Numerical modeling of influence of source in heat transformation: An application in blacksmithing metal heating

dc.contributor.authorKandel, Hari Prapanna
dc.date.accessioned2023-07-06T09:05:33Z
dc.date.available2023-07-06T09:05:33Z
dc.date.issued2022
dc.description.abstractPartial differential equations (PDEs) are used to mimic a variety of real-world physical issues. A standard parabolic PDE of the form u ; ( > 0) is an 1D heat equation. In a regular form of domain, the heat equation has an analytical solution. Computing an analytical solution becomes challenging, if not impossible, any time the domain of such modeled issues has an uneven shape. In this case, numerical methods can be used to find the numerical solution of these PDEs. Through the domain’s discretization into a limited number of areas. One of the numerical techniques used to determine the numerical solutions of PDEs is the finite difference method (FDM). Here, the FTCSSfor the one-dimensional heat equation and the numerical computation of its solution using FTCSS are discussed. Furthermore, numerical solution and analytic solution of heat equation has been compared and analyzed. Additionally, the 1D heat equation with variable starting conditions (ICs) and numerous initial conditions (ICs)has been solved numerically using FDMs. Blacksmiths heated the parts at various temperatures and locations to mold different metals into the necessary shapes. The numerical solution method for the 1D heat problem given here can be used to solve heat equations used in engineering and scientific disciplines. t = u xxen_US
dc.identifier.urihttps://hdl.handle.net/20.500.14540/18462
dc.language.isoen_USen_US
dc.publisherDepartment of mathematicsen_US
dc.subjectHeat transformationen_US
dc.subjectMetal heatingen_US
dc.titleNumerical modeling of influence of source in heat transformation: An application in blacksmithing metal heatingen_US
dc.typeThesisen_US
local.academic.levelM.Phil.en_US
local.institute.titleCentral Department of Mathematicsen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Full thesis.pdf
Size:
1.94 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections