Applied Sciences and Chemical Engineering
Permanent URI for this collection
Browse
Browsing Applied Sciences and Chemical Engineering by Author "Chalise, Sushant"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item "Estimation of Global Solar Radiation Potential using Hybrid Models : A Case Study of Nepal”(Pulchowk Campus, 2021-09) Chalise, SushantSolarenergyhasimmensepromiseasasourceofrenewableenergy.Itisabundantthroughout theyear,althoughitissubjecttouncertaintyduetovariousparameters.Sunenergysources’ affectivityandproductivitycanbeimprovedbyaccurateforecastingofsolarradiation.Fore- castingGlobalSolarRadiation(GSR)inthefieldofresearchhasattractedwidespreadattention fromtheresearchcommunityinmanypracticalfieldsincludingenergy.Differentmodelsfor predictingGSRpotentialhavebeenusedintheliterature.Oneofthemostprominentlinear modelsfortimeseriesforecastingistheAutoregressiveIntegratedMovingAverage(ARIMA). Therearealsodifferentmachinelearningmodelswhichshowpromisingforecastingresults.To takeadvantageoftheuniquebenefitsofARIMAandmachinelearningmodelsinlinearand nonlinearmodelingthedataofsolarradiationpotential,weproposeahybridmethodcombining ARIMAandmachinelearningmodelsANN(ArtificialNeuralNetwork)andLSTM(LongShort TermMemory)modelsinthisstudy.ThedatasetwasobtainedforthelocationofKushma, Parbatfordurationbetween1990to2014.Forthesupplieddatasets,theARIMAplusANN hybridmodelwasseentobethebestmethodforpredictingsolarradiationpotential.Thecor- relationcoefficient(Rsquare)iscalculated0.847.Theerrorvaluesforthismodelareaccessed asRMSE,MAPEandMAEof1.719,6.456and1.330respectively.Theexperimentalresults ofrealdatasetsshowthatthecombinedmodelcaneffectivelyimprovethepredictionaccuracy achievedbyanymodelusedalone.TTheacquiredresultsalsodemonstratedthatthecreated modelcouldbeutilizedtocalculatethesolarradiationpotentialofanygeographicregionwith knownclimaticparameters.