A 3-channel Active Electrode EEG Device for the Classification of MotorImagery Brain waves for Brain Computer Interface

Date
2017-11
Journal Title
Journal ISSN
Volume Title
Publisher
Pulchowk Campus
Abstract
Thisthesisworkpresentsacosteffectivemethodtorecordbrainwavesignalsusing threechannelactiveelectrodeEEGdeviceandclassifybrainwavesrelatedtomotor imagery(MI)leftandrighthandmovement,basedonelectroencephalography(EEG) measuredfromthecentrallobe,thatcouldbeusedfortheBrainComputerInterface (BCI)systems.ThegoalofthisthesisistouseIndependentComponentAnalysis (ICA)fortheremovalofEEGartifacts,andthenextractthebrainwavesfeaturesforMI lefthandandMIrighthandmovementusingWaveletDecomposition(WD).The‘Mor- let’motherwaveletisusedforwaveletdecompositionasitshowsbetterperformance foranalysisofnon-stationarybiomedicalsignalslikeEEG.Thebrainwavefeatureslike MaximumPoweramongalldecompositionlevel(MMP),Frequencycorrespondingto MMP(MAF),andMaximumAmplitudeofthesignalwithMAF(MMA)ischosen astheclassificationfeaturesfortheclassificationofMIbrainwaves.Theclassifica-tionofMIbrainwavesignalsisdoneusingLinearDiscriminantAnalysis(LDA)which showedtheaccuracyof81.6%.Thus,thedesignedthreechannelactiveelectrodeEEG deviceusedshowedgoodperformanceforrecordingEEGsignals.Furthermore,signal preprocessingalgorithmICA,featureextractionmethodWaveletDecomposition,and classificationmethodLDAshowedgoodperformancefortheclassificationofMIleft handandMIrighthandactivities.
Description
This thesis work presents a cost effective method to record brain wave signals using three channel active electrode EEG device and classify brain waves related to motor imagery(MI) left and right hand movement, based on electroencephalography (EEG) measured from the central lobe ,that could be used for the Brain Computer Interface (BCI) systems.
Keywords
LDA, Morlet, Wavelet Decomposition, ICA
Citation