Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sah, Sudeep"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Experimental Analysis of Fluid Flow and Heat Transfer of Al2O3-Water Nanofluid in Turbulated Tube
    (I.O.E, 2024-06) Sah, Sudeep; Adhikari, Surya Prasad
    Nanofluids have garnered significant interest because of their enhanced thermal properties. One prominent application of nanofluids is enhancing the thermal performance of heat exchangers. In this research work, experimental investigations were conducted to evaluate the effect of adding Al₂O₃-water nanofluids on the overall heat transfer coefficient and pressure drop in a shell and tube heat exchanger fitted with helical coil turbulators. Al₂O₃ nanoparticles were uniformly dispersed in water to create nanofluids with concentrations of 0.2% and 0.4% by weight. These nanofluids were used in tube of the heat exchanger, where helical coil turbulators with pitches of 16mm and 20mm induced turbulence to enhance heat transfer. The study examined various parameters including nanofluid concentration and turbulator pitch, analyzing their effects on pressure drop and heat transfer. The study presents the outcomes indicating that the use of Al₂O₃-water nanofluids leads to a significant enhancement of thermal efficiency of shell and tube heat exchanger. The maximum increase in overall heat transfer coefficient was observed with the 0.4% Al₂O₃-Water nanofluid combined with a 16mm pitch helical coil. Furthermore, employing the 16mm pitch coil resulted in a higher pressure drop compared to the 20mm pitch coil, highlighting the trade-off between heat transfer enhancement and pressure drop. The average enhancements in the overall heat transfer coefficient for the 0.2% and 0.4% nanofluids without turbulators were 19.5% and 34.66%, respectively, within the flow rate range of 470 to 620 l/hr compared to pure water. Introducing 16mm and 20mm helical coil turbulators in pure water increased the overall heat transfer coefficient by 47.09% to 54.76% and 26.7% to 34.66%, respectively, relative to pure water without turbulator.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback