as the Church-Turing thesis.
The thesis states that Turing machines indeed capture the informal notion of
effective method in logic and mathematics, and provide a precise definition of an
algorithm or 'mechanical procedure’. Some of the examples of Turing Machine

are: Turing's very first machine, Copy routine, 3-state busy beaver, etc.

2.2 Computational Complexity

Computational complexity theory is a branch of the theory of computation in
computer science that investigates the problems related to the resources required
to run agorithms, and the inherent difficulty in providing agorithms that are
efficient algorithms for both general and specific computational problems.
Complexity theory attempts to describe how difficult it is for an agorithm to find
a solution to a problem. This differs from computability theory, which describes
whether a problem can be solved at all. Furthermore, much of complexity theory

deals with decision problems. A decision problem is one where the answer is
always "yes' or "no". Some problems are undecidable, or at least seem so, so
complexity theory can be used to distinguishes problems where it is certain to get
acorrect "yes' or "no" (not necessarily both). A problem that reverses which can
be relied upon is called a complement of that problem. Complexity theory
analyzes the difficulty of computational problems in terms of many different
computational resources. A problem can be described in terms of many
requirements it makes on resources. time, space, randomness, alternation, and

other less-intuitive measures (vague).

2.3 Function

Functions play a fundamental role in al areas of mathematics, as well asin other
Sciences, Information Communication Technology and Engineering. However,
the intuition pertaining to functions, notation, and even the very meaning of the
term "function" varies among the fields. More abstract areas of mathematics, such
as set theory, consider very genera types of functions that may not be specified
by a concrete rule or be governed by familiar principles. In the most abstract
sense, the distinguishing feature of a function is that it relates exactly one output
to each of its admissible inputs. Such functions need not involve numbers. For
example, a function might associate each member of a set of words with its own
first letter.

Given two sets A and B, afunction f is abinary relation on A x B such that for all
ac< A, there exists precisely b€ B such that (a, b) €f. The set Aiscaled domain of
f, and the set B is called co-domain of f. We writef : A-B and if (a, b) € f, we
write b = f(a), since b is uniquely determined by choice of a. Two functions f and
g are equal if they have the same domain and co-domain and if, for al a in the
domain, f(a) = g(a). A finite sequence of length n is afunction f whose domain is
the set of n integers {0, 1, 2, ..., n-1}. Finite sequence is denoted by listing its
values: {f(0), f(1), f(2), ..., f(n-1)}. An infinite sequence is a function whose

domain is set of N natural numbers. For example, the Fibonacci sequence, defined

by recurrence, is the infinite sequence {0, 1,1, 2, 3,5, 8,}.
2.4 Complexity Classes

In computational complexity theory, a complexity class is a set of problems of
related complexity. A typical complexity class has a definition of the form: the set
of problems that can be solved by abstract machine M using O(f(n)) of resource R
(n is the size of the input).A complexity class is the set of all the computational
problems which can be solved using a certain amount of a certain computational
resources. There are several complexity classes in the theory of computation.

Some of the major classes are discussed below.

24.1ClassP

The complexity class P is the class of decision problems that can be solved by a
deterministic machine in polynomial time. This class corresponds to an intuitive

idea of the problems which can be effectively solved in the worst cases.

Example 2.1 The problem of sorting n numbers can be done in O(n?) time using

the quick sort algorithm in worst case . Thus all sorting problemsare in P.

2.4.2 ClassNP

The complexity class NP is the set of decision problems that can be solved by a
non-deterministic Turing machine in polynomial time. This class contains many
problems that people would like to be able to solve effectively, including the
Boolean satisfiability problem, the Hamiltonian path problem and the vertex
cover problem. All the problems in this class have the property that their solutions
can be checked efficiently.

Example 2.2 A vertex cover of an undirected graph G= (V, E) is a subset of V’
S V such that if (u, V)€E, then u€eV’ and veV’ or both. That is, each edge

touches at least one vertex V’. The vertex-cover problem is to find such a vertex

cover of minimal cardinality. This problemisin NP.

2.4.3NP-Complete

In computational complexity theory, the complexity class NP-complete
(abbreviated NP-C or NPC, NP standing for Nondeterministic Polynomial time) is
aclass of problems having two properties:
» Any given solution to the problem can be verified quickly (in polynomial
time); the set of problems with this property is called NP.
» If the problem can be solved quickly (in polynomial time), then so can

every problem in NP.

2.4.4 NP-Hard

NP-hard (nondeterministic polynomial-time hard), in computational complexity
theory, is aclass of problems informally "at least as hard as the hardest problems
in NP." A problem H is NP-hard if and only if there is an NP-complete problem L
that is polynomial time Turing-reducible to H. In other words, L can be solved in
polynomial time by an oracle machine with an oracle for H. Informally we can
think of an algorithm that can call such an oracle machine as subroutine for
solving H, and solves L in polynomial time if the subroutine call takes only one

step to compute.

2.4.5 P=NP Question

The question of whether NP = P (can problems that can be solved in non-
deterministic polynomia time aso always be solved in deterministic polynomial
time?) is one of the most important open questions in theoretical computer science
and ultra modern mathematics because of the wide implications of a solution. If

the answer is yes, many important problems can be shown to have more efficient

solutions that are now used with reluctance because of unknown edge cases.
These include various types of integer programming in operations research, many
problems in logistics, protein structure prediction in biology, and the ability to
find formal proofs of pure mathematics theorems. The P = NP problem is one of
the Millennium Prize Problems proposed by the Clay Mathematics Institute the
solution of which is a US$1,000,000 prize for the first person to provide a

solution.

2.4.6 NP- Incomplete

Incomplete problems are those in NP that are neither NP-complete nor in P. In
other words, incomplete problems can neither be solved in polynomial time nor
are they hard problems. It has been shown that if P = NP isfound false then there
exist NP-incomplete problems.

2.4.7 Co-NP

Co-NP is the set containing the complement problems (i.e. problems with the
yes/no answers reversed) of NP problems. It is believed that the two classes are
not equal; however it has not yet been proven. It has been shown that if these two
complexity classes are not equal, then it follows that no NP-Complete problem

can bein co-NP and no co-NP-Complete problem can be in NP.

2.5 Graph and Matching Problems

A graph Gisapair G = (V, E), where V isfinite non-empty set of nodes(vertices)
and ESV X V is arelation set of ordered pairs (u, v). An edge between two
vertices is denoted by [u, v], consists of pairs (u, v) and (v, u) inthe set E. A pair
(u, v)€Eiscaled an arcif pair (v, u) 2E. If all pairsin E are arcs, the graph G is
called directed graph. Graph G is called an undirected graph if al pairsin E are
edges.

Let G = (V, E) be a graph in which vertex set V can be portioned into two
digoint sets, V; and V,, and each edge in E has one vertex in V, and another in
V,. In such case G is called bipartite graph. Bipartite graph is denoted by G =
(V1Y V,, E). Otherwise the graph is called non-bipartite graph.

A graph G = (V, E) is caled a complete graph if [u, v] €E for all u, veV with
u#v. A bipartite graph G = (V1Y Vy, E) is called complete bipartite graph if each
uc€V; isjoined to each veV,. A graph G = (V, E) with a function w: E- Z is
called an edge-weighted graph, where Z is usualy the set of positive integers.

Given agraph G = (V, E), amatching M in G is a subset of the edge set E with
the property that no two edges of M share the same node. A matching M in Graph
G is called a maximum matching if no matching in G exists with cardinality more
than that of M. The largest possible cardinality of a matching in a graph with |V|
nodesis| |V |/2 |. When the cardinality of amatching M inagraph G = (V, E) is

| [V]/2 |, M iscalled complete graph or perfect matching.

2.6 Scheduling

Definition of Scheduling and its components are described in different literatures

in different ways. According to Pinedo,” scheduling concerns the allocation of

limited resources to tasks over time. It is a decision-making process that has a

goal the optimization of one or more objective”, Pinedo [24].

In the words of Carlier and Chretienne [4], “Scheduling is to forecast the
processing of a work by assigning resources to tasks and fixing their start times.
The different components of scheduling problem are the tasks, the potentia
constraints, the resources and the objective function. The task must be
programmed to optimize a specific objective function. Beside this, sometimes it
will be more redlistic in practice to consider several criteria’, Carlier et a [4].
Furthermore, it is a decision-making problem that plays an important role in most
manufacturing and service industries. Scheduling is applied in procurement and
production, in transportation and distribution, and in information processing and
communication. A scheduling problem typically uses mathematical optimization
techniques or heuristic methods to allocate limited resources to the processing of
tasks.

In order to determine satisfactory or optimal schedules, it is helpful to formulate
the scheduling problem as a mathematica model. Such a modd typically
describes a number of important characteristics. One characteristic specifies the
number of machines or resources as well as their interrelationships with regard to
the configuration, for example, machines set up in series, and machines set up in
paralel. A second characteristic of a mathematical model concerns the processing
requirements and constraints. These include setup costs and setup times, and
precedence constraints between various activities. A third characteristic has to do
with the objective that has to be optimized, which may be a single objective or a
composite of different objectives. For example, the objective may be a
combination of maximizing throughput (which is often equivalent to minimizing

setup times) and maximizing the number of orders that are shipped on time.

10

2.6.1 Machine Environment

There can be a single machine, multiple machines, or in some situation, the
number of machines may be unknown in advance. The simplest machine
environment is the single machine environment, on which each n job J;, each
consisting of single operation, have to spend a processing time equal to their
given processing requirements P, ,i=1, 2, ...,n. In case of multiple machine
environments, Blazewicz [1], ajob Ji, isa set of n; number of operations, O;. It is
not necessary that an arbitrary operation of an arbitrary job can be processed in an
arbitrary machine: this restriction inspires to classify the multiple machine

environments into two categories. Parallel machine and Dedicated machine.

In parallel machine model, an arbitrary operation O; of an arbitrary job J can be
executed in an arbitrary machine M;. Simply, any machine can execute any

operation of any job.

In dedicated machine model, there is a restriction on operations. operations
executable on machines is constrained. To be specific, dedicated machine
environment has been classified into three categories, viz., flow shop, open shop

and job shop.

2.6.2 Some Application Areas of Scheduling

The application of scheduling is seen in diversified sectors of activity. Some

application areas in computer science and engineering are described below.

2.6.2.1 Production Scheduling

Scheduling is an important tool for manufacturing and engineering, where it can

have a magor impact on the productivity of a process. In manufacturing, the

11

purpose of scheduling is to minimize the production time and costs, by telling a
production facility what to make, when, with which staff, and on which
equipment. Production scheduling aims to maximize the efficiency of the

operation and reduce costs.

Production scheduling tools greatly outperform older manual scheduling methods.
These provide the production scheduler with powerful graphical interfaces which
can be used to visually optimize real-time work loads in various stages of
production, and pattern recognition alows the software to automatically create
scheduling opportunities which might not be apparent without this view into the
data. For example, an airline might wish to minimize the number of airport gates
required for its aircraft, in order to reduce costs, and scheduling software can
allow the planners to see how this can be done, by analyzing time tables, aircraft

usage, or the flow of passengers.

2.6.2.2 Operation System Design Scheduling

Scheduling is a key concept in computer multitasking and multiprocessing
operating system design, and in rea-time operating system design. In modern
operating systems, there are typically many more processes running than there are
CPUs available to run them. Scheduling refers to the way processes are assigned
to run on the available CPUs. This assignment is carried out by software known

as a scheduler.

In real-time environments, such as mobile devices for automatic control in
industry (for example robotics), the scheduler also must ensure that processes can
meet deadlines; this is crucial for keeping the system stable. Scheduled tasks are
sent to mobile devices and managed through an administrative back end.

12

Beside this, some basic algorithms used in OS for uni-processor computers are
given below.

i. First Come First Serve (FCFS): At any instance when machine is idle, select
the available jobs in the order they request. When the first job entersin the system

it is started immediately and allowed to run aslong as it wants.

ii. Shortest Job First (SJF): At any instance when the machine isidle, select the
available job having shortest expected processing time. In the case of tie the FCFS
is used.

iii. Shortest Remaining Time Next (SRTN): At any instance schedule the job
whose remaining time is the shortest. When a new job arrives, its time is
compared with the current process’ remaining time. If new job needs less time to
finish than the current process, the current process is suspended and new job

started. It is applicable to preemptive system.

iv. Round-Robin: Each process is assigned a time interval, called quantum,
which it is allowed to run. If the processis still running at the end of the quantum,
the CPU is preempted and given to another process. If the process has finished
before the quantum has elapsed, the CPU switching is done when the process

blocks, of course.

2.6.2.31/0 Scheduling

I/O scheduling is the term used to describe the method computer operating
systems decide the order that block 1/0 operations will be submitted to the disk
subsystem. 1/0 scheduling is sometimes called 'disk scheduling'. 1/0 scheduling
usually has to work with hard disks which share the property that there is long
access time for requests which are far away from the current position of the disk
head (this operation is called a seek). To minimize the effect this has on system

performance, most 1/0O schedulers implement a variant of the elevator algorithm

13

which re-orders the incoming randomly ordered requests into the order in which
they will be found on the disk.

2.6.2.4 Timetable Scheduling

In timetable scheduling problems, examination subjects must be slotted to certain
times that satisfy several of constraints. They are NP-completeness problems,
which usualy lead to satisfactory but suboptimal solutions. Along with this,
Timetable scheduling problems concern al educational establishments or
universities, since they involve timetabling of courses assuring the availability of
teachers, students and classrooms. These problems are just as much the object of

studies.

2.6.2.5 Project Scheduling

Project scheduling problems comprise a vast literature. We are interested more
generally in problems of scheduling operations which use several resources
simultaneously (money, personnel, equipment, raw materials etc.), these resources
being available in known amounts. In other words, we dea with the multi-
resource scheduling problem with cumulative and non-renewabl e resources.

2.7 Application of Just-in-Time

The followings are some of the application areas of JIT:
2.7.1 Real Time Operating System

Rea Time Operating Systems are dedicated to some well-defined jobs which

require very fast response time. This system must be fault-tolerant that is OS must

handle the error without going to unstable stage. The execution time is the most

14

critical issuein real time OS and they must finish the execution of job within pre-
defined time-boundary. In a soft-rea-time system, early and tardy jobs degrade
the quality of the output, while in a hard-real-time system; such jobs make the
output invalid. An introduction for real-time scheduling problem in computer

system isexplained in [27].

2.7.2 Scheduling in Operating System

Scheduling is the key to multiprogramming. Its role is to assign processes to be
executed so that some criteria on efficiency are met. Scheduling theory is
excessively used in computer manufacturing to schedule the jobs in CPU,
memory, printing buffer and other devices for processing jobs. The
multiprogramming characteristic of computer is due to the good scheduling of
jobs in the CPU because the CPU can only process the job at atime. In this case

the objective function isto maximize the CPU utilization (see [28]).

2.7.3 Just-in-Time Compilation

In computing, Just-in-Time, aso known as dynamic tranglation for improving the
runtime performance of a computer program. It converts, at runtime, code from
one format into another, for example bytecode into native machine code. The
performance improvement originates from caching the results of translating
blocks of code, not simply evaluating each line or operand separately, or
compiling the code at development time. JIT builds upon two earlier ideas in run-
time environments: bytecode compilation and dynamic compilation (see Error!
Reference sour ce not found.).

2.7.4 Just-in-Time Sensor Networks

15

Many areas of research in sensor networks deal directly with the ability to adapt
to changing conditions. This has resulted in the ability to dynamically change
attributes such as routing paths, MAC protocols, program images, and duty
cycling. Yet there are several sensor network optimizations and adaptations that
cannot be accomplished through software changes alone. The lack of hardware
capabilities or poor geographic layouts of nodes are characteristics that create
upper bounds on the ability of software protocols to optimize communication and
coverage capabilities. Specifically, a sensor network is deployed (either randomly
or placed in a specific location), sits statically for several months collecting data,
and adapts itself through various protocols. Yet this often overlooks potentia
optimizations gained by adding motes to the network on-demand and within
seconds. This introduces a shift in the traditional outdoor, static sensor network
paradigm by considering the possibilities and limitations of a rapid, just-in-time
deployment (see [29]).

2.7.5 Just-in-Time to Enable Optical Networking for Grids

Many of today's compute- and data-intensive e-science applications are looking to
Grid-based technologies to meet their high demands. Until recently, the Grid
community focused primarily on maximizing the availability, sharing, and
utilization of resources such as CPU power and storage. Now, many in the Grid
community are starting to regard the network as another vital Grid resource, to be
used to provide large, fast data flows with minimal latency and jitter. MCNC
Research and Development Institute and North Carolina State University (NCSU)
have developed a Just-In-Time control plane, signaling scheme, and various
software and hardware components that are synergistic with these needs. This
includes an overview of the Just-In-Time control plane and GridJIT service that
has been developed for optical networks and describes severa related projects
(see[29]).

16

Chapter 3

JIT PRODUCTION SYSTEM

Just-in-time working is a'so known as "lean manufacturing”(simply, "Lean", is a
production practice that considers the expenditure of resources for any goal other
than the creation of value for the end customer to be wasteful, and thus a target
for elimination). The term comes from quality management theory and the goal is
to produce high quality products in the most efficient and economical way. The
aim of JIT isto deliver the required production items, at the required quality in the
required quantities, at the time they are needed. JIT seeks to achieve zero
inventories, zero defects, zero breakdowns, elimination of non-value added
activities (e.g., setups and lead times) and delivery of production items on time
100% of the time.

Just-in-time is an inventory strategy implemented to improve the return on
investment of a business by reducing in-process inventory and its associated
carrying costs. In order to achieve JIT, the process must have signals of what is
going on elsewhere within the process. This means, that the process is often
driven by a series of signals, which can be Kamban, that tell production processes
when to make the next part. Kamban are usually 'tickets' but can be simple visua
signals, such as the presence or absence of a part on a shelf. When implemented
correctly, JIT can lead to dramatic improvements in a manufacturing

organization's return on investment, quality, and efficiency.

Just-in-Time has been implemented in mixed-model assembly line or flexible
assembly processes in order to increase profit by reducing cost, and have been
used for controlling such flexible assembly system. The intention of these
methods is to satisfy the customer demands for a variety of models without
holding large inventories or incurring large shortages of the products, Dhamala
and Khadka [6]. The most important optimization problem that has to be solved

17

for the mixed models, just-in-time systems is to determine the sequence in which
different models are produced. A great deal of research has been going on JIT
system Monden [23]. The quantity of each part used by the mixed-model
assembly line per unit of time should be kept as constant as possible Miltenburg
and Sinnamon [21]. Monden [23] states this as the most important goal of a JIT
production system implemented by the Toyota Company. Toyota’s so-called Goal
Chasing Method, a local search heuristic, has been most popular for solving the
problem. The sequences refereed to as level, balanced or fair sequences always
keep the actual production level and the desired production level as close to each
other as possible al the times.

The philosophy of JIT is simple - inventory is defined to be waste. JIT inventory
systems expose the hidden causes of inventory keeping and are therefore not a
simple solution a company can adopt; there is a whole new way of working the
company must follow in order to manage its consequences. The ideas in this way
of working come from many different disciplines including statistics, industrial
engineering, production management and behavioral science. It is more
popularized now a days because of its computer applications like real time system
and networking. In the JIT inventory philosophy there are views with respect to
how inventory is looked upon, what it says about the management within the
company, and the main principle behind JIT. Inventory is seen as incurring costs,
or waste, instead of adding value, contrary to traditional accounting. This does not
mean to say JIT is implemented without awareness that removing inventory
exposes pre-existing manufacturing issues. Under this way of working, businesses
are encouraged to eliminate inventory that does not compensate for manufacturing
issues, and then to constantly improve processes so that less inventory can be
kept. Secondly, allowing any stock habituates the management to stock keeping
and it can then be a bit like a narcotic. Management is then tempted to keep stock
there to hide problems within the production system. These problems include
backups at work centers, machine reliability, process variability, lack of flexibility

of employees and equipment, and inadequate capacity among other things. In

18

short, the just-in-time inventory system is all about having “the right material, at
the right time, at the right place, and in the exact amount”, without the safety net
of inventory. The JIT system has implications of which are broad for the

implementers.

3.1 Kamban-an Integrated JIT System

Most Japanese manufacturing companies view the making of a product as
continuous from design, manufacture, and distribution to sales and customer
service. For many Japanese companies the heart of this process is the Kamban, a
Japanese term for "visual record”, which directly or indirectly drives much of the
manufacturing organization. It as originally developed at Toyota in the 1950s as a
way of managing material flow on the assembly line. Over the past three decades
the Kamban process, identified as "a highly efficient and effective factory
production system", has developed into an optimum manufacturing environment
leading to global competitiveness.

The Japanese Kamban process of production is sometimes incorrectly described
as a smple just-in-time management technique, a concept which attempts to
maintain minimum inventory. The Japanese Kamban process involves more than
fine tuning production and supplier scheduling systems, where inventories are
minimized by supplying these when needed in production and work in progressin
closely monitored. It also encourages; Industrial re-engineering, such as a 'module
and cellular production’ system, and, Japanese human resources management,
where team members are responsible for specific work elements and employees
are encouraged to effectively participate in continuously improving Kamban

processes within the Kaizen concept.

19

3.2 Kamban-a Communication Tool in JIT Production System

Kamban has become synonymous with the JIT production system because it has
become a very important tool for just-in-time production. Kamban, meaning label
or signboard, is used as a communication tool in JT system. A Kamban is
attached to each box of parts as they go to the assembly line. A worker from the
following process goes to collect parts from the previous process leaving a
kamban signifying the delivery of a given quantity of specific parts. Having all
the parts funneled to the line and used as required, the same kamban is returned
back to serve as both a record of work done and an order for new parts. Thus
Kamban coordinates the inflow of parts and components to the assembly line,

minimizing the processes.

3.3 Push versus Pull production system

> Push System: tota demand is forecast, and the producer allocates
(“pushes”) items to user based on the expected needs of all users. Finished goods

accumulate in inventory. It is known as “Produce for Forecast”.

> Pull System: each user requests (“pulls”) items from the producer only as
they are required. Units are only produced if there is demand for them. It is

known as “Produce for Demand”.

Current pull systems - JIT, Quick Response, Efficient Consumer Response, and

Continuous Replacement.

20

3.4 Objective of Just-in-Time

Just-in-Time is the name used to describe a manufacturing system where the parts
which are needed to complete the finished products are produced or arrive at the
assembly site as they are needed.

> Increasing the organization's ability to compete with others and remain
competitive over the long run. The competitiveness of the firms is increased by
the use of JIT manufacturing process as they can develop a more optimal process

for thair firms.

> Increasing efficiency within the production process. Efficiency is obtained

through the increase of productivity and decrease of cost.

> Reducing wasted materials, time and effort. Wastes that do not add value
to the products itself should be eliminated. JIT helps significantly in reducing

wastes.

> Identify and response to consumers needs. Customers’ needs and wants
seem to be the major focus for business now, this objective will help the firm on

what is demanded from customers, and what is required of production.

> Optimal quality/cost relationship. The organization should focus on zero-
defect production process. Although it seems to be unredlistic, in the long run, it
will eliminate a huge amount of resources and effort in inspecting, reworking and

the production of defected goods.

> Develop a reliable relationship between the suppliers. A good and long-
term relationship between organization and its suppliers helps to manage a more
efficient process in inventory management, material management and delivery
system. It will also assure that the supply is stable and available when needed.

21

> Adopt the work ethnic of Japanese workers for continuous improvement.
Commit a long-term continuous improvement throughout the organization. It will

help the organization to remain competitive in the long run.

> Plant design for maximizing efficiency. The design of plant is essentia in

terms of manufacturing efficiency and utility of resources.

3.5 Toyota Production System

In post-World War 11 Japan, the founder of Toyota, Sakichi Toyoda, his son
Kiichiro Toyoda, and their chief engineer, Taiichi Ohno, developed the Toyota
Production System (TPS). TPS is the philosophy that still organizes
manufacturing and logistics at Toyota, including the interaction with suppliers
and customers. The Toyota Production System refers to an integrated socio-
technical system that comprises its management philosophy and practices. The
TPS organizes manufacturing and logistics for the automobile manufacturer,
including interaction with suppliers and customers. The system is a major
precursor of the more generic "Lean manufacturing”. The main objectives of the

TPS are to design out overburden and inconsistency, and to eliminate waste.

3.6 Lean Manufacturing

Lean Manufacturing, also called Lean Production, is a set of tools and
methodologies that aims for the continuous elimination of al waste in the
production process. Lean is a business system and philosophy approach to
identifying and eliminating waste (non-value-added activities) through continuous
process improvement by following the product at the pull of the customer. The
goal of Lean is to turn continuous process improvement into a competitive

weapon. Lean is all about shortening order to delivery times, lowering costs,

22

adding higher quality and becoming more flexible simultaneously. Lean can have
immediate positive impact on a company. Lean offers many advantages in
material handling, inventory, quality, scheduling, personnel and customer
satisfaction.

Following are the Objectives of Lean Manufacturing.

> Defects and wastage - Reduce defects and unnecessary physical wastage,
including excess use of raw materia inputs, preventable defects, costs associated
with reprocessing defective items, and unnecessary product characteristics which

are not required by customers.

> Cycle times - Reduce manufacturing lead times and production cycle
times by reducing waiting times between processing stages, as well as process

preparation times and product/model conversion times.

> Inventory levels - Minimize inventory levels at all stages of production,
particularly works-in-progress between production stages. Lower inventories also

mean lower working capital requirements.

> Labor productivity - Improve labor productivity, both by reducing the
idle time of workers and ensuring that when workers are working, they are using
their effort as productively as possible (including not doing unnecessary tasks or

unnecessary motions).
> Utilization of equipment and space - Use equipment and manufacturing
space more efficiently by eliminating bottlenecks and maximizing the rate of

production through existing equipment, while minimizing machine downtime.

> Flexibility - Have the ability to produce a more flexible range of products

with minimum changeover costs and changeover time.

23

> Output - Insofar as reduced cycle times, increased labor productivity and
elimination of bottlenecks and machine downtime can be achieved, companies

can generally significantly increased output from their existing facilities.

3.7 Mixed-Model Production System

The increasing market demand for product variety forces manufacturers to design
mixed- model assembly lines on which different product models can be switched
back and forth and mixed together with little changeover costs. Furthermore,
Mixed-model production is the practice of assembling several distinct models of a
product on the same assembly line with little changeover costs and then
sequencing those models in a way that smoothes the demands for upstream

components.

Mixed-Model JIT assembly systems are a fundamental part of the well known
“Toyota Production System”. Mixed-Model assembly lines are used to produce
many different products without carrying large inventories or incurring large
shortages. The effective utilization of these lines requires that a schedule for
assembling the different products be defined. Each product assembled on the
mixed model assembly line requires variety of parts. Often these parts vary from
product to product. Scheduling large lots of each product requires large lots of
parts. When a part is only needed for certain products, its usage will be high when
those products are being assembled and will be low otherwise. Thisisthat Just-in-
Time systems wish to avoid. Just-in-Time systems only work when there is
constant rate of usage of al parts. To minimize the variation of usage in each part,
products will be sequenced in very small number and mix of parts. In this case we
can achieve constant rate of part usage by considering only the demand rates for
the products. The objective is then to schedule a constant rate of production for

each product.

24

3.8 Mathematical Model Formulation

When production system consists of constant rate of usage of all parts, Just-in-
time systems are suitable. However, the variability between the actual and the
ideal production due to integral nature of production appears. This leads the
sequencing problem to minimize the variation so that a balanced sequence of
diversified products that minimizes the earliness and tardiness penalties could be
obtained in a reasonable time. Before starting problem formulation, we assume
that the systems have sufficient capacity, negligible switch-over cost and
production in unit time. Kubiak [14] refers to single level problem as Product
Rate Variation (PRV) problem and multi level problem as Output Rate Variation
(ORV) problem.

3.8.1 The PRV Problem Formulation

In Product Rate Variation (PRV) problem, Miltenburg assumes product require
approximately the same number and mix of parts. Thisisasingle level case.

Let D units of n products be produced to meet the demands d; wherei=1, 2, ...,n

and D=Z d during a specified time horizon. The objective is to maintain

i=1
cumulative production Xix a non-negative integer, i=1, 2, ..., nand k=1, 2, ..., D of

product i during time period 1 through k as close to ideal production kr;, a non-
negative rational number, i=1, 2, ..., nand k=1, 2, ..., D with r;=di/D with z ri
i=1

=1 as possible. The specified time horizon is portioned into D equal times of

which one unit timeis required for aunit of a product to be produced.

25

The mathematical model of the PRV problem P; isasfollows:

minimize {F - rlnix (%, — KT,)} (3.1)
and
D n
minimize {G = fi(x —kr;)} (3.2
k=1 i=1 ’
subject to
D> X, =k k=1,2,..,D (3.3)
i=1
X1 < %, 1=1,2,.,nandk=1,2,....,D (34)
Xp<di; X,=0,i=1,2, ..,n (3.5
X, =0, integer (3.6)

The constraint (3.3) shows that exactly k units of products are produced in the
periods 1 through k. (3.4) states that the total production is a non-decreasing
function of k. (3.5) guarantees the demands are met exactly. (3.3), (3.4) and (3.6)
ensure that exactly one unit of aproduct is sequenced during a time unit.

This model minimizes the perennial objective functions, the bottleneck measure
of deviation F that produces smooth sequence in every time unit and the total
measure of deviation G (for min-sum) that produces smooth sequence on the
average Jost [12].

26

The exact complexity of the PRV problem still remains open. The problem has
been proven to be Co-NP but remains open whether Co-NP-complete or

polinomially solvable, Brouner and Crama[2].

3.8.2 The ORV Praoblem Formulation

The production system consists of hierarchy of severa distinct production levels
such as products, sub-assemblies, component parts, raw materias, etc. A mixed
model multi-level problem falls under ORV problem. Consideration of part

demand rate reduces problemsinto the ORV problem.

Level 1: Products 1 2

Level 2: Sub-Products 1 2 3 R Nn-»

Level 3: Components

1 2 3
Fig: Mixed-Model Multi-Level Production System

Consider L different production levelsl;l =1,2,...,L; where level 1 is the find
assembly line. For eachl =12,...,L; let there be n, different part types with

demandsd, ;i =12,...,n,. Let t; denote the total number of units of outputi at

27

levell required to produce one unit of product p;p=212,..,n so that the
dependent demand for parti of levell determined by the fina product

L
demandsd , isd; = Zt”pdpl. We see that t;,, =1 fori =1and O otherwise. For
p=1

eachl =12,...,L; let D, =2diI be the total output demand of levell. The

i=1

demand ratio for parti at levell isr; =% for eachi =12,...,n, and we have
I

Zr“ =1 for eachi =1,2,...,n, .

i=1

A copy of a product (model) is said to be in stagek;k =1,2,...,D, if k units of
products have been produced at levell. The product level (levell) has a time
horizon of D, units and there will be k units of various products p, completely
produced, at levell during the first k stages. Let the cumulative production of
parti at levell during the first k stages be denoted by x, so that the total

guantity of various parts produced at levell during the first k stages is

n n N
Vi = D Xy Units. We have y, =Y x, =k at levell. In fact, X, =Dt X,
p=1

i=1 i=1

must hold forl > 2.

With these notations, the constraints and various objectives for mixed model

multi-level JIT assembly systems are formulated as the following [19].

For each i=12..,n; let f, be a unimodal, symmetric, convex function
with f, (0) =0, minimum. Then the mixed model multi-level JT scheduling

problem defined by (3.7) isto minimize one of the objectives:
Grax = rlnlakx fn (Xilk ~ Yi I’“)) (3.7)
D. n

and Gym = ZZL: fiy e = YieTir) (3.8)

k=1 1=1 i=1

s

28

Subject to the constraints

M
Xie = Dt Xouy » i=12..,n;1=12..,L;k=22..,D, (3.9
p=1
Vi =3 X |=2,.,L; k=12,..D, (3.10)
i=1
N
Vi =D Xy =k, k=12,..,D, (3.11)
i=1
Xone = o p=12..n; k=12,..,D, (3.12)
Xpo, = s Xpo =0, P=12,...,m, (3.13)
X = 0, integer, i=12,..,n;1=12..L; k=12..,D,. (314

Constraint (3.9) indicates that the necessary cumulative production of parti of
levell by the end of stagek is determined explicitly by the quantity of products
produced at product level. Constraints (3.10) and (3.11) compute the total
cumulative production at levell and levell, respectively, during the first k
stages. Constraint (3.12) shows that the total production of every product over k
stages is a non-decreasing function of k. Constraint (3.13) ensures that the
production requirements for each product are met exactly. Constraints (3.11),
(3.12) and (3.13) indicate that exactly one unit of a product is to be produced in
the product level during each stage. ORV problems are NP-hard in general. Two

level ORV problems can be solved in pseudo-polynomial time.

29

Chapter 4

SOLUTION PROCEDURE FOR PRV PROBLEM

The PRV problem is an important production problem that arises on mixed-model
assembly lines. The minsum PRV problem consists in sequencing units of
different types minimizing the sum of discrepancy functions between the actual
and ideal production rates. This problem can be reduced to Assignment Problem

(AP) with amatrix of a specia structure.

4.1 Release Date/Due Date Decision Problem

To handle large integer programming problems, general solution techniques are
not sufficient. A special solution procedure is developed for the specific problem
under considerations, Miltenburg [19]. Denote a target value for the objective
function by the variable B. The goal is to determine the smallest possible B for
which a sequence can be created for each j(i) has a completion time k, such that
f(k) < B for ke [k;, (kj+1-1)]. For target value B, j(i) can not start before k < 1 if g
— j-kri > B and can start k if f,-i(k+1) = j-(k+1)ri<B. Therefore, any fixed target
value B allows the calculation of arelease date and a due date for a specific copy
of aproduct. For agiven B early and late starting dates can be calculated for each
copy of each product in a one pass procedure and, hence, can be constructed in
O(D) time.

The earliest starting time E(i, j) for (i, j) must be the unique integer satisfying

178 1€, 1)< 128 and latest starting time L(i, j) of (i, j) must be the

li li

17148 gy < 171EB

unique integer satisfying

. This provides the

formulae:

30

EGJ)zﬁLEE—_w (@)

and

LGJ)={j_:+BJ 4.2)

For agivenB, we can determineE(i, j) andL(i, j) for dli and for al j in O(D)

time.

4.2 Earliest Due Date Algorithms

In this section we describe a graph theoretic approach for solving the max-
abs problem, Steiner and Y eomans [25]. In this procedure, decision version of the
problem with certain target value for objective as a threshold value, is reduced to
a perfect matching problem in a bipartite graph. Then Glover's modified EDD rule
is used for the matching problem to decide whether the decision problem has 'yes
answer. Then an optimal solution is obtained by using the matching problem and
bisection search within the bounds for target value after determination of the

bounds, Steiner and Y eomans [25].

4.2.1 Perfect Matching Problem and EDD Rule

For a given target value Bas threshold value for decision problem, determine
E(i,j) andL(i,) for ali and for al j according to (4.1) and (4.2). Define the

bipartite graphG = (V, UV,,E) ;

31

WhereV, ={012,...,.D -1, vV, ={(@i,))|i=12,..,n;j=12,...,d} and
(k,(i, j)) e E if and only if k e[E(i,j),L(,])] i.e. if and only if (i,) may start
a timek. Then the bipartite graph G isV, —convex. Here finding a feasible

sequence for problem (4.1) is analogous to finding a perfect matching in G such
that lower numbered copies of a product are matched to earlier starting times than

higher numbered copies. Such amatching is called Order Preserving.

4.2.2 EDD for min-sum-sqr

Inman and Bulfin [11] define the ideal position for copy (i, j) as

| (i—ljD
_2j-1 |2

Yo d

Let Z, ; denotes the time at which copy (i, j) actually produced. Then, Inman and

Bulfin [11] consider the following problem:

Minimize an“(zi,j—ki,j)2 4.3)
ERE
Subject to
Z,<Z g i=Le.m j=1..d -1 (4.4)
1<7,,<D, i=L..m j=1..d, (4.5)
Z, #2Ze @GD#G) (4.6)
Z, eW, i=1..d (4.7)

Constraint (4.4) ensures that the production time of each copy of a product type i
is a strictly increasing function of each copy j. Constraint (4.5) guarantees that
the production time of any copy of any product lies in the internal [1...D].

32

Constraint (4.6) is the only linking constraint and is not in the standard integer
programming format and it specifies that only one copy of any product type can

be produced in each period. By defining k; as the due-date of copy (i, j) where

each copy of product is treated as a separate job, Inman and Bulfin [11] observe
that problem defined by (4.3) may be interpreted as a single machine scheduling
problem

#p(iyn =q 2 (Eipy + i) (4.8)

(i, el
wherep;; ;,, E;; and T ;, respectively represents the processing time, earliness

and tardiness of copy (i, j) and | = {(i, j)|i=1...,n; j=1...,d,}.

4.3 Nearest | nteger Point Problem

This algorithm aims to minimize the total deviation or sum of all deviation of the
real production from the ideal but rational production, Miltenburg [21].

Problem statement

Define the point Xy = (X1, X2, <. Xn,) € Rowherexi, =kri, > x;, =k, andR

i=1

is the set of real number. Problem is to find the “nearest” integer point My =

(M, my , m,,.,) € Z"to the point My where Zmivk =k, Z isthe

i=1

n
set of nonnegative integers and “nearest” means minimize Z(mivk -Xi)?
i=1

33

Algorithm 1
The following agorithm finds the nearest integer point M = (m,,m,,,,

............. , M) € Z"toapoint X = (X1, Xz, Xn,) € Ry, where

1. Caculatek =) x,

i=1
2. Find the nearest nonnegative integer m, to each coordinate x;. That is, find m,
sothat [mi- x| < 05,i=1,2,e..... , N.
3. Calculate k= > m,

i=1

a if K- kn = 0 stop. The nearest integer point is M = (my, my,

b. if k-km>0gotostepb.
C. if k—km<0goto step 6.
4. Find the coordinate x;, with the smallest m;-x;. Increment the value of this mi;

m; — M;41. Go to step 3.

5. Find the coordinate x;, with the largest m; — x;. Decrease the value of this m;;
m; — Mj1

Problem with Algorithm 1

For X = (30/13, 30/13, 5/13) the integer point is (2, 2, 1). Then for X = (36/13,
36/13, 6/13) the integer point is (3, 3, 0). Production scheduleis 1, 2, -3 which in

impossible as production cannot be destroyed. Hence the schedule is not feasible.

Conclusion

Algorithm-1 may lead to infeasible solution.

34

Algorithm 2

1. Solve the problem P1 (using Algorithm 1), and determine whether the schedule
isfeasible. (Itisfeasibleif m; x —m; .1 > Ofor al i, k.) If the schedule is feasible,
stop. Otherwise, go to step 2.

2. For the infeasible schedule determined in step |, find the first (or next) stage |
where m;; — mj,;.. < 0. Set 0 = number of product i, for which m;; — m;;.; < 0.
Reschedule stages| -9, 1 -0 + 1,, I+1 by considering all possible sequences
that begin with the schedule for stage | -0 - 1 and end with the schedule for stage |
+1.

3. Repeat step 2 for other stages where m; x — m; .1 < 0. Then stop.

Problem with Algorithm 2

In general there aren! / (n - 0 -2)!' possible sequences, each of length 0 + 2, to
consider for each infeasibility. While total enumeration works for small problems
of this type (products where similar part requirements) it does not work well for
larger problems, nor for problems where products have differing part
requirements.

Algorithm 3

1. Solve problem P1 (using Algorithm-1), and determine whether the schedule is
feasible. (It isfeasible if mjx — mix1 > O for al i, k.) If the schedule is feasible,

stop.

2. For the infeasible schedule determine in step 1, find the first (or next) stage |
where m; | — m; .1 < 0. set d = number of products i, for which m; | — m; .1 <0,
and beginning at stage | - 0 use Heuristic 1 or Heuristic 2 to schedule stages | - 9, |
-0+1, ..., I + W, where W > 0. | + W is the first stage where the schedule
determined by heuristic matches the schedule determined in step 1.

35

3. Repeat step 2 for other schedule determined in step 1.

Heuristic 1
For a stage k, schedule the product i with the lowest X; - kr; .

Heuristic 2

For each stage k:

1. Seth=1

2. Tentatively schedule products h to be produced in stage k. Calculate the
variation for stage k and cal it V1;

3. Schedule the product | with the lowest x; xk— (k+1)r;,

4. Increment h; h — h+ 1. If h>n go to step 5, otherwise go to step 2

5. Schedule the product h with the lowest Vi,

4.4 Dynamic Programming Algorithm

In this section we discuss a dynamic programming (DP) algorithm that deals with
JT production schedule in mixed model facility. The procedure has considered
the joint problem with the two typical goals.

1. Usage Goal: maintaining a constant rate of usage of all itemsin the facility.

2. Loading Goal: smoothing the work [oad on the final assembly process to reduce

the chance of production delays and stoppages.

In this dissertation, we mainly focus on goal 1 which is more important than goal

2, classical goal.

36

Let there aren products to be produced with demands d,,d,,...,d, in a certain

n

time horizon. The time to produce one unit of product i be denoted byt ;

i=12..,nandputD=>d ,r :d—E;.
i=1

The specified time horizon be inferred into D time units and during each time

periodk; k=1,2,...,D; exactly one unit of a product should be produced. Let x;

denote the total production of product i over the first k periods;, where

0<x, <d, foralk=12..D.Then > x, =k ; k=12..,D and X, isnon
i=1

negative integer for al i =12,...,n; k=12,...,D.

Suppose that the schedule for the first k stages be determined i.e. x , for

i=12,..,n be known. Then the usage variability a stage k is
Uk:Z(xi’k—kri)2 and the loading \variability a stage Kk
i=1
isL, = > t%(x, —kr)>.
i=1
Therefore the problem defined by (4.2) can be formulated as
D
Minimize > (@ U, +a,L,)
k=1

Subjected to the Constraints (3.3) - (3.6)

Wherea,, a, are relative weights for the Usage Goa and Loading Goal
respectively? So the problem defined by (4.2) isajoint problem.

Let f, denotethejoint variability at stagek . Then

f, =a, Z(Xi,k _kri)2 +aLZti2(Xi,k _kri)2
i=1 i=1
ZZ(au +aLti2)(Xi,k _kri)z
i1

37

=3 T2 (%, —kr)®; WhereT” =a, +a,t”.
i=1

Therefore the objective function of the problem defined by (5.2) takes the form:

D n

Minimize > > T.*(x, —kr;)* ; where call T;, the implied production time for

i
k=1 i=1

periodi . Now we consider the DP procedure presented by Miltenburg et al. [22].

Let d =(d,,d,,...,d,) be the product requirements vector. Define subsets in a
scheduleas X = (X, X,,..., X,) ; where X, isanon negative integer representing the
production of exactly x, units of producti, x, <d, for ali.Let g bethei™ unit

vector; with n entries, having i" entry 1 and remaining all zero. A subset X can

be scheduled in thefirst k stagesif k =| X |:Zxi :
i=1

Let f(X) betheminimal total variation of any schedule where the productsin X
are scheduled (produced) during the first k stages. Let g(X)= Zn:sz(xj —kr))?.
=1
Thefollowing (DP) recursion (R1) holdsfor f (X):
f(X)= (%, Xy, X,)= min{f (X —g)+ g(X)|i =1...,n; x —1> 0}
f(X)=f(X|x =0i=1..,n)=(0,0,..,0)=0.

Clearly f(X)>0andg(X | % =0;i =1..,n)=0. The following theorem tells

about the computational efficiency of the above procedure, Miltenburg et al. [22].

38

4.5 Cost Assignment Problem

Let Z; denotes the period in which the copy (i, j)is produced. Then the problem
defined by (3.2) can be restated as

minimizerum:Zn: foi (O—kri)+szi @A-kr)+...+ ifi (d; —kr,) 4.9
i1| k0 K=Zyy KZs

such that

Zi’j+122ij+],j:],...,di;i:L...,n (4.10)

1<7,<D,j=1....d;i=1...,n (4.11)

Z # Z; for (i,j)=(i"j), Z; 20 (4.12)

Note that constraint (4.12) is the only linking constraint in problem defined by
(4.9), which aims specify that only copy of each product can be produced in each
period.

The min-sum PRVP can be reduced to an assignment problem and hence can be
solved by Hungarian method. For the corresponding assignment problem, we
consider the vertex sets V, = {(i, j):i=1,...,n, j=4,...,d;} andV, ={1,..., D}.
We now have to calculate the appropriate costs to specify its objective function.
More specifically, these costs must be such that the assignment problem with
these costs has an optima solution, which is both optimal and feasible for
problem (4.9).

Let C, ;, denotesthe cost of assigning (i, j) tothe k™ period and let

|1 if (i,) isassigned tok
"0, otherwise

Then the assignment problem is

n d
minimizeC:ZZZD:Ci,ijxiijk (4.13)

i=1 j=1 k=1

39

n d
suchthatd > %, =1 k=1...,D (4.14)

i=1 j=1

D

DX =Li=L...,n j=1....d (4.15)
k=1

Constraints on the assignment problem require that

a) For each (i,) in V, there is exactly one k in V,, i.e. each copy is
produced exactly once.
b) For each k in V,, thereisexactly one (i, j) in V,, i.e. exactly one copy is

produced at atime.

But Constraints (4.10) on problem defined by (4.9) requires an additional property
that

C) For any two copies (i, j) and (i, j') of aproduct i, with j< j',if (i,]) is

produced at k and (i, j') isproduced at k' then k <k'.

4.6 Min-sum-absolute-chain Algorithm with EDD
Given:

1. chaing, chaing,............., chaing,.........., chain, with chan constraint
defined in section (4.6.1)

2. Caculated'fori=1,2,.....ccccvevvin, Ny
t=1,2, i m

3. Introduce a new pseudo-job representing each chain by one job as

ji = pseudo-job for chain

40

d. = demand for pseudo job |,
= length of chain;

4. Calculate due date value for each pseudo-jobj ;i =12,....... ,n by Steiner

and Yeoman[25].

5. Schedule this pseudo-job j, using EDD Algorithm of Horn [10].

6. Replace each pseudo-job by the real job of the respective chain such that

order is preserved.
4.6.1 Chain constraints

1. Chains are non-overlapping.
2. Cyclic chains are not considered.

3. Chains are considered to be optimal sequence.

Example

Input:
Chainl: ababab

Chain 2: ccdec

Step 1:

Pseudo Job Demand

J1 6

J2 5
Step 2:

EDD Schedule:

J1-J2-J1-32-J1-32-J1-J2-J1-J2-J1

Step 3:

a-c-b-c-a-d-b-c-a-c-b

41

Chapter 5
IMPLEMENTING AND TESTING

The Proposed min-sum-absolute-chain algorithms mentioned in Chapter 5 has
been implemented. The program scripts are written in Java Version 1.6.0. The
source codes for these programs are included in Appendix. The input data set
(chains) represent the demands of products in the mixed model assembly line
manufacturing system.

The lists of al possible sequences for given input chains are generated. Cost for

each arrangement is calculated (see Appendix for formula). Finally the most
efficient chain is selected based on proposed EDD algorithm.

A. 1. Input Chain

Chainl= "ab"
Chain2= "cdc"

Table 1: Input Data

2. Tablewhich includesthe steps how given chains are combined.

a ab abc abcd abcdc
ac ach achd acbdc

acd acdb acdbc

acdc acdcb

C cd cdc cdca cdcab
cda cdab cdabc

cdac cdacb

ca cab cabd cabdc

cad cadc cadcb

cadb cadbc

Table 2: Combination of Chains

42

3. Replacement of Chain with Pseudo-Jobs

Chain Pseudo-Job
ab Job 1
cdc Job 2

Table 3: Replacement of Chain with Pseudo-Jobs

4. Pseudo-job passed to EDD by Proposed-EDD

A Eardjest Due Date - InputDsmsnd -0l EJ
.zbld Jermand
: 2
2
Joh W Diernand: |
Dl Beye | S Seherule

Table 4: Pseudo-job passed to EDD

s
5. Schedule Generated by EDD with considering the due date d—2 for

thej™ copy of product i over pseudo-Jobs

i
Prociuc Lt Lz Dzte
1 1.25
- g 3.7
? 1 0433
- g 2.4
- 3 L1607
Schechde List ;
2-1-2-1-2-

Table 5: Generation of Schedule by EDD

43

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

6. Pseudo-Job generated by EDD Replaced by Proposed-EDD

Pseudo EDD Schedul e: cadbc

7. Possible Schedule List generated by Possible Scheduling Algorithm

OabhWNPE O wWNE b~ wWNE abhwiNE

abhwWNPE

[IR SR SR NI &)

[G RPN SR S &) [RPN SR SR &}

[IR PR SR I &)

[SN SEPR PR NP &)

Sequence No: 1 Eval uating Sequence:

;a pos :
b pos :
:C pos :
:d pos :
C pos :

NR R R

VOV IOXD

Sequence No:

c
b
:d

c

;a pos
pos :
pos :
pos :
pos :

N N

00XV

Sequence No:

;a pos :
:C pos :
:d pos :
b pos :
C pos :

NP R RR

000D

Sequence No:

:a pos :
:C pos :
:d pos :
C pos :
b pos :

RPNR PR

D0V

Sequence No:

:C pos :
;a pos :
:b pos :
:d pos :
C pos :

NR R R R

DOV OD

2 Eval

3 Eval

4 Eval

5 BEval

coooo
BN ANDN

Coooo coooo ceooo
BNONAN BRONDAN

NBANPADN

COoo0oo
BONN A

Zval
Zval
Zval
Zval
Zval
Tot al

Zval
Zval
Zval
Zval
Zval
Tot al

Zval
Zval
Zval
Zval
Zval :

Tot al

Zval
Zval
Zval
Zval
Zval :

Tot al

Zval
Zval
Zval
Zval
Zval

5 Cur Val ue

abcdc
:2.5 Cur Value :2.25
:2.5 Cur Value :0.25
:1.25 Cur Val ue :3.0625
:2.5 Cur Value :2.25
:3.75 Cur Value :1.5625
Cost: 9.375
uati ng Sequence: achdc
:2.5 Cur Value :2.25
:1.25 Cur Value :0.5625
:2.5 Cur Value :0.25
:2.5 Cur Value :2.25
:3.75 Cur Value :1.5625
Cost: 6.875
uati ng Sequence: acdbc
:2.5 Cur Value :2.25
:1.25 Cur Value :0.5625
:2.5 Cur Value :0.25
:2.5 Cur Value :2.25
:3.75 Cur Value :1.5625
Cost: 6.875
uati ng Sequence: acdch
:2.5 Cur Value :2.25
:1.25 Cur Value :0.5625
:2.5 Cur Value :0.25
:3.75 Cur Value :0.0625
:2.5 Cur Value :6.25
Cost: 9.375
uati ng Sequence: cabdc
25 CurVal ue :0.0625
5 Cur Val ue :0. 25
5 Cur Val ue :0.25
.5 Cur Value :2.25
7
Co

Tot al

st: 4.

375

Cum Val ue 2.25

Cum Val ue: 2.5

Cunial ue: 5. 5625

Cum Val ue
Cum Val ue

Cum Val ue :
Cum Val ue :
Cum Val ue :
Cum Val ue :
Cum Val ue :

Cum Val ue :
Cum Val ue :
Cum Val ue :
Cum Val ue :
Cum Val ue :

Cum Val ue :
Cum Val ue :
Cum Val ue :
Cum Val ue :
Cum Val ue :

Cum Val ue :
Cum Val ue :
Cum Val ue :
Cum Val ue :
:1.5625Cum Val ue

1 7.
1 9.

O WwWwN N ODOTWNN OUTWNN

ANOOO

8125
375

.25

. 8125
. 0625
. 3125
. 875

.25

. 8125
. 0625
. 3125
. 875

.25

. 8125
. 0625
. 125
. 375

. 0625
. 3125
. 5625
. 8125
. 375

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

| ndex :
| ndex :
| ndex :
| ndex :
| ndex :

Sequence No: 6 Eval uating Sequence:

1 J:cpos:1 R:0.4 Zval :1.25 Cur Value
2 J:apos:1 R:0.2 Zval :2.5 Cur Val ue
3 J:dpos:1 R:0.2 Zval :2.5 Cur Val ue
4 J:bpos:1 R:0.2 Zval :2.5 Cur Val ue
5 J:cpos :2 R:0.4 Zval :3.75 Cur Value
Total Cost: 4.375
Sequence No: 7 Eval uating Sequence: cadch
1 J:cpos:1 R:0.4 Zval :1.25 Cur Value
2 J:apos:1 R:0.2 Zval :2.5 Cur Val ue
3 J:dpos:1 R:0.2 Zval :2.5 Cur Val ue
4 J:cpos 2 R:0.4 2zval :3.75 Cur Value
5 J:bpos:1 R:0.2 Zval :2.5 Cur Val ue
Total Cost: 6.875
Sequence No: 8 Eval uating Sequence: cdabc
1 J:cpos:1 R:0.4 Zzval :1.25 Cur Value
2 J:dpos:1 R:0.2 Zval :2.5 Cur Val ue
3 J:apos:1 R:0.2 Zval :2.5 Cur Val ue
4 J:bpos:1 R:0.2 Zval :2.5 Cur Val ue
5 J:cpos :2 R:0.4 Zzval :3.75 Cur Value
Total Cost: 4.375
Sequence No: 9 Eval uating Sequence: cdach
1 J:cpos:1 R:0.4 Zval :1.25 Cur Value
2 J:dpos:1 R:0.2 Zval :2.5 Cur Val ue
3 J:apos:1 R:0.2 Zval :2.5 Cur Val ue
4 J:cpos :2 R:0.4 Zval :3.75 Cur Value
5 J:bpos:1 R:0.2 Zzval :2.5 Cur Val ue
Total Cost: 6.875
Sequence No: 10 Eval uating Sequence: cdcab
1 J:cpos:1 R:0.4 Zval :1.25 Cur Value
2 J:dpos:1 R:0.2 2zval :2.5 Cur Val ue
3 J:cpos :2 R:0.4 Zzval :3.75 Cur Value
4 J:apos :1 R:0.2 Zval :2.5 Cur Val ue
5 J:bpos:1 R:0.2 Zval :2.5 Cur Val ue
Total Cost: 9.375
---Mn Val ue---
M ni mal Cost-val ue: 4.375

8. Minimal Possible Schedules

S. No.

1
2
3

Possi bl e Sequence Cost - Val ue

cabdc ---
cadbc ---
cdabc ---

4.375
4.375
4.375

45

cadbc

o000 pNvOOO o000 pPNOOO

onooO

. 0625

25
25
25

. 5625

. 0625

25
25

. 0625

25

. 0625

25
25

. 25
. 5625

. 0625

25
25

. 0625
. 25

. 0625

25

. 5625

25
25

Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:

Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:

Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:

Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:

Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:
Cum Val ue:

o leoloNoNe] APNOOO O NeoNeoNeoNe] ANOOO

©O©Owooo

. 0625
. 3125
. 5625
. 8125
. 375

. 0625
. 3125
. 5625
. 625
. 875

. 0625
. 3125
. 5625
. 8125
. 375

. 0625
. 3125
. 5625
. 625
. 875

. 0625
. 3125
. 875
. 125
. 375

Output:

cadbc is the schedule generated by Proposed -EDD is found in Possible sequence
list(Feasibility case).Moreover, this sequence is aso found in list of minimal-cost
sequence(Optimal case).Hence, it is shown empirically that Proposed-EDD is
both feasible and optimal.

B.1.Input Chain

Chainl1= “aba”
Chain2 = “ccdec”
Table 6: Input Data

2. Replacement of Chain with Pseudo-Job

chain Pseudo-Job
aba Job 1
ccdec Job 2

Table 7: Replacing Chain with Pseudo-Jobs

3. Pseudo-job passed to EDD by Proposed -EDD

i Earliest Dru= Drate - Input Dermand =1=]=]

Jus Id D=t

Jali lik Deervomaiel ;|

Dol Moy ST Srchedulr
| | | |

Table 8: Pseudo-job passed to EDD

46

oap
4. Schedule Generated by EDD with considering the due date d—2

for thej™ copy of product i over pseudo-Jobs

3 Larliest Luz Late ol =i0lx)

Moozt Unit Cuz Dale
1 * 1,222

.GET
0.5
4
4.0
fifi
i

HE IR

P LRI L L B B P

Schedule List
2-1-2-1-2-2-1-2-

Table 9: Generation of Schedule by EDD

5. Pseudo-Job generated by EDD Replaced by Proposed -EDD

Pseudo EDD Schedul e: cacbdcac

6. Possible Schedule List generated by Possible Scheduling Algorithm

S.No. Possible Sequence Cost-Value

1 abaccdcc 36.0
2 abcacdcc 26.0
3 abccadcc 20.0
4 abccdacc 16.0
5 abccdcac 14.0
6 abccdcca 16.0
7 acbacdcc 20.0
8 acbcadcc 14.0
9 acbcdacc 10.0
10 achcdcac 8.0

11 acbcdcca 10.0
12 acchadcc 12.0
13 acchdacc 8.0

14 acchdcac 6.0

15 acchbdcca 8.0

47

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53

55
56

accdbacc
accdbcac
accdbcca
accdcbac
accdchca
accdccha
cabacdcc
cabcadcc
cabcdacc
cabcdcac
cabcdcca
cacbadcc
cachdacc
cachdcac
cachdcca
cacdbacc
cacdbcac
cacdbcca
cacdcbac
cacdcbca
cacdccha
ccabadcc
ccabdacc
ccabdcac
ccabdcca
ccadbacc
ccadbcac
ccadbcca
ccadcbac
ccadchca
ccadccha
ccdabacc
ccdabcac
ccdabcca
ccdacbhac
ccdachca
ccdaccha
ccdcabac
ccdcabca
ccdcacha
ccdccaba

---Mn Val ue---

M ni mal Cost - val ue:

8.0
6.0
8.0
8.0
10.0
16.0
18.0
12.0
8.0
6.0
8.0
10.0
6.0
4.0
6.0
6.0
4.0
6.0
6.0
8.0
14.0
12.0
8.0
6.0
8.0
8.0
6.0
8.0
8.0
10.0
16.0
12.0
10.0
12.0
12.0
14.0
20.0
18.0
20.0
26.0
36.0

48

4.0

7. Minimal Possible Schedules

S.No. Possible Sequence Cost-Vaue

1 cacbdcac

4.0
2 cacdbcac 4.0

Output:

cacbdcac is the schedule generated by Proposed-EDD is found in Possible
sequence list(Feasibility case).Moreover, this sequence is aso found in list of
minimal-cost sequence(Optimal case). Hence, it is shown empirically that
Proposed -EDD is both feasible and optimal.

C.1. Input Chain

Chainl= "ab"
Chain2= "ccdc”
Chain3= "mnm"

Table 10: Input Data

2. Replacement of Chain with Pseudo-Job

Chain Pseudo-Job
Ab Jobl
ccdc Job2
mnm Job3

Table 11: Replacing Chain with Pseudo-job

49

3. Pseudo-job passed to EDD by Proposed -EDD

(BB ol 1300 Gl Sl il =iy
Jukrid e
| K]
s L
& %
Jak kE Daand ; |
| Arird Frew | | [FTAY | | Schnduin!

Table 12: Pseudo-job passed to EDD

oap
4. Schedule Generated by EDD with considering the due date d—2

for thej™ copy of product i over pseudo-Jobs

e iz Due Zabe
i i L2
B k.75
1 1128
E .38
i}
i -
1 15
15
i

S lverlula st :
7B s, [l 55 e, P e

Table 13: Generation of Schedule by EDD

5. Pseudo-Job generated by EDD Replaced by Proposed -EDD

Pseudo EDD Schedule: cmacndbmc

50

6. Possible Schedule List generated by Possible Scheduling Algorithm

S.No. Possible Sequence Cost-Value

1 abccdcrmm --- 63.375
2 abccdncnm --- 52,875
3 abccdmem --- 46.875
4 abccdmnt --- 45.375
5 abccnmdcnm --- 48.375
6 abccmdncm --- 42,375
7 abccnmdnnc --- 40.875
8 abccrmdcm --- 42.375
9 abccrmdnt --- 40.875
10 abccrmmde --- 45,375
11 abcnmcdenm --- 43.875
12 abcncdncm --- 37.875
13 abcncdnnc --- 36.375
14 abcncndcm --- 37.875
15 abcmcndnec --- 36.375
16 abcnmcnmde --- 40.875
17 abcmmcdem --- 37.875
18 abcmmecdnt --- 36.375
19 abcmmcenmde --- 40.875
20 abcmnctdc --- 45,375
21 abnccdecnm --- 45,375
22 abnccdncm --- 39.375
23 abnccdnnec --- 37.875
24 abncecndem --- 39.375
25 abnccndnc --- 37.875
26 abnccnmde --- 42,375
27 abncncdem --- 39.375
28 abncncdnc --- 37.875
29 abncnecmde --- 42,375
30 abncnncde --- 46.875
31 abmccdecm --- 45,375
32 abmccdnt --- 43.875
33 abmccmdec --- 48.375
34 abmcnctdec --- 52.875
35 abmnctcdec --- 63.375
36 acbcdcrmm --- 57.375
37 acbcdncnm --- 46.875
38 acbcdmecm --- 40.875
39 acbcdmnt --- 39.375
40 acbcmdcnm --- 42,375
41 acbcmdncm --- 36.375
42 acbcnmdnnt --- 34.875
43 acbcrmdcm --- 36.375
44 acbcrmdnt --- 34.875
45 acbcrmmde --- 39. 375
46 acbnmcdenm --- 37.875
47 acbncdncm --- 31.875
48 acbncdnnc --- 30.375
49 acbncndcm --- 31.875

51

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

acbntndnt
acbntnndc
acbmcdcm
acbmecdnt
acbmmcndc
acbmmntdc
accbdcmm
acchdnmcnm
acchdmcecm
accbdmnt
accbndcnm
accbndncm
accbndnnt
accbmdcm
accbmdnt
accbmmdc
accdbcmmm
accdbntcnm
accdbmcem
accdbmnt
accdcbmm
accdcnmbnm
accdcrmbm
accdcmnb
accdmbcnm
accdmbncm
accdmbnnt
accdnchbnm
accdncnbm
accdncnnb
accdmbcm
accdmbnt
accdmmcbm
accdmecnb
accdmmnbc
accdmnctb
accnbdcnm
accnbdncm
accnbdnnt
accnbndcm
accnbndnt
accnbnndc
accndbcnm
accndbncm
accndbnnt
accndcbnm
accndcnbm
accrdcennb
accnmdnbcem
accndnbnt
accndncbm
accndncnb
accnmdnnbc
accrmdnncthb
accmmbdcm
accmmbdnt

30.
34.
31.
30.
34.
39.
57.
46.
40.
39.
42.
36.
34.
36.
34.
39.
57.
46.
40.
39.
63.
58.
58.
63.
42.
36.
34.
48.
48.
52.
36.
34.
42.
46.
39.
45,
37.
31.
30.
31.
30.
34.
37.
31.
30.
43.
43.
48.
31.
30.
37.
42.
34.
40.
31.
30.

375
875
875
375
875
375
375
875
875
375
375
375
875
375
875
375
375
875
875
375
375
875
875
375
375
375
875
375
375
875
375
875
375
875
375
375
875
875
375
875
375
875
875
875
375
875
875
375
875
375
875
375
875
875
875
375

52

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

accmmbndc
accmmdbcm
accmdbnt
accmdcbm
accmmdcnb
accmmdmnbc
accmmdncthb
accmnbdc
accrmndbce
accmmndcb
acnbcdcnm
acnbcdncm
acnbcdnnt
acnmbcndcm
acnbcndnt
acnbcnndc
acnbncdcm
acnbncdnt
acnbncndc
acnbnntdc
acncbdcnm
acncbdncm
acncbdnnt
acncbndcm
acncbndnt
acncbnndc
acncdbcnm
acncdbncm
acncdbnnt
acncdcbnm
acncdcnbm
acncdcnnb
acncdnbcm
acncdnbnt
acncdncbm
acncdncnb
acncdnmnbc
acncdnncthb
acntnbdcm
acncnbdnt
acncnbndc
acncndbcm
acncndbnt
acncndcbm
acncndcnb
acncndnbc
acncndncb
acncnnbdc
acncnndbc
acncnndcb
acmbcdcm
acmbcdnt
acrmbcndc
acmrmbntdc
acmcbdcm
acmcbdnt

34.
31.
30.
37.
42.
34.
40.
39.
39.
45,
33.
27.
25.
27.
25.
30.
27.
25.
30.
34.
33.
27.
25.
27.
25.
30.
33.
27.
25.
39.
39.
43.
27.
25.
33.
37.
30.
36.
27.
25.
30.
27.
25.
33.
37.
30.
36.
34.
34.
40.
27.
25.
30.
34.
27.
25.

875
875
375
875
375
875
875
375
375
375
375
375
875
375
875
375
375
875
375
875
375
375
875
375
875
375
375
375
875
375
375
875
375
875
375
875
375
375
375
875
375
375
875
375
875
375
375
875
875
875
375
875
375
875
375
875

53

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

acmcbndc
acmmcdbcm
acrmcdbnt
acmcedcbm
acmcdcnb
acmcdnbc
acmcdncthb
acrmcnbdc
acrmcndbc
acmcecndcb
acmmnbcdc
acmncthbdc
acrmntdbc
acrmntdcb
anbccdcnm
anbccdncm
anbccdnnt
anbccndcm
anbccndnt
anbccnndc
anbcncdcm
anbcncdnt
anbcncndc
anbcnntdc
anbnccdcm
anbnccdnt
anbnccndc
anbncntdc
anbnntcdc
ancbcdcnm
ancbcdncm
ancbcdnnt
ancbcndcm
ancbhcndnt
ancbcnndc
ancbncdcm
ancbncdnt
ancbncndc
ancbnntdc
anccbdcnm
anccbdncm
anccbdnnt
anccbndcm
anccbndnt
anccbnndc
anccdbcnm
anccdbncm
anccdbnnt
anccdcbnm
anccdcnbm
anccdcnnb
anccdnbcm
anccdnbnt
anccdncbm
anccdncnb
anccdnnbc

30.
27.
25.
33.
37.
30.
36.
34.
34.
40.
39.
39.
39.
45.
40.
34.
33.
34.
33.
37.
34.
33.
37.
42.
40.
39.
43.
48.
58.
34.
28.
27.
28.
27.
31.
28.
27.
31.
36.
34.
28.
27.
28.
27.
31.
34.
28.
27.
40.
40.
45,
28.
27.
34.
39.
31.

375
375
875
375
875
375
375
875
875
875
375
375
375
375
875
875
375
875
375
875
875
375
875
375
875
375
875
375
875
875
875
375
875
375
875
875
375
875
375
875
875
375
875
375
875
875
875
375
875
875
375
875
375
875
375
875

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

anccdnnctb
anccnbdcm
anccnbdnt
anccnbndc
anccndbcm
anccndbnt
anccndcbm
anccndcnb
anccndnbc
anccndncb
anccnnbdc
anccnndbc
anccnndchb
ancnbcdcm
ancnbcdnt
ancnbcndc
ancnbntdc
ancncbdcm
ancncbdnt
ancncbndc
ancncdbcm
ancncdbnt
ancncdcbm
ancncdcnb
ancncdnbc
ancncdnchb
ancncnbdc
ancncndbc
ancncndcb
ancnnbcdc
ancnnchbdc
ancnncdbc
ancnnctdcb
ammbccdcm
ammbccdnt
ammbccndc
ammbcntdc
ammbntcdc
ammcbcdcm
ammcbcdnt
ammcbcndc
ammcbntdc
ammccbdcm
ammccbdnt
ammccbndc
ammccdbcm
ammccdbnt
ammccdcbm
amccdcnb
ammccdnbc
amccdncthb
ammccnbdc
amccndbc
amccndchb
ammcnbcdc
ammcncthbdc

37.
28.
27.
31.
28.
27.
34.
39.
31.
37.
36.
36.
42.
28.
27.
31.
36.
28.
27.
31.
28.
27.
34.
39.
31.
37.
36.
36.
42.
40.
40.
40.
46.
40.
39.
43.
48.
58.
34.
33.
37.
42.
34.
33.
37.
34.
33.
40.
45.
37.
43.
42.
42.
48.
46.
46.

875
875
375
875
875
375
875
375
875
875
375
375
375
875
375
875
375
875
375
875
875
375
875
375
875
875
375
375
375
875
875
875
875
875
375
875
375
875
875
375
875
375
875
375
875
875
375
875
375
875
875
375
375
375
875
875

55

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

ammcncdbc
ammcntdcb
ammnbccdc
ammntbcdc
ammntchbdc
ammntcdbc
ammntcdcb
cabcdcmmm
cabcdnmcnm
cabcdmecm
cabcdmnt
cabcnmdcnm
cabcndncm
cabcndnnt
cabcmdem
cabcmdnt
cabcmndc
cabnmcdenm
cabnmcdncm
cabntdnnt
cabntndcm
cabntndnt
cabncnndc
cabmcdcm
cabmmcdnt
cabmcndc
cabmmntdc
cacbhdcmm
cacbhdnmcnm
cacbdmcm
cacbdmnt
cacbnmdcnm
cacbndncm
cacbndnnt
cacbmdcm
cacbmdnt
cacbmndc
cacdbcmmm
cacdbnmcnm
cacdbmcecm
cacdbmnt
cacdcbmm
cacdcnmbnm
cacdcmbm
cacdcrmnb
cacdnmbcnm
cacdnmbncm
cacdnbnnt
cacdnchbnm
cacdntcnbm
cacdntnnb
cacdmbcm
cacdmbnt
cacdmmcbm
cacdmcnb
cacdmnbc

46.
52.
63.
57.
57.
57.
63.
51.
40.
34.
33.
36.
30.
28.
30.
28.
33.
31.
25.
24.
25.
24.
28.
25.
24.
28.
33.
51.
40.
34.
33.
36.
30.
28.
30.
28.
33.
51.
40.
34.
33.
57.
52.
52.
57.
36.
30.
28.
42.
42.
46.
30.
28.
36.
40.
33.

875
875
375
375
375
375
375
375
875
875
375
375
375
875
375
875
375
875
875
375
875
375
875
875
375
875
375
375
875
875
375
375
375
875
375
875
375
375
875
875
375
375
875
875
375
375
375
875
375
375
875
375
875
375
875
375

56

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

cacdmnctb
cacnbdcnm
cacrmbdncm
cacnbdnnt
cacnbndcm
cacnbndnt
cacnbnndc
cacrmdbcnm
cacrmdbncm
cacndbnnt
cacndcbnm
cacndcnbm
cacrmdcnnb
cacrmdnbcm
cacndnbnt
cacndncbm
cacndncnb
cacnmdnnbc
cacrmdnntb
cacmmbdcm
cacmmbdnt
cacmmbndc
cacrmdbcm
cacmdbnt
cacnmdcbm
cacmmdcnb
cacmmdnbc
cacmdntb
cacmnbdc
cacmmndbc
cacmmndcb
canbcdcnm
canmbcdncm
canbcdnnt
canbcndcm
canbcndnt
canbcnndc
canmbncdcm
canbncdnt
canbncndc
canbnntdc
cancbdcnm
cancbdncm
cancbdnnt
cancbndcm
cantbndnt
cantbnndc
cancdbcnm
cancdbncm
cancdbnnt
cancdcbnm
cancdcnbm
cancdcnnb
cancdnbcm
cancdnbnt
cancdncbm

39.
31.
25.
24.
25.
24.
28.
31.
25.
24.
37.
37.
42.
25.
24.
31.
36.
28.
34.
25.
24.
28.
25.
24.
31.
36.
28.
34.
33.
33.
39.
27.
21.
19.
21.
19.
24.
21.
19.
24.
28.
27.
21.
19.
21.
19.
24.
27.
21.
19.
33.
33.
37.
21.
19.
27.

375
875
875
375
875
375
875
875
875
375
875
875
375
875
375
875
375
875
875
875
375
875
875
375
875
375
875
875
375
375
375
375
375
875
375
875
375
375
875
375
875
375
375
875
375
875
375
375
375
875
375
375
875
375
875
375

57

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

cancdncnb
cancdnnbc
cancdnntb
cancnbdcm
cancnbdnt
cancnbndc
cancndbcm
cancndbnt
cancndcbm
cancndcnb
cancndnbc
cancndnctb
cancnnbdc
cancnndbc
cancnndcb
cambcdcm
cambcdnt
cambcndc
cambntdc
camchbhdcm
camchbdnt
camcbndc
camcdbcm
camcdbnt
cammcdcbm
camncdcnb
camncdnbc
camcdntb
camcnbdc
camncndbc
camncndcb
cammnbcdc
camnthbdc
camntdbc
cammntdcb
ccabdcmmm
ccabdnmcnm
ccabdmcecm
ccabdmnt
ccabndcnm
ccabnmdncm
ccabmdnnt
ccabmdcm
ccabmdnt
ccabmndc
ccadbcmmm
ccadbnmcnm
ccadbmcecm
ccadbmnt
ccadchbmm
ccadcnmbnm
ccadcmbm
ccadcmnb
ccadnbcnm
ccadnmbncm
ccadnmbnnt

31.
24.
30.
21.
19.
24.
21.
19.
27.
31.
24.
30.
28.
28.
34.
21.
19.
24.
28.
21.
19.
24.
21.
19.
27.
31.
24.
30.
28.
28.
34.
33.
33.
33.
39.
51.
40.
34.
33.
36.
30.
28.
30.
28.
33.
51.
40.
34.
33.
57.
52.
52.
57.
36.
30.
28.

875
375
375
375
875
375
375
875
375
875
375
375
875
875
875
375
875
375
875
375
875
375
375
875
375
875
375
375
875
875
875
375
375
375
375
375
875
875
375
375
375
875
375
875
375
375
875
875
375
375
875
875
375
375
375
875

58

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

ccadntbnm
ccadncnbm
ccadncnnb
ccadmbcm
ccadmbnt
ccadmcbm
ccadmcnb
ccadmnbc
ccadmntb
ccanbdcnm
ccanbdncm
ccanbdnnt
ccanmbndcm
ccanbndnt
ccanbnndc
ccandbcnm
ccandbncm
ccanmdbnnt
ccamdcbnm
ccandcnbm
ccandcnnb
ccandnbcm
ccamdnbnt
ccamdncbm
ccandncnb
ccandnnbc
ccandnnthb
ccambdcm
ccambdnt
ccammbndc
ccamdbcm
ccammdbnt
ccamdcbm
ccamdcnb
ccammdnbc
ccamdnthb
ccammnbdc
ccamndbc
ccamndchb
ccdabcmmm
ccdabnmcnm
ccdabmem
ccdabmnt
ccdacbmm
ccdacnmbnm
ccdacmbm
ccdacmnb
ccdanbcnm
ccdanbncm
ccdanmbnnt
ccdantbhnm
ccdancnbm
ccdancnnb
ccdammbcm
ccdambnt
ccdamcbm

42.
42.
46.
30.
28.
36.
40.
33.
39.
31.
25.
24.
25.
24.
28.
31.
25.
24.
37.
37.
42.
25.
24.
31.
36.
28.
34.
25.
24.
28.
25.
24.
31.
36.
28.
34.
33.
33.
39.
51.
40.
34.
33.
57.
52.
52.
57.
36.
30.
28.
42.
42.
46.
30.
28.
36.

375
375
875
375
875
375
875
375
375
875
875
375
875
375
875
875
875
375
875
875
375
875
375
875
375
875
875
875
375
875
875
375
875
375
875
875
375
375
375
375
875
875
375
375
875
875
375
375
375
875
375
375
875
375
875
375

59

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

ccdamcnb
ccdamnbc
ccdammntb
ccdcabmm
ccdcanmbnm
ccdcambm
ccdcamnb
ccdcnmabnm
ccdcnmanbm
ccdcmannb
ccdcrmabm
ccdcmanb
ccdcmmab
ccdmabcnm
ccdnmabncm
ccdnabnnt
ccdnmacbnm
ccdmacnbm
ccdmacnnb
ccdnmanbcm
ccdnmanbnt
ccdnmancbm
ccdmancnb
ccdmannbc
ccdnmanncthb
ccdntabnm
ccdncanbm
ccdncannb
ccdncnabm
ccdntnanb
ccdncnmab
ccdmabcm
ccdmabnt
ccdmacbhm
ccdmacnb
ccdmanbc
ccdmanthb
ccdmcabm
ccdmcanb
ccdmmcmab
ccdnmmmabc
ccdmmmachb
ccdmnctab
ccmabdcnm
ccmabdncm
ccmabdnnt
ccrmabndcem
ccmabndnt
ccrmabnndc
ccmadbecnm
ccmadbnem
ccmadbnnt
ccmadcbnm
ccmadcnbm
ccmadcnnb
ccmadnbem

40.
33.
39.
63.
58.
58.
63.
54.
54.
58.
54.
58.
63.
31.
25.
24.
37.
37.
42.
25.
24.
31.
36.
28.
34.
43.
43.
48.
43.
48.
52.
25.
24.
31.
36.
28.
34.
37.
42.
46.
33.
39.
45.
27.
21.
19.
21.
19.
24.
27.
21.
19.
33.
33.
37.
21.

875
375
375
375
875
875
375
375
375
875
375
875
375
875
875
375
875
875
375
875
375
875
375
875
875
875
875
375
875
375
875
875
375
875
375
875
875
875
375
875
375
375
375
375
375
875
375
875
375
375
375
875
375
375
875
375

60

554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

ccmadnbnt
ccmadncbm
ccmadncnb
ccmadnmnbc
ccmadnnthb
ccmanbdcm
ccmanbdnt
ccrmanbndc
ccmandbcm
ccmandbnt
ccrmandcbm
ccmandcnb
ccmandnbc
ccmandnthb
ccmanmnmbdc
ccmanndbc
ccmanndcb
ccndabcnm
ccndabncm
ccndabnnt
ccndacbhnm
ccndacnbm
ccndacnnb
ccndanbcm
ccndanbnt
ccndancbm
ccndancnb
ccndannbc
ccndanncthb
ccndcabnm
ccndcanbm
ccndcannb
ccndcnabm
ccndcnanb
ccndcnmab
ccnmdnabcm
ccndnabnt
ccnmdnacbm
ccnmdnacnb
ccndnanbc
ccndnanchb
ccnmdncabm
ccmdncanb
ccnmdncmab
ccnmdnmabce
ccnmdnmach
ccnmdnntab
ccmabdcem
ccrmabdnt
ccmabndc
ccmadbcm
ccmadbnt
ccrmadcbm
ccmadcnb
ccmadnbc
ccmadnthb

19.
27.
31.
24.
30.
21.
19.
24.
21.
19.
27.
31.
24.
30.
28.
28.
34.
27.
21.
19.
33.
33.
37.
21.
19.
27.
31.
24.
30.
39.
39.
43.
39.
43.
48.
21.
19.
27.
31.
24.
30.
33.
37.
42.
28.
34.
40.
21.
19.
24.
21.
19.
27.
31.
24.
30.

875
375
875
375
375
375
875
375
375
875
375
875
375
375
875
875
875
375
375
875
375
375
875
375
875
375
875
375
375
375
375
875
375
875
375
375
875
375
875
375
375
375
875
375
875
875
875
375
875
375
375
875
375
875
375
375

61

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

ccmanbdc
ccmandbc
ccmandchb
ccrmdabcem
ccmdabnt
ccmmdacbm
ccmdacnb
ccrmdanbc
ccrmdancthb
ccmdcabm
ccmdcanb
ccmdcmab
ccrmdmabc
ccrmdnmach
ccmdntab
ccmmabdc
ccmmadbce
ccrmnmadchb
ccrmndabc
ccmmndach
ccmmndcab
cmabcdcnm
cmabcdncm
cmabcdnnt
cmabcndem
cmabcndnt
cmabcnndc
cmabncdcem
cmabncdnt
cmabncndc
cmabnntdc
cmacbdcnm
cnmacbdncm
cnmacbdnnt
cmacbndcm
cmacbndnt
cmacbnndc
cmacdbcnm
cmacdbncm
cmacdbnnt
cmacdcbnm
cmacdcnbm
cnmacdcnnb
cnmacdnbem
cmacdnbnt
cmacdncbm
cmacdncnb
cnmacdnnbc
cnmacdnncthb
cmacnbdcm
cmacnbdnt
cmacnbndc
cnmacndbcm
cnmacndbnt
cmacndcbm
cmacndcnb

28.
28.
34.
21.
19.
27.
31.
24.
30.
33.
37.
42.
28.
34.
40.
33.
33.
39.
33.
39.
45,
22.
16.
15.
16.
15.
19.
16.
15.
19.
24.
22.
16.
15.
16.
15.
19.
22.
16.
15.
28.
28.
33.
16.
15.
22.
27.
19.
25.
16.
15.
19.
16.
15.
22.
27.

875
875
875
375
875
375
875
375
375
375
875
375
875
875
875
375
375
375
375
375
375
875
875
375
875
375
875
875
375
875
375
875
875
375
875
375
875
875
875
375
875
875
375
875
375
875
375
875
875
875
375
875
875
375
875
375

62

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

cmacndnbc
cmacndnchb
cnmacnnbdc
cnmacnndbc
cmacnndcb
cmanbcdcm
cmanbcdnt
cmanbcndc
cmanbntdc
cmancbdcm
cmanchbdnt
cmancbndc
cmancdbcm
cmancdbnt
cmancdcbm
cmancdcnb
cmancdnbc
cmancdncthb
cnmancnbdc
cmancndbc
cmancndcb
cmannmbcdc
cmannthbhdc
cmanntdbc
cmanncdcb
cncabdcnm
cncabdncm
cncabdnnt
cncabndcm
cncabndnt
cncabnndc
cncadbcnm
cncadbncm
cncadbnnt
cncadcbnm
cncadcnbm
cncadcnnb
cncadnbcm
cncadnbnt
cncadncbm
cncadncnb
cncadnnbc
cncadnnthb
cncanbdcm
cncanbdnt
cncanbndc
cncandbcm
cncandbnt
cncandcbm
cncandcnb
cncandnbc
cncandnctb
cncannbdc
cncanndbc
cncanndcb
cncdabcnm

19.
25.
24.
24.
30.
16.
15.
19.
24.
16.
15.
19.
16.
15.
22.
27.
19.
25.
24.
24.
30.
28.
28.
28.
34.
22.
16.
15.
16.
15.
19.
22.
16.
15.
28.
28.
33.
16.
15.
22.
27.
19.
25.
16.
15.
19.
16.
15.
22.
27.
19.
25.
24.
24.
30.
22.

875
875
375
375
375
875
375
875
375
875
375
875
875
375
875
375
875
875
375
375
375
875
875
875
875
875
875
375
875
375
875
875
875
375
875
875
375
875
375
875
375
875
875
875
375
875
875
375
875
375
875
875
375
375
375
875

63

722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777

cncdabncm
cncdabnnt
cncdacbnm
cncdacnbm
cncdacnnb
cncdanbcm
cncdanbnt
cncdancbm
cncdancnb
cncdannbc
cncdannchb
cncdcabnm
cncdcanbm
cncdcannb
cncdcnabm
cncdcnanb
cncdcnmab
cncdnabcem
cncdnabnt
cncdnacbm
cncdnacnb
cncdnanbc
cncdnanchb
cncdncabm
cncdncanb
cncdncmab
cncdnmabce
cncdnmach
cncdnncab
cncnabdcm
cncnabdnt
cncnabndc
cncnadbcm
cncnadbnt
cncnadcbm
cncnadcnb
cncnadnbc
cncnadncthb
cncnanbdc
cncnandbc
cncnandcb
cncndabcm
cncndabnt
cncndacbm
cncndacnb
cncndanbc
cncndanchb
cncndcabm
cncndcanb
cncndcmab
cncndmabce
cncndmachb
cncndncab
cncnmabdc
cncnmadbce
cncnmadcb

16.
15.
28.
28.
33.
16.
15.
22.
27.
19.
25.
34.
34.
39.
34.
39.
43.
16.
15.
22.
27.
19.
25.
28.
33.
37.
24.
30.
36.
16.
15.
19.
16.
15.
22.
27.
19.
25.
24.
24.
30.
16.
15.
22.
27.
19.
25.
28.
33.
37.
24.
30.
36.
28.
28.
34.

875
375
875
875
375
875
375
875
375
875
875
875
875
375
875
375
875
875
375
875
375
875
875
875
375
875
375
375
375
875
375
875
875
375
875
375
875
875
375
375
375
875
375
875
375
875
875
875
375
875
375
375
375
875
875
875

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

cncnndabce
cncnndach
cncnndcab
cmabcdcm
cmabcdnt
cmabcndc
cmabntdc
cmacbdcm
cmacbdnt
cmacbndc
cmacdbcm
cmacdbnt
cmacdcbm
cmacdcnb
cmacdnbc
cmacdnthb
cmacnbdc
cmacndbc
cmacndchb
cmanbcdc
cmancthbhdc
cmanctdbc
cmantdchb
cmmcabdcm
cmcabdnt
cmcabndc
cmcadbcem
cmmcadbnt
cmmcadcbm
cmcadcnb
cmcadnbc
cmcadncthb
cmcanbdc
cmcandbc
cmcandcb
cmmcdabcm
cmcdabnt
cmmcdacbm
cmcdacnb
cmcdanbc
cmcdancthb
cmmcdcabm
cmcdcanb
cmmcdcmab
cmmcdmabce
cmcdmachb
cmcdntab
cmmcnabdc
cmmcnadbe
cmcmadcb
cmcendabce
cmcndach
cmmcendcab
cmmmabcdc
cmmnacbdc
cmmnacdbc

28.
34.
40.
16.
15.
19.
24.
16.
15.
19.
16.
15.
22.
27.
19.
25.
24.
24.
30.
28.
28.
28.
34.
16.
15.
19.
16.
15.
22.
27.
19.
25.
24.
24.
30.
16.
15.
22.
27.
19.
25.
28.
33.
37.
24.
30.
36.
28.
28.
34.
28.
34.
40.
33.
33.
33.

875
875
875
875
375
875
375
875
375
875
875
375
875
375
875
875
375
375
375
875
875
875
875
875
375
875
875
375
875
375
875
875
375
375
375
875
375
875
375
875
875
875
375
875
375
375
375
875
875
875
875
875
875
375
375
375

65

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889

cmmnacdcb
cmmntabdc
cmmntadbce
cmntadchb
cmntdabc
cmmntdach
cmmntdcab
mabccdcnm
mabccdncm
mabccdnnt
mabccndcm
mabccndnt
mabccnndc
mabcncdcem
mabcncdnt
mabcncndc
mabcnntdc
mabnccdcm
mabnccdnt
mabnccndc
mabncntdc
mabnntcdc
macbcdcnm
macbcdncm
macbcdnnt
macbcndcm
macbcndnt
macbcnndc
macbncdcm
macbncdnt
macbncndc
macbnntdc
maccbdcnm
maccbdncm
maccbhdnnt
maccbndcm
maccbndnt
maccbnndc
maccdbcnm
maccdbncm
maccdbnnt
maccdcbnm
maccdcnbm
maccdcnnmb
maccdnbcm
maccdnbnt
maccdncbm
maccdncnb
maccdnnbc
maccdnntb
maccnbdcm
maccnbdnt
maccnbndc
maccndbcm
maccndbnt
maccndcbm

39.
33.
33.
39.
33.
39.
45,
36.
30.
28.
30.
28.
33.
30.
28.
33.
37.
36.
34.
39.
43.
54.
30.
24.
22.
24.
22.
27.
24.
22.
27.
31.
30.
24.
22.
24.
22.
27.
30.
24.
22.
36.
36.
40.
24.
22.
30.
34.
27.
33.
24.
22.
27.
24.
22.
30.

375
375
375
375
375
375
375
375
375
875
375
875
375
375
875
375
875
375
875
375
875
375
375
375
875
375
875
375
375
875
375
875
375
375
875
375
875
375
375
375
875
375
375
875
375
875
375
875
375
375
375
875
375
375
875
375

66

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945

maccndcnb
maccndnbc
maccndnthb
maccnmnbdc
maccnndbc
maccnndchb
macnbcdcm
macnbcdnt
macnbcndc
macnbntdc
macncbdcm
macncbdnt
macncbndc
macncdbcm
macncdbnt
macncdcbm
macncdcnb
macncdnbc
macncdnthb
macncnbdc
macncndbc
macncndchb
macnnbcdc
macnncbdc
macnncdbc
macnnctdchb
manbccdcm
manbccdnt
manbccndc
manbcntdc
manbnccdc
mancbcdcm
mancbcdnt
mancbcndc
mancbntdc
manccbhdcm
manccbdnt
manccbndc
manccdbcm
manccdbnt
manccdcbm
manccdcnb
manccdnbc
manccdnthb
manccnbdc
manccndbc
manccndchb
mancnbcdc
mancncbdc
mancncdbc
mancncdchb
mannbccdc
manncthbcdc
mannctcbdc
mannccdbc
mannccdchb

34.
27.
33.
31.
31.
37.
24.
22.
27.
31.
24.
22.
27.
24.
22.
30.
34.
27.
33.
31.
31.
37.
36.
36.
36.
42.
36.
34.
39.
43.
54.
30.
28.
33.
37.
30.
28.
33.
30.
28.
36.
40.
33.
39.
37.
37.
43.
42.
42.
42.
48.
58.
52.
52.
52.
58.

875
375
375
875
875
875
375
875
375
875
375
875
375
375
875
375
875
375
375
875
875
875
375
375
375
375
375
875
375
875
375
375
875
375
875
375
875
375
375
875
375
875
375
375
875
875
875
375
375
375
375
875
875
875
875
875

67

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

ncabcdcnm
ncabcdncm
ncabcdnnt
ncabcndcm
ncabcndnt
ncabcnndc
ncabncdcm
ncabncdnc
ncabncndc
ncabnntdc
ncacbhdcnm
ncacbhdncm
ncacbdnnt
ncacbndcm
ncacbndnt
ncacbhnndc
ncacdbcnm
ncacdbncm
ncacdbnnt
ncacdcbnm
ncacdcnbm
ncacdcnnb
ncacdnbcm
ncacdnbnc
ncacdncbm
ncacdncnb
ncacdnnbc
ncacdnntb
ncacnbdcm
ncacnbdnt
ncacnbndc
ncacndbcm
ncacndbnt
ncacndcbm
ncacndcnb
ncacndnbc
ncacndntb
ncacnmnbdc
ncacnmdbc
ncacnmndchb
ncanbcdcm
ncanbcdnt
ncanbcndc
ncanbntdc
ncancbdcm
ncancbdnt
ncancbndc
ncancdbcm
ncancdbnt
ncancdcbm
ncancdcnb
ncancdnbc
ncancdntb
ncancmnbdc
ncancndbc
ncancmndchb

24.
18.
16.
18.
16.
21.
18.
16.
21.
25.
24.
18.
16.
18.
16.
21.
24.
18.
16.
30.
30.
34.
18.
16.
24.
28.
21.
27.
18.
16.
21.
18.
16.
24.
28.
21.
27.
25.
25.
31.
18.
16.
21.
25.
18.
16.
21.
18.
16.
24.
28.
21.
27.
25.
25.
31.

68

375
375
875
375
875
375
375
875
375
875
375
375
875
375
875
375
375
375
875
375
375
875
375
875
375
875
375
375
375
875
375
375
875
375
875
375
375
875
875
875
375
875
375
875
375
875
375
375
875
375
875
375
375
875
875
875

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057

ncanmbcdc
ncanncbdc
ncanncdbc
ncanncdchb
nccabdecnm
nccabdnem
nccabdnnt
nccabndcm
nccabndnt
nccabnndc
nccadbecnm
nccadbnem
nccadbnnt
nccadcbnm
nccadcnbm
nccadcnnb
nccadnbem
nccadnbnt
nccadncbm
nccadncnb
nccadnnbce
nccadnntb
nccanbdcm
nccanbdnc
nccanbndc
nccandbem
nccandbnt
nccandcbm
nccandcnb
nccandnbce
nccandntb
nccannbdc
nccanndbc
nccanmndchb
nccdabecnm
nccdabnem
nccdabnnt
nccdacbnm
nccdacnbm
nccdacnnb
nccdanbem
nccdanbnt
nccdancbm
nccdancnb
nccdannbc
nccdannthb
nccdcabnm
nccdcanbm
nccdcannmb
nccdcecnabm
nccdcnanb
nccdcnmab
nccdnabcm
nccdnabnt
nccdnacbm
nccdnacnb

30.
30.
30.
36.
24.
18.
16.
18.
16.
21.
24.
18.
16.
30.
30.
34.
18.
16.
24.
28.
21.
27.
18.
16.
21.
18.
16.
24.
28.
21.
27.
25.
25.
31.
24.
18.
16.
30.
30.
34.
18.
16.
24.
28.
21.
27.
36.
36.
40.
36.
40.
45,
18.
16.
24.
28.

69

375
375
375
375
375
375
875
375
875
375
375
375
875
375
375
875
375
875
375
875
375
375
375
875
375
375
875
375
875
375
375
875
875
875
375
375
875
375
375
875
375
875
375
875
375
375
375
375
875
375
875
375
375
875
375
875

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113

nccdnanbc
nccdnanthb
nccdncabm
nccdncanb
nccdncmab
nccdnmabce
nccdnmachb
nccdnncab
nccnabdcem
nccnabdnt
nccnabndc
nccnadbem
nccnadbnt
nccnadcbm
nccnadcnb
nccnadnbce
nccnadnthb
nccnanbdc
nccnandbc
nccnandchb
nccndabem
nccndabnt
nccndacbm
nccndacnb
nccndanbce
nccndanthb
nccndcabm
nccndcanb
nccndcnab
nccndmabce
nccndmachb
nccndnctab
nccnmabdc
nccnmadbc
nccnmadcb
nccecnndabce
nccecnndachb
nccnndcab
ncnabcdcm
ncnabcdnt
ncnabcndc
ncnabntdc
ncnacbhdcem
ncnacbhdnc
ncnacbndc
ncnacdbem
ncnacdbnt
ncnacdcbm
ncnacdcnb
ncnacdnbc
ncnacdntb
ncnacnbdc
ncnacndbc
ncnacndchb
ncnanbcdc
ncnancbdc

21.
27.
30.
34.
39.
25.
31.
37.
18.
16.
21.
18.
16.
24.
28.
21.
27.
25.
25.
31.
18.
16.
24.
28.
21.
27.
30.
34.
39.
25.
31.
37.
30.
30.
36.
30.
36.
42.
18.
16.
21.
25.
18.
16.
21.
18.
16.
24.
28.
21.
27.
25.
25.
31.
30.
30.

70

375
375
375
875
375
875
875
875
375
875
375
375
875
375
875
375
375
875
875
875
375
875
375
875
375
375
375
875
375
875
875
875
375
375
375
375
375
375
375
875
375
875
375
875
375
375
875
375
875
375
375
875
875
875
375
375

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

ncnancdbc
ncnancdcb
ncncabdcem
ncncabdnt
ncncabndc
ncncadbem
ncncadbnt
ncncadcbm
ncncadcnb
ncncadnbce
ncncadnthb
ncncanbdc
ncncandbc
ncncandchb
ncncdabem
ncncdabnt
ncncdacbm
ncncdacnb
ncncdanbc
ncncdanthb
ncncdcabm
ncncdcanb
ncncdcnab
ncncdmabce
ncncdmach
ncncdntab
ncncmabdc
ncncmadbce
ncncrmadchb
ncnendabce
ncnendach
ncnendcab
ncnnabcdc
ncnnacbdc
ncnmacdbce
ncnmacdcb
ncnncabdc
ncnncadbc
ncnncadchb
ncnncdabce
ncnncdachb
ncnncdcab
mabccdcm
mabccdnt
mabccndc
mabcntdc
mabntcdc
macbcdcm
macbcdnt
macbcndc
macbntdc
maccbdcm
macchdnt
maccbndc
maccdbcm
maccdbnt

30.
36.
18.
16.
21.
18.
16.
24.
28.
21.
27.
25.
25.
31.
18.
16.
24.
28.
21.
27.
30.
34.
39.
25.
31.
37.
30.
30.
36.
30.
36.
42.
34.
34.
34.
40.
34.
34.
40.
34.
40.
46.
36.
34.
39.
43.
54.
30.
28.
33.
37.
30.
28.
33.
30.
28.

71

375
375
375
875
375
375
875
375
875
375
375
875
875
875
375
875
375
875
375
375
375
875
375
875
875
875
375
375
375
375
375
375
875
875
875
875
875
875
875
875
875
875
375
875
375
875
375
375
875
375
875
375
875
375
375
875

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

maccdcbm
maccdcnb
maccdnbc
maccdntb
maccnbdc
maccndbc
maccndchb
macnbcdc
macnctbdc
macncdbc
macnctdchb
manbccdc
mantbcdc
mantcbdc
manctcdbc
manccdchb
mcabcdcm
mcabcdnt
mcabcndc
mcabntdc
mcacbdcm
mcacbdnt
mcacbndc
mcacdbcm
mcacdbnt
mcacdcbm
mcacdcnb
mcacdnbc
mcacdntb
mcacnbdc
mcacndbc
mcacndcb
mcanbcdc
mcanctbdc
mcancdbc
mcancdcb
mccabdcm
mccabdnt
mccabndc
mccadbcm
mccadbnt
mccadcbm
mccadcnb
mccadnbc
mccadntb
mccanbdc
mccandbc
mccandchb
mccdabcm
mccdabnt
mccdacbm
mccdacnb
mccdanbc
mccdanthb
mccdcabm
mccdcanb

36.
40.
33.
39.
37.
37.
43.
42.
42.
42.
48.
58.
52.
52.
52.
58.
24.
22.
27.
31.
24.
22.
27.
24.
22.
30.
34.
27.
33.
31.
31.
37.
36.
36.
36.
42.
24.
22.
27.
24.
22.
30.
34.
27.
33.
31.
31.
37.
24.
22.
30.
34.
27.
33.
36.
40.

72

375
875
375
375
875
875
875
375
375
375
375
875
875
875
875
875
375
875
375
875
375
875
375
375
875
375
875
375
375
875
875
875
375
375
375
375
375
875
375
375
875
375
875
375
375
875
875
875
375
875
375
875
375
375
375
875

1226 mccdcmab --- 45,375

1227 mccdmabec --- 31.875
1228 mccdmacb --- 37.875
1229 mccdncab --- 43.875
1230 mccmabdec --- 36. 375
1231 mccmadbc --- 36. 375
1232 mccmadcb --- 42.375
1233 mccndabc --- 36. 375
1234 mccndacb --- 42,375
1235 mccndcab --- 48. 375
1236 mcmabcdec --- 40. 875
1237 mcmacbdc --- 40. 875
1238 mcrmacdbc --- 40. 875
1239 mcmnacdcb --- 46. 875
1240 mcnctabdc --- 40. 875
1241 mcncadbc --- 40. 875
1242 mcnctadcb --- 46. 875
1243 mcncdabc --- 40. 875
1244 mcnctdacb --- 46.875
1245 mcncdcab --- 52.875
1246 mmabccdec --- 63.375
1247 mnmacbcdec --- 57.375
1248 mmaccbdc --- 57.375
1249 mmaccdbc --- 57.375
1250 mnmaccdcb --- 63.375
1251 mntabcdc --- 51.375
1252 mntacbdc --- 51.375
1253 mncacdbc --- 51.375
1254 mnctacdcb --- 57.375
1255 mntcabdec --- 51.375
1256 mntcadbc --- 51.375
1257 mntcadcb --- 57.375
1258 mnccdabc --- 51.375
1259 mnccdacb --- 57.375
1260 mntcdcab --- 63.375
---Min Value---

Minimal Cost-Value: 15.375

7. Minimal Possible Schedules

S. No. Possi bl e Sequence Cost - Val ue

1 cmabcdnnc --- 15. 375
2 cmabcndnc --- 15. 375
3 cmabncdnc --- 15. 375
4 cmacbdnnc --- 15.375
5 cmacbndnc --- 15.375
6 cmacdbnnc --- 15,375
7 cmacdnbnc --- 15,375
8 cmacnbdnc --- 15,375

73

9 cmacndbnt --- 15.375

10 cmanbcdnt --- 15.375
11 cmancbdnc --- 15,375
12 cmancdbnc --- 15. 375
13 cncabdnnc --- 15.375
14 cncabndnc --- 15.375
15 cncadbnnc --- 15.375
16 cncadnbnc --- 15.375
17 cncanbdnc --- 15.375
18 cncandbnc --- 15.375
19 cncdabnnc --- 15.375
20 cncdanbnc --- 15.375
21 cncdnabnec --- 15,375
22 cncnabdnc --- 15,375
23 cncnadbnc --- 15.375
24 cncndabnc --- 15.375
25 cmabcdnc --- 15.375
26 cmacbdnec --- 15,375
27 cmacdbnc --- 15. 375
28 cmmcabdnc --- 15.375
29 crmmcadbntc --- 15.375
30 cmmcdabnec --- 15.375
Output:

cmacndbmc is the schedule generated by Proposed -EDD is found in Possible
sequence list(Feasibility case).Moreover, this sequence is aso found in list of
minimal cost sequence(Optimal case). Hence, it is shown empirically that
Proposed -EDD is both feasible and optimal.

74

Chapter 7

CONCLUSION AND FUTURE RECOMMENDATION

Flexible assembly lines that have negligible switch-over costs from one product to
another make it possible to implement flexible JIT production, which requires
producing only the necessary products in the necessary quantities at necessary
times. A JIT system being a pull system initiates any supplying process only if
there is another process that requires the supplying process output (subassembly,
part, raw material). As a result, it is the final assembly which is the focus for
scheduling. The problem of determining a sequence of final assembly such that
the quantity of each part used in the assembly process is kept as close to constant
as possible throughout the working time which is known as balancing the
schedule. Our concern in this dissertation, however, is to extract the best schedule

from the possible schedule.

In this dissertation, under the constraint that none of the chains are overlapping, it
is shown that by considering each chain as a pseudo job and their length as a
demands, we can have a pseudo schedule from EDD, which is later replaced by
the rea job, can lead a combined chain sequences which is both feasible and

optimal (shown practically).

Still alot of questions are left open. It islet to identify either we can establish the
mathematical derivations of Proposed EDD’s feasibility and optimality. It is also
remain open either we can achieve a similar algorithm for overlapping sequences.
Moreover, it is also let open that a similar achievement can be obtained with other
algorithms like Cost Assignment, Nearest Integer Point, Dynamic Programming,
and so on.

75

REFERENCES

Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, C. and Weglarz, J,

“Scheduling computer and manufacturing processes”, Springer, Berlin (1996).

Brouner, N. and Crama, Y., “The maximum deviation just-in-time scheduling
problem”, Discrete Applied Mathematics 134 (2004) 25-50.

Brucker, P., “Scheduling Algorithms”, Springer, Verlag 2 (1995).

. Carlier, J. and Chretienne, P., “Problemes d'ordonnancement: modelisation /

complexite / algorithms”, Masson, Paris (1988).

Dhamala, T. N., “Just-in-time sequencing agorithms for mixed-model production
system”, The Nepali Math. Sci. report 24, 1 (2005), 25-34.

Dhamala, T. N. and Khadka, S.R., “Just-in-time sequencing for mixed-model
production systems revisited”, submitted to Discrete Optimization 2007.

Dhamala, T. N. and Kubiak, W., “A brief survey of just-in-time sequencing for
mixed-model systems”, International Journal of Operational Research 2, 2 (2005)
38-47.

. Graham, R.E., Lawer, E.L., Lenstra, J.K., and Rinnooy Kan, “Optimization and
approximation in deterministic sequencing and scheduling, a survey”, Annals of

Discrete Mathematics 5 (1979) 287-326.

Hall, R.W., “Cyclic scheduling for improvement”, International Journa of
Production Research 26, 3 (1988) 457-472.

76

10.

11.

12.

13.

14.

15.

16.

17.

18.

Horn, W. A., “Some simple scheduling algorithms”, Naval Research Logistics
Quarterely 21 (1974) 177-185.

Inman, R. R. and Bulfin, R. L., “Sequencing just-in-time mixed-model assembly
lines”, Management Science 37, 7 (1991) 901-904.

Jost, V., “Deux problems d’approximation diophantin: le patage proportionnel en
numbers entries et les pavages equilibres de z”, DEA ROCO, Laboratorie
Leibniz-IMAG (2003).

Kovalyov, M. Y., Kubiak, W., Yeomans, J. S., A computational analysis of
balanced JIT optimization algorithm, Information Processing and Operational
Research, 39, 3 (2004) 4955-4974.

Kubiak, W., “Cyclic just-in-time sequence are optimal”, Journal of Global
Optimization 27 (2003) 333-347.

Kubiak, W., “Minimizing variation of production rates in just-in-time systems: A
survey”, European Journal of Operational Research 66 (1993) 259-271.

Kubiak, W. and Sethi, S., “Level schedules for mixed model assembly lines in

just-in-time” production system”, Management Science 37, 1 (1991) 121-122.
Kubiak, W., Steiner, G. and Yeomans, J.S., “Optimal level schedules for mixed-
model, multi-level just-in-time assembly systems’, Annals of Operations
Research 69 (1997) 241- 259.

Lebacque, V., Jost, V., Brauner, N., “Simultaneous optimization of classical

objectivesin J'T scheduling”, submitted to Elsevier Science, 2005.

77

19. Miltenburg, J., “Level schedules for mixed-model assembly lines in just-in-time
production system”, Management Science 35, 2 (1989) 192-207.

20. Miltenburg, J. and Goldstein, T., “Developing production schedules which
balance part usage and smooth production loads for just-in-time production
systems”, Naval Research Logistics 38 (1991) 893-910.

21. Miltenburg, J. and Sinnamon, G., “Scheduling mixed-model multi-level just-in-
time production systems”, International Journal of Production Research 27, 9
(1989) 1487-1509.

22. Miltenburg, J., Steiner, G and Yeomans, S., “A dynamic programming algorithm
for scheduling mixed-model just-in-time production systems”, Mathematica and

Computer Modeling, 13 (1990) 57-66.

23. Monden, Y., “Toyota production system”, Industrial Engineers and Management
Press, Norcross, GA (1983).

24. Pinedo, M., “Scheduling - theory, agorithms, and systems”, Prentice Hall,
Englewood Cliffs (1995).

25. Steiner, G. and Yeomans, S., “Level schedules for just-in-time production
process”, Management Science 39 (1993) 728-735.

26. Suganuma, T. and Ogasawara, T., “Overview of the IBM Java Just-in-Time
Compiler”, IBM System Journal, 39, 1 (2000).

27. Tanenbaun, A., “Modern Operating System”, Prentice-Hall of India Pvt. Ltd.
(2004).

78

28. Thorpe, S.R., Stevenson, D.S., Edwards, G.K., “Using Just-in-Time to Enable
Optical Networking for Grids”, In Workshop on Grids and Networks held in
conjunction with CCGrid, April, 2004.

29. Yee, G.V., Shucker, B., Dunn, J., Sheth, A., Han, R., *Just-in-Time Sensor
Networks” In Information Processing in Sensor Networks: Second International

Workshop, IPSN, 2003.

30. Toyota Motor Corporation Global Site, www.toyota.co.jp.

31. www.assignmentproblem.com.

32. Wikipedia, the Free Encyclopedia(http://en.wikipedia.org 2008).

79

Appendix A

Basic Mathematical Notations

Set theory

N

R

R+

Sequence and series

{ay, &, ..., &}

(&, &, ..., &)

Data

n
m
J

Pij
W, or w;

Set of natural numbers
Set of real numbers

Set of positive real numbers

Set of objectsay, &, ..., an

A sequence of numbers ay, &, ...

Number of jobs

Number of machines

Job numberi,i=1,..,n
Number of operations of job J;
Number of machines at stage |
Machine number j,j=1, .., m
Operation j of job J;

Release time of job J;

Due date of job J,

Desired start time of job J,
Processing time of operation O
Weight associated to job J;
Total demand

80

,an

M achine environment

3 U O T

Miscellaneous

ti

Cij

Ci

Ti

Ei

Li
EQ, J)
L(i, J)

Single machine
Identical machines
Uniform machines
Unrelated machines

The number of machines or stagesisfixed

Start time of operation O
Completion time of operation O
Compl etion time of job J;
Tardiness of job J

Earliness of job J;

Lateness of job J,

Release date of the copy (i, j)
Due date of the copy (i, j)

Modeling the cost Value

Mathematical Function:

81

Program:

public double getEval uation(String abc){

double eval=0.0;
String newStr="";
for(int i=0;i<abc.length();i++){
newStr =newStr+abc.charAt(i);
char jobChar =(char)abc.charAt(i);
Job =jobModel .getJob(jobChar);
int pos =getL astPos(newStr,jobChar);
double Zval = ((double)(2* pos-1))/(2.0*j.getR());
double Cur_eval =Math.pow((((double)(i+1))-Zva),2);
eva =eva + Cur_evdl,
}
return eval;
}
Mapping:
getL astPos(jobChar) returnsthe j value for the below mathematical
formula.
j-getR() returns the ratio of D/di for job |

Then our formula becomes:
(G-v2)D)/di
(2j-1)D/2*di

(2)-D* (D/di)*1/2
(2-1)*(U(di/D))*(1/2)
(2-1)*(Uri)*(1/2)
(2-1)/(2*ri)

(2* pos-1)/2*j.getR()

Eval isthe cumulative sum calculated by the help of loop.

82

Appendix B

Program Sour ce Code

1. Schedulel mage.java

class Schedulel mage{
private String schedule;
privateint index[];

int noOfChain;

double cost;

Schedulel mage(int i){
this.noOfChain=i;
schedule=new String();
index=new int[this.noOfChain];

}

publicint[] getlndex() {
return index;

public void setl ndex(int[] index) {
for(int i=0;i<index.length;i++)
thisindex[i]=(int)index[i];

}
public String getSchedule() {
return schedule;

}
public void setSchedule(String schedule) {
this.schedule = schedule;

public void incrIndex(int i){
thisindex[i]++;

public void printlndex(){

for (int i=0;i<this.noOfChain;i++){
System.out.print(this.index]i]);
}

}
public double getCost() {
return cost;

public void setCost(double cost) {
this.cost = cost;
}

}

83

2. PossibleSchedulejava

import java.util.Vector;
public class PossibleSchedule {

Vector <Schedulel mage>cat=new Vector <Schedulel mage>();
int total Demand=0;

doubleZ[][] = new double[100][100];
doubler]] = new double[100];
int pog][] = new int[100][100];
private String chain[]={

"aba",

" ccdec”

|3

int startlndex=0;

int finall ndex=0;

JobM odéel jobM odel=new JobM odel();
public double getEvaluation(String abc){

double eval=0.0;

String newStr="";

for (int i=0;i<abc.length();i++){
newsStr = newStr +abc.char At(i);
char jobChar = (char)abc.char At(i);
Job j = jobM odel.getJob(jobChar);
int pos = getL astPos(newStr ,jobChar);
double Zval = ((double)(2* pos-1))/(2.0*j.getR());
double Cur_eval = Math.pow((((double)(i+1))-Zval),2);
eval = eval + Cur_eval;

}

return eval;

}

publicint getL astPos(String newStr,char c){

int retVal=0;
for (int i=0;i<newStr.length();i++){
char chr=newStr.char At(i);

if(chr==c){
retVal++;
}
}
return retVal;
}

PossibleSchedule(){

int noOfChain=chain.length;
int length=0;

for (int i=0;i<noOfChain;i++){

84

length+=chain[i].length();

Schedulel mage s=new Schedulel mage(hoOfChain);
int index[]=new int[noOfChain];

index[i]=1;

String schedule="" +chain[i].char At(0);
s.setlndex(index);

s.setSchedule(schedule);

cat.add(s);

finallndex++;

int jobl ndex=0;
for (int i=0;i<noOfChain;i++){

for (int j=0;j<chain[i].length();j ++){

char c=((String)chain[i]).char At(j);
int index=this.jobM oddl.getl ndex(c);
if(index==-1){

jobM odel.addJob(c,j obl ndex++);

}
jobM odel.incJobCount(c);
}

}
jobM odel.setRatio();

int previndex;
for(int i=1;i<length;i++){

previndex=startl ndex;

startl ndex=finall ndex;

try{

for (int k=prevlndex; k<startlndex;k++){
Schedulel mage s=new Schedulel mage(noOfChain);
s=(Schedulel mage)cat.get(k);
for (int j=0;j<noOfChain;j++){
int index[]=new int[noOfChain];
index= s.getl ndex();
if(index[j]<chain[j].length()){
try{
String

schedule=s.getSchedule()+chain[j].char At(index[j]);

Schedulel mage s1l=new Schedulel mage(noOfChain);
sl.setlndex(s.getlndex());
sl.incrindex(j);
sl.setSchedule(schedule);
cat.add(sl);
finall ndex++;
}catch(Exception e€){
System.out.printin(" Error TrAp");

}
}
}

}
}catch(Exception €){
System.out.printin(" erer");
}

85

}
showFinalSchedule(startl ndex);
}

public static void main(String abc[]){
new PossibleSchedule();

}

public void showVector (){

for(int i=0;i<cat.size();i++){
Schedulel mage s=(Schedulel mage)cat.get(i);

s.printlndex();
System.out.print(" ");
System.out.printin(s.get Schedule());

}

public void showFinal Schedule(int startlndex){

int count=1;

for (int i=startindex;i<cat.size();i++){
Schedulel mage s=(Schedulel mage)cat.get(i);
s.setCost(getEvaluation(s.getSchedulg()));

System.out.print(count+" ");
System.out.print(" ");

System.out.printin(s.getSchedule()+" --- " +s.getCost());
count++;
}
}
3. JobModdl .java
class JobM odel{

Vector <Job>cat=new Vector<Job>();
public void addJob(char c,int joblndex){

Job j=new Job();
j.setJobChar(c);
j-setJobCount(0);
j.setR(0.0);
j.setJoblndex(j obl ndex);
this.cat.add(j);

public void setRatio(){
for(int i=0;i<cat.size();i++){
totalDemand+=((Job)cat.get(i)).getJobCount();
}

for(int i=0;i<cat.size();i++){
Job j=(Job)cat.get(i);

86

j-setR((double)j.getJobCount()/(double)total Demand);

}

}

public void addJob(Job j){
cat.add(j);

}

Job getJob(char c){
for (int i=0;i<cat.size();i++){
Job j=cat.get(i);
if(j.getJobChar ()==c)
returnj;
}
return null;
}
int getlndex(char c){
for(int i=0;i<cat.size();i++){
Job j=cat.get(i);
if(j.getJobChar ()==c)
returni;
}

return -1;

}

void incJobCount(char c){
for(int i=0;i<cat.size();i++){
Job j=cat.get(i);
if(j.getJobChar ()==c)
j.incrJobCount();

}

}

public void viewJobL ist(){
System.out.printIn(" Job Demand Ratio");
for(int i=0;i<cat.size();i++){
Job j=cat.get(i);

System.out.println(j.jobChar+" " +j.getJobCount()+" " +j.getR());
11

4. Job.java

class Job{

doubler;

char jobChar;

int jobCount=0;

int actualPos=-1,
int pos=-1;

int joblndex=-1;

public int getJobCount() {
return jobCount;
}

87

public void setJobCount(int jobCount) {
thisjobCount = jobCount;

}
public char getJobChar () {
return jobChar;

}
public void setJobChar (char jobChar) {
thisjobChar =jobChar;

}
public double getR() {
returnr;

}

public void setR(doubler) {
thisr =r;

}

public void incr JobCount(){
thisjobCount++;
}

public int getActualPos() {
return actualPos;

public void setActual Pos(int actualPos) {
this.actualPos = actual Pos;

}
publicint getPos() {
return pos,

public void setPos(int pos) {
this.pos = pos;
}

public int getJoblndex() {
return joblndex;

public void setJobl ndex(int joblndex) {
thisjoblndex = joblndex;
1

5. MinSumAbsoluteChainAlgo.java

public class minSumAbsoluteChainAlgo {
private int demand[]=new int[100];
private String scheduleEDD,scheduleCost;
private String realEddSchedule,real CostSchedule;
private String chain[]={
" aba",
" ccdec”
|3
public static void main(String abc[]){
new minSumAbsoluteChainAlgo();

}
minSumAbsoluteChainAlgo(){
for (int i=0;i<chain.length;i++){

demand[i]=chain[i].length();

88

}

EDD edd=new EDD(demand);

scheduleEDD=edd.get Schedul&();
this.realEddSchedule=convertSchedule(scheduleEDD);
System.out.printIn(" EDD Schedule :" +realEddSchedule);

}

private String convertSchedule(String pseudoSchedule){
String realSchedule="";
int chainPtr[]=new int[100];
for (int i=0;i<chain.length;i++){
chainPtr[i]=0;
}

for (int i=0;i<pseudoSchedule.length();i++){
int index=Integer .par sel nt(pseudoSchedule.char At(i)+"");
char job=chain[index-1].char At(chainPtr[index-1]++);
real Schedule=r eal Schedule+job;

}

return realSchedule;

}

}

6. EDD.java

import util.DoubleUtil;
public class EDD {

private String schedule="";
public EDD(int demand[]){

int product=demand.length;

int current[]=new int[100];

double dueDat€]][]=new double [100][100];
int totalDemand=0;

for (int i=0;i<product;i++){
totalDemand+=demand[i];
}

int index=1;

for(int i=0;i<product;i++){

for (int k=1;k<=demand[i]; k++,++index){
dueDat€]i][k-1]=DoubleUtil.getRoundDouble(((((double)k-
0.5)* (double)total Demand)/demand(i]),3);

}

}

for (int i=0;i<product;i++){
current[i]=0;

}

int minlndex;

double minValue;

89

for (int j=0;j<totalDemand;j++){
minlndex=0;
minValue=DoubleM AX_VALUE;//dueDate[O][current[0]];

for(int i=0;i<product;i++){
if(minValue>dueDate[i][current[i]]& & current[i]<demand[i]){
minlndex=i;
minValue=dueDat€[i][current[i]];

}

current[minlndex]=current[minl ndex]+1;
schedule=schedule + (minlndex+1);

}

7. DoubleUtil.java

}
public String getSchedule() {
return schedule;
}
public void setSchedule(String schedule) {
this.schedule = schedule;
}
}
package util;

public class DoubleUtil {

public static double getRoundDouble(double value,int decimal){
double fact=0.500000/M ath.pow(10.0,decimal);

int temp=(int)((valuetfact)* M ath.pow(10.0,decimal));
value=temp/M ath.pow(10.0,decimal);

return value;

}
public static void main(String abc[]){

System.out.printin(upper Floor (56.1));
System.out.printin(DoubleMAX_VALUE);
System.out.printin(M ath.E);

}

public static int upper Floor (double d){
if((double)(int)d==d)
return (int)d;
return (int)(d+1.0);
}
}

8. Earliest DueDate. java

import java.util.Vector;

import earliestDueDate.model.*;
import earliestDueDate.POJO.Job;
import util.DoubleUtil;

import util.ListViewM odel;

import util.ShowSchedule;

90

public class EarliestDueDate {
int demand[]=new int[100];
int product;
int totalDemand,;
double dueDat€]][]=new double[100][100];
int current[]=new int[100];
int schedule[]=new int[100];
Vector <Job>jobList=new Vector<Job>();
private ListViewM odel Datamodel=new L istViewM odel();
String color[]=null;

public EarliestDueDate(){
thisjobList=new JobDataM odel().getJob();
runEarliestDueDateAlgo();

public void runEarliestDueDateAlgo(){
this.product=thisjobList.size();
totalDemand=0;
for(int i=0;i<product;i++)
demand[i]=thisjobList.get(i).getDemand();
totalDemand+=demand[i];
}

this.Datamodel.setM atrix(this.totalDemand,3);

String [JdataColName={" Product" ," Unit" " Due Date" };

Datamodel.setColName(dataColName);

color=new String[this.totalDemand];

int index=0;

for(int i=0;i<product;i++){
this.Datamodel.setValueAt(index," " +(i+1));
index=index+3*demand[i];

}

index=1,

for (int i=0;i<product;i++){

for (int k=1;k<=demand[i]; k++,++index){

dueDate]i][k-1]=DoubleUtil.getRoundDouble(((((double)k-

0.5)* (double)total Demand)/demand(i]),3);
if(k!=1){

this.Datamodel.setValueAt(index-1," --");

this.Datamodel.setValueAt(index++," " +k);
this.Datamodel.setValueAt(index++," " +dueDate]i][k-1]);
}

try{
}catch(Exception e€){

this.Datamodel.setValueAt(index," " +(i+2));
}

}

for (int i=0;i<product;i++){
current[i]=0;

}

int minlndex;

double minValue;
for (int j=0;j <total Demand;j ++){

91

0.

minlndex=0;
minValue=DoubleM AX_VALUE;//dueDate[O][current[0]];
for (int i=0;i<product;i++){
if(minValue>dueDat€[i][current[i]]& & current[i]<demand]i
I
minlndex=i;
minValue=dueDat€[i][current[i]];

}

current[minlndex]=current[minl ndex]+1;
schedul€]j]=minl ndex+1,;

color[j]="#" +minl ndex+"" +minlndex+" " +minlndex+" " +
minlndex+"" +minlndex+" " +minlndex;

String scheduleList="<HTML >Schedule List :
";
for (int i=0;i<totalDemand;i++){
schedulel ist+=schedule[i]+" - ";

scheduleList+=" </html|>";

new ShowSchedule(this.Datamodel," Earliest Due
Date" ,scheduleList);

Input demand. Java

import java.awt.BorderL ayout;

import java.awt.FlowL ayout;

import java.awt.GridL ayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.M ouseAdapter;

import java.awt.event.M ouseEvent;

import java.awt.event. WindowAdapter;
import java.awt.event.WindowEvent;

import java.awt.event.WindowListener;
import javax.swing.JButton;

import javax.swing.JL abel;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.JTextField;

import javax.swing.JFrame;

import earliestDueDate.POJO.Job;

import earliestDueDate.com.EarliestDueDate;
import earliestDueDate.model.JobDataM odél;
import earliestDueDate.model.TabelM odel For Job;

public class | nputDemand extends JFrame implements ActionListener{
JTable table=new JTable&();
TabelM odelFor Job model=new TabelM odelFor Job();
JButton jbtAdd=new JButton(" Add New");
JButton jbtSave=new JButton(" Save");

92

JButton jbtSchedule=new JButton(" Schedule");
JTextField jtfJob=new JTextField(5);
JTextField jtfJobDemand=new JTextField(5);

private String MODE="ADD";

private void init(){
JPanel jpCenter=new JPanel();
jpCenter .setLayout(new FlowL ayout());
JScrollPane jspTable=new JScrollPane(this.table);
thistable.setM odel(this.mode!);
jpCenter.add(jspTable);
JPanel jpButton =new JPanel();
jpButton.setL ayout(new FlowL ayout());
jpButton.add(this.jbtAdd);
jpButton.add(this.jbtSave);
jpButton.add(this.jbtSchedule);
JPanel jpData=new JPanél();
jpData.setL ayout(new FlowL ayout());
jpData.add(new JLabel(" Job Id:"));
jpData.add(this,jtfJob);
jpData.add(new JLabel(" Demand :"));
jpData.add(this.jtfJobDemand);
thisjtfJob.setEditable(false);
this.setL ayout(new Border L ayout());
JPanel jpDownHolder=new JPanel();
jpDownHolder .setlL ayout(new GridLayout(2,1,5,5));
jpDownHolder.add(jpData);
jpDownHolder.add(jpButton);
JPanel jpDown=new JPanel();
jpDown.setlL ayout(new FlowL ayout());
jpDown.add(jpDownHolder);
this.add(jpDown,Border L ayout. SOUTH);
this.add(jpCenter,BorderLayout. CENTER);
thisjbtSave.addActionListener (this);
thisjbtAdd.addActionListener (this);
thisjbtSchedule.addActionL istener (this);
this.setTitle(" Earliest Due Date - Input Demand ");

}

public static void main(String abc[]){

InputDemand mf=new InputDemand();

mf.set Size(400,400);

mf.setVisible(true);

mf.setDefaultCloseOper ation(JFrame.EXIT_ON_CL OSE);
}

public InputDemand(){

init();

thistable.addM ouseL istener (new M ouseAdapter (){

public void mouseClicked(M ouseEvent arg0) {

InputDemand.thissM ODE="EDIT";

int i=InputDemand.this.table.get SelectedRow();

Job j=InputDemand.this.model.getJobAt(i);

InputDemand.this.jtfJob.setText(" " +j.getJobld());
InputDemand.this.jtfJobDemand.setText(" " +j.getDemand());

}
3k

93

public void actionPerfor med(ActionEvent ae) {

if (ae.get Sour ce().equal s(this.jbtSchedule)){

System.out.printin(new JobDataM odel().getJob().siz&());
long I11=System.currentTimeMillis();
EarliestDueDate dp=new EarliestDueDate();
long 12=System.currentTimeMillis();
JOptionPane.showM essageDialog(this,” Total Run
Time:" +(12-11)+" milisecond");

}
if (ae.get Sour ce().equal s(thisjbtAdd){
clear Box();
thisM ODE="ADD";

}

if (ae.get Sour ce().equal s(this.jbtSave)){
Job j=new Job();
if(this.M ODE.equals(* ADD")}
j.setDemand(lI nteger .par sel nt(this.jtfJobDemand.get T ext()));
this.model.addJob(j);

}
else{
System.out.printin(" EDIT");
try{
j-setJobld(I nteger.par sel nt(thisjtfJob.getText()));
j-setDemand(lI nteger .par sel nt(this.jtfJobDemand.get Text()));
this.model.editJob(j);
}catch(Exception €){
e.printStackTrace();

}
}
this.table.updateUl ();
clear Box();
}
}
public void clear Box(){
thisjtfJob.setText("");
thisjtfJobDemand.setText("");
}
}

94

