Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "KARKI, SITARAM"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    “MULTI BATTERY BLOCK MODULE POWER CONVERTER FOR ELECTRIC VEHICLE DRIVEN BY SWITCHED RELUCTANCE MOTOR”
    (I.O.E. Pulchowk Campus, 2023-03) SONAR, NILESH SAH; KARKI, SITARAM; POKHAREL, SWASTIKA; GHIMIRE, VIBEK
    This project proposes an innovative approach to control and regenerate energy from a switched reluctance motor (SRM) for electric vehicles using a multi-battery system. By adopting this configuration, the proposed system overcomes the limitations of a single battery pack and maximizes the potential of the SRM. The control system implemented in this project utilizes a proportional-integral (PI) controller, which is carefully optimized to ensure efficient operation and minimize losses. The PI controller plays a crucial role in maintaining the desired performance of the SRM while achieving optimal energy regeneration. Through simulation on a 75 kW SRM, the results of this project exhibit significant enhancements in performance compared to traditional control methods. Notably, an impressive 26% of energy regeneration is achieved, which greatly contributes to the overall efficiency of the system.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback