A 3-channel active electrode EEG device for the classification of motor imagery brain waves for brain computer interface

Journal Title

Journal ISSN

Volume Title

Publisher

Pulchowk Campus

Abstract

Thisthesisworkpresentsacosteffectivemethodtorecordbrainwavesignalsusing threechannelactiveelectrodeEEGdeviceandclassifybrainwavesrelatedtomotor imagery(MI)leftandrighthandmovement,basedonelectroencephalography(EEG) measuredfromthecentrallobe,thatcouldbeusedfortheBrainComputerInterface (BCI)systems.ThegoalofthisthesisistouseIndependentComponentAnalysis (ICA)fortheremovalofEEGartifacts,andthenextractthebrainwavesfeaturesforMI lefthandandMIrighthandmovementusingWaveletDecomposition(WD).The‘Mor- let’motherwaveletisusedforwaveletdecompositionasitshowsbetterperformance foranalysisofnon-stationarybiomedicalsignalslikeEEG.Thebrainwavefeatureslike MaximumPoweramongalldecompositionlevel(MMP),Frequencycorrespondingto MMP(MAF),andMaximumAmplitudeofthesignalwithMAF(MMA)ischosen astheclassificationfeaturesfortheclassificationofMIbrainwaves.Theclassifica-tionofMIbrainwavesignalsisdoneusingLinearDiscriminantAnalysis(LDA)which showedtheaccuracyof81.6%.Thus,thedesignedthreechannelactiveelectrodeEEG deviceusedshowedgoodperformanceforrecordingEEGsignals.Furthermore,signal preprocessingalgorithmICA,featureextractionmethodWaveletDecomposition,and classificationmethodLDAshowedgoodperformancefortheclassificationofMIleft handandMIrighthandactivities.

Description

This thesis work presents a cost effective method to record brain wave signals using three channel active electrode EEG device and classify brain waves related to motor imagery(MI) left and right hand movement, based on electroencephalography (EEG) measured from the central lobe ,that could be used for the Brain Computer Interface (BCI) systems.

Citation